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Standard subgroups of type 2\Omega^{+}(8,2)
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\S 1. Introduction

As introduced by M. Aschbacher in [2], a quasi-simple subgroup L of
a finite group G is said to be a standard subgroup of G if C_{G}(L) has even
order, C_{G}(L)\cap C_{G}(L)^{q} has odd order for g\not\in N_{G}(L) , and [L, L^{g}]\neq 1 for g\in G .

In this paper, we prove

MAIN THEOREM. If G is a finite group with O(G)=1 having a
standard subgroup L isomorphic to a double cover of \Omega^{+}(8,2) such that
C_{G}(L) has cyclic Sylow 2-subgroups, then LaG.

REMARK. The Schur multiplier of \Omega^{+}(8,2) is E_{4} . But since what is
called the triality automorphism permutes the involutions of the Schur
multiplier, a double cover 2\Omega^{+}(8,2) is uniquely determined up to isomorphism.

Our proof consists of showing Z(L)\subseteqq Z(G) by Glauberman’s Z^{*} -theorem.
The notation is standard except possibly the following:

X^{\infty} the final term of the derived series of X

X=YZ means that Y*X and X=\langle Y, Z\rangle . If Y\cap Z=1 and if an empha-
sis is to be placed on that fact, we write X=Y\cdot Z.

If X is a 2-group, then by J(X) we denote the usual Thompson sub-
group generated by the abelian subgroups of maximal order.

In Section 3, we let G denote a group which satisfies the hypotheses
of the Main Theorem, and use symbols such as N(X) and C(X) to denote
N_{G}(X) and C_{G}(X) , respectively.

\S 2. Properties of 2\Omega^{+}(8,2)

We fix notation for 2\Omega^{+}(8,2) in the following lemma. For more detailed
information, the reader is referred to J. S. Frame [4].

Lemma 2. 1. ( i) Let X=W(E_{8}) , the Weyl group of type (E_{8}) . Then
L=X’ is a double cover of \Omega^{+}(8,2) , and Aut (L)\cong\overline{X}=X/Z(X)\cong O^{+}(8,2) .
Let z be the involution of Z(X) . \overline{L} contains five classes of involutions.
Let \overline{a} be a central involution. Then
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C_{\overline{L}}(\overline{a})\cong(D_{8}*D_{8}*D_{8}*D_{8})\cdot(S_{3}\cross S_{3}\cross S_{3}) ,

C_{\overline{X}}(\overline{a})\cong(D_{8}*D_{8}*D_{8}*D_{8})\cdot(S_{3}\cross (S_{3} wr Z_{2}) \backslash )

Let \overline{b}_{1},\overline{b}_{2},\overline{b}_{3} be representatives of the three classes of involutions such that
C_{\overline{L}}(\overline{b}_{i})\cong E_{64}\cdot S_{6},1\leq i\leq 3\tau

We choose our notation so that \overline{b}_{2} and \overline{b}_{3} are conjugate in \overline{X}. Then
C_{\overline{L}}(\overline{b}_{1})\cong E_{64}\cdot(Z_{2}\cross S_{6}) ,

C_{\overline{X’}}(\overline{b}_{i})\cong E_{64}\cdot S_{6}, i=2,3 .
Let \overline{d} be an involution from the remaining class. Then

C_{\overline{L}}(\overline{d})\cong E_{64}\cdot(Z_{2}\cross S_{4}) , C_{\overline{X}}(\overline{d})\cong E_{128}\cdot(Z_{2}\cross S_{4})

\overline{X} contains six classes of involutions. We denote by \overline{v} and \overline{w} involutions
of \overline{X}-\overline{L} such that

C(\overline{v})\cong Z_{2}\cross Sp(6,2).
,

C_{\overline{X}}(\overline{w})\cong(E_{8}\cross(D_{8}*D_{8}))\cdot(S_{3}\cross S_{3}) .
respectively. Note that for every involution \overline{x} of \overline{X}, O(C_{\overline{L}}(\overline{x}))=O(C_{\overline{X}}(\overline{x}))=1

and neither C_{\overline{L}}(\overline{x}) nor C_{\overline{X}}(\overline{x}) has any Z_{4} or Z_{2}\cross Z_{4} normal subgroup.
(ii) By [4], a, b_{1} , d, u, v are involutions, and b_{2}, b_{3} are of order 4.

Again by [4],

a\sim az, b_{1}arrow b_{1}z, d\sim dz in L_{i}

v*\sqrt vz, w\star wz in X

(iii) Let U be a Sylow 2-subgroup of L. \overline{U} contains exactly six ele-
mentary abelian subgroups, \overline{B}_{i}(1\leq i\leq 6) , of order 64, and all of them are
normal in \overline{U}. At the cost of relabeling, we may assume that \overline{B}_{i}\cap\{\overline{b}_{j}^{\overline{L}}\}\neq\emptyset

if and only if i=j or i+j=7, and that N_{\overline{L}}(\overline{B}_{i})/\overline{B}_{i}\cong A_{8} for i\leq 3 and N_{\overline{L}}(\overline{B}_{i})/\overline{B}_{i}

\cong E_{8}\cdot GL(3,2) for i\geq 4 . Let B_{i} be the full inverse image of \overline{B}_{i} . Then,
by (ii) and by our choice of labeling, B_{1} and B_{6} are the only elementary
abelian subgroups of order 128 of U.

(iv) Let \overline{K} be a complement to \overline{B}_{1} in N_{\overline{I}_{\lrcorner}}(\overline{B}_{1}) .
(v) Choose \overline{v} so that \overline{v} normalizes \overline{U} and \overline{K} and so that \overline{v} centralizes

\overline{B}_{6} . Then U\langle v\rangle\in Sy1_{2}(X) , Z(U\langle v\rangle)=Z(U)=\langle z\rangle , J(U\langle v\rangle)=B_{6}\cross\langle v\rangle\cong E_{256} .

(vi) |\{a^{L}\}\cap B_{6}|=14 ,

|\{b_{1}^{L}\}\cap B_{6}|=|\{(b_{1}z)^{L}\}\cap B_{6}|=28 ,
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|\{d^{L}\}\cap B_{6}|=56\dot{\prime}

|\{v^{X}\}\cap B_{6}\langle v\rangle|=|\{(vz)^{X}\}\cap B_{6}\langle v\rangle|=8 :

|\{w^{X}\}\cap B_{6}\langle v\rangle|=|\{(wz)^{X}\}\cap B_{6}\langle v\rangle|=56

Lemma 2. 2. (i) N_{X}(B_{1}) acts indecomposably on B_{1} .
(ii) N_{X}(B_{1}) splits over B_{1} .
PROOF: We may assume a\in B_{1} . By way of contradiction, suppose the

action of N_{X}(B_{1}) on B_{1} is decomposable. Then |C_{N_{X}(B_{1})}(a)|_{2}=2^{14} . On the
other hand, since a\sim az in L, [C_{\overline{X}}(\overline{a}):\overline{C_{X}(a\rangle}]=2 and so |C_{X}(a)|_{2}=2^{13} . This
is a contradiction. Thus (i) holds. There are exactly two classes of com-
plements to \overline{B}_{1} in N_{\overline{L}}(\overline{B}_{1}) . (See, for example, Lemma 11. 3 of M. Aschbacher
[1]) . The involutions of one of them are from \{\overline{b}_{1}^{\overline{L}}\} and \{\overline{a}^{\overline{L}}\} , and those of
the others are from \{\overline{b}_{1}^{\overline{L}}\} and \{\overline{d}^{\overline{L}}\} . Hence the full inverse image of \overline{K} is
isomorphic to Z_{2}\cross A_{8} by Lemma 2. 1 (ii). Thus N_{L}(B_{1}) splits over B_{1} . By

Lemma 1. 1 (v), v is an involution of N_{X}(B_{1}\rangle , and \overline{v} normalizes the full
inverse image of \overline{K} . Therefore v normalizes the commutator subgroup of
the full inverse image of \overline{K}, which is a complement to B_{1} in N_{L}(B_{1}) . Thus
N_{X}(B_{1}) splits over B_{1} .

Let K be the commutator subgroup of the full inverse image of \overline{K}.
Thus K\cong A_{8} and K\langle v\rangle\cong S_{8} . Lemma 2. 2 (i) shows that the action of K\langle v\rangle

on B_{1} comes from the standard permutation module. Thus, in proving the
following three lemmas, we regard K\langle v\rangle as the symmetric group on \Omega=

\{i:1\leq i\leq 8\} , and write an element t of B_{1} in the form

t= \prod_{i\in\Omega}e_{i}^{t_{i}} ; t_{i}=0 or 1, |\{i:t_{i}=1\}|=even ‘

Lemma 2. 3. O_{2}(C_{L}(a))\cong(D_{8}*D_{8})\cross(D_{8}*D_{8}) . Here a is in the commu-
tator subgroup of an indecomposable component of O_{2}(C_{L}(a)) , and so is az.

PROOF: We may assume a=e_{1}e_{2}e_{3}e_{4}\in B_{1} . Then we have O_{2}(C_{B_{1}K}(a)’)=

F_{1}\cross F_{2} with F_{i}=\langle V_{i}, W_{i}\rangle , where
V_{1}=\langle e_{1}e_{2}, e_{2}e_{3}, e_{3}e_{4}\rangle\underline{\subset}B_{1} , V_{2}=\langle e_{b}e_{6}, e_{6}e_{7}, e_{7}e_{8}\rangle\subseteq B_{1} ,

W_{1}=\langle(12)(34), (13) (24)\rangleK, W_{2}=\langle(56)(78), (57) (68)\rangleK.
Clearly F_{i}\cong D_{8}*D_{8}, a\in F_{1} and az=e_{\dot{o}}e_{6}e_{7}e_{8}\in F_{2} . Since O_{2}(C_{L}(a))\in Sy1_{2}(C_{L}(a’))

and |C_{L}(a)’|_{2}=1024 , O_{2}(C_{L}(a))=O_{2}(C_{B_{1}K}(a)’) . This proves the lemma.

Lemma 2. 4. \langle z\rangle , \langle b_{1}\rangle and \langle b_{1}z\rangle are all characteristic both in C_{L}(b_{1})

in C_{X}(b_{1}) .
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PROOF: We may assume b_{1}=e_{1}e_{2}\in B_{1} . Then C_{L}(b_{1})=B_{1}\cdot C_{K}(b_{1}) , C_{K}(b_{1})

\cong S_{6}, B_{1}=O_{2}(C_{L}(b_{1})) . C_{K}(b_{1})’ is the alternating group on \{i\in\Omega:3\leq i\leq 8\} ,
and C_{K}(b_{1})=\langle C_{K}(b_{1})_{i}’(12)(34)\rangle . Therefore \langle z, b_{1}\rangle=Z(C_{L}(b_{1})) . Since B_{1}\cap

C_{L}(b_{1})^{\infty}=\langle e_{i}e_{i+1} : 3\leq i\leq 7\rangle , \langle b_{1}z\rangle=\langle z, b_{1}\rangle\cap C_{L}(b_{1})^{\infty} . Hence \langle b_{1}z\rangle is char-
acteristic in C_{L}(b_{1}) . Every element x of order 4 of C_{K}(b_{1})-C_{K}(b_{1})’ is of the
form x=(12)(i_{1}i_{2}i_{3}i_{4}) , 3\leq i_{k}\leq 8 . Therefore \langle b_{1}\rangle=\langle z, b_{1}\rangle\cap[B_{1}, x] for every
such x. Hence \langle b_{1}\rangle is characteristic in C_{L}(b_{1}) , and so \langle z\rangle is also charac-
teristic. Next note that C_{X}(b_{1})=B_{1}\cdot C_{K\langle v\rangle}(b_{1}) and \langle z, b_{1}\rangle=Z(C_{X}(b_{1})) . As
before, we have \langle b_{1}z\rangle=\langle z, b_{1}\rangle\cap C_{X}(b_{1})^{\infty} . Therefore \langle b_{1}z\rangle is characteristic in
C_{X}(b_{1}) . Since \langle B_{1}, (12)\rangle=O_{2}(C_{X}(b_{1})) , \langle b_{1}\rangle=\langle B_{1}, (12)\rangle’ is characteristic. Hence
\langle z\rangle is also characteristic in C_{X}(b_{1}) .

Lemma 2. 5. [B_{6}\langle v\rangle, x]\geq 4 for every 2-element x of N_{X}(B_{6}\langle v\rangle)-B_{6}\langle v\rangle .
PROOF. Let \Lambda denote {1, 3, 5, 7}, and set V=\{e_{i}e_{i+1} : i\in\Lambda\}\underline{\subset}B_{1} and

W=\{(i, i+1):i\in\Lambda\}\underline{\subset}K. We may assume B_{6}\langle v\rangle=V\cross W. Let x be an
arbitrary 2\cdot element of N_{X}(B_{6}\langle v\rangle)-B_{6}\langle v\rangle . Since N_{B_{1}K\langle?j\rangle}(B_{6}\langle v\rangle)) contains
a Sylow 2-subgroup of X, we may assume x\in B_{1}K\langle v\rangle . First suppose x\in

B_{6}\langle v\rangle B_{1} . By replacing x by a suitable element of the coset xB_{6}\langle v\rangle , we
may assume x is in the form

x= \prod_{i\in\Lambda}e_{i}^{l_{i}} ; t_{i}=0 or 1, |\{i\in\Lambda:t_{i}=1\}|=even

Then [B_{6}\langle v\rangle, x]=\langle e_{i}e_{i+}1:i\in\Lambda, t_{i}=1\rangle . Therefore |[B_{6}\langle v\rangle, x]|=2^{|(i\in\Lambda:t_{i}=1I1}\geq

2^{2} . Next suppose x\not\in B_{6}\langle v\rangle B_{1} . Then the action of x on V is nontrivial
and is the same as that on (B_{6}\langle v\rangle)/V. Hence |[B_{6}\langle v\rangle, x]|\geq|[V, x]|^{2}\geq 2^{2}.

LEMMA 2. 6. There exists an involution \overline{x} of C_{\overline{L}}(\overline{v}) such that \overline{x}\in\{\overline{b}_{1}^{\overline{X}}\}

and \overline{v}\overline{x}\in\{\overline{v}^{\overline{X}}\} .
PROOF. We let \overline{X} act on a vector space V of dimension 8 over GF (2)

with a quadratic form of plus type so that \overline{X} leaves the quadratic form
invariant. We then choose \overline{x} to be an element of \{\overline{b}_{1}^{\overline{\lambda^{7}}}\} such that [V,\overline{x}]\supseteq

[V,\overline{v}] . Then \overline{x} satisfies all the requirements of the lemma.

\S 3. Proof of Main Theorem.

In the remainder of this paper, we let G denote a group which satisfies
the hypotheses of the Main Theorem, and use the description of L given
in Section 2. Let S be a Sylow 2-subgroup of N(L) containing U.

Lemma 3. 1. If |C(L)|_{2}\geq 4 , then L\# G .
PROOF : This follows immediately from Theorem 2 of L. Finkelstein

[3] and Lemma 2. 1 (i).
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Throughout the rest of this paper, we assume |C(L)|_{2}=2 .

Lemma 3. 2. If [N(L) : LC(L)]=2 and if there is no involution in
N(L)-LC(L) , then z\in Z(G) .

PROOF: By Lemma 2. 1(v) , J(S)\cong Z_{4}\cross E_{64} and o^{1}(J(S))=\langle z\rangle . there
fore S\in Sy1_{2}(G) , and \{z^{N(J(S))}\}=\{z\} . Note that our assumption implies that
every involution of S is conjugate to some involution of B_{6}(\underline{\subset}J(S)) by
Lemma 2. 1 (vi). Since N(J(S)) controls the fusion of J(S) , this means
\{z^{G}\}\cap S=\{z\} . Hence Glauberman’s Z^{*} -theorem yields the desired conclusion.

From now on, we assume that either [N(L):LC(L)]=2 and N(L)-
LC(L) contains involutions or [N(L):LC(L)]=1 .

Lemma 3. 3. S\in Sy1_{2}(G) .
PROOF: This is because Z(S)=\langle z\rangle by Lemma 2. 1 (v).

Lemma 3. 4. z\star a in G.
PROOF: By way of contradiction, suppose a^{g}=z, g\in G . Then C_{C(z)}(a)^{g}

\subseteq C(z) . From the structures of the centralizers of the involutions of C(z)

(Lemma 2. 1 (i)), we observe that every involution x of C(z) such that |C_{C(z)}(x)|

is divisible by |S|/2 is conjugate to a in C(z) . Therefore there exists an
element h of C(z) such that (z^{g})^{h}=a . Hence, regarding gh as g, we may
assume z^{g}=a . Then g normalizes (z, a\rangle , and so g normalizes also C_{C(z)}(a) .
Hence we may regard g as an automorphism of O_{2}(C_{C(z)}(a)/O(C_{C(z)}(a)))

( \cong O_{2}(C_{L}(a)) which sends aO(C_{C(z)}(a)) to zO(C_{C(z)}(a)) . But by Lemma 2. 3
and Krull-Remak-Schmidt’s theorem, we have that there is no such aut0-

morphism. This is a contradiction.

Lemma 3. 5. zarrow’b_{1} and z\not\simeq\cdot b_{1}z in G.
PROOF: Suppose b_{1}^{g}=z or (b_{1}z)^{g}=z, g\in G . As in Lemma 3. 4, we may

assume g normalizes C_{C(z)}(b_{1}) , for every involution x of C(z) such that
x\in C_{C(z)}(x)’ and such that C_{C(z)}(x) contains a subgroup isomorphic to E_{128}\cdot S_{6}

is conjugate to either b_{1} or b_{1}z in C(z) . Again arguing as in Lemma 3. 4,
we get a contradiction to Lemma 2. 4.

Now we finish the proof of the Main Theorem, distinguishing two cases.

Lemma 3. 6. If N(L)=LC(L) , then z\in Z(G) .
PROOF: We first prove B_{6} is weakly closed in U. By way of contradic-

tion, suppose B_{6}^{g}=B_{1} , g\in G . Since B_{6} and B_{1} are both normal in U, we
may assume U^{g}=U. But by Lemma 2. 1 ( v^{1},, this implies g\in C(z) , which is
absurd. Therefore B_{6} is weakly closed by Lemma 2. 1 (iii). On the other
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hand, since |\{z^{N(B_{6})}\}\sqrt must divide |GL(7,2)| , we have that \{z^{N(B_{6})}\}=\{z\} by
Lemmas 2. 1 (vi), 3. 4 and 3. 5. Since every involution of U is conjugate
to some involution of B_{6} in L by Lemma 2. 1 (vi) and since B_{6} is weakly
closed in U, Glauberman’s Z^{*} -theorem yields the desired conclusion.

Lemma 3. 7. If [N(L):LC(L)]=2 and N(L)-LC(L) contains involu-
tions, then z\in Z(G) .

PROOF: N(L) contains a subgroup X isomorphic to W(E_{8}) . We use
the description of X given in Lemma 2. 1. We may assume S=U\langle v\rangle .
Thus J(S)=B_{6}\langle v\rangle . We first prove z\nu v in G. Suppose v^{g}=z, g\in G . As
in Lemma 3. 4, we may assume that either \mathscr{S}=v or z^{g}=vz. Thus g nor-
malizes C_{C(z)}(v) , and so g normalizes also C_{C(z)}(v)^{\infty}\cong Sp(6,2) . Since the outer
automorphism group of Sp(6,2) is trivial, we may assume g centralizes
C_{C(z)}(v)^{\infty} . First assume z^{g}=vz. By Lemma 2. 6, there is an involution x of
C_{C(z)}(v)^{\infty} such that \overline{x}\in\{\overline{b}_{1}^{\overline{X}}\} and \overline{v}\overline{x}\in\{\overline{v}^{\overline{X}}\} . Since x^{g}=x, (vx)^{g}=xz. Since
vx and xz are conjugate to either v or vz and either b_{1} or b_{1}z, respectively,
in X by our choice of x, and since z is conjugate to both v and vz in G
by our assumption, this means that z is conjugate to either b_{1} or b_{1}z . This
contradicts Lemma 3. 5. Therefore z^{g}=v . Then by taking a suitable odd
power of g, we may assume g is a 2-element. Since g centralizes C_{C(z)}(v)^{\infty},
|[B_{6}\langle v\rangle, g]|=|\langle vz\rangle|=2 . But since S\in Sy1_{2}(G) , this contradicts Lemma 2. 5.
Thus z^{\nearrow}v . Similarly z\# vz . Since |\{z^{N(b_{6}\langle v\rangle)}\}| must divide |GL(8,2)| , those
antifusions together with Lemmas 3. 4 and 3. 5 show that \{z^{N(B_{6}\langle v\rangle)}\}=\{z\} .
Now the desired conclusion follows again from Glauberman’s Z^{*} -theorem.

Thus the proof of our Main Theorem is complete.
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