On s-distance subsets in real hyperbolic space

By Eiichi BANNAI

(Received June 29, 1981)

Abstract

It is shown that if X is an s-distance subset in real hyperbolic space H^a , then

$$|X| \leq \binom{d+s}{s} + \binom{d+s-1}{s-1}.$$

Introduction

A subset X in a metric space M is called an s-distance subset in M if there are s distinct distances $\alpha_1, \alpha_2, \dots, \alpha_s$, and all the α_i are realized. Delsarte-Goethals-Seidel [6] have shown that the cardinality |X| of an sdistance subset X in the d-dimensional unit sphere $S^d = \{(x_1, x_2, \dots, x_{d+1}) | x_1^2 + x_2^2 + \dots + x_{d+1}^2 = 1\} \subset \mathbb{R}^{d+1}$ is bounded from above as

$$|X| \le \binom{d+s}{s} + \binom{d+s-1}{s-1}.$$

Larman-Rogers-Seideal [9] and Bannai-Bannai [1] have shown that the same upper bound (1) is obtained for the cardinality of an s-distance subset in real Euclidean space \mathbf{R}^{d} . In this paper we prove that the same bound (1) is also true for an s-distance subset in the real hyperbolic space H^{d} of (topological) dimension d. That is:

THEOREM 1. If X is an s-distance subset in H^d , then

$$|X| \leq \binom{d+s}{s} + \binom{d+s-1}{s-1}.$$

1. Proof of Theorem 1

The basic idea of the proof is the same as that of Delsarte-Goethals-Seidel [6] and Koornwinder [8]. Here we need a proper realization of the hyperbolic space H^a in \mathbb{R}^{a+1} .

(i) It is known that the hyperbolic space H^d , which is also called Lobatschewsky and Bolyai space, of dimension d is realized in a Euclidean space of \mathbb{R}^{d+1} as E. Bannai

$$H^{d} = \left\{ (x_{1}, \cdots, x_{d+1}) \in \mathbb{R}^{d+1} | x_{1}^{2} - x_{2}^{2} - \cdots - x_{d+1}^{2} = 1, x_{1} > 0 \right\}$$

with the distance d(x, y) for $x = (x_1, x_2, \dots, x_{d+1})$ and $y = (y_1, y_2, \dots, y_{d+1}) \in H^d$ being given by

$$d(x, y) = \operatorname{arc} \cosh (x_1y_1 - x_2y_2 - \cdots - x_dy_d - x_{d+1}y_{d+1}).$$

(See, for example, [5, page 209], [4, pages 375-6].)

(ii) Let X be an s-distance subset in H^d and let $\alpha_1, \alpha_2, \dots, \alpha_s$ be the distances. For each $y \in X$ let us define

$$F_y(x) = \prod_{i=1}^s rac{((x,y) - \cosh lpha_i)}{(1 - \cosh lpha_i)} \,, \,\, ext{for} \,\, x \!\in\! H^d \,,$$

where $(x, y) = x_1y_1 - x_2y_2 - \cdots - x_{d+1}y_{d+1}$. Since $F_y(x) = \delta_{x,y}$ for $x \in X$, the set $\{F_y(x) | y \in X\}$ is linearly independent. Also note that each $F_y(x)$ is a polynomial of degree s in x_1, \dots, x_{d+1} .

(iii) In order to complete the proof of Theorem 1, we have only to show that the dimension of the space spanned by the set $\{F_y(x)|y \in X\}$ is bounded by the right hand side of (1). Now we use the following lemma:

LEMMA 2. Let H_j be the space of homogeneous polynomials of degree j in x_1, x_2, \dots, x_{d+1} , and let $\Delta^{(1,d)}$ be the differential operator defined by

$$\varDelta^{(1,d)} = rac{\partial^2}{\partial x_1^2} - rac{\partial^2}{\partial x_2^2} - \cdots - rac{\partial^2}{\partial x_{d+1}^2}.$$

Then we have

(a) The map $\Delta^{(1,d)}$ from H_j to H_{j-2} is onto, and so dimension (kernel of $\Delta^{(1,d)}: H_j \rightarrow H_{j-2} = \begin{pmatrix} d+j \\ j \end{pmatrix} - \begin{pmatrix} d+j-2 \\ j-2 \end{pmatrix}$.

(Note that dim $H_j = \binom{d+j}{j}$.)

(b) Each $f \in H_j$ is uniquely expressed as

$$f = f_{j} + (x_{1}^{2} - x_{2}^{2} - \dots - x_{d+1}^{2}) f_{j-2} + (x_{1}^{2} - x_{2}^{2} - \dots - x_{d+1}^{2})^{2} f_{j-4} + \dots + (x_{1}^{2} - x_{2}^{2} - \dots - x_{d+1}^{2})^{\left[\frac{j}{2}\right]} f_{j-2\left[\frac{j}{2}\right]},$$

 $f_{i-2i} \in (kernel \ of \ \Delta^{(1,d)}: H_{i-2i} \rightarrow H_{i-2(i+1)}).$

where

(c) The dimension of the space of polynomial functions on H^d of $degree \leq s$ in x_1, x_2, \dots, x_{d+1} is bounded from above by

$$\sum_{j=0}^{s} \binom{d+j}{j} - \binom{d+j-2}{j-2} = \binom{d+s}{s} + \binom{d+s-1}{s-1}$$

PROOF OF LEMMA 2 Proof is almost identical with the proof of the

202

expansion of a polynomial using harmonic polynomials (cf [7, Vol. 2, page 237]), that is with respect to the Laplacian

$$\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_{d+1}^2} \, .$$

To prove (a) we have only to show that

$$\Delta^{(1,d)} \left\{ (x_1^2 - x_2^2 - \dots - x_{d+1}^2) f \right\} \neq 0$$

for any non-zero polynomial f. This is straightforwardly proved as $\Delta\{(x_1^2 + x_2^2 + \dots + x_{d+1}^2)f\} \neq 0$ is proved for any non-zero polynomial f. The rest of the statements in Lemma 2 are easy consequences of this.

Now Lemma 2(c) completes the proof of Theorem 1.

Remarks

(i) It would be interesting to know how much the common bound (1) can be improved for each S^d , \mathbb{R}^d , H^d .

(a) For spherical case Bannai-Damerell [2] proved that the equality does not hold if $s \ge 3$ and $d \ge 2$. For s=2 it is still an open problem when the equality is attained. (Such examples exist for d=1, 5 and 21, cf. [6, 11].)

(b) For Euclidean case Bannai-Bannai [1] proved that the equality never holds. Recently Blokhuis [3] has shown that the bound is improved. His argument easily reduces the bound (1) by d+1 for any $s \ge 2$. (Further improvement for larger s will be discussed later.)

(c) Problem: How much the bound (1) can be improved for hyperbolic case? (At the time of this writing I do not know whether the bound (1) is attained in the hyperbolic case.)

(ii) Neumaier [10] tries to get similar type of results by introducing a notion of "dimension d for a set X". However it seems that his notion of "dimension d" is not directly related to the topological dimension d of the space used here, and that his dimension d is generally larger than the topological dimension d (for the case H^a). Problem : Is it possible to find some meaningful relations between these two dimensions (for the case H^a)?

References

- BANNAI, E. and BANNAI, E.: "An upper bound for the cardinality of an s-distance subset in real Euclidean space," Combinatorica (Hungary), (1981), 1, 99-102.
- [2] BANNAI, E. and DAMERELL, R. M.: "Tight spherical designs", I. J. of Math. Soc. Japan, 31 (1979), pp. 199-207.

E. Bannai

- [3] BLOKHUIS, A.: "A new upper bound for the cardinality of 2-distance sets in Euclidean space", Eindhoven University of Technology, Memorandum 1981-4, (February 1981).
- [4] BUSEMANN, H.: The Geometry of Geodesic, Academic Press, New York, 1955.
- [5] COXETER, H. S. M.: Non-Euclidean Geometry, The University of Toronto Press, 1942.
- [6] DELSARTE, P., GOETHALS, J. M. and SEIDEL, J. J.: "Spherical codes and designs", Geometriae Dedicata 6 (1977), pp. 363-388.
- [7] ERDÉRYI, A., MAGNUS, OBERHETTINGER, F. and TRICOMI, F. G.: Higher Transcendental Functions (Bateman manuscript project) McGraw-Hill, 1953.
- [8] KOORNWINDER, T.: "A note on the absolute bound for systems of lines", Indag. Math. 38 (1976), pp. 152–153.
- [9] LARMAN, D. G., ROGERS, C. A. and SEIDEL, J. J.: "On two-distance sets in Euclidean space", Bull. London Math. Soc. 9 (1977), pp. 261-267.
- [10] NEUMAIER, A.: "Distance matrices, demension, and conference graphs", Indag. Math. (to appear).
- [11] SEIDEL, J. J.: "Graphs and two-distance sets", in Springer Lecture Notes 884 (1981), 90–98.

Department of Mathematics The Ohio State University