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1. Introduction

Let G be a locally compact Hausdorff group, and let L*(G) be the
usual Banach algebra. Let X be a non-zero weak*-closed linear subspace
of L*(G) which is (i) left and right translation invariant, (ii) self-adjoint,
and (iii) an algebra. Such subspaces X were characterized by Pathak and
Shapiro for LCA groups G, and by Crombez and Govaerts for
general locally compact Hausdorff groups G (not necessarily abelian) under
the assumption that X contains the constant functions. In this paper we
consider the property (ii) complemented, instead of (i), and characterize
weak*-closed linear subspaces of L*(G) with the properties (i), (iif, and (iii)
for LCA groups G and compact Hausdorff groups G, not necessarily abelian.
Pathak-Shapiro Theorem ([5]) and our result show that if G is a LCA
group, and if X is a weak*-closed translation invariant subalgebra of L*(G),
then X is complemented if and only if X is self-adjoint. Also, Crombez-
Govaerts Theorem ([1]) and our result show that if G is a compact Hausdorff
group, not necessarily abelian, and if X is a weak*-closed left and right
translation invariant subalgebra of L*(G), then X is complemented if and
only if X is self-adjoint. (See Remark 3 in section 3).

Let G be a locally compact Hausdorff group and fix left Haar measure
dx on G. Let L*(G) be the class of all complex-valued essentially bounded
Haar-measurable functions on G, and let LY(G) be the class of all complex-
valued Haar-integrable functions on G. L*(G) is a commutative Banach
algebra under pointwise multiplication of functions as the product. As is
well-known, L”(G) is the Banach space dual of L}(G). For s&G, left and
right translation of a function f on G by s are denoted by (Lf) (x)=F(sx)
and (R.f)(x)=f(xs) (x&G), respectively. A linear subspace X of L*(G)
is said to be left [right, left and right] translation invariant if Lfe X [Rfe X,
L.f and R, f€X] for all s&€G and f€X. If G is abelian, left (and hence
left and right) translation invariant subspaces of L*(G) are simply said to
be translation invariant. A subset X of L®(G) is said to be self-adjoint if
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f€ X implies fe X, where f denotes the complex conjugate of /. A closed
linear subspace X of L*(G) is said to be complemented if there exists a
bounded projection P (i.e., a bounded linear operator with P?=P) of L*(G)
onto X.

Given a closed normal subgroup H of G, we put Xyz={f&L(G);
Lf=R,f=f for all s€ H). We can easily see that every Xy is a weak*-
closed linear subspace of L*(G) which is left and right translation invariant
and an algebra containing the constant functions. Also, if G is a LCA
group or a compact Hausdorff group, not necessarily abelian, then X is
complemented. This is verified as follows; If G is a LCA group, then it
follows immediately from Gilbert Theorem ([2]) that Xy is complemented.
(See Remark 1 in section 2). If G is a compact Hausdorff group, not neces-
sarily abelian, and if we define P: L*(G)—~L*(G) by (Pf)(a)=|nf(x&)ds
(f€L*(G)), where d¢ is the normalized Haar measure on H, then P is a
bounded projection L*(G) onto Xy (See (28.54)). Hence Xy is comple-

mented.
We prove the following converse Theorems.

THEOREM 1. Let G be a LCA group, and let X be a non-zero weak*-
closed linear subspace of L*(G) which is (i) translation invariant, (iif
complemented, and (il) an algebra. Then there exists a unique closed sub-

group H of G such that X=Xy.

THEOREM 2. Let G be a compact Hausdorff group, not necessarily
abelian, and let X be a nonzero weak*-closed linear subspace of L*(G)
which is () left and right translation invariant, (iif complemented, and
(il) an algebra. Then there exists a unique closed normal subgroup H of

G such that X=Xj.

We will prove Theorem 1 and 2 in section 2 and 3, respectively.

I would like to thank Professor S. Koshi and Professor J. Inoue for
their valuable suggestions.

2. Proof of Theorem 1

Throughout this section, G will be a LCA group unless the contrary
is explicitly specified. The group operation in G will be written additively.
The dual group of G is denoted by G. We need two Lemmas to obtain
the proof of Theorem 1.

For an abelian group G, the coset-ring of G is the smallest ring of sets
of G containing all the cosets of G. The coset-ring of G is denoted by % (G).
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LemMA 1. Let Z be the additive group of the integers, S a subsemi-
group of Z. Suppose that S differs from CJ(tZ—I—uj) in at most finitely
. Jj=1

many places, where t, u;eZ, 0<¢, 0<u;<t 1<j<k). Then S is a sub-
group of Z.

Proor. Let c=min {neS; n>0} and d=max {me&.S; m<0}. Indeed,
there exist such elements by the form of S. Then ¢+d=0 because of
S+Sc.S and our choice of ¢ and d. Hence 0SS and —c=d&.S, and so
we have ¢ZC.S. If x is a positive element in .S, then there exists a unique
neZ such that (n+1)(—c)<—z<n(—c¢). Thus 0<n(—c)+x<c. Since
n(—c)+zx<S, we have n(—c)+x=c by our choice of ¢. Hence x=cZ
If x is a negative element in S, by the same argument we have x&cZ.

Hence we conclude S=cZ. This completes the proof of Lemma 1.

Lemma 2. Let G be an abelian group, and let E be a non-empty
subset of G in Z(G). If E is a subsemigroup of G, then E is a subgroup
of G.

Proor. It suffices to show that x&FE implies —x&E. Let H be the
subgroup generated by x. Then HNE is a subsemigroup of G. If the
order of z is finite, then HNE is a finite subsemigroup of G. Since a
finite subsemigroup of every group is a subgroup, HNE is a subgroup of
G. Hence —x<=E. If the order of zx is Infinite, then H=Z. Since HNE
eZ(H) and H=Z, we may consider HNE=%(Z). Since HNE is infinite,
it follows from Helson Theorem ([8]. p.61) that HNE must be the form
described in Lemma 1. Hence HNE is a subgroup, and so —x&E. This
completes the proof of Lemma 2.

Let X be a weak*-closed translation invariant subspace of L*(G). Then
the spectrum of X, written sp(X), is defined as the set of all elements of

G which belong to X ([8]. 7. 8).
The following Theorem is due to J. E. Gilbert ([2]).

Tueorem 3 (J. E. Gilbert). Let X be a weak*-closed translation
invariant subspace of L¥(G). Then X is complemented if and only if
sp(X)e % (G).

REMARK 1. In section 1 we described that Xy is complemented. This
fact follows immediately from Theorem 3 since sp(Xp)=H'=%(G). Here
H< denotes the annihilator of H, i.e., HL:{;’EG; (z,7)=1 for all z= H}.

Proor oF THEOREM 1. Let X be a non-zero weak*-closed linear sub-
space of L*(G) with the properties (i), (i, and (iii). By (i) and (iii), sp(X)
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is non-empty and is a closed subsemigroup of G. Since X has the property
(i, it follows from Theorem 3 that sp(X)=%#(G). Hence by Lemma 2,
sp(X) is a closed subgroup of G. Putting H=(sp(X))1={z=G; (z,7)=1
for all (yesp(X)}, we have X=Xy Noting sp(Xyz) =H~* for every closed
subgroup of G, we obtain the uniqueness of H with X=Xz This completes
the proof of Theorem 1.

We conclude this section with three examples which show that all the
conditions in Theorem 1 are really necessary.

ExaMpLE 1. Let G=T be the circle group. Then G=Z (the additive
group of the integers). Let X be a non-zero weak*-closed translation invari-
ant subspace of L*(T) such that sp(X) belongs to #(Z) and is not sub-
semigroup of Z. Indeed, there exists such X. For example, let X be the
weak*-colsed translation invariant subspace with sp(X)={2n+1; neZ}.
Then X satisfies (i), (i) but not (iii.

ExaMpPLE 2. Let G=T and X=H*T)={feL>(T); f(n)=0 for all
negative integers n}. Here f denotes the Fourier transform of £. Then
X is a weak*-closed linear subspace of L*(T'), and satisfies (i), (iii) but not
iy ([2]-

ExampLE 3. Let G=T and m the normalized Haar (Lebesgue) measure
on 7. Let ECT be a Borel set such that 0<m(E)<1. Put X={feL>(T);
f(x)=0 on E*}, where E* denotes the complement of E relative to 7. Then
X is a non-zero weak*-closed linear subspace and satisfies (ii), (iii) but not

(i).
3. Proof of Theorem 2

Throughout this section G will be a compact Hausdorff group, not
necessarily abelian, with the normalized left Haar measure dx unless the
contrary is explicitly specified. The identity element of G is denoted by ‘e.
Given a function f on G, we put f(x)=f(x) (x€G). Let C(G) be the
Banach algebra of all complex-valued continuous functions on G, and M(G)
the Banach space of all bounded regular complex Borel measure on G' with
total variation norm. Then, as is well-known, M (G) is the Banach space
dual of C(G). Self-adjoint subsets and complemented linear subspaces of
C(G) are defined in the same way, except that L*(G) in the definifions of
those of L*(G) is replaced by C(G).

For two functions f and ¢ in L!(G), the convolution f*g is defined by

Fro@=| ranoua={ ro o (=<6,
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For f€ L'(G) and p=M(G), the convolution p*f and f*p are defined by

wif @) = |l dut)

and
feu = 2 f ey duty),

respectively. Here 4 is the modular function of G. Since every compact
Hausdorff group is unimodular, i.e., 4(x)=1 (x€G) ([6]. p. 62), in the
present case we have

frua) = flay) dpw).

To prove Theorem 2 we need some Lemmas. and 7 leading
to Theorem 2 are also of interest in their own right.

LEMMA 4. Let X be a weak*-closed right translation invariant com-
plemented subspace of L*(G). Then there exists a bounded prejection T
of L*(G) onto X such that TR,=R,T for all s€G. |

Proor. We can prove this Lemma by using an argument similar to
one of the proof of Theorem 1.1 in [7]. .Let M denote the bounded linear

functional on L*(G) defined by M(f):st(x)dx. Thus M satisfies the

following,

(a) M(l)zl,
(b) (Rf) = for all s&G and feL*(G)
(c) V vl SHfHoo for all f&L™(G).

Let (, ) denote the usual pairing between LY(G) and L*(G). Thus if
fELG) and gEL¥(G), then (£,9)=| f(2) gla™)dz.

Since X is complemented, there exists a bounded projection P of L*(G)
onto X. Now fix g&L®(G). For each feL!'(G), consider (f, R,—PR,g)
an element of L*(G). Then f—M((f, R,-PR,9)) defines a bounded linear
functional on L'G). Let Tg¢ be the unique element of L”(G) representing
this functional. Then 7T is a bounded linear operator of L”(G) into L*(G)
with the norm ||7]|<||P||. To see that T is a projection of L*(G) onto
X, it suffices to show that T (L*(G)C X and that g X implies Tg=g.
Since X is weak*-closed, we have X={ge& L*(G); (f,9) =0 for all fe X1},
where X'={feL!G); (f,9)=0 for all g=X}. Let g=L*(G). Then
(fs R PR,9)=0 for each x&(G and fe X! since R,~:PR,g=X. Thus (f,
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T9)=M( f, R~ PR,g)=0, and so TgeX. Hence T (L*(G)cX. Next,
let g=X. Then PR,g=R,y for each zG. By (a), we have (f; Tg) =
M((f, R~ Rag) =M ((f,9))=(f, g) for all f€ L'(G). Hence Tg=g. Finally,
to see TR,=R,T for all s&G, let g L°(G), f€ L}(G), and s&G. Noting
G is unimodular, we have (f, R,T9)=(Lf, Tg). Since M satisfies (b),

(f, TRg) = M (( f; Re-PR.R))
= M ((f, RiRizo-PRag))

= M((Lsf, R(zs)—‘PRxsg)>

=(Lf, T9) = (f; R,Tg).
Hence we have TR,=R,T for all s&€G. This completes the proof of
Lemma 4.
LEmMMA 5. Let X be a weak*-closed right translation invariant sub-
space of L=(G). Put X*L'={g*f; feLYG), g X}. Then X*L'C X

Proor. This Lemma can be proved by using the same argument as
that in the proof of Lemma 2 in if we note the following equation ;

[, k0 @) () do= | _Fl2) (0% (2) da

for every f, ke LY(G) and g= L=(G).

REMARK 2. holds for every unimodular locally compact
Hausdorff group G.

In view of and 5, we can extend the result known for compact
abelian groups to compact Hausdorff groups, not necessarily abelian.

LEMMA 6. Let X be a weak*-closed right translation invariant com-
plemented subspace of L*(G). Then there exists a weak*-closed left transla-
tion invariant subspace Y of L°(G) such that L*(G)=XPY.

- Proor. By [Lemma 4, there exists a bounded projection P of L*(G)
onto X such that PRi=R,P for all s&€G. Then f&C(G) implies Pf=C(G).
For if feC(G), then :

IRPF—Pf lu=|IPRf— Bf ||« <|IPl| [Rf —f 1m0 as s—e
in G. So f—(Pf)(e) defines a bounded linear functional on C(G). Con-
sequently, there exists a p& M (G) such that (Pf) (e):L FyY)du(y) for every
feC(G). But for z=G,
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(PF) (2) = (RaPF) (6) = (PRof) (0) = | fl ') ) = f (2).

Hence we conclude that Pf=p*f for each f&C(G).
Now we consider T': LY(G)— LY(G) defined by Tf=f—f*p. Put X1=
{(feLV(G); (f,9)=0 for all g= X}, where (f, g):SGf(x)g(x"l)dx. Then

we claim that 7" is a bounded projection of L}G) onto X' and that L,T=
TL, for all s&G. It is clear that L,T=TL, for all s&€G. To see that
T (LMG)c X, let feL}G) and g X. Then ¢g*/f=C(G). So

(f=f* 9) = (9%f) (e —(*g*f) (¢)
| = (g*f) (e) — P (g*f) (e) .

By Lemma 5, we have X*L'CX, and so ¢*fX. Hence P(g*f)=¢*f,
and (f—f*u, g)=0. We obtain T (L'(G)C X+ Next, to see that feX*
implies Tf=f, i.e., f*u=0, let fe X+ and g=C(G). Since

(f*1, 9) = (*g*f) (e) = (Pg*f) (e) = (f, Pg)

and fe X!t and Pge X, we have (f*y, 9)=0. Since C(G) is weak*dense in
L*(G), feX* implies f*p¢=0. Hence we conclude that 7" is a bounded
projection of LY(G) onto X* such that L,T=TL, for all s&G.

Let T* be the adjoint operator of T, i.e, T* is the bounded linear
operator of L*(G) into L*(G) which satisfies (Tf, g)=(f, T*g) for all f& L\(G)
and g L*(G). Put Y={g= L*(G); (I-T*)g=0}. Here I denotes the iden-
tity operator on L*(G). Then Y is a weak*-closed left translation invariant
subspace. Since I—T* is weak*-continuous, Y is weak*-closed. Let g,
feLYG), and s€G. Then by a direct computation, we have (f, L,g— T*L,g)
=(R,f, g—T*g), and so (f, Lyg—T*L.,g)=0. Hence Lg&Y for all s&G
and geY. By the definition of Y, it is clear that L*(G)=X®Y. This
completes the proof of Lemma 6.

The following Lemma 7 is of interest from viewpoint of constructing
a complemented subalgebra of C(G) from a complemented one of L*(G);

LEMMA 7. Let X be a weak*-closed left and right translation invariant
complemented subalgebra of L™(G). Then L*X is a closed complemented
subalgebra of C(G).

Proor. If we note that G is a compact Hausdorff group, by
4 in [1], we have L*X=C(G)NX. Hence L™ X is a closed subalgebra of
C(G). By [Lemma 6, there exists a weak*closed left translation invariant
subspace Y such that L*(G)=X®Y. Since by Corollary 2 in L*Xc
X, L*YCY, and C(G)=L*L> ([4]. 32.45 (b).), we have C(G)=L*L>=
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(L*X)P(L*Y). Since L*X and L*Y are closed in C(G), it follows that
L*X is complemented in C(G). This completes the proof of Lemma 7.

The following result is due to I Glicksberg ([3]). It is used to prove
below. '

TueoreM 8 (L. Glicksberg). Let X be a closed left and right transla-
tion invariant subalgebra of C(G). Then X is complemented in C(G) if
and only if X is self-adjoint. _

In view of Lemma 7, Theorem 8, and in [I], we obtain the

following result.

LeMMA 9. Let X be a weak*-closed left and right translation invariant
complemented subalgebra of L*(G). Then L*X is a closed self-adjoint
subalgebra of C(G).

In the following we prove Theorem 2 under the assumption
that X contains the constant functions.

LeMMA 10. Let X be a weak*-closed linear subspace of L™(G) which
has the properties (i), (if and (il). If X contains the constant functions,
then there exists a unique closed normal subgroup H of G such that X=Xu.

Proor. Let X be a weak*-closed linear subspace of L*(G) which
satisfies the assumption of Lemma. Then we first note that L*X is a
closed self-adjoint subalgebra of C(G), by Lemma 9. Once we obtain this,
we can proceed in the same method as that of Crombez-Govaerts (IL).

Proor ofF THEOREM 2. In view of the proof of Theorem
2 will be completed if we show that X contains the constant function 1
under the assumption of Theorem 2. As we saw in the proof of
6, there exist a bounded projection P of L®(G) onto X and a peM(G)
such that Pf=p*f for each feC(G).

Case 1. p(G)=0.

Since 1= M(?(lG)A):P(;T(l@)—)EX’ X contains the constant function 1.

Case 2. p(G)=0.

We show that Case 2 cannot occur. Using the notations in the proof
of Lemma 6, we have L°(G)=X®@Y, where Y={gcL*(G); (I-T*g=0}
and Tf=f—f*p (f€LYG)). Then Y contains the constant function 1.
For if feLY{G),

(AUI-TH1)=(f1)—(f T*)=(£ )T/
— (A D~ (A D+ ) =p(G)|_fla)dz=0.
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Let Y, be the set of all the constant functions in L*(G). Then it is
easy to verify that Y, is a weak*-closed left and right translation invariant
subalgebra of L®(G) and is complemented in Y. Thus it follows that XPY,
is a weak*-closed left and right translation invariant complemented subalgebra
of L*(G) containing the constant functions. Hence, by [Lemma 10, we have
XPDY,= Xy for some closed normal subgroup H of G. Since X is non-zero,
there exists f& X such that f30 in L*(G). Noting that Xj is self-adjoint
and X is a two-sided ideal of Xy, we have | flt=f-f=X. Then it follows

from Corollary 2 in [T] that 1%| fl2€ X. Since (1¥| ]2 (x)= SG' Flydy =0,

1*¥| f|* is a non-zero constant function in X. Hence we have 1 X. But
this is impossible. Consequently Case 2 cannot occur.

ReEMARK 3. For compact Hausdorff groups, Crombez-Govaerts Theo-
rem holds if we assume that X is non-zero instead of the assumption that
X contains the constant functions. For since X is non-zero, there exists
fE€X such that f%0 in L*(G). Then |f[?€X because X is self-adjoint
and an algebra. Hence 1*| f|2c X (Corollary 2 in [1]), and so X contains
the constant functions. From this fact and our Theorem 2, it is easily
verified that if G is a compact Hausdorff group and if X is a weak*-closed
left and right translation invariant subalgebra of L>?(G), then X is comple-
mented if and only if X is self-adjoint.
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