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On vanishing or recurrent Bochner
curvature tensor

By Masaru SEINO
(Received July 22, 1981; Revised September 3, 1981)

The Bochner curvature tensor has been introduced by S. Bochner ([2])
in Kaehlerian manifolds with respect to the complex coordinates, as an
analogy of the conformal curvature tensor. S. Tachibana gave it a real
expression ([12]) and showed that a reducible Kaehlerian manifold M with
vanishing Bochner curvature tensor is locally the Riemannian product of two
Kaehlerian manifolds with constant holomorphic sectional curvatures H(\geqq 0)

and - H, respectively, and in this case the scalar curvature of M is constant
([13]). On the other hand, since it is known ([8]) that a Kaehlerian manifold
M with vanishing Bochner curvature tensor and constant scalar curvature
is locally symmetric, if M is irreducible, then M is Einsteinian and thus of
constant holomorphic sectional curvature. Therefore, taking account of de
Rham decomposition of Kaehlerian manifolds ([6], II) , we can determine
complete (simply connected) Kaehlerian manifolds with vanishing Bochner
curvature tensor and constant scalar curvature. In the present paper, we
shall show, by using the theory of fibred spaces with projectable Kaehlerian
structure of M. Ako ([1]), that a real n(\geqq 4) -dimensional Kaehlerian manifold
with vanishing Bochner curvature tensor has constant scalar curvature.

Recurrent geometry has been introduced by A. G. Walker ([14]) and
he has determined recurrent manifolds, that is, Riemannian manifolds with
recurrent Riemannian curvature tensor (see also [6], I). Projective recurrent
manifolds, that is, Riemannian manifolds with recurrent projective curvature
tensor, were determined by M. Matsumoto ([7]). Conformally recurrent
manifolds, that is, Riemannian manifolds with recurrent conformal curvature
tensor, were determined by A. Gebarowski ([4]) in the case that the mainfolds
are reducible, and by [9] in the case that the manifolds are irreducible and
of dimension greater than four. In the present paper, we shall study
Kaehlerian manifolds with recurrent Bochner curvature tensor and give
some results in reducible and irreducible cases (Theorems 3 and 4).

\S 1. Preliminaries.

(I) Fibred spaces. Let M and N be two manifolds of dimensions n



On vanishing or recurrent Bochner curvature tensor 217

and n-1 , respectively, and suppose that there is given a mapping \sigma of
maximum rank n-1 . In this case, \sigma is called a submersion. Moreover,
we suppose that there is defined in M the vector field C such that C\in ker\dot{\sigma} ,
\dot{\sigma} being the differential of \sigma, and a positive definite Riemannian metric g
satisfying

g(C, C)=1

If we introduce in M a 1-form \eta defined by the equation

\eta(X)=g(C, X)’.
X being an arbitrary vector in M, we have

\eta(C)=1

The set (M, N, \sigma;C, g) satisfying the conditions above is called a fibred
space with Riemannian metric g.

Let \mathscr{T}_{s}^{r} be the space of all tensor fields of type (r, s) in M. We put
\mathscr{T}=\Sigma_{r,s}\mathscr{T}_{s^{\gamma}} . Then a linear endomorphism Tarrow T^{H} of \mathscr{T} is defined by

f^{H}=f for f\in \mathscr{T}_{0;}^{0}

X^{H}=X-\eta(X)C for X\in \mathscr{T}_{0}^{1} .
w^{H}=w-w(C)\eta for w\in \mathscr{T}_{1}^{0} ,
(S\otimes T)^{H}=S^{H}\otimes T^{H} for S, T\in \mathscr{T}

When an element T of \mathscr{T} satisfies the condition (\mathscr{L}_{C}(T^{H}))^{H}=0 , we say that
T is projectable, where \mathscr{L}_{C} denotes the Lie differentiation with respect to C.

Let M be a Kaehlerian manifold with the complex structure F and the
Kaehlerian metric g. If both F and g are projectable, we call (M, N, \sigma;C, g)

or M a fibred space with projectable Kaehlerian structure ([10]). Then,
M. Ako proved

Lemma 1 ([1]). Let M be a fibred space with projectable Kaehlerian
structure. We denote by D_{1} the distribution spanned by C and FC and by
D_{2} the distribution of all vector fields orthogonal to D_{1} . Then D_{1} and D_{2}

are both involutive distributions and their integral manifolds M_{1} and M_{2}

are Kaehlerian submanifolds of M which are totally geodesic and M is
locally the Riemannian product of M_{1} and M_{2} .

(II) Recurrency. Let M be a Riemannian manifold with the Rieman-
nian connection \nabla . A tensor field T on M is said to be recurrent if there
exists on M a non-zero 1-form \omega such that

\nabla T=\omega\otimes T

In this case, the 1-form \omega is called a recurrence vector of T
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(III) Bochner curvature tensor. Let M be a real n(\geqq 4) -dimensional
Kaehlerian manifold with the complex structure F_{i}^{h} and the Kaehlerian
metric g_{ji} . If we denote by K_{kji^{h}}, K_{ji} and K the Riemannian curvature
tensor, the Ricci tensor and the scalar curvature respectively, the Bochner
curvature tensor B_{kjih} is given by

(1) B_{kfih}=K_{kjih}-(g_{kh}K_{ji}-g_{jh}K_{ki}+K_{kh}g_{ji}-K_{jh}g_{ki}+F_{kh}S_{ji}-F_{fh}S_{ki}

+S_{kh}F_{ji}-S_{jh}F_{ki}-2F_{kj}S_{ih}-2S_{kj}F_{ih})/(n+4)+K(g_{kh}g_{fi}

-g_{jh}g_{ki}+F_{kh}F_{ji}-F_{jh}F_{ki}-2F_{kj}F_{ih})/(n+2)(n+4) ,

where S_{ji}=-K_{jk}F_{i}^{k}=- \frac{1}{2}F^{kh}K_{khji}=K_{kjih}F^{kh} is a closed 2-form. B_{kfih} satis-

fies

(2) \nabla_{h}B_{kji^{h}}=\frac{n}{n+4}\{\nabla_{k}K_{ji}-\nabla_{j}K_{ki}-\frac{1}{2(n+2)}(u_{k}g_{ji}-u_{j}g_{ki}+v_{k}F_{ji}

-v_{j}F_{ki}-2F_{kj}v_{i})\} :

where u_{k}=\nabla_{k}K, v_{k}=F_{k}^{j}u_{j} and \nabla_{k} is the Riemannian connection.
M is called of constant holomorphic sectional curvature, if we have

K_{kjih}= \frac{K}{n(n+2)}(g_{kh}g_{ji}-g_{jh}g_{ki}+F_{kh}F_{ji}-F_{jh}F_{ki}-2F_{kj}F_{ih})

In this case, K is constant if n\geqq 4 .

\S 2. Vanishing Bochner curvature tensor.

If we differentiate covariantly (2), we have

(3) \frac{n+4}{n}\nabla_{l}\nabla_{h}B_{kji^{h}}=\nabla_{l}\nabla_{k}K_{ji}-\nabla_{l}\nabla_{f}K_{ki}

- \frac{1}{2(n+2)}(\nabla_{l}u_{k}g_{ji}-\nabla_{l}u_{j}g_{kt}+\nabla_{l}v_{k}F_{ji}-\nabla_{l}v_{j}F_{ki}-2F_{kj}\nabla_{l}v_{i})

Interchanging the indices l, k, j in (3) cyclically and adding the resulting
two equations to (3) we get

(4) - \frac{n+4}{n}(\nabla_{l}\nabla_{h}B_{kji^{h}}+\nabla_{k}\nabla_{h}B_{jli^{h}}+\nabla_{j}\nabla_{h}B_{lki^{h}})=K_{kji^{h}}K_{lh}+K_{jli^{h}}K_{kh}

+K_{lki^{h}}K_{fh}+ \frac{1}{2(n+2)}\{(\nabla_{k}v_{j}-\nabla_{j}v_{k})F_{li}+(\nabla_{j}v_{l}-\nabla_{l}v_{j})F_{ki}

+(\nabla_{l}v_{k}-\nabla_{k}v_{l})F_{ji}-2F_{kj}\nabla_{l}v_{i}-2F_{jl}\nabla_{k}v_{i}-2F_{lk}\nabla_{j}v_{i}\}1

Transvecting F^{lk} with (4) we obtain
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(5) \frac{n+4}{n}F^{lk}\nabla_{l}\nabla_{h}B_{kfi^{h}}=-K_{kjih}S^{kh}+S_{i}^{h}K_{jh}-\frac{1}{2(n+2)}(-\nabla^{k}u_{k}F_{fi}

-(n-1)\nabla_{j}v_{i}+\nabla_{i}v_{j})\tau

Taking the symmetric part of (5) we have
2 (n+2)(n+4)F^{lk}\nabla_{l}\nabla_{h}(B_{kji^{h}}+B_{kij^{h}})=n(n-2)(\nabla_{j}v_{i}+\nabla_{i}v_{j}) ,

where we have used the fact that S_{i}^{h}K_{ih}=-K_{ik}F^{hk}K_{fh}=K_{jh}F^{kh}K_{ik}=-S_{J^{k}}K_{ik} .
Thus, if we have

F^{lk}\nabla_{l}\nabla_{h}(B_{kfi^{h}}+B_{kij^{h}})=0 ,

and n\geqq 4 , then we obtain

(6) \mathscr{L}_{v}g_{ji}=\nabla_{j}v_{i}+\nabla_{i}v_{j}=0 ,

where \mathscr{L}_{v} is the Lie differentiation with respect to v^{i} .
On the other hand, because we have

\mathscr{L}_{v}F_{ji}=\nabla_{j}u_{i}-\nabla_{i}u_{j}=0 ,

we see that

\mathscr{L}_{v}F_{i}^{h}=0’.
that is, v^{i} is a contravariant analytic vector. Since a vector u^{h}=F_{t^{\hslash}}v^{i} for
a contravariant analytic vector v^{i} is also contravariant analytic ([15]), we
have proved

THEOREM 1. In a real n(\geqq 4) -dimensional Kaehlerian manifold, if
we have

F^{lk}\nabla_{l}\nabla_{k}(B_{kji^{h}}+B_{kij^{h}})=0 ,

then the vector u^{h}=\nabla_{i}Kg^{ih} is contravariant analytic.
Note. Theorem 1 gives a generalization of the result of M. Matsumoto

([8]) in a compact case.
In the rest of this section, we consider only a real n(\geqq 4)\cdot dimensional

Kaehlerian manifold with vanishing Bochner curvature tensor. In this case,
v^{i} is Killing and contravariant analytic.

Let P be a point at which v^{i}\neq 0 . We consider around P. If we take
a local unit vector C^{i}=fv^{i} around P, we obtain an open neighborhood U
of P such that there exist the orbit space U/C by C^{i} and the submersion
\sigma from U onto U/C. Then, we can easily verify that the fibred space (U,
U/C, \sigma, C^{i} , g_{ji}) has the projectable Kaehlerian structure (F_{i}^{h}, g_{ft}) as follows.

CLAIM. (\mathscr{L}_{C}g^{H})^{H}=0 , and (\mathscr{L}_{C}F^{H})^{H}=0 .
PROOF. For a tensor T, T-T^{H} is called a non-horizontal part of T_{t}
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In the following, we adopt a symbol * as non-horizontal parts of some
tensors.

Since (g^{H})_{fi}=g_{ji}-C_{j}C_{i} , we have
\mathscr{L}_{C}(g^{H})_{ji}=\mathscr{L}_{C}g_{ji}-(\mathscr{L}_{C}C_{j})C_{i}-C_{j}(\mathscr{L}_{C}C_{i})

=\nabla_{j}C_{i}+\nabla_{i}C_{j}+*

=f(\nabla_{j}v_{i}+\nabla_{i}v_{j})+*=*

Thus, we have (\mathscr{L}_{C}g^{H})^{H}=0 .
Next, if we put D^{h}=F_{i}^{h}C^{i}--fu^{h}, we easily see

(F^{H})_{i}^{h}=F_{i}^{h}-(C_{i}D^{h}-D_{i}C^{h})

Then we have
\mathscr{L}_{C}(F^{H})_{i}^{h}=\mathscr{L}_{C}F_{i}^{h}-(\mathscr{L}{}_{C}C_{i})D^{h}+*

=F_{j}^{h}\nabla_{i}C^{j}-F_{i}^{j}\nabla_{j}C^{\hslash}-(C^{j}\nabla_{j}C_{i}+C_{j}\nabla_{i}C^{j})D^{\hslash}+*

=F_{j}^{h}(\nabla_{i}fv^{j}+f\nabla_{i}v^{j})-F_{i}^{j}(\nabla_{j}fv^{h}+f\nabla_{j}v^{h})-f^{2}v^{j}(\nabla_{j}fv_{i}+f\nabla_{j}v_{i})u^{h}+*

=f\mathscr{L}_{v}F_{i}^{h}+\nabla_{i}fll^{h}-f^{3}v^{j}\nabla_{j}v_{i}u^{h}+*

=( \nabla_{i}f+f^{3}v^{j}\nabla_{i}v_{j})u^{h}+*=\{\nabla_{i}f+\frac{1}{2}f^{3}\nabla_{i}(v^{j}v_{j})\}u^{h}+*

Therefore, we obtain (\mathscr{L}_{C}F^{H})^{H}=0 , if we have the equation \nabla_{i}f+\frac{1}{2}f^{3}\nabla_{i}(v^{j}v_{j})

=0. Since 1=C^{j}C_{j}=f^{2}v^{j}v_{j} , we have f^{2}=(v^{j}v_{j})^{-1} . By differentiating this
covariantly, we get

2 f\nabla_{i}f=-f^{4}\nabla_{i}(v^{j}v_{j}) :

and thus

\nabla_{i}f+\frac{1}{2}f^{3}\nabla_{i}(v^{j}v_{j})=0t

By Lemma 1 and the above claim, U is locally the Riemannian product
of two Kaehlerian manifolds and thus the scalar curvature is constant, that
is, v^{i}=0 . But this is a contradication.

Therefore, we have proved
THEOREM 2. A real n(\geqq 4) -dimensional Kaehlerian manifold with

vanishing Bochner curvature tensor has the constant scalar curvature.

\S 3. Recurrent Bochner curvature tensor.

If a Riemannian manifold is of class C^{\omega} and has the Riemannian metric
of class C^{\omega} , we say the manifold to be analytic. A Kaehlerian manifold is
analytic a.nd has the complex structure of class C^{\omega} .
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In the seqnel, we consider a Kaehlerian manifold M(F_{i}^{h}, g_{ji}) with recur-
rent Bochner curvature tensor B_{kjih} , that is, we have

(7) \nabla_{l}B_{kjih}=p_{l}B_{kjih} ,

Lemma 2 (cf. [9], [11]). We see that B_{kjih} vanishes identically or p_{l}

is gradient. In the case that p_{l} is gradient, if B_{kjih}=0 at a point, then
B_{kjih} vanishes identically.

Hereafter we consider the case that B_{kjih} does not vanish. In this case,
if we put

p= \frac{1}{2}\cdot\log(B_{kjih}B^{kjih}) ,

then p is the analytic function on M and we have
\nabla_{l}p=p_{l}

(I) Reducible case. We consider the case that M is the Riemannian
product of two Kaehlerian manifolds M_{1} and M_{2} of real dimensions r and
n-r(r\leqq n-r) , respectively, and the complex structure F_{i}^{h} on M is given by

(F_{i}^{h})=\{\begin{array}{llll}F_{b}^{a} ’ 0 0, F_{\beta} \alpha\end{array}\} ,

with respect to the local coordinates (x^{a}, x^{\alpha}) , where (x^{a}) and (x^{\alpha}) are local
coordinates, and F_{b}^{a} and F_{\beta}^{\alpha} the complex structures of M_{1} and M_{2} , respec-
tively. The indices a, b and \alpha , \beta run over the ranges \{1, 2, \cdots, r\} and
\{r+1, r+2, \cdots, n\} , respectively.

Then, by the method of A. Ge, barowski ([4]), we can easily verify
Lemma 3. Around a point of M at which p_{i}\neq 0 , one of the following

is valid:
(i) one of M_{1} and M_{2} is flat and the other is recurrent,
(ii) M_{1} and M_{2} are of constant holomorphic sectional curvature.
But, by analyticity, we see that Lemma 3 is true on M. In the case

(i), M is recurrent. Let us consider the case (ii). In this case, in order that
B_{kjih} is recurrent, it is necessary and sufficient that

(n-r)(n-r+2)\nabla_{a}K_{1}=(n-r)(n-r+2)K_{1}+r(r+2)K_{2}p_{a} ,

r(r+2)\nabla_{\alpha}K_{2}=(n-r)(n-r+2)K_{1}+r(r+2)K_{2}p_{\alpha} ,

or

\nabla_{i}\{(n-r)(n-r+2)K_{1}+r(r+2)K_{2}\}=\{(n-r)(n-r+2)K_{1}+r(r+2)K_{2}\}p_{i} ,

where K_{1} and K_{2} are the scalar curvatures of M_{1} and M_{2} , respectively. If
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both K_{1} and K_{2} are constant, we have, because there exists on M a point
at which p_{i}\neq 0 ,

(n-r)(n-r+2)K_{1}+r(r+2)K_{2}=0 ,

which shows that B_{kjih}=0 . But, since we consider the case that B_{kjih}\neq 0

at every point of M, one of K_{1} and K_{2} is non-constant. Therefore, by the
assumption that r\leqq n-r, r must be equal to 2.

THEOREM 3. Let M be a real n(\geqq 4) -dimensional Kaehlerian manifold
with recurrent Bochner curvature tensor, which does not banish. If M is
the Riemannian product of two Kaehlerian manifolds M_{1} and M_{2} of real
dimensions r and n-r(r\leqq n-r) , respectively, then M is recurrent or M_{1}

and M_{2} are of constant holomorphic sectional curvature. In the latter case,

r=2 and we have

(8) \nabla_{i}\rho=\rho p_{i} ,

for the function \rho=n(n-2)K_{1}+8K_{2} which does never vanish, where K_{1} and
K_{2} are the scalar curvatures of M_{1} and M_{2} , respectively, and p_{i} is the
recurrence vector of the Bochner curvature tensor of M.

REMARK. Since n(n-2)K_{1}+8K_{2}=(n-2)(n-4)K_{1}+8K, in the case n=4
(8) shows that M has recurrent scalar curvature with the same recurrence
vector as that of the Bc chner curvature tensc r .

(II) Irreducible case. In a previous paper ([9]), we have shown that
a real n(>4) -dimensional irreducible Kaehlerian manifold with recurrent
Bochner curvature tensor has vanishing Bochner curvature tensor. In this
part, we study the case n=4. In the sequel, M is a real 4-dimensi0nal
irreducible Kaehlerian manifold with recurrent Bochner curvature tensor
which does not vanish.

Lemma 4. There is the equation,

(9) K_{mlk^{t}}B_{tjih}+K_{mlj^{t}}B_{ktih}+K_{mli^{t}}B_{kjth}+K_{mlh^{t}}B_{kjit}=0 .
(9) follows from the Ricci identity for B_{kjih} and the fact that p_{i} is

gradient.
Lemma 5. We have

(10) S_{k}^{t}B_{tjih}+S_{j}^{t}B_{klih}+S_{i}^{t}B_{kjlh}+S_{h}^{t}B_{kjit}=0

Transvecting F^{ml} with (9) we get (10).
Lemma 6. If we put D_{s}=\nabla_{s}-p_{s}, we have

(11) D_{s}K_{lk}B_{mjih}+D_{s}K_{lj}B_{kmih}+D_{s}K_{li}B_{kjmh}+D_{s}K_{lh}B_{kjim}

-D_{s}K_{mk}B_{ljih}-D_{s}K_{mj}B_{klih}-D_{s}K_{mi}B_{kjlh}-D_{s}K_{mh}B_{kjil}
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+D_{s}K_{m^{t}}(B_{tjik}g_{lk}+B_{ktih}g_{lj}+B_{kjth}g_{li}+B_{kjit}g_{lh})

-D_{s}K_{l}^{t}(B_{tjih}g_{mk}+B_{ktih}g_{mj}+B_{kjth}g_{mi}+B_{kjit}g_{mh})

+F_{m^{t}}(D_{s}S_{lk}B_{tjih}+D_{s}S_{lj}B_{ktih}+D_{s}S_{li}B_{kjth}+D_{s}S_{lh}B_{kjit})

-F_{l}^{t}(D_{s}S_{mk}B_{tjih}+D_{s}S_{mj}B_{ktih}+D_{s}S_{mi}B_{kjth}+D_{s}S_{mh}B_{kjit})

+D_{s}S_{l}^{t}(B_{tjih}F_{lk}+B_{ktih}F_{lj}+B_{kjth}F_{li}+B_{kjit}glh)

-D_{s}S_{m}{}^{t}(B_{tjih}F_{mk}+B_{ktih}F_{mj}+B_{kjth}F_{mi}+B_{kjit}F_{mh})

-D_{s}K/6\cdot\{B_{mjih}g_{lk}+B_{kmih}g_{lj}+B_{kjmh}g_{li}+B_{kjim}g_{lh}

-B_{ljih}g_{mk}-B_{klih}g_{mj}-B_{kjlh}g_{mi}-B_{kjil}g_{mh}

+F_{m^{t}}(B_{tjih}F_{lk}+B_{klih}F_{lj}+B_{kjth}F_{li}+B_{kjit}F_{lh})

-F_{l}^{t}(B_{tjih}F_{mk}+B_{ktih}F_{mj}+B_{kjth}F_{mi}+B_{kjit}F_{mh})\}=0

PROOF. Differentiating covariantly (9) and taking account of (7) and (9)
we have

(12) \nabla_{s}K_{mlk^{t}}B_{tjih}+\nabla_{s}K_{mlj^{t}}B_{ktih}+\nabla_{s}K_{mli^{t}}B_{kjth}+\nabla_{s}K_{mlh^{t}}B_{kjit}=0 .
Next, multiplying (9) by p_{s} we have
(13) p_{s}K_{mlk^{t}}B_{tjih}+p_{s}K_{mlj^{t}}B_{ktih}+p_{s}K_{mli^{t}}B_{kjth}+p_{s}K_{mlh^{t}}B_{kjit}=0

Subtracting (13) from (12) and substituting (1) and (7) into the resulting
equation we obtain (11), where we have used the facts that

B_{tjih}F_{k}^{t}+B_{ktih}F_{j}^{t}=0 ,

and

D_{s}S_{k}^{t}B_{tjih}+D_{s}S_{j}^{t}B_{ktih}+D_{s}S_{i}^{t}B_{kjth}+D_{s}S_{h}^{t}B_{kjil}=0 .

which is induced from (7) and (10).
Lemma 7 (cf. [9]). We have

B_{kjih}B_{l}^{kji}= \frac{1}{4}e^{2p}g_{hl}

Transvecting g^{mh}B^{kjil} with (11) and taking account of Lemma 7, we get

e^{2p}D_{s}K=0’.
that is,

\nabla_{s}K=p_{s}K .
Thus, we have shown

THEOREM 4. A real 4-dimensional irreducible Kaehlerian manifold
with recurrent Bochner curvature tensor which does not vanish, has the
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recurrent scalar curvature with the same recurrence vector as that of the
Bochner curvature tensor.

As a conformal analogy of Theorem 4, we obtain
PROPOSITION. A 4-dimensional analytic, irreducible, conformally recur-

rent Riemannian manifold which is not conformally flat, has the recurrent
scalar curvature with the same recurrence vector as that of the conformal
curvature tensor.
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