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Introduction

Let (M,g) be an m-dimensional Riemannian manifold with a metric
tensor g. We denote by K(X,Y) the sectional curvature for a 2-plane
spanned by tangent vectors X and Y at x&M, and by 7 a p-plane at
xEM. Let {e,, -+, en} be an orthonormal base of the tangent space at xt& M
such that {e, -+, e,} spans =, which is called an adapted base for z. S.
Tachibana defined the mean curvature p(x) for = by

p(x) = p(ml—ﬁ f i K(es e) ,

a=10b=p+1

which is independent of the choice of adapted bases for z, and proved the
following :

TueOREM A (S. Tachibana, [7]). In a Riemannian manifold (M, q) of
dimension m>2, if the mean curvature for p-plane is independent of the
choice of p-planes at each point, then

(1) jor p=1 or m—1, (M, g) is an Einstein space,

(i) for 2Zp<m—2 and 2p+m, (M, g) is of constant curvature,

() for 2p=m, (M, q) is conformally flat.

The converse s true.

Taking holomorphic 2g-planes or antiholomorphic p-planes instead of
p-planes, analogous results in K#hlerian manifolds have been obtained.

THEOREM B (S. Tachibana [8] and S. Tanno [9]). In a Kdhlerian
manifold (M, g, J) of dimension 2n=4, if the mean curvature for 2q-plane
is independent of the choice of holomorphic 2q-planes at each point, then

(i) for 1<q=<n—1 and 2q+n, (M, q,J) is of constant holomorphic
sectional curvature,

(ii) for 2q=n, the Bochner curvature tensor vanishes.

The converse is true.

TLUT iUt ULl \<4xy L [y LITil
KX,Y)=K(X, Y)
for the 2-plane spanned by any X C(X) and Y &C(Y).
Proor. Putting Y,=aY+B4Y (a?+ 52=1), since {X, Yy} is a ¢-antiholo-
morphic orthonormal pair, we have

K(X, Y)=K(X, ¢Yy),

from which it follows that
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TueoreM C (K. Iwasaki and N. Ogitsu [3]). In a Kdhlerian manifold
(M, g, J) of dimension 2n=4, if the mean curvature for p-plane is independ-
ent of the choice of antiholomorphic p-planes at each point, then

(i) for p=1, (M, g,J) is an Einstein space,

(ii) for 2=p=<n—1, (M,g9,J) is of constant holomorphic sectional
curvature,

(iii) for p=n, the Bochner curvature tensor vanishes.
The converse is true.

L. Vanhecke ([10], generalized Theorems B and C, and the present
author obtained analogous results in quaternion Kihlerian manifolds.

The main purpose of this paper is to prove analogous results in Sasakian
manifolds.

§ 1. Sasakian manifolds ([1], [6]).

Let (M, ¢, &, 7, g) be a Sasakian manifold of dimension 274125, that is,
a manifold M which admits a 1-form 7, a vector & a tensor ¢ of type (1,
1) and a metric tensor ¢ satisfying

(L.1) 76)=1,
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KX, Y)=K(X,Y)=K(X,¢Y")

= {K(X. $X)+K(Y, $Y) +2K(X, $7)

+2R(X, ¢X, X, 9Y)—2R(X, ¢X, Y, $X)
+2R(X, X, Y, Y)+2R(X, ¢Y, Y, ¢X)
~2R(X, $Y, Y, 6Y)+2R(Y, $X, Y, ¢Y)} .
From this identity, (1.12), (1.13) and (1.15), we have Lemma 5.
Using the theorem of K. Ogiue and Lemma 5, we can obtain
TueoreEMm 1. Let (M, ¢,&,7,9) be a Sasakian manifold of dimension
2n+127. If the sectional curvature K(X,Y) is independent of the choice

of the ¢-antiholomorphic orthonormal pair {X,Y} at each point, then
(M, ¢, &, 1, 9) is of constant ¢p-holomorphic sectional curvature.

§2. Contact Bochner curvature tensor.

The contact Bochner curvature tensor of a Sasakian manifold (M, ¢, &,
7, g) of dimension 2n+1 is defined by
B(X,Y,Z, W)
=R(X,Y, Z W)+U(X, Z) g(¢Y, sW)—-U(Y, Z) g(¢ X, gW)
+UY, W) 98X, ¢Z)—-U(X, W) g(8Y, ¢Z)+ V(X, Z) g(¢Y, W)
—V(Y, 2) 96X, W)+ V(Y, W) g(pX, Z)-V(X, W) g(8Y, Z)
+2V(X,Y) 9(¢Z W)+2V(Z, W) g(¢X, Y)

where

UK, ¥) =55y (RS 1) =21 228 gx )

Y~ L
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(1.9 R(X, 90X, Y,9Y)=R(X, Y, X, Y)+R(X, ¢Y, X, ¢Y)
+29(X, X) 9(Y, Y)—29(X, Y?—29(X, ¢Y)?,
(1. 10) K(X, &) =1 for X+0,
(1.11) Ri(¢X, ¢Y)=R(X, Y).
If an orthonormal pair {X, Y} at x& M satisfies
9(X, ¢Y)=9(X,€) =9(Y,§ =0,

{X, Y} will be called a ¢-antiholomorphic orthonormal pair, and a 2-plane
C(X) spanned by X and ¢X orthogonal to & will be called a ¢-holomorphic
section determined by X. Then from Lemmas 1 and 2, we have

LEMMA 3. For any ¢-antiholomorphic orthonormal pair {X, Y},

(1.12) R(X, ¢X, X,¢Y)+R(X, ¢ X,0X, Y)=0,
(1.13) R(X,¢Y,Y, ¢ X)+R(X, ¢Y, ¢Y, X)=1,
(1. 14) R(X, Y, ¢Y,0X)=K(X,Y)—1,
(1.15) R(X, 90X, Y,9Y)= —K(X,Y)—-K(X, ¢Y)+2.
Lemma 4. If K(X,Y)=K(X,@Y) for any ¢-antiholomorphic ortho-
normal pair {X, Y}, then
KX,Y)=K(XY)
for the 2-plane spanned by any X' €C(X) and Y €C(Y).
ProoF. Putting Y;=aY+9Y (a?+ f?=1), since {X, Yy} is a ¢-antiholo-
morphic orthonormal pair, we have
K(X, Y)=K(X, ¢Yy),
from which it follows that
(1.16) R(X, Y,0Y,X)=R(X, Y, Y,$X)=0.

From (1.8), (1.13), (1.14) and (1. 16), we have this lemma.
LEMMA 5. For any ¢-anitholomorphic orthonormal pair {X, Y}, K(X,
YI=K(X, ¢Y) holds if and only if

8K(X,Y)=K(X, $X)+K(Y, $Y)+6 .

Proor. Since X' :% and Y= X;/—Z—Y constitute a ¢-antiholomo-

rphic orthonormal pair, from Lemma 4 we have
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K(X,Y)=K(X,Y)=K(X, ¢Y’)

_ »}f {K(X, 620+ K(Y, Y)+2K(X, $Y)

+2R(X, ¢X, X, $Y)—2R(X, $X, Y, ¢X)
+2R(X, $X, Y, $Y)+2R(X, $Y, Y, $X)
—2R(X, §Y, Y, $Y)+2R(Y, X, Y, $Y)} .

From this identity, (1.12), (1.13) and (1. 15), we have Lemma 5.

Using the theorem of K. Ogiue and Lemma 5, we can obtain

THEOREM 1. Let (M, $,&,7,9) be a Sasakian manifold of dimension
2n+1=7. If the sectional curvature K(X,Y) is independent of the choice
of the ¢-antiholomorphic orthonormal pair {X,Y} at each point, then
(M, ¢, &, 7, 9) is of constant ¢-holomorphic sectional curvature.

§ 2. Contact Bochner curvature tensor.

The contact Bochner curvature tensor of a Sasakian manifold (M, ¢, &,
7, g) of dimension 2741 is defined by
B(X,Y,Z, W)
=R(X, Y, Z, W)+ U(X, Z) g(¢Y, oW)—-U(Y, Z) g( X, W)
+UY, W) 9(¢X, ¢2)—U(X, W) g(8Y, $Z2)+ V(X, Z) g(¢Y, W)
—V{Y, Z2) (X, W)+ V(Y, W) g(¢X, Z2)—V(X, W) g(¢Y, Z)
L2V(X, Y) gl62, W) +2V(Z, W) g(6X, Y)

where
1 —6n—
UK, Y) = gy (R =21 258 g(x, )
S+10n+8
s wX) 9(Y),
VX, Y) = gy (RO 1= 52 ggx v,

and S denotes the scalar curvature ([4]).
Since ¢ (X, §)=7(X), »9=0 and R, (X, §)=2ny(X), from (1.1) we have

U(X, & =»(X), V(X,§=0.

From these identities, (1.3) and (1. 5), we see
LEMMA 6. For any vectors X, Y and Z, B(&, X, Y, Z) vanishes.
Assume that K(X,Y)=K(X,¢Y) for any ¢-antiholomorphic ortho-
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normal pair {X, Y}, and let {e, -+, e,, de;, -+, de,, £ be an orthonormal base
of a tangent space T,(M) at x&M such that X=e, for a unit vector X
orthogonal to & Then, from (1.10), (1.11) and Lemma 5, we have

R(X, X) = K(X, 6X)+ K(X,§)+23, K(X, e

3n—1

2
= n+ IK(ea, ¢ea)+ 2 ’

4

K(X, 6X)+

D=

S = ai‘l {R1(ea, ea) + Ry(geq, ¢ea>} + R, (£, ¢)
=(n+1) f:lK(ea, des)+n(3n+1) .

Thus we get

n—+2
4

S+3n2+3n—2
4(n+1)

From (1.11), (2.1) and Lemma 5, we have

LemMma 7. If K(X,Y)=K(X, ¢Y) for any ¢-antiholomorphic ortho-
normal pair {X,Y}, B(X,Y,Y, X) and B(X, ¢X, ¢X, X) vanish.

LEmMMA 8. Assume that K(Z, W)=K(Z, W) for any ¢-antiholomor -
phic orthonormal pair {Z, W}. If unit vectors X and Y orthogonal to &
are mutually orthogonal and satisfy Y& C (X), then B(X, Y, Y, X) vanishes.

Proor. Let Y’ be a unit vector given by a{Y—¢ (Y, ¢X)pX} (a>0).
Then we can take an orthonormal base {e, -, €, dey, -+, de,, & such that
e,=X and e,=Y'. Thus, from (1.5), (1.7) and (1.8), we have

2
(2- 2) B121*1 = R2111* > Y R21*

(2.1) Ri(X, X) = K(X, ¢X)+

2
= Ry — n+2 <Z Rogar— ;1 Rlaa2‘>

a+2

Where en+a:¢ea:€a*; Rm-jk:R(eh, Cis €4, ek) and Ri]‘:Rl (ei, ej) (h, i,j,kzl,
-+, 2n). For n=3 and a+#1, 2, using Lemma 5, we have

[ 2P 3
K ( 2 ~/71 ’ ea) — R2aa1‘ + % Ka.a* + 11_6 (Kll' + K22') +Z
- é{K( i, >+Kaa.+6

where K;;=K (e;, e;. From this identity, (1.8), (1.14), (1.15) and Lemma
5, we have
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1 e epn—e
(2.3) Rmpzig{ZK( : 4/51 , J*Z—I)—Kn.—Kzg.}

1
= ] (Rotnr — Rugose)

1

(2. 4) Ruar =g (Rygs9s — Ronye) -

Substituting (2. 3) and (2. 4) into (2. 2), we have

(2. 5) B(X,Y,¢X X) = —;— (Raup + Rizoze) .

For n=2, we also have (2. 5). On the other hand, since K(X, Y")=K(X, Y’)
for Y"=Y,—:/%?~YL by virtue of Lemma 4, we have

(2. 6) R(X, Y, X ¢Y)=0.

Exchanging X and Y’ in (2.6) for X;l——?Y and XJ?Y respectively,

from (2.6) we have
2.7 RX,Y,Y,¢Y)+R(Y,X X, ¢X)=0.

From (2.5) and (2. 7), it follows that B(X, Y’, $X, X) vanishes. Thus, using
Lemma 7, we see that B(X, Y, Y, X) vanishes.
Next for any vectors X, YET, (M), we can put

X=aX+pE, Y=dY' +f¢

for certain unit vectors X', Y &€T,(M) orthogonal to ¢&. From Lemma 6
we have

B(X,Y,Y, X)=ad?B(X, Y, V", X').

Since we can put Y =¢X +48Y” for a certain unit vector Y &7, (M) such
that Y” is orthogonal to X', using Lemma 8, we see that B(X',Y”, Y, X')
vanishes, and therefore B(X, Y, Y, X) vanishes. Thus we can see that B
vanishes, using Lemma 6 and the following algebraic properties :

B(X,Y,ZW)=—B(Y,X,Z W)=B(Z W, X,Y),
BX,Y,ZW)+B(X, ZW,Y)+B(X,W,Y,Z)=0

for any vectors X, Y, Z and W.
Conversely, if B vanishes, for any ¢-antiholomorphic orthonormal pair
{X, Y} we have
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KX Y) :7@1;—27 {R1<X, X)+Ri(Y, Y)—%S—E%}
= K(X, ¢Y).

Therefore, together with Lemma 5 we can obtain

THEOREM 2. In a Sasakian manifold of dimension 2n+41=5, the
following conditions are equivalent to each other:

(i) For any ¢-antiholomorphic orthonormal pair {X,Y},

K(X, Y) =K(X, §Y).
(ii) For any ¢-antiholomorphic orthonormal pair {X, Y},
BK(X, Y) = K(X, $X)+K(Y, $Y)+6.

(ili) The contact Bochner curvature tensor vanishes.

§ 3. Mean curvature for ¢-holomorphic 2g-plane.

In a Sasakian manifold (M, ¢, &, », g) of dimension 2n+1, if a 2¢-plane
z in T,(M) satisfies 5 (z)={0} and ¢zCx, such a 2g-plane = will be called
the ¢-holomorphic 2¢-plane. Then we can take an orthonormal base {e, ---,
€ns B1, +++, Pen, & of T, (M) such that r is spanned by {e, ---, e, dey, -+, e},
and from (1. 8), (1.10) and (1.15), the mean curvature p(x) for = is given

by
(3.1) g2n—29+1) p(@=q+3 3 (Ku+Ku)

a=10b=¢g+1

q n
=q(2n—2¢+1)+2 2. Ruases-

a=1b=q+1

Assume that the mean curvature for 2g-plane is independent of the
choice of ¢-holomorphic 2¢-planes.
(1) The case n=3. For a ¢-holomorphic 2¢-plane =, spanned by

{e{a 2 AN ) ¢€{, ¢€2, ) ¢ell}’ where e{:_@‘% and el;+l: “ ;‘;_q'ﬁ ’ from (1 8))
(1.13) and (3.1), we have
3.2 q@2n—2g+1) {p(z) -1}
n 1
= a§2 b§+2 Rua‘b‘b + Z {Kll‘ —I_ K(q+1) (@+D* 4Kl(q+l)‘
1 n
+ 2R11‘(q+1)‘(q+l) + 2}+?b=zq+z {Rll‘b‘b + R(q+1) (g+1)*b*d + 2R1(q+1)‘b'b}

1 ¢«
+ 7 ZJz {Raa'l'l + Raa' (@+D*g+D) — 2Raa‘1‘ (q+1)} .
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Since p(r)=p (7)), from (3.1) and (3. 2), we have

n q
(3 3) 2 Z 2R1(q+1)‘b*b _2 Z Raa*l*(q+1) _2K1(q+1)*
+ a=2
1 1
- Rll"(q+1)*(q+1) —"2‘ Ku* - 7 K(q+1) (g+D* — 1
n

q .
+ Z {Rll'b'b - R(q+1) (q+1)*b‘b} + Z {Raa‘(q+1)‘(q+1) - Raa‘l‘l} .
a=2

b=q+2

Similarly, for = and a ¢-holomorphic 2g-plane r, spanned by {ef, ey -, €,
/7 el+¢e¢1i 7 el_¢eq+1

per’, ges, -+, ¢eq}’ where e’ = V2 and el = J2 we have
q n
(3' 4) 2 Z Raa‘(q+1)1_2 Z Rl(q+1) b‘b_ZKl(q+1)
a=2 b=q+2

1 1
= Rll’(q+1)“(q+1) 0 Ku' 9 K(q+1)(q+l)* —"‘1

n

q
+ Z {Rll‘b"b - R(q+1) (q+1)*b'b} _I_ ZZ {Raa"(q+1)*(q+1) - Raa’l‘l} .
a=

‘b=q+2

From (3.3) and (3. 4), it follows that

. u .
(3.9) Kigin— 22 RigroessT 22 Raarrrqsn
b=g+2 a=2
> R MR
- Kl(q+1) + 10+ b* — aa*(g+D1
b=q+2 a=2

Taking 7, and a ¢-holomorphic 2g-plane spanned by {es, -, e, €]11, P€s, *-+, Peqs
dej+1), we have

q n
(3- 6) Z Raa‘l"(q+1) = Z Rl(q+1)‘b‘b .
a=2 b=q+2

And taking 7, and a ¢-holomorphic 2g-plane spanned by {es, -, €, €71,
des, -+, Peg deriiy, We have

3.7

e

n
Raa‘(q+1)1 = Z Rl(q+1)b'b .
2 b=q+2

From (3.5), (3.6) and (3.7), it follows that
Ko = Kigan -
Thus we can see that, for any ¢-antiholomorphic orthonormal pair {X, Y},
K(X,Y)=K(X, ¢Y).

Since we can use Lemma 5, from (3.1) we have
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(3. 8) q(2n—2q+1) p(x)
_ q(3n—3¢+2) + 7y g o+ 95K
2 4 a=1 4 b=q+1

Calculating the mean curvature for a ¢-holomorphic .2g-plane spanned by
{823 0 Gty ¢€2, ) ¢efI+1} and using (3 8)’ we have

(n—2q) {Kll'_K(q+1) (q+1)‘} =0.

(2) The case n=2. For an arbitrary ¢-antiholomorphic orthonormal

pair {e,, e}, we can take an orthonormal base {e;, e, dey, dey, & of T,(M).

Taking two ¢-holomorphic 2-planes spanned by {el N/—%ez , @ “ J%ez} and

{elj_gez , ¢ej:2:ez } , from (1. 6), (1.8), (1.13) and (1. 14), we have K= Kj,-.
Therefore, by virtue of the theorem of K. Ogiue ([5]) and

we can obtain

THEOREM 3. In a Sasakian manifold (M, ¢, &, v, g) of dimension 2n+1
=5, if the mean curvature for 2q-plane is independent of the choice of ¢-
holomorphic 2q-planes at each point, then

(i) for 1=q=n—1 and 2q+n, (M, ¢,&, 7, 9) is of constant ¢-holomorphic

sectional curvature,

() for 2g=n, the contact Bochner curvature tensor wvanishes.

The converse is true.

§ 4. Mean curvature for g-antiholomorphic p-plane.

In a Sasakian manifold (M, ¢, &, 7, g) of dimension 2n+1, if a p-plane
z in T,(M) satishes 7 (x)={0} and ¢z is perpendicular to =, such a p-plane
= will be called the ¢-antiholomorphic p-plane. Then we can take an ortho-
normal base {e, -, e,, dey, -+, de,, & of T,(M) such that z is spanned by
{e1, =+, €5}, and the mean curvature p(r) for = is given by

pen—p+1) o) =p+ 5 { 3 (Kunt Kan)+ 2 Kane].

a=1\p=p+1

Assume that the mean curvature for p-plane is independent of the
choice of ¢-antiholomorphic p-planes. '

(1) The case p=2. For a g¢-antiholomorphic p-plane r; spanned by
{dey, €5, -+, €p}, from (1. 8) and (1.10) we have

p2n—p+1) o(m)
= p+ Kot 35 (2Kiat 2 Koo )+ 31 30 (Koot K

a=1b=p+1
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Since p(r)=p (m;), we see that

(4.1) - 3 (Kuae — Ki) =0 .

a=2

Similarly for ¢-antiholomorphic p-planes spanned by {e;, de,, e, -+, €5} and
{¢e1’ ¢e2’ eS, MY ep}, we have

»
(4. 2) K12 - Kl2' + Zz:s(Klat —_ Kla) = 0 .

From (4.1) and (4. 2), it follows that
(4. 3) K12 - Klgt .

Now let {X, Y} be an arbitrary ¢-antiholomorphic orthonormal pair. Then,
since there exists an orthonormal base {e, -, e,, de, -+, des, &} such that
=X and e,=Y, from (4.3) we see that

K(X, Y)=K(X, ¢Y).

Thus, since we can use Lemma 5, we have

4.9  pen—p+1) el
—:P(Gn—43P+1) + nIB i Kaat“f“{% i Ky
a=1

b=p+1

When p<n, similarly for a ¢-antiholomorphic p-plane z, spanned by {e,, -
€ps1), We have

(4. 5) p@2n—p+1) p(my)
_ p(6n—43P+1) I n1—3 Zil Kaa-+€“<Ku‘+ i Kw)'
a=2 b=p+2

From (4.4) and (4.5), we see that

Ky = K<p+1)<p+1)- .

(2) The case p=1. Let X and 7 be any unit vector orthogonal to
&€ at x&M and a ¢-antiholomorphic l-plane spanned by X, respectively.
Then we have

(4. 6) R(X, X) =2np(7) .
From the assumption and (4. 6), we have
(4' 7) RI(Y’ Z) = rg(Y, Z)

for any vectors Y and Z orthogonal to & where r=2np (%). Since R,(Y,§)=
2np(Y), from (4.7) we have
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R(Y, 2) = rg(Y, Z)+(2n—7) 1(Y) 7(2) .

for any vectors Y and Z Thus, from (1) and (2), we can obtain

THEOREM 4. In a Sasakian manifold (M, ¢, &, v, 9) of dimension 2n+
1=5, if the mean curvature for p-plane is independent of the choice of
g-antiholomorphic p-planes at each point, then

(1) for p=1, (M, $,& 9, 9) is an p-Einstein space,

(ii)) for 2=p=n—1,(M, ¢, & 7, q) is of constant ¢-holomorphic sectional
curvature,

(i) for p=n, the contact Bochner curvature tensor vanishes.
The converse is true.

Added in Proof. In “On vanishing contact Bochner curvature tensor”
(Hokkaido Math. J., 9 (1980), 258-267), M. Seino proved a part of Theorem 2.
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