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On the stability of planar step shock fronts
in multi-dimensional spaces

By Taira SHIROTA
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1. Introduction.

In this note we study the equations of 2-dimensional isentropic compres-
sible flow

(1. 1) \frac{\partial}{\partial t}(\begin{array}{l}\rho w_{1}\rho w_{2}\rho\end{array})+\frac{\partial}{\partial x_{1}} (\begin{array}{l}\rho w_{1}^{2}+P\rho w_{1}w_{2}\rho w_{1}\end{array})+\frac{\partial}{\partial x_{2}}(\begin{array}{l}\rho w_{1}w_{2}\rho w_{2}^{2}+P\rho w_{2}\end{array})=0 ,

where t(w_{1}, w_{2}) is the velocity, \rho is the density and P=P(\rho) is a well defined
function of \rho(>0) with P_{\rho}(\rho)>0 .

Since Lax had developed mathematical theory of system of hyperbolic
conservation laws ([6]), 1-dimensional shock fronts were investigated by many
mathematicians, but multi-dimensional cases were treated by a few authors
([2], [3], [9] also [13], [14]). Recently Majda has investigated the stability
of multi-dimensional shock fronts and obtained the local in time shock front
solutions under the uniform stability condition with respect to the linearized
problem. ([7], [8]).

The problem considered in this note is what phenomena may occur if
the condition mentioned above is replaced by the weak stability. Because
of difficulty to obtain exact answer with mathematical rigor, here we shall
treat our problem as a perturbation one in the simplest form.

Let us the nonconservative variables U=^{t}(w_{1}, w_{2}, P) . Then equations
(1. 1) become

(1. 1’)
(\begin{array}{ll}\rho \rho \frac{1}{\rho c^{2}}\end{array})

\frac{\partial U}{\partial t}+(
\rho w_{1},00,\rho w_{1}1,0’,’\frac{w_{1}01}{\rho c^{2}}’)\frac{\partial U}{\partial x_{1}}+(\begin{array}{lll}\rho w_{2}, 0, 00, \rho w_{2}, 10, 1, \frac{w_{2}}{\rho c^{2}}\end{array}) \frac{\partial U}{\partial x_{2}}=0 ,

where c^{2}=P_{\rho}(\rho) .
Let U^{0\pm} be constant step states:

{}^{t}(w_{1}^{0+}, w_{2}^{0+}, P^{0+}) for x_{1}\geqq\sigma t ,
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{}^{t}(w_{1j}^{0-}w_{2}^{0-}, P^{0-}) for x_{1}\leqq\sigma t ,

where the Rankine-Hugoniot conditions,

w_{2}^{-}=w_{2}^{+}=w_{2} ,

(1. 2) -\sigma[\rho]+[\rho w_{1}]=0 ,

-\sigma[\rho w_{1}]+[\rho w_{1}^{2}+P(\rho)]=0

are assumed to be satisfied with the basic shock speed \sigma. We also assume
that Lax’s 1-shock inequalities,

w_{1}^{+}-c^{+}<\sigma<w_{1}^{-}-c^{-} ,
(1. 3)

\sigma<w_{1}^{+}

are satisfied for U^{0\pm} .
We let U^{\pm}=U^{0\pm}+U^{\pm} and \beta=\sigma t+\phi denote the perturbed shock front

solution of (1, 1’) such that for \dot{s}omeT_{\eta},U^{\pm}\in H^{s}(G^{\pm}) , \phi\in H^{s+1}((0, T)\chi R^{1}) ,

(1. 4) ||U^{\pm}||_{s,G}\pm\leqq k_{0} , \langle\langle\phi\rangle\rangle_{s+1,(0,T)xR^{1}}\leqq k_{0} ,

Supp_{x}(U^{\pm}) and Supp_{x_{2}}(\phi) are contained in \{|x|\leqq 1\} and its intersection with
\{x_{1}=0\} respectively. Here k_{0} is a sufficiently small constant depending only

on \{U^{0\pm}, \sigma\} , s=2[ \frac{n}{2}]+7 (here n=2),

G^{\pm}=\{(t, x)|\beta(t, x_{2})><X_{1} foI t\in(0, T)\} ,

||U||_{s,0} is the Sobolev norm of order s of U relative to f2 and \langle\langle U\rangle\rangle_{s,(0,T)xR^{1}}

is the 2-dimensional sobolev norm.
For initial data \frac{\partial^{i}U^{\prime\pm}}{\partial t^{i}}(0, x) , \frac{\partial^{i+1}\phi}{\partial t^{i\dagger 1}}(0, x_{2})(0\leqq i\leqq s+l) we impose the

following conditions :
l is some positive integer, \phi(0, x_{2})=0 , the supports of these functions

\subset\frac{1}{2}-disks with 0 as the center, H^{s+l-i} -norms in the definition domains of
these functions are not greater than some constant k_{0}’ for i\leqq s+l, all of

functions with i\leqq s-1 vanish on \{x_{1}=0\} , \frac{\partial^{i}U^{\prime\pm}}{\partial t^{i}}(0, x) with i\leqq s-1 satisfy

the compatibility conditions up to order s–l on \{x_{1<}>0\} , respectively.
Hereafter these functions also are denoted by \{U^{\pm}, \phi\} .

To state our theorem, we introduce the following

DEFINITION. We say the basic states \{U^{0\pm}, \sigma t\} to be stable \dot{\iota}nL^{2}-sense if
(i) for any non-vanishing initial data mentioned above with sufficiently
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large l and small k_{0}’ there is a unique shock front solution satisfying the
conditions (1. 4) for some T, such that
(ii) \int|U’|^{2}(t, x)dx\leqq c\int|U’|^{2}(0, x)dx , for t\in[0, T]

Here \int|U|^{2}(0, x)dx=\int\int_{x_{1}>0}|U^{+}|^{2}(0, x)dx_{1}dx_{2}+\int\int_{x_{1}<0}|U^{\prime-}|^{2}(0, x)\cdot dx_{1}dx_{2} .
Furthermore c depends only on k_{0}’, l, T

THEOREM. The basic states { U^{0\pm} , at} are stable in L^{2}-sense if and only
if the linearized problem with respect to \{U^{0+}, \sigma\} is uniformly stable.

The proof of Theorem is based on our investigation of the linear
hyperbolic mixed problem. In fact we shall reduce our problem to examine
the vanishing order of reflection coefficients of the linearized problem. ([1],
[10] ) . Therefore in order to obtain an analogous conclusion of Theorem,
we may weaken conditions in Definition of the stability in L^{2}-sense. But in
(ii) only relevant physical quantities are appeared in L^{2}-sense and it seems
to me that the definition is also signifificant for the nonlinear problems.

After preliminaries, in section 3 and 4 we give the proof of Theorem.
Finally, in section 5 we discuss about its significance and an example.

2. Preliminaries.

We let (1. 1) and (1. 1’) rewrite as follows :

\frac{\partial}{\partial t}F_{0}(U)+\frac{\partial}{\partial x_{1}}F_{1}(U)+\frac{\partial}{\partial x_{2}}F_{2}(U)=0 ,

A_{0}(U) \frac{\partial U}{\partial t}+A_{1}(U)\frac{\partial U}{\partial x_{1}}+A_{2}(U)\frac{\partial U}{\partial x_{2}}=0

respectively. Then our problem is to find a set of functions \{U^{+}, U^{-}, \beta\}

called a shock front solution such that

A_{0}(U^{\pm}) \frac{\partial U^{\pm}}{\partial t}+A_{1}(U^{\pm})\frac{\partial U^{\pm}}{\partial x_{1}}+A_{2}(U^{\pm})\frac{\partial U^{\pm}}{\partial x_{2}}=0

in \{x_{1<}>\beta(t, x_{2})\} respectively,

n_{t}(F_{0}(U^{+})-F_{0}(U^{-}))+n_{1}(F_{1}(U^{+})-F_{1}(U^{-}))+n_{2}(F_{2}(U^{+})-F_{2}(U^{-}))=0

on \{x_{1}=\beta(t, x_{2})\} ,

where (n_{t}, n_{1}, n_{2}) is the time space normal of the surface \{x_{1}=\beta(t, x_{2})\} . Let
us denote by U^{\pm}=U^{0\pm}+U^{\pm} , \beta=\sigma t+\phi a perturbed solution for t\geqq 0 . Then
via the coordinate transformation:



340 T. Shirota

\tilde{x_{1}}=x_{1}-\beta(t, x_{2}) ,

\tilde{x_{2}}=x_{2} ,

\tilde{t}=t ,

the equations satisfied by \{U^{\pm}, \phi\} may be written as follows,

A_{0}(U^{0\pm}+U^{\pm}) \frac{\partial U^{\prime\pm}}{\partial t}+(A_{1}(U^{0\pm}+U^{\pm})-\sigma A_{0}(U^{0\pm}+U^{\pm}))\frac{\partial U^{\pm}}{\partial x_{1}}

(2. 1)^{\pm} . +A_{2}(U^{0\pm}+U^{\pm})^{\frac{\partial U^{\prime\pm}}{\partial x_{2}}}-(\phi_{t}A_{0}(U^{0}+U^{\prime\pm})

+ \phi_{x_{2}}A_{2}(U^{0}+U^{\prime\pm}))\frac{\partial U^{\pm}}{\partial x_{1}}=0

in \{x_{1}>0\} and \{x_{1}<0\} respectively,

\sigma(F_{0}(U^{0+}+U^{+})-F_{0}(U^{0-}+U^{-}))-(F_{1}(U^{0+}+U^{\prime+})-F_{1}(U^{0-}+U^{-}))

+\phi_{t}(F_{0}(U^{0+}+U^{+})-F_{0}(U^{0-}+U^{-}))

(2. 2)
+\phi_{x_{2}}(F_{2}(U^{0+}+U^{\prime+})-F_{2}(U^{0-}+U^{-}))

=0 on \{x_{1}=0\}

Since the basic states U^{0\pm} are constant, the linearized equations with respe\dot{c}t

to \{U^{0\pm}, \sigma\} are of the form:

A_{0}(U^{0\pm}) \frac{\partial U^{\pm}}{\partial t}+(A_{1}(U^{0\pm})-\sigma A_{0}(U^{0\pm}))\frac{\partial U^{\pm}}{\partial x_{1}}+A_{2}(U^{0\pm})\frac{\partial U^{\pm}}{\partial x_{2}}=0

(2.1’)^{\pm}

in \{x_{1}>0\} and \{x_{1}<0\} respectively,

\phi_{t}(F_{0}(U^{0+})-F_{0}(U^{0-}))+\phi_{x_{2}}(F_{2}(U^{0+})-F_{2}(U^{0-}))

(2. 2’) +(\sigma F_{0}’(U^{0+})-F_{1}’(U^{0+}))U^{\prime+}-(\sigma F_{0}’(U^{0-})-F_{1}’(U^{0-}))U^{-}=0

on \{x_{1}=0\}

Here F_{0}’(U^{0})U’ is the Fr\’echet derivative at U^{0} of F_{0}(U^{0}+U) denoted usually
by F_{0}’(U^{0} ; U) and \{U^{\pm}, \phi\} are unknown functions.

Following Majda ([7]) we now describe the Lopaninskii determinant of
(2. 1’) and (2. 2’) . First we note that U^{-} is determined by the equation (2. 1’)^{-}

and the initial Cauchy data, for (1. 3) is valid. Thus we may take \{U^{+}, \phi\}

as unknown functions. The eigenvalues and corresponding eigenvectors
of A_{0}(U^{0+})^{-1}(A_{1}(U^{0+})-\sigma A_{0}(U^{0+})) are given as follows: we set w_{i}^{0}=w_{i}^{0+} , \rho^{0}=\rho^{0+}

and c^{0}=P_{\rho}(\rho^{0})^{\frac{1}{2}} , then
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\lambda_{1}^{0}=w_{1}^{0}-\sigma-c^{0}<0’. \lambda_{2}^{0}=w_{1}^{0}-\sigma>0 ,

\lambda_{3}^{0}=w_{1}^{0}-\sigma+c^{0}>\lambda_{2}^{0} ,

\gamma_{1}=\frac{1}{\sqrt{2}}{}^{t}(-1,0, c^{0}\rho^{0}) , \gamma_{2}={}^{t}(0,1,0) and \gamma_{3}=\frac{1}{\sqrt{2}}{}^{t}(1,0, c^{0}\rho^{0})

We let N_{0} be the matrix (\gamma_{2}, \gamma_{3}, \gamma_{1}) . Then direct calculations yield:

N_{0}^{-1}=\{\begin{array}{llll}0, 1, 0 \frac{1}{\sqrt{2}}. 0, \frac{1}{\sqrt{2}c^{0}\rho^{0}} -\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}c^{0}\rho^{0}} )\end{array}\}

,

N_{0}^{-1}(_{P_{/}}^{w_{1}’}w_{2}’,)=\backslash \{\begin{array}{l}w_{2}’\frac{1}{\sqrt{2}}(\frac{P’}{c^{0}\rho^{0}}+w_{1}’)\frac{1}{\sqrt{2}}(^{\frac{P}{c^{0}\rho^{0}}}-w_{1},)\end{array}\}

\equiv(\begin{array}{l}v_{1}v_{2}v_{3}\end{array}) :

where (w_{1}’, w_{2}’, P’)=(w_{1}^{\prime+}, w_{2}^{\prime+}, P^{\prime+}) .
The equations for V=^{t}(v_{1}, v_{2}, v_{3}) become as follows:

(2. 3) D_{x_{1}}V-M(D_{t}, D_{x_{2}})V=0 ,

M(D_{t}, D_{x_{2}})=[_{\frac{\frac{-1}{w_{1}^{0}-\sigma-c^{0}}\tilde{D}_{t}}{\frac\sqrt{2}(w_{1}^{0}-\sigma-c^{0})\sqrt{2}(w_{1}^{0}-\sigma+c^{0})-c^{0}}D_{x_{2}}}^{2}D_{x_{2}}’, \frac{-c^{0}}{\frac{\sqrt{2}(w_{1}^{0}--1}{w_{1}^{0}-\sigma_{0}+c^{0}}\sigma)},D_{x_{2}}\tilde{D}_{t},’,
\frac{-c^{0}}{\sqrt{2}(w_{1}^{0}-\sigma),0},D_{x_{2}}\frac{-1}{w_{1}^{0}-\sigma-c^{0}}\tilde{D_{t}}]

.

where D_{x_{1}}= \frac{1}{i}\frac{\partial}{\partial x_{1}} and \tilde{D}_{t}=D_{t}+w_{2}^{0}D_{x_{2}} .

The boundary conditions for V on \{x_{1}=0, t\geqq 0\} are:

B=(\begin{array}{lll}D_{t}, 0, -\alpha D_{x_{2}}0, 1, -\beta\end{array})\sim , BV=0 on x_{1}=0 ,

(2. 4) \alpha=\frac{(P(\rho^{0+})-P(\rho^{0-}))(w_{1}^{0}-\sigma-c^{0})}{(\rho^{0+}-\rho^{0-})(w_{1}^{0}-\sigma)\sqrt{2}(w_{1}^{0}-\sigma+c^{0})}<0 ,

\beta=-(\frac{c^{0}-(w_{1}^{0}-\sigma)}{c^{0}+(w_{1}^{0}-\sigma)})^{2} and 0>\beta>-1
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The boundary conditions for \phi on \{x_{1}=0, t\geqq 0\} are:

D_{x_{l}} \phi=(-i)\frac{\rho^{0}(w_{1}^{0}-\sigma)}{P(\rho^{0+})-P(\rho^{0-})}v_{1} ,

(2. 5) D_{i} \phi=i\{(\frac{(w_{1}^{0}-\sigma)c^{0}\rho^{0}}{\sqrt{2}(\rho^{0+}-\rho^{0-})c^{0}}+\frac{\rho^{0}}{\sqrt{2}(\rho^{0\dagger}-\rho^{0-})})v_{2}

+( \frac{(w_{1}-\sigma)c^{0}\rho^{0}}{\sqrt{2}(\rho^{0+}-\rho^{0-})c^{0}}-\frac{\rho^{0}}{\sqrt{2}(\rho^{0+}-\rho^{0-})})v_{3}\}

Since \phi(0, x_{2})=0 , \phi is determined from V.
Let the Fourier transformation of f(t, x_{2}) be the following form:

f^{\rho}( \tau, \omega)=\int e^{-i(\tau t+\omega x_{2})}f(_{\backslash }t, x_{2})dtdx_{2} .

Then eigenvalues and the corresponding eigenvectors of M(\tilde{\tau}, \omega) are: for
\tau=\eta-i\gamma and \tilde{\tau}=\tau+w_{2}^{0}\omega((\eta, \omega)\in R^{2}, \gamma>0)

\lambda_{1}^{+}=\frac{-\tilde{\tau}}{w_{1}^{0}-\sigma} , \lambda_{2}^{\pm}=\frac{(w_{1}^{0}-\sigma)\tilde{\tau}\mp c^{0\sqrt{\tilde{\tau}^{2}-\omega^{2}d^{2}}}}{d^{2}}’-

e_{1}^{+}=^{t} (\sqrt{2}\tilde{\tau} , \omega(w_{1}^{0}-\sigma) , -\omega(w_{\tau}^{0}-\sigma)),
e_{2}^{\pm}=^{t}(-\omega\sqrt{2}c^{0},\tilde{\tau}+\lambda_{2}^{\pm}(w_{1}^{0}-\sigma-c^{0}),\tilde{\tau}+\lambda_{2}^{\pm}(w_{1}^{0}-\sigma+c^{0})) ,

where d^{2}=(c^{0})^{2}-(w_{1}^{0}-\sigma)^{2}, \sqrt{1}=1 and Im \lambda^{+}>0 for \gamma>0 . The determinant
of the matrix:

(\begin{array}{lll}\tilde{\tau}, 0, -\omega d0, 1, -\beta\end{array}) (e_{1}^{+}, e_{2}^{+})

is \sqrt{2}(\tilde{\tau}+\lambda_{2}^{+}(w_{1}^{0}-\sigma))((1-\beta)\tilde{\tau}^{2}+\sqrt{2}\alpha(w_{1}^{0}-\sigma)\omega^{2}+(1+\beta)\tilde{\tau}\sqrt{\tilde{\tau}^{2}-d^{2}\omega^{2}}) . The vec-
tors e_{1}^{+} and e_{2}^{+} are linearly independent if and only if \tilde{\tau}+\lambda_{2}^{+}(w_{1}^{0}-\sigma)\neq 0 . From
the above two fact, it follows that for (\tau, \omega)\neq(0,0) the Lopatinskii determinant
is always

L=a_{1}\tilde{\tau}^{2}+a_{2}\omega^{2}-\tilde{\tau}\sqrt{\tilde{\tau}^{2}-d^{2}\omega^{2}} .
(2. 6)

a_{1}=- \frac{1-\beta}{1+\beta}<0 , a_{2}=- \frac{\sqrt{2}\alpha(w_{1}^{0}-\sigma)}{1+\beta}>0 .

In [7], Majda shows that the conditions (1. 2) and (1. 3) for \{U^{0\pm}, \sigma\}

imply the weak stability of the linearized problem (2. 3) and (2. 4) with respect
to \{U^{0+}, \sigma\} , i . e. , L(\tau, \omega)\neq 0 for \gamma>0 . Furthermore he prove that the above
problem is uniformly stable, i . e. , L(\tau, \omega)\neq 0 for \gamma\geqq 0 , if and only if

(2. 7) a_{1}+a_{2} \frac{1}{d^{2}}<0
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Under the above uniform stability, form his theorem it follows that for
initial data described in section 1 for l=1 and sufficiently small k_{0}’ there
exists the shock front solution with the smoothness (1. 4) for some T

3. Proof of Theorem.

To show the sufficiency of the assertion of Theorem, we may only to
prove the inequality (ii) of section 1 for the smooth shock front solution
\{U^{\pm}, \beta\} with (1. 4). Furthermore we may assume that \{U^{\pm}, \phi\} satisfy (2. 1)
and (2. 2). Then we need only to estimate them. Note that the linearized
problem with respect to \{U^{0\pm}, \sigma\} is assumed to be uniformly stable.

To obtain linear problem for \{U^{\pm}, \phi\} , using (1. 2) we rewrite (2. 2) as
follows :

\phi_{t}(F_{0}(U^{0+}+U^{\prime+})-F_{0}(U^{0-}+U^{\prime-}))\backslash +\phi_{x_{2}}(F_{2}(U^{0+}+U^{+})-F_{2}(U^{0-}+U^{-}))

(3.1) + \{\sigma\int_{0}^{1}F_{0}’(U^{0+}+\theta U^{+})d\theta-\int_{0}^{1}F_{1}’(U^{0+}+\theta U^{+})d\theta\}\cdot U^{+}

- \{\sigma\int_{0}^{1}F_{0}’(U^{0-}+\theta U^{\prime-})d\theta-\int_{0}^{1}F_{1}’(U^{0-}+\theta U^{-})d\theta\}\cdot U^{-}=0 .

Then regarding A_{i}(U^{0\pm}+U^{\pm}) , F_{i}(U^{0\pm}+U^{\prime\pm}) , \phi_{x_{i}}A_{i} and \int_{0}^{1}F_{i}’\cdot d\theta in (2. 1) and

(3. 1) with fixed \{U^{\pm}, \phi\} as coefficients, and reflecting U^{\prime-} with respect to
x_{1}=0 , we obtain a mixed problem for U=\{U^{\prime+}, U^{\prime-}\} and \phi which is denoted
by

L^{+}U^{\prime+}=0 , L^{-}U^{-}=0 in [0, T]\cross\{x_{1}>0\} ,

(3. 2) B(U^{+}, U^{-}, \phi)=0 on [0, T]\cross\{x_{1}=0\} .
U^{\prime+}(0, x)=h^{+}(x) and U^{\prime-}(0, x)=h^{-}(x)

We may choose T and k_{0} in (1. 4) sufficiently small numbers such that
\{L^{\pm}\} in (3. 2) is strongly hyperbolic and the linear mixed problem (3. 2) is also
uniformly stable in Kreiss-Majda’s sense. We let U_{1}=\{U_{1}^{+}, U_{1}^{-}\} and \phi_{1} be
the solution of (3. 2) with zero initial data and with B(U_{1}^{+}, U_{1}^{-} , \phi J =g for
some g\in L^{2}(t>0, x_{1}=0) . We obtain the estimate for U_{1} and \phi_{1} :

||U_{1}||_{0,(0,\tau)x1x_{1}>0I}^{2}+\langle\langle U_{1}\rangle\rangle_{0,(0,T)}^{2}\cross 1x_{1}=0I+\langle\langle\phi_{1}\rangle\rangle_{0,(0,T)\cross 1x_{1}=0I}^{2}

\leqq c_{1}\langle\langle q\rangle\rangle_{0,(0,\tau)}^{2}\cross\{x_{1}=0I

We let also U_{2}=(U_{2}^{+}, U_{2}^{-}) be the solution of the problem:

L^{+}U_{2}^{+}=0 , L^{-}U_{2}^{-}=0 in [0, T]\cross\{x_{1}>0\} :

N^{+}U_{2}^{+}=0 , N^{-}U_{2}^{-}=0 in [0, T]\cross\{x_{1}=0\} ,

U_{2}^{+}(0, x)=h^{+}(x) and U_{2}^{-}(0, x)=h^{-}(x) :
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where N^{+}(x) is the projection of the subspace in C^{3} spaned by positive

eigenvectors of the coefficient of \frac{\partial}{\partial x_{1}} in L^{+} . Then since L^{\pm} is symmetric,

by Rauch’s method ([11]) we obtain the desired estimate corresponding to
(ii). That is, by the Energy method it follows that

||U_{2}(t, x)||_{0,tx_{1}>0I}^{2}+\langle\langle U_{2}\rangle\rangle_{0,(\theta,T)\cross\dagger x_{1}=0I}^{2}

\leqq c_{2}||h||_{0,fx_{1}>0I}^{2} for t\in[0, T]

Thus setting g=-B(U_{2}^{+}, U_{2}^{-}, 0) and \tilde{U}’=U_{1}+U_{2} , by the uniqueness theorem
of the linear problem we obtain that U’=U’,\cdot\phi_{1}=\phi and the desired estimate
for \{U’, \phi\} . For, the symmetricity of L^{\pm} yields the estimate: for t\in[0, T] .

||U_{1}(t, x)||_{0,fx_{1}>0\rangle}^{2}\leqq c_{3}\langle\langle U_{1}\rangle\rangle_{0,(0,T)\cross 1x_{1}=0I}^{2}

Here we remark also that the uniqueness of solutions with (1. 4) is derived
as above by using a linear equations satisfied by the difference of solutions.

Next, to prove the necessity of the assertion of Theorem, we assume
that (i) and (ii) are valid. Now we shall show that the linearized problem
(2. 3) and (2. 4) is L^{2}-well posed in our sense ([1]). We let \{U^{\prime\pm}, \phi\} be func-
tions such that their derivatives satisfy the conditions with respect to initial
data in section 1, \{U^{\prime\pm}, \phi\}\frac{\star-}{-arrow}0 , Supp (U^{\prime+})\cap\{x_{1}\leqq\delta\}=\emptyset for a fixed \delta\ll 1 and
U^{\prime-}\equiv 0 . We let \{U^{0\pm}+U_{\epsilon}^{\prime\pm}, \sigma t+\phi_{\epsilon}\} be the solution with the initial data
\{U^{0+}+\epsilon U^{\prime+}, U^{0-}, \sigma t+\epsilon\phi\} with \epsilon>0 , whose existence is assumed in (i). Then
U_{\text{\’{e}}}^{\prime-}=0 and ( U_{\text{\’{e}}}^{\prime+} , \phi_{\epsilon}\} is a solution to the problem (2. 1)^{+} and (3. 1), for which
(1. 4) and (ii) are valid. Let h(t) be a cut off function such that h(t)\in C^{\infty}(R) ,
h(t)=1 for t\leqq T-\delta and h(t)=0 for t\geqq T Here we note that \phi and U^{\prime+}

vanish on \{(t, x)|t=0,0<x_{1}<\delta\} .
We let \{V_{\epsilon}, \psi_{\text{\’{e}}}\} be

V. =h \cdot\frac{1}{\epsilon}U_{\epsilon\prime}^{+\prime}.

\psi_{\epsilon}=h\cdot\frac{1}{\epsilon}\phi_{\epsilon} for t\geqq 0 .

Then from (ii) it follows that for some c_{1}>0

||V_{\text{\’{e}}}||_{0,1t>0,x_{1}>0\}}\leq cT||V_{\epsilon}||_{0,lt=0,x_{1}>0I}\leqq c_{1}

We have from (2. 1)^{+} and (3. 1) that
L_{\epsilon}(V_{\epsilon})

\equiv A_{0}(U^{0+}+\epsilon V_{e})\frac{\partial V_{\epsilon}}{\partial t}+(A_{1}(U^{0+}+\epsilon V_{\epsilon})-\sigma A_{0}(U^{0+}+\epsilon V_{*}))\frac{\partial V_{e}}{\partial x_{1}}
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(3. 3)
+A_{2}(U^{0+}+\epsilon V_{\epsilon})^{\frac{\partial V_{\epsilon}}{\partial x_{2}}}-\{\epsilon\psi_{\epsilon l},A_{0}(U^{0+}+\epsilon V_{\epsilon})

+ \epsilon\psi_{\epsilon,x_{2}}A_{2}(U^{0+}+\epsilon V_{\epsilon})\}\frac{\partial V_{\text{\’{e}}}}{\partial x_{1}}

= \frac{1}{\epsilon}f_{\text{\’{e}}} in \{(t, x)|t\geqq 0 , x_{1}\geqq 0\} ,

\psi_{\epsilon,t}(F_{0}(U^{0+}+\epsilon V_{\text{\’{e}}})-F_{0}(U^{0-}))+\psi_{\epsilon,x_{2}}(F_{2}(U^{0+}+\epsilon V_{\epsilon})-F_{2}(U^{0-}))

(3. 4) + \{\sigma\int_{0}^{1}F_{0}’(U^{0+}+\theta\epsilon V_{\epsilon})d\theta-\int_{0}^{1}F_{1}’(U^{0+}+\theta\epsilon V_{\epsilon})d\theta\}V.
=0 on \{(t, x)|0\leqq t\leqq T-\delta , x_{1}=0\} ,

where Supp (f_{e})\subset\{T-\delta<t<T, x_{1}\geqq 0\} . By the usual calculations with re-
spect to Sobolev norms we see that f_{\epsilon}|\{t\geq 0\} is a sum of terms containg

U_{\epsilon}^{\prime+} with bounded factors, and hence that || \frac{1}{\epsilon}f_{\epsilon}||_{0,1t\geq 0I}\leqq c_{2} for some con-

stant c_{2} . Now, we use the estimate

\langle\langle U\rangle\rangle_{-tx_{1}=0I}\frac{1}{2},\leqq c_{3}||U||_{1,-1,tx_{1}>0I}

\leqq c_{4}(||L_{\epsilon}(U)||_{0,1x_{1}>0I}+||U||_{0,tx_{1}>0\})} ,

where U\in H^{1}(\{x_{1}>0\}) . ([4]). We set \chi a cut off function \in C_{0}^{\infty}(R’) such
that \chi(x_{1})=1 for x_{1}<\delta/2 and \chi(x_{1})=0 for x_{1}>\delta . Then from the above
estimate we have:

\langle\langle V_{\epsilon}\rangle\rangle_{-\frac{1}{2},1x_{1}=0\}}

\leqq c_{4}(||L_{\epsilon}XV_{\epsilon}||_{0,lx_{1}>0I}+||XV_{\epsilon}||_{0,tx_{1}>0I)}

\leqq c_{b}(||L_{\text{\’{e}}}V_{\epsilon}||_{0,ft>0,x>0I}‘+||V_{e}||_{0,1t>0,x_{1}>0}\})

\leq c_{6} ,

where c_{6} also dependent on \chi’ and hence only on \delta , Tc||V_{e}||_{0,\mathfrak{l}t=\downarrow J,x_{1}\geqq 0I} and
k_{0} , but not on \epsilon . Furthermore for sufficiently small k_{0} , (1. 2) and (1. 3) imply
that F_{0}(U^{0+}+\epsilon V_{\epsilon})-F_{0}(U^{0-}) and F_{2}(U^{0+}+\epsilon V_{\epsilon})-F_{2}(U^{0-}) are linearly independ-
ent and hence (3. 4) yields that \psi_{\epsilon,t} and \psi_{\epsilon,x_{2}} are represented as linear com-
binations of elements of V_{\epsilon} with coefficients in H^{s-\frac{1}{2}}(\{t<T-\delta, x_{1}=0\})

Using the boundedness of V_{e} and the above fact, there exist a weak limit
\{V, \phi\} such that

V_{\epsilon’} -arrow V in H^{0}(\{0<t<T, x_{1}>0\}) ,
w
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V_{\epsilon’}\overline{w}V in H^{-\frac{1}{2}}(\{x_{1}=0\}) .

(3. 5) \epsilon’V_{\epsilon} , — 0 in H^{s-1}(\{0<t<T_{j}x_{1}>0\}) ,

V_{\epsilon’}=U^{f+}(0, x) in H^{s}(\{t=0, x_{1}>0\}) and

\psi_{\epsilon’}\phi\overline{w} in H^{\frac{1}{2}}(\{t<T-\delta, x_{1}=0\})

as \epsilon’arrow 0 . Here we note that Supp_{x_{z}}(\psi_{\epsilon’})\subset\{|x_{2}|\leqq 1\} .
Accordingly for any W\in C_{0}^{\infty}(\{0<t<T-\delta, 0<x_{1}<\infty\})

\int\langle(A_{0}(U^{0+}+\acute{\epsilon}V_{\epsilon}^{+},)-A_{0}(U^{0+}))\frac{\partial V_{\epsilon}^{+}}{\partial t}\backslash

,
’

W\rangle dtdx-arrow 0

as \epsilon’arrow 0 . Because then
A_{0}(U^{0+}+\epsilon’V_{\epsilon}^{+},)-A_{0}(U^{0+})arrow 0

in H^{s-1}(\{0<t<T,\cdot x_{1}>0\}) .
Therefore we have that V is a weak solution of the linearized problem
(2. 1’)^{+} and (2. 2’) with initial data V=U^{+}(0, x)\in H_{0}^{s+1}(\{x_{1}>\delta\}) and (3. 5) such
that

||V(t, x)||_{0,10,<t<T-\delta,x_{1}>0I}\leqq cT||U^{\prime+}(0, x)||_{0,tx_{1}>0I} ,

\int\langle L_{0}^{+}(V_{\epsilon’}),\grave{W}) dtdx=- \int\langle V_{\epsilon’}, L_{0}^{+}W\rangle dtdxarrow 0 ,

\int\langle B_{0}(V_{\epsilon’}, \psi_{e’}) , W_{1}\rangle dtdx_{2}arrow 0

as \epsilon’arrow 0 .
Here L_{0}^{+} , B_{0} are the linearized operators in (2. 1’)^{+} and (2. 2’) respectively

and W_{1}\in C_{0}^{\infty}(\{0\leqq t<T-\delta, x_{1}=0\}) .
On the other hand, the weak stability of the linear problem (2. 3) and

(2. 4) implies that for initial data N_{0}^{-1}U^{\prime+}(0, x) , as it is shown below in section
3, there exist a unique solution N_{0}^{-1}V_{1}\in H^{s-1}(\{0<t<T-\delta, x_{1}>0\}) and hence
from (2. 5) there is a unique solution \{V_{1}, \phi_{1}\} of the problem (2. 1’)^{+} , (2. 2’) .
Therefore we have that \{V_{\epsilon’}-V_{1}, \psi_{\epsilon}, -\phi_{1}\} satisfies (3. 5) replaced V, U^{+}

(0, x) and \phi by V-V_{1},0 and \phi-\phi_{1} respectively. Furthermore we have, as
\epsilon’arrow 0

\int\langle V_{\epsilon’}-V_{1}, L_{0}^{+}\overline{W}\rangle dtdx- 0 r

\int\langle B_{0}(V_{c’}-V_{1}, \psi_{\text{\’{e}}’}-\phi_{1}) , W_{1)}^{\backslash }dtdx_{2}arrow 0:
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where \overline{W}\in C_{0}^{\infty}(\{0\leqq t<T-\delta, 0<x_{1}<\infty\}) . Hence considering the convolution
by a function q_{n}(t, x_{2})=n^{2}g(nt, nx_{2})\in C_{0}^{\infty}(R^{2}) , we see that

L_{0}^{+}(q_{m}*(V-V_{1}))=0 for t\leqq T-2\delta , x_{1}>0r

B_{0} (q_{n}*(V-V_{1}) , q_{n}*(\phi-\phi_{q}))=0 for t\leqq T-2\delta .

q_{n}*(V-V_{1})=q_{n}*(\phi-\phi_{1})=0 for t \leqq-\frac{1}{n} .

These equalities imply that N_{0}^{-1}q_{n}*(V-V_{1}) is a solution of (2. 3) and (2. 4)

for t\leqq T-2\delta with zero initial data at t=- \frac{1}{n} .
By the uniqueness of the smooth solution of the above problem, we

have N_{0}^{-1}V\in H^{s-1}(\{0<t<T-2\delta, x_{1}>0\}) . Thus we see that there exists the
solution of (2. 3) and (2. 4) N_{0}^{-1}V\in H^{s-1}(\{0<t<T-2\delta, x_{1}>0\}) such that
||N_{0}^{-1}V(t, x)||_{0,10<t<T-2\delta,x_{1}>0I}\leq cT||N_{0}^{-1}U^{+}(0, x)||_{0,1x_{1}\geqq 0I} .

Obviously for the above inequality the restrictions with respect to norms
of initial data are removed. Regarding the pure Cauchy problem and the
partition of unity we can also remove the condition that support of data

\subset\{|x|\leqq\frac{1}{2}\} .

Extending V_{\epsilon} and \epsilon V_{e} suitably to \{t<0\} , by the same way as above
we can also remove the condition that (support of data) \cap\{x_{1}\leq\delta\}=\emptyset . Thus
by Duhamel’s principle we obtain that for all F(t, x)\in C^{1}([0, T-2\delta], H_{0}^{s+l}

(\{x_{1}>0\})) the solution U(t, x) of (2. 3) with the right hand side F and (2. 4)
with zero initial data satisfies : for some c_{0}>0

||U(t, x)||_{0,10<t<T-2\delta,x_{1}>0I}\leqq c_{0}||F(t, x)||_{0,f0<t<T-2\delta,x_{1}>0\rangle} ,

which is just the L^{2}-well posedness of the linearized problem (2. 3) and (2. 4).
For, by limit process, we can weaken the condition of F above to that
F\in H_{0}^{1}(\{0<t<T-2\delta, 0<x_{1}\}) . The proof of the assertion of Theorem is
complete, provided the above L^{2}-well posedness yields the uniform stability
of the same problem. Its proof is given in the next section.

4. Reflection coefficients.

In this section we study the linearized problem (2. 3) and (2. 4) with
respect to the step shock front satisfying (1. 2) and (1. 3).

We let N be the matrix:

N=(e_{1}^{+}, e_{2}^{+}, e_{2}^{-}) ,
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whose components are functions of (\tilde{\tau}, \omega) for fixed \{U^{0\pm}, \sigma\} . Hereafter we
consider only statements with respect to (\tau, \omega) which is normalized and has
small imaginary part \gamma of \tau . Then as stated in section 2 e_{1}^{+} and e_{2}^{+} are
linearly independent and the three vectors are also linearly independent
whenever \gamma\neq 0 . Assuming \gamma>0 we let 0={}^{t}(U_{1}, U_{2}, U_{3}) be the vector such
that for a solution V(t, x) of (2. 3) vanishing for t<0

O =N^{-1}\hat{V}

Then \hat{U} satisfies the following relations:

(4. 1)
D_{x}C=(\begin{array}{lll}\lambda_{1}^{+} \lambda_{2}^{+} \lambda_{2}^{-}\end{array}) C in \{x_{1}\geqq 0\} ,

B(e_{1}^{+}, e_{2}^{+})^{t}(U_{1}, U_{2})+B(e_{2}^{-})U_{3}=B\hat{V} on \{x_{1}=0\}

By assumption of the weak stability of the linearized problem we have:

|B(e_{1}^{+}, e_{2}^{+})|\neq 0 for \gamma>0,\cdot

{}^{t}(U_{1}, U_{2})+B(e_{1}^{+}, e_{2}^{+})^{-1}\cdot B(e_{2}^{-})U_{3}=B(e_{1}^{+}, e_{2}^{+})^{-1}BV ,

where

(B(e_{1}^{+}, e_{2}^{+}))^{-1}\cdot B(e_{2}^{-})\equiv{}^{t}(\overline{b_{12}},\tilde{b_{22}})

is called by reflection coefficients with respect to our problem.
We already have that for our problem is L^{2}-well posed if and only if

for some c\geq 0

|\tilde{b_{12}}|\leqq c\gamma^{-1}|{\rm Im}\lambda_{1}^{+}|^{\frac{1}{2}}|{\rm Im}\lambda_{2}^{-}|^{\frac{1}{A}}.
|\lambda_{2}^{-}-\lambda_{2}^{+}| ,

(4. 2)
|\tilde{b_{22}}|\leqq c\gamma^{-1}|{\rm Im}\lambda_{2}^{+}|^{\frac{1}{2}}|{\rm Im}\lambda_{2}^{-}|^{\frac{1}{2}}|\lambda_{2}^{-}-\lambda_{2}^{+}| .

whenever Lopatinskii determinant |B(e_{1}^{+}, e_{2}^{+})|(\tau^{0}, \omega^{0})=0 . Here \tau^{0} is real and
(\tau, \omega) are in a neighborhood of (\tau^{0}, \omega^{0}) with \gamma>0 . ( [10], [12] ) .

By direct calculations yield:

\tilde{b_{12}}\cross|B(e_{1}^{+}, e_{2}^{+})|=|B(e_{2}^{-}) , B(e_{2}^{+})|

=\tilde{\tau}(\lambda_{2}^{+}-\lambda_{2}^{-})\omega\sqrt{2}c^{0}\{\sqrt{2}\alpha+(\beta+1)c^{0}+(\beta-1)(w_{1}^{0}-\sigma)\}’\backslash

(4. 3)
\hat{b_{22}}’\cross|B(e_{1}^{+}, e_{2}^{+})|=|B(e_{1}^{+}) , B(e_{2}^{-})|

=\{\tilde{\tau}+\lambda_{2}^{-}(w_{1}^{0}-\sigma))\{(1-\beta)\tilde{\tau}^{2}+\sqrt{2}\alpha(w_{1}^{0}-\sigma)\omega^{2}-(1+\beta)\sqrt{\tilde{\tau}^{2}-d^{2}\omega^{2}}\tilde{\tau}\} ,

where Im (-\sqrt)->0 for \gamma>0 .
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Here we remark that if the stability function a_{1}+a_{2}d^{-2}>0 , the zeros
of Lopatinskii determinant occur at (\eta, \omega) contained in the projection to the
hyperplane \{\lambda=0\} of the interior of the normal cone. In this case the
problem is not L^{2}-well posed. ([12]). Therefore we need only to treat the
case where a_{1}+a_{2}d^{-2}=0 . But for the case where a_{1}+a_{2}d^{-2}\geqq 0 we examine
the vanishing order of reflection coefficients in order to clarify the degnerate
order of well posedness of our problem.

To do so, we first show that the following two functions are equivalent
in a neighborhood of (\tilde{\tau}_{0}, \omega_{0})i . e. ,

(4. 4) \tilde{b_{12}}|B(e_{1}^{+}, e_{2}^{+})|\sim|\lambda_{2}^{+}-\lambda_{2}^{-}|

we let (\tilde{\tau}, \omega) belong to a neighborhood of (\tilde{\tau}_{0}, \omega_{0}) for which L(\tilde{\tau}_{0}, \omega_{0})=0_{\sim}

If \tilde{\tau}_{0}=0 , (2. 6) implies L(\tilde{\tau}_{0}, \omega_{0})=-a_{2}\omega_{0}^{2} and hence \omega_{0}=0 , which is contrary
to our assumption (\tau_{0}, \omega_{0})\neq 0 . By the same way we see that \omega_{0}\neq 0 and we
need only to show:

\sqrt{2}\alpha+(\beta+1)c^{0}+(\beta-1)(w_{1}^{0}-\sigma)\neq 0 .
We divide this by \beta+1>0 , then from (2. 6) it becomes

-a_{2}(w_{1}^{0}-\sigma)^{-1}+c^{0}+a_{1}(w_{1}^{0}-\sigma) .
Since we can rewrite a_{1} and a_{2} as follows:

a_{1}=- \frac{1}{2}\{(c^{0})^{2}+(w_{1}^{0}-\sigma)^{2}\}(c^{0})^{-1}(w_{1}^{0}-\sigma)^{-1} ,

a_{2}= \frac{1}{2}[P]([\rho]c^{0})^{-1}d^{2}(w_{1}^{0}-\sigma)^{-1} ,

where [\rho]=\rho^{0+}-\rho^{0-} , we need only to show that

(c^{0}) \neq\frac{1}{\underline{q}}\{\frac{(c^{0})^{2}+(w_{1}^{0}-\sigma)^{2}}{c^{0}}+\frac{[P]}{[\rho]c^{0}}\frac{(c^{0})^{2}-(w_{1}^{0}-\sigma)^{2}}{(w_{1}^{0}-\sigma)^{2}}\} .

Using the fact that

\frac{[P]}{[\rho]}=\frac{\rho^{+0}}{\rho^{-0}}(w_{1}^{0}-\sigma)^{2} ,

we reduce our problem to show:

(c^{0})^{2} \neq\frac{1}{2}(1+\frac{\rho^{0+}}{\rho^{0-}})(c^{0})^{2}+\frac{1}{2}(1-\frac{\rho^{0+}}{\rho^{0-}})(w_{1}^{0}-\sigma)^{2} .

From (1. 2) and (1. 3) it implies that \rho^{0+}\neq\rho^{0-} and by (1. 3) we have that
(c^{0})^{2}>(w_{1}^{0}-\sigma)^{2}. Hence the above inequality is valid.
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Next we remark that
\tilde{\tau}+\lambda_{2}^{-}(w_{1}^{0}-\sigma)\neq 0 .

For, if \tilde{\tau}+\lambda_{2}^{-}(w_{1}^{0}-\sigma)=0 , then from the relation (c^{0})^{2}=d^{2}+(w_{1}^{0}-\sigma)^{2} it follows
that \tilde{\tau}=-i|\omega|(w_{1}^{0}-\sigma) . But Im \lambda_{2}^{-}<0 and hence \tilde{\tau}+\lambda_{2}^{-}(w_{1}^{0}-\sigma)\neq 0 , which is
a cont_{L}radiction . Thus we have that

(4. 5) \tilde{b_{22}}\cdot|\tilde{B}(e_{1}^{+}, e_{2}^{+})|\sim a_{1}\tilde{\tau}^{2}+a_{2}\omega^{2}+_{\tilde{T}}\sqrt{\tilde{\tau}^{2}-d^{2}\omega^{2}}

Let a_{1}+a_{2}d^{-2}=0 , then for the point (\tilde{\tau}_{0}, \omega_{0}) such that \tilde{\tau}_{0}^{2}=d^{2}\omega_{0}^{2} Lopatinskii
determinant L(\tau_{0}, \omega_{0})=0 . We let \tilde{\tau}\pm d\omega_{0}=\zeta for \tilde{\tau}_{0}=\mp d\omega_{0} respectively. Then
from (4. 4) and (4. 5) it follows that

| \tilde{b_{12}}|\sim\frac{k_{0}\sqrt{\zeta}}{k_{1}\sqrt{\zeta}+k_{2}\zeta}j

| \overline{b_{22}}|\sim\frac{k_{1}\sqrt{\zeta}+k_{2}’\zeta}{k_{1}\sqrt{\zeta}+k_{2}\zeta} ,

where k_{0} and k_{1}\neq 0 . Therefore we have that both of |\tilde{b_{12}}| and |\tilde{b_{22}}| are
bounded and do not vanish. Since | Im \lambda_{1}^{+}|\sim\gamma , \gamma\sim({\rm Re}\sqrt{\zeta})\cdot({\rm Im}\sqrt{\zeta}) and \lambda_{2}^{-}-

\lambda_{2}^{+}\sim\sqrt{\zeta} , we see that the first term of the right hand side in (4. 2)
\sim\sqrt{\zeta}(Re \sqrt{\zeta})^{-1}2 , which tends to zero when \zeta=-i\gamma . Furthermore the second
term \sim\sqrt{\zeta}({\rm Re} \sqrt\overline{\zeta})^{-1}, which is bounded from below by positive constant.

Thus we have that (4. 2) are valid for b_{22}-, but not for b_{12}-.
Next, we let a_{1}+a_{2}d^{-2}>0 . Then also from (4. 4), (4. 5) and the simple

multiplicity of the zeros of L it follows that both of \tilde{b_{12}} and \tilde{b_{22}} are 0 (\gamma^{-1}) .
But in this case terms of the right hand side of (4. 2) are bounded, since
both of \lambda_{1}^{+} and \lambda_{2}^{+} are simple. Hence we see that (4. 2) are not valid and
the problem is L^{2}-well posed if and only if it is uniformly stable.

Finally we remark that for some c>0
|\overline{b_{12}}|\leqq c\gamma^{-2}|{\rm Im}\lambda_{1}^{+}|^{\frac{1}{2}}|{\rm Im}\lambda_{2}^{+}|^{1}2"|\lambda_{2}^{-}-\lambda_{2}^{+}| ,

|\overline{b_{22}}|\leqq c\gamma^{-2}|{\rm Im}\lambda_{2}^{+}|^{\frac{1}{2}}|{\rm Im}\lambda_{2}^{-}|^{\frac{1}{2}}|\lambda_{2}^{-}-\lambda_{2}^{+}|

even if a_{1}+a_{2}d^{-2}\geqq 0 . Therefore the linearized problem is always L^{2}-well
posed with decreasing order 1. Note that the plane \{x_{1}=0\} is non-charact-
eristic for operators (2. 3) and (2. 4). Hence for a given vector F(t, x)\in

H_{0}^{s+1}(\{t>0, x_{1}>0\}) . there exists a unique solution U to problem (2. 3) with
the right hand side F and (2. 4) with homogeneous boundary conditions such
that supp (U)\cap\{t<0\}=\emptyset , and for some c_{T}

||U||_{s,t0<t<T,x_{1}>0I}\leqq c_{T}||F||_{s+110<t<T,x_{1}>0I},
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([5], [10]). Therefore we have: for a given initial data U(0, x)\in H_{0}^{s\dagger 1}(\{x_{1}>0\})

there is a unique solution U(t, x)\in H^{s-1}(\{t>0, x_{1}>0\}) to the problem (2. 3)
and (2. 4) such that

||U||_{s-1,t0<t<T,x_{1}>0I}\leqq c_{T}||U(0, x)||_{s+1,tx_{1}>0I}

5. Conclusion and an example.

1) From Theorem we have that if the linearized problem with respect
to \{U^{0\pm}, \sigma\} is only weakly stable, the stability condition (ii) is not satisfied
for any short time, even if (i) is valid until some time. Though here we
deal mainly with piecewise smooth shock front solutions, this fact will cor-
respond to the instability in Fluid mechanics, ([5], [14]). However, it is
not known even whether there exists an other such shock front solution
with the same initial data as { U^{0\pm} , at}, when the linearized problem with
respect to \{U^{0\pm}, \sigma\} is only weakly stable.

The same treatment as above is applicable to 3-dimensional problems.

2) Example.
The stability of the linearized problem with respect to \{U^{0\pm}, \sigma\} depends

only on \{\rho^{0\pm}\} under the conditions (1.2) and (1.3). That is, for l-shock
front it is uniformly stable if and only if

P(\rho^{0+})-P(\rho^{0-})<P_{\rho}(\rho^{0+})\rho^{0+}

([7]).
We let

P( \rho)=1+(1-\frac{1}{\rho})(1+\epsilon(\rho-1))^{2}\backslash for \rho>1 and

for some positive \epsilon\ll 1 . ([9]).
Since P_{\rho}=(1+\epsilon(\rho-1))\rho^{-2}\{1+\epsilon(\rho-1)(1+2\rho)\} and

P_{\rho\rho}=2\rho^{-3}(\rho^{3}\epsilon^{2}-(1-\epsilon)^{2)} ,

setting \rho_{0}=((1-\epsilon)\epsilon^{-1})^{\tau}2 , we have that

P_{\rho}>0 for \rho>1 , P_{\rho\rho}<0 for \rho\in(1, \rho_{0}) ,

P_{\rho\rho}(\rho_{0})=0 and P_{\rho\rho}>0 for \rho>\rho_{0} .
If \rho^{+}>\rho^{-} , for any w_{1}^{+} and w_{2}^{+}=w_{2}^{-} we can find w_{1}^{-} and \sigma such that

U^{+}=^{t}(w_{1}^{+}, w_{2}^{+}, P(\rho^{+})) , U^{-}={}^{t}(w_{1}^{-}, w_{2}^{-}, P(\rho^{-})) and \sigma satisfy (1. 2) and (1. 3). In
fact the 1-shock is genuinely nonlinear. Now the maximum of P(\rho)-P_{f}(\rho)\cdot\rho

occus at \rho_{0} . We see that for sufficiently small \epsilon
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P(\rho_{0})-P_{\rho}(\rho_{0})\cdot\rho_{0}>1

We let \rho^{0+}=\rho^{0}. Then there exists \rho_{1} such that 1<\rho_{1}<\rho_{0} , the linearized
problem is uniformly stable for \{\rho^{0+}, \rho^{0-}\} provided: \rho^{0-}\in(\rho_{1}, \rho_{0}) , and is only
weakly stable for \{\rho^{0+}, \rho^{0-}\} provided : 1<\rho^{0-}\leqq\rho_{1} .
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