Standard subgroups of type $2 \Omega^{+}(8,2)$

By Yoshimi Egawa and Tomoyuki Yoshida
(Received December 3, 1980; Revised September 12, 1981)

§ 1. Introduction

As introduced by M. Aschbacher in [2], a quasi-simple subgroup L of a finite group G is said to be a standard subgroup of G if $C_{G}(L)$ has even order, $\mathrm{C}_{G}(L) \cap C_{G}(L)^{g}$ has odd order for $g \notin N_{G}(L)$, and $\left[L, L^{g}\right] \neq 1$ for $g \in G$.

In this paper, we prove
Main Theorem. If G is a finite group with $O(G)=1$ having a standard subgroup L isomorphic to a double cover of $\Omega^{+}(8,2)$ such that $C_{G}(L)$ has cyclic Sylow 2-subgroups, then $L \triangleleft G$.

Remark. The Schur multiplier of $\Omega^{+}(8,2)$ is E_{4}. But since what is called the triality automorphism permutes the involutions of the Schur multiplier, a double cover $2 \Omega^{+}(8,2)$ is uniquely determined up to isomorphism.

Our proof consists of showing $Z(L) \subseteq Z(G)$ by Glauberman's Z^{*}-theorem.
The notation is standard except possibly the following:
X^{∞} the final term of the derived series of X.
$X=Y Z$ means that $Y \triangleleft X$ and $X=\langle Y, Z\rangle$. If $Y \cap Z=1$ and if an emphasis is to be placed on that fact, we write $X=Y \cdot Z$.

If X is a 2 -group, then by $J(X)$ we denote the usual Thompson subgroup generated by the abelian subgroups of maximal order.

In Section 3, we let G denote a group which satisfies the hypotheses of the Main Theorem, and use symbols such as $N(X)$ and $C(X)$ to denote $N_{G}(X)$ and $C_{G}(X)$, respectively.

§ 2. Properties of $\mathbf{2} \Omega^{+}(\mathbf{8}, \mathbf{2})$

We fix notation for $2 \Omega^{+}(8,2)$ in the following lemma. For more detailed information, the reader is referred to J. S. Frame [4].

Lemma 2.1. (i) Let $X=W\left(E_{8}\right)$, the Weyl group of type (E_{8}). Then $L=X^{\prime}$ is a double cover of $\Omega^{+}(8,2)$, and Aut $(L) \cong \bar{X}=X / Z(X) \cong O^{+}(8,2)$. Let z be the involution of $Z(X) . \bar{L}$ contains five classes of involutions. Let \bar{a} be a central involution. Then

$$
\begin{aligned}
& C_{\bar{L}}(\bar{a}) \cong\left(D_{8} * D_{8} * D_{8} * D_{8}\right) \cdot\left(S_{3} \times S_{3} \times S_{3}\right), \\
& C_{\overline{\bar{Y}}}(\bar{a}) \cong\left(D_{8} * D_{8} * D_{8} * D_{8}\right) \cdot\left(S_{3} \times\left(S_{3} \mathrm{wr} Z_{2}\right)\right)
\end{aligned}
$$

Let $\bar{b}_{1}, \bar{b}_{2}, \bar{b}_{3}$ be representatives of the three classes of involutions such that

$$
C_{\bar{L}}\left(\bar{b}_{i}\right) \cong E_{64} \cdot S_{6}, 1 \leq i \leq 3 .
$$

We choose our notation so that \bar{b}_{2} and \bar{b}_{3} are conjugate in \bar{X}. Then

$$
\begin{aligned}
& C_{\bar{L}}\left(\overline{\bar{b}}_{1}\right) \cong E_{64} \cdot\left(Z_{2} \times S_{6}\right), \\
& C_{\bar{X}}\left(\bar{b}_{i}\right) \cong E_{64} \cdot S_{6}, i=2,3 .
\end{aligned}
$$

Let \bar{d} be an involution from the remaining class. Then

$$
C_{\bar{L}}(\bar{d}) \cong E_{64} \cdot\left(Z_{2} \times S_{4}\right), C_{\bar{X}}(\bar{d}) \cong E_{128} \cdot\left(Z_{2} \times S_{4}\right) .
$$

\bar{X} contains six classes of involutions. We denote by \bar{v} and \bar{w} involutions of $\bar{X}-\bar{L}$ such that

$$
\begin{aligned}
& C(\bar{v}) \cong Z_{2} \times S p(6,2), \\
& C_{\bar{X}}(\bar{v}) \cong\left(E_{8} \times\left(D_{8} * D_{8}\right)\right) \cdot\left(S_{3} \times S_{3}\right),
\end{aligned}
$$

respectively. Note that for every involution \bar{x} of $\bar{X}, O\left(C_{\bar{L}}(\bar{x})\right)=O\left(C_{\bar{X}}(\bar{x})\right)=1$ and neither $C_{\bar{L}}(\bar{x})$ nor $C_{\bar{X}}(\bar{x})$ has any Z_{4} or $Z_{2} \times Z_{4}$ normal subgroup.
(ii) By [4], a, b_{1}, d, u, v are involutions, and b_{2}, b_{3} are of order 4. Again by [4],

$$
\begin{aligned}
& a \sim a z, b_{1} \nsucc b_{1} z, d \sim d z \text { in } L, \\
& v \nsim v z, w \nsim w z \text { in } X .
\end{aligned}
$$

(iii) Let U be a Sylow 2 -subgroup of $L . \bar{U}$ contains exactly six elementary abelian subgroups, $\bar{B}_{i}(1 \leq i \leq 6)$, of order 64 , and all of them are normal in \bar{U}. At the cost of relabeling, we may assume that $\bar{B}_{i} \cap\left\{\bar{b}_{\bar{L}}\right\} \neq \emptyset$ if and only if $i=j$ or $i+j=7$, and that $N_{\bar{L}}\left(\bar{B}_{i}\right) / \bar{B}_{i} \cong A_{8}$ for $i \leq 3$ and $N_{\bar{L}}\left(\bar{B}_{i}\right) / \bar{B}_{i}$ $\cong E_{8} \cdot G L(3,2)$ for $i \geq 4$. Let B_{i} be the full inverse image of \bar{B}_{i}. Then, by (ii) and by our choice of labeling, B_{1} and B_{6} are the only elementary abelian subgroups of order 128 of U.
(iv) Let \bar{K} be a complement to \bar{B}_{1} in $N_{\bar{L}}\left(\bar{B}_{1}\right)$.
(v) Choose \bar{v} so that \bar{v} normalizes \bar{U} and \bar{K} and so that \bar{v} centralizes \bar{B}_{6}. Then $U\langle v\rangle \in \operatorname{Syl}_{2}(X), Z(U\langle v\rangle)=Z(U)=\langle z\rangle, J(U\langle v\rangle)=B_{6} \times\langle v\rangle \cong E_{256}$.
(vi) $\left|\left\{a^{L}\right\} \cap B_{6}\right|=14$,

$$
\left|\left\{b_{1}^{L}\right\} \cap B_{6}\right|=\left|\left\{\left(b_{1} z\right)^{L}\right\} \cap B_{6}\right|=28,
$$

$$
\begin{aligned}
& \left|\left\{d^{L}\right\} \cap B_{6}\right|=56, \\
& \left|\left\{v^{x}\right\} \cap B_{6}\langle v\rangle\right|=\left|\left\{(v z)^{x}\right\} \cap B_{6}\langle v\rangle\right|=8, \\
& \left|\left\{w^{X}\right\} \cap B_{6}\langle v\rangle\right|=\left|\left\{(w z)^{x}\right\} \cap B_{6}\langle v\rangle\right|=56 .
\end{aligned}
$$

Lemma 2.2. (i) $N_{X}\left(B_{1}\right)$ acts indecomposably on B_{1}.
(ii) $\quad N_{X}\left(B_{1}\right)$ splits over B_{1}.

Proof: We may assume $a \in B_{1}$. By way of contradiction, suppose the action of $N_{X}\left(B_{1}\right)$ on B_{1} is decomposable. Then $\left|C_{\left.N_{X^{\prime}} B_{1}\right)}(a)\right|_{2}=2^{14}$. On the other hand, since $a \sim a z$ in $L,\left[C_{\bar{X}}(\bar{a}): \overline{C_{X}(a)}\right]=2$ and so $\left|C_{X}(a)\right|_{2}=2^{13}$. This is a contradiction. Thus (i) holds. There are exactly two classes of complements to \bar{B}_{1} in $N_{\bar{L}}\left(\bar{B}_{1}\right)$. (See, for example, Lemma 11.3 of M. Aschbacher [1]). The involutions of one of them are from $\left\{\bar{b}_{1}^{\overline{1}}\right\}$ and $\left\{\bar{a}^{\bar{L}}\right\}$, and those of the others are from $\{\bar{b} \overline{1}\}$ and $\{\bar{d} \bar{L}\}$. Hence the full inverse image of \bar{K} is isomorphic to $Z_{2} \times A_{8}$ by Lemma 2.1 (ii). Thus $N_{L}\left(B_{1}\right)$ splits over B_{1}. By Lemma $1.1(\mathrm{v}), v$ is an involution of $N_{X}\left(B_{1}\right)$, and \bar{v} normalizes the full inverse image of \bar{K}. Therefore v normalizes the commutator subgroup of the full inverse image of \bar{K}, which is a complement to B_{1} in $N_{L}\left(B_{1}\right)$. Thus $N_{X}\left(B_{1}\right)$ splits over B_{1}.

Let K be the commutator subgroup of the full inverse image of \bar{K}. Thus $K \cong A_{8}$ and $K\langle v\rangle \cong S_{8}$. Lemma 2.2 (i) shows that the action of $K\langle v\rangle$ on B_{1} comes from the standard permutation module. Thus, in proving the following three lemmas, we regard $K\langle v\rangle$ as the symmetric group on $\Omega=$ $\{i: 1 \leq i \leq 8\}$, and write an element t of B_{1} in the form

$$
t=\prod_{i \in \Omega} e_{i}^{t_{i}} ; t_{i}=0 \text { or } 1,\left|\left\{i: t_{i}=1\right\}\right|=\text { even } .
$$

Lemma 2.3. $O_{2}\left(C_{L}(a)\right) \cong\left(D_{8} * D_{8}\right) \times\left(D_{8} * D_{8}\right)$. Here a is in the commutator subgroup of an indecomposable component of $O_{2}\left(C_{L}(a)\right)$, and so is az.

Proof: We may assume $a=e_{1} e_{2} e_{3} e_{4} \in B_{1}$. Then we have $O_{2}\left(C_{B_{1} K}(a)^{\prime}\right)=$ $F_{1} \times F_{2}$ with $F_{i}=\left\langle V_{i}, W_{i}\right\rangle$, where

$$
\begin{array}{ll}
V_{1}=\left\langle e_{1} e_{2}, e_{2} e_{3}, e_{3} e_{4}\right\rangle \subseteq B_{1}, & V_{2}=\left\langle e_{5} e_{6}, e_{6} e_{7}, e_{7} e_{8}\right\rangle \subseteq B_{1}, \\
W_{1}=\langle(12)(34),(13)(24)\rangle \subseteq K, & W_{2}=\langle(56)(78),(57)(68)\rangle \subseteq K .
\end{array}
$$

Clearly $F_{i} \cong D_{8} * D_{8}, \quad a \in F_{1}$ and $a z=e_{5} e_{6} e_{7} e_{8} \in F_{2}$. Since $O_{2}\left(C_{L}(a)\right) \in \operatorname{Syl}_{2}\left(C_{L}\left(a^{\prime}\right)\right)$ and $\left|C_{L}(a)^{\prime}\right|_{2}=1024, O_{2}\left(C_{L}(a)\right)=O_{2}\left(C_{B_{1} K}(a)^{\prime}\right)$. This proves the lemma.

Lemma 2.4. $\langle z\rangle,\left\langle b_{1}\right\rangle$ and $\left\langle b_{1} z\right\rangle$ are all characteristic both in $C_{L}\left(b_{1}\right)$ in $C_{X}\left(b_{1}\right)$.

Proof: We may assume $b_{1}=e_{1} e_{2} \in B_{1}$. Then $C_{L}\left(b_{1}\right)=B_{1} \cdot C_{K}\left(b_{1}\right), C_{K}\left(b_{1}\right)$ $\cong S_{6}, \quad B_{1}=O_{2}\left(C_{L}\left(b_{1}\right)\right) . \quad C_{K}\left(b_{1}\right)^{\prime}$ is the alternating group on $\{\mathrm{i} \in \Omega: 3 \leq i \leq 8\}$, and $C_{K}\left(b_{1}\right)=\left\langle C_{K}\left(b_{1}\right)^{\prime},(12)(34)\right\rangle$. Therefore $\left\langle z, b_{1}\right\rangle=Z\left(C_{L}\left(b_{1}\right)\right)$. Since $B_{1} \cap$ $C_{L}\left(b_{1}\right)^{\infty}=\left\langle e_{i} e_{i+1}: 3 \leq i \leq 7\right\rangle,\left\langle b_{1} z\right\rangle=\left\langle z, b_{1}\right\rangle \cap C_{L}\left(b_{1}\right)^{\infty}$. Hence $\left\langle b_{1} z\right\rangle$ is characteristic in $C_{L}\left(b_{1}\right)$. Every element x of order 4 of $C_{K}\left(b_{1}\right)-C_{K}\left(b_{1}\right)^{\prime}$ is of the form $x=(12)\left(i_{1} i_{2} i_{3} i_{4}\right), 3 \leq i_{k} \leq 8$. Therefore $\left\langle b_{1}\right\rangle=\left\langle z, b_{1}\right\rangle \cap\left[B_{1}, x\right]$ for every such x. Hence $\left\langle b_{1}\right\rangle$ is characteristic in $C_{L}\left(b_{1}\right)$, and so $\langle z\rangle$ is also characteristic. Next note that $C_{X}\left(b_{1}\right)=B_{1} \cdot C_{K\langle v\rangle}\left(b_{1}\right)$ and $\left\langle z, b_{1}\right\rangle=Z\left(C_{X}\left(b_{1}\right)\right)$. As before, we have $\left\langle b_{1} z\right\rangle=\left\langle z, b_{1}\right\rangle \cap C_{X}\left(b_{1}\right)^{\infty}$. Therefore $\left\langle b_{1} z\right\rangle$ is characteristic in $C_{X}\left(b_{1}\right)$. Since $\left\langle B_{1},(12)\right\rangle=O_{2}\left(C_{X}\left(b_{1}\right)\right),\left\langle b_{1}\right\rangle=\left\langle B_{1},(12)\right\rangle^{\prime}$ is characteristic. Hence $\langle z\rangle$ is also characteristic in $C_{X}\left(b_{1}\right)$.

Lemma 2.5. $\quad\left[B_{6}\langle v\rangle, x\right] \geq 4$ for every 2 -element x of $N_{X}\left(B_{6}\langle v\rangle\right)-B_{6}\langle v\rangle$.
Proof. Let Λ denote $\{1,3,5,7\}$, and set $V=\left\{e_{i} e_{i+1}: i \in \Lambda\right\} \subseteq B_{1}$ and $W=\{(i, i+1): i \in \Lambda\} \subseteq K$. We may assume $B_{6}\langle v\rangle=V \times W$. Let x be an arbitrary 2-element of $N_{X}\left(B_{6}\langle v\rangle\right)-B_{6}\langle v\rangle$. Since $\left.N_{B_{1} K\langle v\rangle}\left(B_{6}\langle v\rangle\right)\right)$ contains a Sylow 2 -subgroup of X, we may assume $x \in B_{1} K\langle v\rangle$. First suppose $x \in$ $B_{6}\langle v\rangle B_{1}$. By replacing x by a suitable element of the coset $x B_{6}\langle v\rangle$, we may assume x is in the form

$$
x=\prod_{i \in \Lambda} e_{i}^{t_{i}} ; t_{i}=0 \text { or } 1,\left|\left\{i \in \Lambda: t_{i}=1\right\}\right|=\text { even } .
$$

Then $\left[B_{6}\langle v\rangle, x\right]=\left\langle e_{i} e_{i+} 1: i \in \Lambda, t_{i}=1\right\rangle$. Therefore $\left|\left[B_{6}\langle v\rangle, x\right]\right|=2^{\mid\left\{i \in 1: t_{i}=1| |\right.} \geq$ 2^{2}. Next suppose $x \notin B_{6}\langle v\rangle B_{1}$. Then the action of x on V is nontrivial and is the same as that on $\left(B_{6}\langle v\rangle\right) / V$. Hence $\left|\left[B_{6}\langle v\rangle, x\right]\right| \geq|[V, x]|^{2} \geq 2^{2}$.

Lemma 2.6. There exists an involution \bar{x} of $C_{\bar{L}}(\bar{v})$ such that $\bar{x} \in\left\{\bar{b}_{1}^{\bar{x}}\right\}$ and $\bar{v} \bar{x} \in\left\{\bar{v}^{\bar{x}}\right\}$.

Proof. We let \bar{X} act on a vector space V of dimension 8 over GF (2) with a quadratic form of plus type so that \bar{X} leaves the quadratic form invariant. We then choose \bar{x} to be an element of $\left\{\bar{b}_{1}{ }^{\bar{x}}\right\}$ such that $[V, \bar{x}] \supseteq$ [$V, \bar{v}]$. Then \bar{x} satisfies all the requirements of the lemma.

§ 3. Proof of Main Theorem.

In the remainder of this paper, we let G denote a group which satisfies the hypotheses of the Main Theorem, and use the description of L given in Section 2. Let S be a Sylow 2 -subgroup of $N(L)$ containing U.

Lemma 3.1. If $|C(L)|_{2} \geq 4$, then $L \triangleleft G$.
Proof: This follows immediately from Theorem 2 of L. Finkelstein [3] and Lemma 2.1 (i).

Throughout the rest of this paper, we assume $|C(L)|_{2}=2$.
Lemma 3.2. If $[N(L): L C(L)]=2$ and if there is no involution in $N(L)-L C(L)$, then $z \in Z(G)$.

Proof: By Lemma 2.1(v), $J(S) \cong Z_{4} \times E_{64}$ and $\nabla^{1}(J(S))=\langle\boldsymbol{z}\rangle$. Therefore $S \in \operatorname{Syl}_{2}(G)$, and $\left\{z^{N(J S S)}\right\}=\{z\}$. Note that our assumption implies that every involution of S is conjugate to some involution of $B_{6}(\subseteq J(S)$) by Lemma 2.1 (vi). Since $N(J(S))$ controls the fusion of $J(S)$, this means $\left\{z^{G}\right\} \cap S=\{z\}$. Hence Glauberman's Z^{*}-theorem yields the desired conclusion.

From now on, we assume that either $[N(L): L C(L)]=2$ and $N(L)-$ $L C(L)$ contains involutions or $[N(L): L C(L)]=1$.

Lemma 3.3. $\quad S \in \operatorname{Syl}_{2}(G)$.
Proof: This is because $Z(S)=\langle z\rangle$ by Lemma 2.1 (v).

Lemma 3.4. $z \nsim a$ in G.

Proof: By way of contradiction, suppose $a^{g}=z, g \in G$. Then $C_{C(z)}(a)^{g}$ $\subseteq C(z)$. From the structures of the centralizers of the involutions of $C(z)$ (Lemma 2.1 (i)), we observe that every involution x of $C(z)$ such that $\left|C_{C(z)}(x)\right|$ is divisible by $|S| / 2$ is conjugate to a in $C(z)$. Therefore there exists an element h of $C(z)$ such that $\left(z^{g}\right)^{h}=a$. Hence, regarding $g h$ as g, we may assume $z^{g}=a$. Then g normalizes $\langle z, a\rangle$, and so g normalizes also $C_{C(z)}(a)$. Hence we may regard g as an automorphism of $O_{2}\left(C_{C(z)}(a) / O\left(C_{C(z)}(a)\right)\right)$ $\left(\cong O_{2}\left(C_{L}(a)\right)\right.$ which sends $a O\left(C_{C(z)}(a)\right)$ to $z O\left(C_{C(z)}(a)\right)$. But by Lemma 2.3 and Krull-Remak-Schmidt's theorem, we have that there is no such automorphism. This is a contradiction.

Lemma 3.5. $z \nsim b_{1}$ and $z \nsim b_{1} z$ in G.
Proof: Suppose $b_{1}^{g}=z$ or $\left(b_{1} z\right)^{g}=z, g \in G$. As in Lemma 3.4, we may assume g normalizes $C_{C(z)}\left(b_{1}\right)$, for every involution x of $C(z)$ such that $x \in C_{C(z)}(x)^{\prime}$ and such that $C_{C(z)}(x)$ contains a subgroup isomorphic to $E_{128} \cdot S_{6}$ is conjugate to either b_{1} or $b_{1} z$ in $C(z)$. Again arguing as in Lemma 3.4, we get a contradiction to Lemma 2.4.

Now we finish the proof of the Main Theorem, distinguishing two cases.
Lemma 3.6. If $N(L)=L C(L)$, then $z \in Z(G)$.
Proof: We first prove B_{6} is weakly closed in U. By way of contradiction, suppose $B_{6}^{g}=B_{1}, g \in G$. Since B_{6} and B_{1} are both normal in U, we may assume $U^{g}=U$. But by Lemma 2.1 (v), this implies $g \in C(z)$, which is absurd. Therefore B_{6} is weakly closed by Lemma 2.1 (iii). On the other
hand, since $\mid\left\{z^{N\left(B_{6}\right)}\right\} \nmid$ must divide $|G L(7,2)|$, we have that $\left\{z^{N\left(B_{6}\right)}\right\}=\{z\}$ by Lemmas 2.1 (vi), 3.4 and 3.5. Since every involution of U is conjugate to some involution of B_{6} in L by Lemma 2.1 (vi) and since B_{6} is weakly closed in U, Glauberman's Z^{*}-theorem yields the desired conclusion.

Lemma 3.7. If $[N(L): L C(L)]=2$ and $N(L)-L C(L)$ contains involutions, then $z \in Z(G)$.

Proof: $N(L)$ contains a subgroup X isomorphic to $W\left(E_{8}\right)$. We use the description of X given in Lemma 2.1. We may assume $S=U\langle v\rangle$. Thus $J(S)=B_{6}\langle v\rangle$. We first prove $z \nsim v$ in G. Suppose $v^{g}=z, g \in G$. As in Lemma 3.4, we may assume that either $z^{g}=v$ or $z^{g}=v z$. Thus g normalizes $C_{C(z)}(v)$, and so g normalizes also $C_{C(z)}(v)^{\infty} \cong S p(6,2)$. Since the outer automorphism group of $S p(6,2)$ is trivial, we may assume g centralizes $C_{C(z)}(v)^{\infty}$. First assume $z^{g}=v z$. By Lemma 2.6, there is an involution x of $C_{C(z)}(v)^{\infty}$ such that $\bar{x} \in\left\{\bar{b}_{1} \overline{\bar{x}}\right\}$ and $\bar{v} \bar{x} \in\left\{\bar{v}^{\bar{x}}\right\}$. Since $x^{g}=x,(v x)^{g}=x z$. Since $v x$ and $x z$ are conjugate to either v or $v z$ and either b_{1} or $b_{1} z$, respectively, in X by our choice of x, and since z is conjugate to both v and $v z$ in G by our assumption, this means that z is conjugate to either b_{1} or $b_{1} z$. This contradicts Lemma 3.5. Therefore $z^{g}=v$. Then by taking a suitable odd power of g, we may assume g is a 2 -element. Since g centralizes $C_{C(z)}(v)^{\infty}$, $\left|\left[B_{6}\langle v\rangle, g\right]\right|=|\langle v z\rangle|=2$. But since $S \in \operatorname{Syl}_{2}(G)$, this contradicts Lemma 2.5. Thus $z \nsim v$. Similarly $z \nsim v z$. Since $\left|\left\{z^{N\left(b_{6}\langle v\rangle\right)}\right\}\right|$ must divide $|G L(8,2)|$, those antifusions together with Lemmas 3.4 and 3.5 show that $\left\{z^{N\left(B_{6}\langle v\rangle\right.}\right\}=\{z\}$. Now the desired conclusion follows again from Glauberman's Z^{*}-theorem.

Thus the proof of our Main Theorem is complete.

References

[1] M. Aschbacher: A characterization of Chevalley groups over fields of odd order, Ann. of Math., 106 (1977), 353-398.
[2] M. Aschbacher: On finite groups of component type, Illinois J. Math., 19 (1975). 87-115.
[3] L. Finkelstein: Finite gpoups with a standard component whose centralizer has cyclic Sylow 2-subgroups, Proc. of Amer. Math. Soc., 62 (1977), 237-241.
[4] J. S. Frame: "The Characters of the Weyl Group E_{8}, Computational Problems in Abstract Algebra" (John Leech, Ed.), Pergamon Press, New York, 1970.

Yoshimi Egawa
Department of Mathemat!cs
The Ohio State University
and
Tomoyuki Yoshida
Department of Mathematics
Hokkaido University

