On s-distance subsets in real hyperbolic space

By Eiichi Bannai
(Received June 29, 1981)

Abstract

It is shown that if X is an s-distance subset in real hyperbolic space H^{d}, then

$$
|X| \leq\binom{ d+s}{s}+\binom{d+s-1}{s-1}
$$

Introduction

A subset X in a metric space M is called an s-distance subset in M if there are s distinct distances $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{s}$, and all the α_{i} are realized. Delsarte-Goethals-Seidel [6] have shown that the cardinality $|X|$ of an s distance subset X in the d-dimensional unit sphere $S^{d}=\left\{\left(x_{1}, x_{2}, \cdots, x_{d+1}\right)\right.$ $\left.\mid x_{1}^{2}+x_{2}^{2}+\cdots+x_{d+1}{ }^{2}=1\right\} \subset \boldsymbol{R}^{d+1}$ is bounded from above as

$$
\begin{equation*}
|X| \leq\binom{ d+s}{s}+\binom{d+s-1}{s-1} \tag{1}
\end{equation*}
$$

Larman-Rogers-Seideal [9] and Bannai-Bannai [1] have shown that the same upper bound (1) is obtained for the cardinality of an s-distance subset in real Euclidean space \boldsymbol{R}^{d}. In this paper we prove that the same bound (1) is also true for an s-distance subset in the real hyperbolic space H^{d} of (topological) dimension d. That is:

Theorem 1. If X is an s-distance subset in H^{d}, then

$$
|X| \leq\binom{ d+s}{s}+\binom{d+s-1}{s-1}
$$

1. Proof of Theorem 1

The basic idea of the proof is the same as that of Delsarte-GoethalsSeidel [6] and Koornwinder [8]. Here we need a proper realization of the hyperbolic space H^{d} in \boldsymbol{R}^{d+1}.
(i) It is known that the hyperbolic space H^{d}, which is also called Lobatschewsky and Bolyai space, of dimension d is realized in a Euclidean space of \boldsymbol{R}^{d+1} as

$$
H^{d}=\left\{\left(x_{1}, \cdots, x_{d+1}\right) \in \boldsymbol{R}^{d+1} \mid x_{1}^{2}-x_{2}^{2}-\cdots-x_{d+1}{ }^{2}=1, x_{1}>0\right\}
$$

with the distance $d(x, y)$ for $x=\left(x_{1}, x_{2}, \cdots, x_{d+1}\right)$ and $y=\left(y_{1}, y_{2}, \cdots, y_{d+1}\right) \in H^{d}$ being given by

$$
d(x, y)=\operatorname{arc} \cosh \left(x_{1} y_{1}-x_{2} y_{2}-\cdots-x_{d} y_{d}-x_{d+1} y_{d+1}\right) .
$$

(See, for example, [5, page 209], [4, pages 375-6].)
(ii) Let X be an s-distance subset in H^{d} and let $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{s}$ be the distances. For each $y \in X$ let us define

$$
F_{y}(x)=\prod_{i=1}^{s} \frac{\left((x, y)-\cosh \alpha_{i}\right)}{\left(1-\cosh \alpha_{i}\right)}, \text { for } x \in H^{d},
$$

where $(x, y)=x_{1} y_{1}-x_{2} y_{2}-\cdots-x_{d+1} y_{d+1}$. Since $F_{y}(x)=\delta_{x, y}$ for $x \in X$, the set $\left\{F_{y}(x) \mid y \in X\right\}$ is linearly independent. Also note that each $F_{y}(x)$ is a polynomial of degree s in x_{1}, \cdots, x_{d+1}.
(iii) In order to complete the proof of Theorem 1, we have only to show that the dimension of the space spanned by the set $\left\{F_{y}(x) \mid y \in X\right\}$ is bounded by the right hand side of (1). Now we use the following lemma:

Lemma 2. Let H_{j} be the space of homogeneous polynomials of degree j in $x_{1}, x_{2}, \cdots, x_{d+1}$, and let $\Delta^{(1, d)}$ be the differential operator defined by

$$
\Delta^{(1, d)}=\frac{\partial^{2}}{\partial x_{1}{ }^{2}}-\frac{\partial^{2}}{\partial x_{2}{ }^{2}}-\cdots-\frac{\partial^{2}}{\partial x_{d+1}{ }^{2}} .
$$

Then we have
(a) The map $\Delta^{(1, d)}$ from H_{j} to H_{j-2} is onto, and so

$$
\text { dimension (kernel of } \left.\Delta^{(1, d)}: H_{j} \rightarrow H_{j-2}\right)=\binom{d+j}{j}-\binom{d+j-2}{j-2} \text {. }
$$

(Note that $\operatorname{dim} H_{j}=\binom{d+j}{j}$.)
(b) Each $f \in H_{j}$ is uniquely expressed as

$$
\begin{aligned}
f= & f_{j}+\left(x_{1}^{2}-x_{2}^{2}-\cdots-x_{d+1}{ }^{2}\right) f_{j-2}+\left(x_{1}^{2}-x_{2}^{2}-\cdots-x_{d+1}{ }^{2}\right)^{2} f_{j-4} \\
& \left.\left.+\cdots+\left(x_{1}^{2}-x_{2}^{2}-\cdots-x_{d+1}\right)^{2}\right) \frac{j}{2}\right] f_{j-2}\left[\frac{j}{2}\right],
\end{aligned}
$$

where

$$
f_{j-2 i} \in\left(\text { kernel of } \Delta^{(1, d)}: H_{j-2 i} \rightarrow H_{j-2(i+1)}\right) .
$$

(c) The dimension of the space of polynomial functions on H^{d} of degree $\leq s$ in $x_{1}, x_{2}, \cdots, x_{d+1}$ is bounded from above by

$$
\sum_{j=0}^{s}\binom{d+j}{j}-\binom{d+j-2}{j-2}=\binom{d+s}{s}+\binom{d+s-1}{s-1} .
$$

Proof of Lemma 2 Proof is almost identical with the proof of the
expansion of a polynomial using harmonic polynomials (cf [7, Vol. 2, page 237]), that is with respect to the Laplacian

$$
\Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{d+1}^{2}} .
$$

To prove (a) we have only to show that

$$
\Delta^{(1, d)}\left\{\left(x_{1}^{2}-x_{2}^{2}-\cdots-x_{d+1}^{2}\right) f\right\} \neq 0
$$

for any non-zero polynomial f. This is straightforwardly proved as $\Delta\left\{\left(x_{1}{ }^{2}\right.\right.$ $\left.\left.+x_{2}{ }^{2}+\cdots+x_{d+1}{ }^{2}\right) f\right\} \neq 0$ is proved for any non-zero polynomial f. The rest of the statements in Lemma 2 are easy consequences of this.

Now Lemma 2 (c) completes the proof of Theorem 1.

Remarks

(i) It would be interesting to know how much the common bound (1) can be improved for each $S^{d}, \boldsymbol{R}^{d}, H^{d}$.
(a) For spherical case Bannai-Damerell [2] proved that the equality does not hold if $s \geq 3$ and $d \geq 2$. For $s=2$ it is still an open problem when the equality is attained. (Such examples exist for $d=1,5$ and 21, cf. [6, 11].)
(b) For Euclidean case Bannai-Bannai [1] proved that the equality never holds. Recently Blokhuis [3] has shown that the bound is improved. His argument easily reduces the bound (1) by $d+1$ for any $s \geq 2$. (Further improvement for larger s will be discussed later.)
(c) Problem : How much the bound (1) can be improved for hyperbolic case? (At the time of this writing I do not know whether the bound (1) is attained in the hyperbolic case.)
(ii) Neumaier [10] tries to get similar type of results by introducing a notion of "dimension d for a set X ". However it seems that his notion of "dimension d " is not directly related to the topological dimension d of the space used here, and that his dimension d is generally larger than the topological dimension d (for the case H^{d}). Problem: Is it possible to find some meaningful relations between these two dimensions (for the case H^{d}) ?

References

[1] Bannai, E. and Bannai, E.: "An upper bound for the cardinality of an s-distance subset in real Euclidean space," Combinatorica (Hungary), (1981), 1, 99-102.
[2] Bannai, E. and Damerell, R. M.: "Tight spherical designs", I. J. of Math. Soc. Japan, 31 (1979), pp. 199-207.
[3] Blokhuis, A.: "A new upper bound for the cardinality of 2 -distance sets in Euclidean space", Eindhoven University of Technology, Memorandum 1981-4, (February 1981).
[4] Busemann, H.: The Geometry of Geodesic, Academic Press, New York, 1955.
[5] Coxeter, H. S. M.: Non-Euclidean Geometry, The University of Toronto Press, 1942.
[6] Delsarte, P., Goethals, J. M. and Seidel, J. J.: "Spherical codes and designs", Geometriae Dedicata 6 (1977), pp. 363-388.
[7] Erdéryi, A., Magnus, Oberhettinger, F. and Tricomi, F. G.: Higher Transcendental Functions (Bateman manuscript project) McGraw-Hill, 1953.
[8] Koornwinder, T.: "A note on the absolute bound for systems of lines", Indag. Math. 38 (1976), pp. 152-153.
[9] Larman, D. G., Rogers, C. A. and Seidel, J. J.: "On two-distance sets in Euclidean space", Bull. London Math. Soc. 9 (1977), pp. 261-267.
[10] Neumaier, A.: "Distance matrices, demension, and conference graphs", Indag. Math. (to appear).
[11] Seidel, J. J.: "Graphs and two-distance sets", in Springer Lecture Notes 884 (1981), 90-98.

Department of Mathematics The Ohio State University

