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On vanishing or recurrent Bochner

curvature tensor

By Masaru SkiNO
(Received July 22, 1981 ; Revised September 3, 1981)

The Bochner curvature tensor has been introduced by S. Bochner ([2])
in Kaehlerian manifolds with respect to the complex coordinates, as an
analogy of the conformal curvature tensor. S. Tachibana gave it a real
expression ([12]) and showed that a reducible Kaehlerian manifold M with
vanishing Bochner curvature tensor is locally the Riemannian product of two
Kaehlerian manifolds with constant holomorphic sectional curvatures H(=0)
and — H, respectively, and in this case the scalar curvature of M is constant
([13]). On the other hand, since it is known ([8]) that a Kaehlerian manifold
M with vanishing Bochner curvature tensor and constant scalar curvature
is locally symmetric, if M is irreducible, then M is Einsteinian and thus of
constant holomorphic sectional curvature. Therefore, taking account of de
Rham decomposition of Kaehlerian manifolds ([6], II), we can determine
complete (simply connected) Kaehlerian manifolds with vanishing Bochner
curvature tensor and constant scalar curvature. In the present paper, we
shall show, by using the theory of fibred spaces with projectable Kaehlerian
structure of M. Ako ([1]), that a real n (=4)-dimensional Kaehlerian manifold
with vanishing Bochner curvature tensor has constant scalar curvature.

Recurrent geometry has been introduced by A. G. Walker ([14]) and
he has determined recurrent manifolds, that is, Riemannian manifolds with
recurrent Riemannian curvature tensor (see also [6], I). Projective recurrent
manifolds, that is, Riemannian manifolds with recurrent projective curvature
tensor, were determined by M. Matsumoto ([7]). Conformally recurrent
manifolds, that is, Riemannian manifolds with recurrent conformal curvature
tensor, were determined by A. Gebarowski ([4]) in the case that the mainfolds
are reducible, and by [9] in the case that the manifolds are irreducible and
of dimension greater than four. In the present paper, we shall study
Kaehlerian manifolds with recurrent Bochner curvature tensor and give
some results in reducible and irreducible cases (Theorems 3 and 4).

§1. Preliminaries.

(I) Fibred spaces. Let M and N be two manifolds of dimensions n
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and n—1, respectively, and suppose that there is given a mapping ¢ of
maximum rank n—1. In this case, ¢ is called a submersion. Moreover,
we suppose that there is defined in M the vector field C such that C<ker 4,
d being the differential of 4, and a positive definite Riemannian metric ¢
satisfying

g(CC)=1.
If we introduce in M a 1-form % defined by the equation

ﬁ(X):g(C, X)’
X being an arbitrary vector in M, we have
7(C)=1.

The set (M, N,s; C,q) satisfying the conditicns above is called a fibred
space with Riemannian metric g¢.

Let J ;" be the space of all tensor fields of type (r,s) in M. We put
I =2,:7 . Then a linear endomorphism T—T# of J is defined by

fHE=F for feT Y,
XI=X—5(X)C for Xe7,,
wl=w—w(C)y for wes 0,

(SRT)E = SEQTH  for S, TET .

When an element 7" of J satisfies the condition (£, (TH)2=0, we say that
T is projectable, where £, denotes the Lie differentiation with respect to C.

Let M be a Kaehlerian manifeld with the complex structure F and the
Kaehlerian metric g. If both F and ¢ are projectable, we call (M, N, ¢; C, g)
or M a fibred space with projectable Kaehlerian structure ([10]). Then,
M. Ako proved

LemMA 1 ([1]). Let M be a fibred space with projectable Kaehlerian
structure. We denote by D, the distribution spanned by C and FC and by
D, the distribution of all vector fields orthogonal to D,. Then D, and D,
are both involutive distributions and their integral manifolds M, and M,
are Kaehlerian submanifolds of M which are totally geodesic and M is
locally the Riemannian product of M, and M,.

(I) Recurrency. Let M be a Riemannian manifold with the Rieman-
nian connection V. A tensor field 7" on M is said to be recurrent if there
exists on M a non-zero 1-form w such that

FV'l'=wX®T .

In this case, the 1-form o is called a recurrence vector of T.
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(II) Bochner curvature tensor. Let M be a real n(=4)-dimensional
Kaehlerian manifold with the complex structure Fi* and the Kaehlerian
metric ¢j. If we denote by K,;" K, and K the Riemannian curvature
tensor, the Ricci tensor and the scalar curvature respectively, the Bochner
curvature tensor By, is given by

(1) Bkjih = Kkjm"‘(gkh Kji — 00 Kii + Kien 9 s — K, gki+Fkthi_thSki
+ S Fii—SinFri— 2 Fij Sin— 2 Sk Fin)[(n+4) + K (Gxn G 6
—gjngki+FknFji‘“anFki‘*ZijFm)/(n+2) (n+4),
where Sii=—KjFf=— %— F* K iis = Ky jin F*™ is a closed 2-form. By, satis-
fies

n 1

(2) Vthjih’: n4-4 {VkKji_Viji—m(ukgji_ujgki_l_kaji
—'Uij.,;—Zijv,;)},

where u,=V K, vy=F;’u; and V; is the Riemannian connection.
M is called of constant holomorphic sectional curvature, if we have

K
Kyjin = m(gkhgji_gjhgki+FkhFji—thFki_2ijFih) .
In this case, K is constant if n=>4.

§ 2. Vanishing Bochner curvature tensor.

If we differentiate covariantly (2), we have

n-+4

n

(3) VthBkjih:VleKji_VlV_;Kki

1
_W(Vlukgji_Vlujgki+VkaFji—Vlijki—2ijVlvi) .

Interchanging the indices /, %k, j in (3) cyclically and adding the resulting
two equations to (3) we get

4
(4) - nj; VoV o Bes* +V Vo Bjui* +V iV Byi®) = K Kin+ K jii* K
1
+Klkithh+m{<Vk "’j_Vj'Uk) in+(Vj 'UL‘"VL'UJ') Fri

—I—(Vlvk——Vk‘vl) qu;—'2ijVl'Z)T;—ZFjLVk‘Ui—ZFmVj‘Ui} .

Transvecting F'* with (4) we obtain
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n—7}1-4 F”‘VanBkﬂh: —KkjihSkh+Sithh— 2 :

(n+2) (
—(n—=1) Vv, 4+Vv;).

(5) _Vkuiji

Taking the symmetric part of (5) we have
2(n+2) (n+4) F*7,V,(B;i*+ Bu) = n(n—2) (V ;u,+V;v,)

where we have used the fact that S*Kj, = — Ky F* K= KjpF** Ky = — S Ky
Thus, if we have

FLkVLVh (Bkjih—l'Bm:jh) =0,
and n=4, then we obtain
(6) ,Z,,gji———Vj‘vi—l-Vivj:O,

where £, is the Lie differentiation with respect to v’
On the other hand, because we have

J”Fji:Vjui—ViujIO,
we see that
engihl:O,

that is, v' is a contravariant analytic vector. Since a vector u*=Fv' for
a contravariant analytic vector v' is also contravariant analytic ([15]), we
have proved

THEOREM 1. In a real n(=4)-dimensional Kaehlerian manifold, if
we have

F*7, V3 (Byji+ Byi?) =0,

then the vector u»=V;Kg™ is contravariant analytic.

Note. Theorem 1 gives a generalization of the result of M. Matsumoto
([8) in a compact case.

In the rest of this section, we consider only a real 7n(=4)-dimensional
Kaehlerian manifold with vanishing Bochner curvature tensor. In this case,
v* is Killing and contravariant analytic.

Let P be a point at which v*#0. We consider around P. If we take
a local unit vector C*=fv* around P, we obtain an open neighborhood U
of P such that there exist the orbit space U/C by C’ and the submersion
o from U onto U/C. Then, we can easily verify that the fibred space (U,
U/C, o, C%, g;;) has the projectable Kaehlerian structure (Fi*, g;;) as follows.

CLamm. (ZLeg")E=0, and (L FE)E=0.

Proor. For a tensor T, T—T¥ is called a non-horizontal part of T.
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In the following, we adopt a symbol * as non-horizontal parts of some
tensors.
Since (9%);;=¢;,—C,;C;, we have
Zo(0%) i = ZLcgji—(ZLCy) C;—C; (£ C)
N =fVivitVivy)+* =*.
Thus, we have (Z£.g%)2=0.
Next, if we put D*=FC'=fu", we easily see
(FA)» = F—(C,D"—D,C").
Then we have
ZLo(F) = L F—(ZC)) D" +*
=FM,C—FV;C—(CiV ;C;+C,; V7, Ch) D+
=FrV v+ fV,0) —FIV jfor+fV ;00 — 20!V i fo,+FV j0) uh+*
:fe;zvaih—I—Viﬁth—fS'UjVj'U,;uh-'—*
= (P f+F3 0V, 0) uh % = {Vif+—;—f3 Vi(vaj)} wh+* .

Therefore, we obtain (£ F#)#=0, if we have the equation V,f+ %fsVi (viv;)
=0. Since 1=C/C;=f%'v;, we have f*=(vv,)". By differentiating this
covariantly, we get

2fVif = —=f*Vi(vivy),

and thus
7o+ FV o) =0

By and the above claim, U is locally the Riemannian product
of two Kaehlerian manifolds and thus the scalar curvature is constant, that
is, v*=0. But this is a contradication.

Therefore, we have proved

- THEeOREM 2. A real n(=4)-dimensional Kaehlerian manifold with
vanishing Bochner curvature tensor has the constant scalar curvature.

§ 3. Recurrent Bochner curvature tensor.

It ja,'_-Riemannian manifold is of class C* and has the Riemannian metric
of class C°, we say the manifold to be analytic. A Kaehlerian manifold is
analytic. and has-the complex structure of class C.
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In the seqnel, we consider a Kaehlerian manifold M (F/, g,) with recur-
rent Bochner curvature tensor By, that is, we have

(7) Vi Bijin = pi Brjin »

Lemma 2 (cf. [9], [11]). We see that Byji, vanishes identically or p,
its gradient. In the case that p, is gradient, if Bi;,=0 at a point, then
By, vanishes identically.

Hereafter we consider the case that By, does not vanish. In this case,
if we put

1 y
p= ‘2"108 (Byjin B™),

then p is the analytic function on M and we have

Vip=p:.

(I Reducible case. We consider the case that M is the Riemannian
product of two Kaehlerian manifolds M, and M, of real dimensions r and
n—r (r<n—r), respectively, and the complex structure F;* on M is given by

Fy?, 0]

(Fih) = [ 0’ Fpa

with respect to the local coordinates (z% x%), where (z% and (z%) are local
coordinates, and F,* and F,* the complex structures of M; and M, respec-
tively. The indices @, & and @, B run over the ranges {1,2,---,7} and
{r+1,r+2, ---, n}, respectively.

Then, by the method of A. Gebarowski ([4]), we can easily verify

LemMa 3. Around a point of M at which p;#0, one of the following
is valid:

(i) one of M; and M, is flat and the other is recurrent,

(i) M, and M, are of constant holomorphic sectional curvature.

But, by analyticity, we see that is true on M. In the case
(i), M is recurrent. Let us consider the case (ii). In this case, in order that
By jin 1s recurrent, it is necessary and sufficient that

(n—r)(n—r+2)V,K,=(n—r)(n—r+2) K;+7r(r+2) K;po,
rir+2)V,Ky=(n—r)(n—r+2) K,+r(r+2) K;p.,

or
7i{n—7) (n—r42) Ki+r(r+2) Ko} ={(n—r) (n—r+2) Ki+7(r+2) Ko} pi,

where K, and K, are the scalar curvatures of M, and M, respectively. If
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both K, and K, are constant, we have, because there exists on M a point
at which p;#0,

(n—r)(n—r+2) Ki+r(r+2) K, =0,

which shows that By;»=0. But, since we consider the case that Byj;#0
at every point of M, one of K; and K, is non-constant. Therefore, by the
assumption that »<n—r, » must be equal to 2.

THEOREM 3. Let M be a real n(=4)-dimensional Kaehlerian manifold
with recurrent Bochner curvature tensor, which does not banish. If M is
the Riemannian product of two Kaehlerian manifolds M, and M, of real
dimensions r and n—r (r<n—r), respectively, then M is recurrent or M,
and M, are of constant holomorphic sectional curvature. In the latter case,
r=2 and we have

(8) Vio = opi,
for the function p=n(n—2)K,+8K; which does never vanish, where K, and
K, are the scalar curvatures of M, and M,, respectively, and p; is the
recurrence vector of the Bochner curvature tensor of M.

ReMARK. Since n(n—2)K;+8K,=(n—2) (n—4)K;+ 8K, in the case n=4
(8) shows that M has recurrent scalar curvature with the same recurrence
vector as that of the Bcchner curvature tenscr.

(II) Irreducible case. In a previous paper ([9]), we have shown that
a real n(>4)-dimensional irreducible Kaehlerian manifold with recurrent
Bochner curvature tensor has vanishing Bochner curvature tensor. In this
part, we study the case n=4. In the sequel, M is a real 4-dimensional
irreducible Kaehlerian manifold with recurrent Bochner curvature tensor
which does not vanish.

LEmMA 4. There is the equation,

( 9 ) K’mlkt Btjih + Kmljt Bktih—l— K’mlit Bkjth + Kmlh.t Bkjit = O .

(9) follows from the Ricci identity for Byj;, and the fact that p; is
gradient.

LEmMA 5. We have
(10) Skt Btjm‘l“S j& Bktih‘l_Sit Bkjth‘l'sht Bk jit — 0.

Transvecting F™ with (9) we get (10).
LEMMA 6. If we put D=V ,—p,, we have
<1 1) Ds Klk B’mjih +Ds Klj Bk‘mih. + Ds Kli Bkjmh + Ds th Bkjim
- Ds Kmk Bljih - Ds Km] Bklih - Ds Kmi Bkjlh - Ds Kmh Bkjil
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+ D; K (B, jir 1+ Bein 915+ Bijen 915+ Brjse 9un)

— D Ki* (B, jin Gmi + Brein 9ms+ B jin Omi + B jit Gmn)

+ Fu! (DsSu Brjin~+ Ds Sy Biein + D Sys Bejen 4Dy Sin B jae)
— FH(Ds Spx B jin~+ Dy S Biein & Ds Smi B jen 4 Ds S Brejar)
+ DS (B jin F i+ Brsin Fij+ Bijin Fi+ B jie Fun)

— DS (Bi jin Fone + Broin Finj 4 B jin Fmi & B jie Fomn)

—D; K/6 +{ By jin 91z + Bimin 91+ Biojmn 91s+ Br jim Gun

— By jin Qmic— Brvin 9mj— B jun Yms — Brjiy G

+ Fu! (By jin Fui~+ Bioin Fuj+ Brjen Fra+ BrjieFin)

— F* (B, jon Foie+ Bivin Fnj+ Brjen Fni+ Brjie Fun)} =0

Proor. Differentiating covariantly (9) and taking account of (7) and (9)
we have

(12) Vs Ko Bijin+V s Kiif Broin+V s Knii® Bejin+V s Kiun® Brjir =0 .
Next, multiplying (9) by p, we have
(13) Ps Koii® By jin~+ ps Ko Brin+ Ps Kiniit Brojon+ Ps Kt Brejie =0 .

Subtracting (13) from (12) and substituting (1) and (7) into the resulting
equation we obtain [11}, where we have used the facts that

Btjih F' 4 Bktih th =0 ’
and
Ds Skt Bt jih + Ds S jt Bktih + Ds Sit Bkjth + Ds Sht Bk jit — 0 ’

which is induced from (7) and [10}.
Lemma 7 (cf. [9]). We have

, 1
Byjin B, = A e* g -

Transvecting g™ B*/i with and taking account of [Lemma 7, we get
e?D,K=0,
that is,
Ve K=p:K.
Thus, we have shown

THEOREM 4. A real 4-dimensional irreducible Kaehlerian manifold
with recurrent Bochner curvature tensor which does not vanish, has the
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recurrent scalar curvature with the same recurrence vector as that of the

Bochner curvature tensor.
As a conformal analogy of Theorem 4, we obtain
PrOPOSITION. A 4-dimensional analytic, irreducible, conformally recur-
rent Riemannian manifold which is not conformally flat, has the recurrent

scalar curvature with the same recurrence vector as that of the conformal

curvature tensor.
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