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On s-distance subsets in real hyperbolic space

By Eiichi BANNAI
(Received June 29, 1981)

Abstract

It is shown that if X is an s-distance subset in real hyperbolic space
H^{d} , then

|X|\leq(\begin{array}{l}d+ss\end{array}) +(\begin{array}{ll}d+s -1s-1 \end{array})

Introduction

A subset X in a metric space M is called an s-distance subset in M
if there are s distinct distances \alpha_{1} , \alpha_{2} , \cdots , \alpha_{S} , and all the \alpha_{i} are realized.
Delsarte-Goethals-Seidel [6] have shown that the cardinality |X| of an s-
distance subset X in the d-dimensional unit sphere S^{d}=\{(X_{1}, X_{2}^{ },\cdots, X_{d+1})

|x_{1}^{2}+x_{2}^{2}+\cdots+x_{d+1}^{2}=1\}\subset R^{a+1} is bounded from above as

(1) |X|\leq(\begin{array}{l}d+ss\end{array}) +(\begin{array}{ll}d+s -1s-1 \end{array})

Larman-Rogers-Seideal [9] and Bannai-Bannai [1] have shown that the same
upper bound (1) is obtained for the cardinality of an s-distance subset in
real Euclidean space R^{d} . In this paper we prove that the same bound (1)
is also true for an s-distance subset in the real hyperbolic space H^{d} of
(topological) dimension d. That is:

THEOREM 1. If X is an s-distance subset in H^{d}, then

|X|\leq(\begin{array}{l}d+ss\end{array}) +(\begin{array}{ll}d+s -1s-1 \end{array})

1. PROOF OF THEOREM 1
The basic idea of the proof is the same as that of Delsarte-Goethals-

Seidel [6] and Koornwinder [8]. Here we need a proper realization of the
hyperbolic space H^{d} in R^{a+1} .

(i) It is known that the hyperbolic space H^{d}, which is also called
Lobatschewsky and Bolyai space, of dimension d is realized in a Euclidean
space of R^{a+1} as
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H^{d}=\{(X_{1}^{ },\cdots, X_{d+1})\in R^{a+1}|x_{1}^{2}-x_{2}^{2}-\cdots-x_{d+1}^{2}=1 , x_{1}>0\}

with the distance d(x, y) for x=(x_{1}, x_{2}, \cdots, x_{d+1}) and y=(y_{1}, y_{2}, \cdots, y_{d+1})\in H^{d}

being given by

d(x, y)=arc cosh (x_{1}y_{1}-x_{2}y_{2}-\cdots-x_{d}y_{d}-x_{d+1}y_{d+1})

(See, for example, [5, page 209], [4, pages 375-6].)
(ii) Let X be an s-distance subset in H^{d} and let \alpha_{1} , \alpha_{2} , \cdots , \alpha_{S} be the

distances. For each y\in X let us define

F_{y}(x)=I^{s}I[mathring]_{\frac{((x,y)-csh\alpha_{i})}{(1-\cosh\alpha_{i})}}i=1 , for x\in H^{d} ,

where (x, y)=x_{1}y_{1}-x_{2}y_{2}-\cdots-x_{d+1}y_{d+1} . Since F_{y}(x)=\delta_{x,y} for x\in X, the set
\{F_{y}(x)|y\in X\} is linearly independent. Also note that each F_{y}(x) is a poly-
nomial of degree s in x_{1} , \cdots , x_{d+1} .

(iii) In order to complete the proof of Theorem 1, we have only to
show that the dimension of the space spanned by the set \{F_{y}(x)|y\in X\} is
bounded by the right hand side of (1). Now we use the following lemma:

Lemma 2. Let H_{j} be the space of homogeneous polynomials of degree
j in x_{1} , x_{2}, \cdots , x_{d+1} , and let \Delta^{(1,d)} be the differential operator defined by

\Delta^{(1,d)}=\frac{\partial^{2}}{\partial x_{1}^{2}}-\frac{\partial^{2}}{\partial x_{2}^{2}}-\cdots-\frac{\partial^{2}}{\partial x_{d+1}^{2}}

Then we have
(a) The map \Delta^{(1,d)} from H_{j} to H_{j-2} is onto, and so

dimension (kernel of \Delta^{(1,d)} : H_{j}arrow H_{j-2}) =(\begin{array}{l}d+jj\end{array}) -\{d+j-2j-2/)

(Note that dim H_{j}=(\begin{array}{l}d+jj\end{array}) .)

(’b) Each f\in H_{j} is uniquely expressed as
f=f_{j}+(x_{1}^{2}-x_{2}^{2}-\cdots-x_{d+1}^{2})f_{j-2}+(x_{1}^{2}-x_{2}^{2}-\cdots-x_{d+1}^{2})^{2}f_{j-4}

+\cdots+(x_{1}^{2}-x_{2}^{2}-\cdots-x_{d+1}^{2})^{[\frac{j}{2}]}f_{j-2[\frac{j}{2}]} ,

where f_{j-2i}\in (kernel of \Delta^{(1,d)} : H_{j-2i}arrow H_{j-2(i+1)} )

(c) The dimension of the space of polynomial functions on H^{d} of
degree s in x_{1} , x_{2}, \cdots , x_{d+1} is bounded from above by

\sum_{j=0}^{s} (\begin{array}{l}d+jj\end{array})-(_{j-2)}^{d+j-2|}=(\begin{array}{l}d+ss\end{array}) +(\begin{array}{ll}d+s -1s-1 \end{array})

PROOF 0F Lemma 2 Proof is almost identical with the proof of the
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expansion of a polynomial using harmonic polynomials (cf [7, Vol. 2, page
237]), that is with respect to the Laplacian

\Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{d+1}^{2}}

To prove (a) we have only to show that
\Delta^{(1,d)}\{(x_{1}^{2}-x_{2}^{2}-\cdots-x_{tl+1}^{2})f\}\neq 0

for any non-zero polynomial f. This is straightforwardly proved as \Delta\{(x_{1}^{2}

+x_{2}^{2}+\cdots+x_{d+1}^{2})f\}\neq 0 is proved for any non-zero polynomial f. The rest
of the statements in Lemma 2 are easy consequences of this.

Now Lemma 2 (c) completes the proof of Theorem 1.

REMARKS
(i) It would be interesting to know how much the common bound (1)

can be improved for each S^{d}, R^{d}, H^{d} .
(a) For spherical case Bannai-Damerell [2] proved that the equality

does not hold if s\geq 3 and d\geq 2 . For s=2 it is still an open problem when
the equality is attained. (Such examples exist for d=1,5 and 21, cf. [6,
11].)

(b) For Euclidean case Bannai-Bannai [1] proved that the equality
never holds. Recently Blokhuis [3] has shown that the bound is improved.
His argument easily reduces the bound (1) by d+1 for any s\geq 2 . (Further
improvement for larger s will be discussed later.)

(c) Problem: How much the bound (1) can be improved for hyperbolic
case p. (At the time of this writing I do not know whether the bound (1)
is attained in the hyperbolic case.)

(ii) Neumaier [10] tries to get similar type of results by introducing
a notion of “dimension d for a set X”. However it seems that his notion
of “dimension d” is not directly related to the topological dimension d of
the space used here, and that his dimension d is generally larger than the
topological dimension d (for the case H^{d}). Problem: Is it possible to find
some meaningful relations between these two dimensions (for the case H^{d}) ?.
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