Standard subgroups of type $2\Omega^+(8, 2)$

By Yoshimi EGAWA and Tomoyuki YOSHIDA (Received December 3, 1980; Revised September 12, 1981)

§ 1. Introduction

As introduced by M. Aschbacher in [2], a quasi-simple subgroup L of a finite group G is said to be a standard subgroup of G if $C_G(L)$ has even order, $\mathbf{C}_G(L) \cap C_G(L)^g$ has odd order for $g \notin N_G(L)$, and $[L, L^g] \neq 1$ for $g \in G$.

In this paper, we prove

MAIN THEOREM. If G is a finite group with O(G)=1 having a standard subgroup L isomorphic to a double cover of $\Omega^+(8,2)$ such that $C_G(L)$ has cyclic Sylow 2-subgroups, then $L \lhd G$.

REMARK. The Schur multiplier of $\Omega^+(8, 2)$ is E_4 . But since what is called the triality automorphism permutes the involutions of the Schur multiplier, a double cover $2\Omega^+(8, 2)$ is uniquely determined up to isomorphism.

Our proof consists of showing $Z(L) \subseteq Z(G)$ by Glauberman's Z*-theorem. The notation is standard except possibly the following:

 X^{∞} the final term of the derived series of X.

X=YZ means that $Y \lhd X$ and $X=\langle Y, Z \rangle$. If $Y \cap Z=1$ and if an emphasis is to be placed on that fact, we write $X=Y \cdot Z$.

If X is a 2-group, then by J(X) we denote the usual Thompson subgroup generated by the abelian subgroups of maximal order.

In Section 3, we let G denote a group which satisfies the hypotheses of the Main Theorem, and use symbols such as N(X) and C(X) to denote $N_G(X)$ and $C_G(X)$, respectively.

§ 2. Properties of $2\Omega^+(8, 2)$

We fix notation for $2\Omega^+(8, 2)$ in the following lemma. For more detailed information, the reader is referred to J. S. Frame [4].

LEMMA 2.1. (i) Let $X=W(E_8)$, the Weyl group of type (E_8) . Then L=X' is a double cover of $\Omega^+(8,2)$, and $\operatorname{Aut}(L)\cong \overline{X}=X/Z(X)\cong O^+(8,2)$. Let z be the involution of Z(X). \overline{L} contains five classes of involutions. Let \overline{a} be a central involution. Then Y. Egawa and T. Yoshida

$$C_{\overline{L}}(\overline{a}) \cong (D_8 * D_8 * D_8 * D_8) \cdot (S_3 \times S_3 \times S_3) ,$$

$$C_{\overline{X}}(\overline{a}) \cong (D_8 * D_8 * D_8 * D_8) \cdot (S_3 \times (S_3 \operatorname{wr} Z_2))^2$$

Let \bar{b}_1 , \bar{b}_2 , \bar{b}_3 be representatives of the three classes of involutions such that

 $C_{\overline{\scriptscriptstyle L}}(\bar{b}_i)\!\cong\!E_{\rm 64}\!\cdot\!S_{\rm 6},\ 1\!\leq\!i\!\leq\!3$.

We choose our notation so that \bar{b}_2 and \bar{b}_3 are conjugate in \bar{X} . Then

$$C_{\bar{L}}(\bar{b}_1) \cong E_{64} \cdot (Z_2 \times S_6)$$
,
 $C_{\bar{X}}(\bar{b}_i) \cong E_{64} \cdot S_6, \ i = 2, 3$

Let d be an involution from the remaining class. Then

$$C_{\overline{L}}(\overline{d}) \cong E_{64} \cdot (Z_2 \times S_4), \ C_{\overline{X}}(\overline{d}) \cong E_{128} \cdot (Z_2 \times S_4).$$

 \bar{X} contains six classes of involutions. We denote by \bar{v} and \bar{w} involutions of $\bar{X}-\bar{L}$ such that

$$C(\overline{v}) \cong Z_2 \times Sp(6, 2) ,$$

$$C_{\overline{x}}(\overline{w}) \cong (E_8 \times (D_8 * D_8)) \cdot (S_3 \times S_3) ,$$

respectively. Note that for every involution \bar{x} of \bar{X} , $O(C_{\bar{L}}(\bar{x})) = O(C_{\bar{x}}(\bar{x})) = 1$ and neither $C_{\bar{L}}(\bar{x})$ nor $C_{\bar{x}}(\bar{x})$ has any Z_4 or $Z_2 \times Z_4$ normal subgroup.

(ii) By [4], a, b_1 , d, u, v are involutions, and b_2 , b_3 are of order 4. Again by [4],

$$a \sim az, \ b_1 \neq b_1 z, \ d \sim dz \ in \ L,$$

 $v \neq vz, \ w \neq wz \ in \ X.$

(iii) Let U be a Sylow 2-subgroup of L. \overline{U} contains exactly six elementary abelian subgroups, \overline{B}_i $(1 \le i \le 6)$, of order 64, and all of them are normal in \overline{U} . At the cost of relabeling, we may assume that $\overline{B}_i \cap \{\overline{b}_j^{\overline{L}}\} \neq \emptyset$ if and only if i=j or i+j=7, and that $N_{\overline{L}}(\overline{B}_i)/\overline{B}_i \cong A_8$ for $i\le 3$ and $N_{\overline{L}}(\overline{B}_i)/\overline{B}_i$ $\cong E_8 \cdot GL(3,2)$ for $i\ge 4$. Let B_i be the full inverse image of \overline{B}_i . Then, by (ii) and by our choice of labeling, B_1 and B_6 are the only elementary abelian subgroups of order 128 of U.

(iv) Let \overline{K} be a complement to \overline{B}_1 in $N_{\overline{L}}(\overline{B}_1)$.

(v) Choose \bar{v} so that \bar{v} normalizes \bar{U} and \bar{K} and so that \bar{v} centralizes \bar{B}_{6} . Then $U\langle v \rangle \in Syl_{2}(X)$, $Z(U\langle v \rangle) = Z(U) = \langle z \rangle$, $J(U\langle v \rangle) = B_{6} \times \langle v \rangle \cong E_{256}$.

(vi)
$$|\{a^L\} \cap B_6| = 14$$
,
 $|\{b_1^L\} \cap B_6| = |\{(b_1 z)^L\} \cap B_6| = 28$

$$\begin{aligned} \left| \{d^{L}\} \cap B_{6} \right| &= 56 , \\ \left| \{v^{X}\} \cap B_{6} \langle v \rangle \right| &= \left| \left\{ (vz)^{X} \right\} \cap B_{6} \langle v \rangle \right| = 8 , \\ \left| \{w^{X}\} \cap B_{6} \langle v \rangle \right| &= \left| \left\{ (wz)^{X} \right\} \cap B_{6} \langle v \rangle \right| = 56 . \end{aligned}$$

LEMMA 2.2. (i) $N_x(B_1)$ acts indecomposably on B_1 .

(ii) $N_X(B_1)$ splits over B_1 .

PROOF: We may assume $a \in B_1$. By way of contradiction, suppose the action of $N_X(B_1)$ on B_1 is decomposable. Then $|C_{N_X(B_1)}(a)|_2=2^{14}$. On the other hand, since $a \sim az$ in L, $[C_{\bar{x}}(\bar{a}): \overline{C_X(a)}]=2$ and so $|C_X(a)|_2=2^{13}$. This is a contradiction. Thus (i) holds. There are exactly two classes of complements to \bar{B}_1 in $N_{\bar{L}}(\bar{B}_1)$. (See, for example, Lemma 11.3 of M. Aschbacher [1]). The involutions of one of them are from $\{\bar{b}_1^{\bar{L}}\}$ and $\{\bar{a}^{\bar{L}}\}$, and those of the others are from $\{\bar{b}_1^{\bar{L}}\}$ and $\{\bar{d}^{\bar{L}}\}$. Hence the full inverse image of \bar{K} is isomorphic to $Z_2 \times A_8$ by Lemma 2.1 (ii). Thus $N_L(B_1)$ splits over B_1 . By Lemma 1.1 (v), v is an involution of $N_X(B_1)$, and \bar{v} normalizes the full inverse image of \bar{K} , which is a complement to B_1 in $N_L(B_1)$. Thus $N_X(B_1)$ splits over B_1 .

Let K be the commutator subgroup of the full inverse image of \overline{K} . Thus $K \cong A_8$ and $K \langle v \rangle \cong S_8$. Lemma 2.2(i) shows that the action of $K \langle v \rangle$ on B_1 comes from the standard permutation module. Thus, in proving the following three lemmas, we regard $K \langle v \rangle$ as the symmetric group on $\Omega =$ $\{i: 1 \le i \le 8\}$, and write an element t of B_1 in the form

 $t = \prod_{i \in \mathcal{Q}} e_i^{t_i}; t_i = 0 \text{ or } 1, |\{i: t_i = 1\}| = \text{even}.$

LEMMA 2.3. $O_2(C_L(a)) \cong (D_8 * D_8) \times (D_8 * D_8)$. Here a is in the commutator subgroup of an indecomposable component of $O_2(C_L(a))$, and so is az.

PROOF: We may assume $a=e_1e_2e_3e_4\in B_1$. Then we have $O_2(C_{B_1K}(a)')=F_1\times F_2$ with $F_i=\langle V_i, W_i\rangle$, where

$$V_{1} = \langle e_{1}e_{2}, e_{2}e_{3}, e_{3}e_{4} \rangle \subseteq B_{1}, \qquad V_{2} = \langle e_{5}e_{6}, e_{6}e_{7}, e_{7}e_{8} \rangle \subseteq B_{1},$$

$$W_{1} = \langle (12) (34), (13) (24) \rangle \subseteq K, \qquad W_{2} = \langle (56) (78), (57) (68) \rangle \subseteq K.$$

Clearly $F_i \cong D_8 * D_8$, $a \in F_1$ and $az = e_5 e_6 e_7 e_8 \in F_2$. Since $O_2(C_L(a)) \in \operatorname{Syl}_2(C_L(a'))$ and $|C_L(a)'|_2 = 1024$, $O_2(C_L(a)) = O_2(C_{B_1K}(a)')$. This proves the lemma.

LEMMA 2.4. $\langle z \rangle$, $\langle b_1 \rangle$ and $\langle b_1 z \rangle$ are all characteristic both in $C_L(b_1)$ in $C_X(b_1)$. PROOF: We may assume $b_1 = e_1 e_2 \in B_1$. Then $C_L(b_1) = B_1 \cdot C_K(b_1)$, $C_K(b_1) \cong S_6$, $B_1 = O_2(C_L(b_1))$. $C_K(b_1)'$ is the alternating group on $\{i \in \Omega : 3 \le i \le 8\}$, and $C_K(b_1) = \langle C_K(b_1)', (12) \langle 34 \rangle \rangle$. Therefore $\langle z, b_1 \rangle = Z(C_L(b_1))$. Since $B_1 \cap C_L(b_1)^{\infty} = \langle e_i e_{i+1} : 3 \le i \le 7 \rangle$, $\langle b_1 z \rangle = \langle z, b_1 \rangle \cap C_L(b_1)^{\infty}$. Hence $\langle b_1 z \rangle$ is characteristic in $C_L(b_1)$. Every element x of order 4 of $C_K(b_1) - C_K(b_1)'$ is of the form $x = (12) \langle i_1 i_2 i_3 i_4 \rangle$, $3 \le i_k \le 8$. Therefore $\langle b_1 \rangle = \langle z, b_1 \rangle \cap [B_1, x]$ for every such x. Hence $\langle b_1 \rangle$ is characteristic in $C_L(b_1)$ and $\langle z, b_1 \rangle = Z(C_K(b_1))$. As before, we have $\langle b_1 z \rangle = \langle z, b_1 \rangle \cap C_X(b_1)^{\infty}$. Therefore $\langle b_1 z \rangle$ is characteristic in $C_K(b_1) - C_K(b_1)$. As before, we have $\langle b_1 z \rangle = \langle z, b_1 \rangle \cap C_X(b_1)^{\infty}$. Therefore $\langle b_1 z \rangle$ is characteristic in $C_X(b_1)$. Since $\langle B_1, (12) \rangle = O_2(C_X(b_1)), \langle b_1 \rangle = \langle B_1, (12) \rangle'$ is characteristic. Hence $\langle z \rangle$ is also characteristic in $C_X(b_1)$.

LEMMA 2.5. $[B_6 \langle v \rangle, x] \ge 4$ for every 2-element x of $N_X(B_6 \langle v \rangle) - B_6 \langle v \rangle$.

PROOF. Let Λ denote $\{1, 3, 5, 7\}$, and set $V = \{e_i e_{i+1} : i \in \Lambda\} \subseteq B_1$ and $W = \{(i, i+1) : i \in \Lambda\} \subseteq K$. We may assume $B_6 \langle v \rangle = V \times W$. Let x be an arbitrary 2-element of $N_X(B_6 \langle v \rangle) - B_6 \langle v \rangle$. Since $N_{B_1K \langle v \rangle}(B_6 \langle v \rangle)$ contains a Sylow 2-subgroup of X, we may assume $x \in B_1K \langle v \rangle$. First suppose $x \in B_6 \langle v \rangle B_1$. By replacing x by a suitable element of the coset $xB_6 \langle v \rangle$, we may assume x is in the form

$$x = \prod_{i \in A} e_i^{t_i}; t_i = 0 \text{ or } 1, |\{i \in A : t_i = 1\}| = \text{even}.$$

Then $[B_6\langle v \rangle, x] = \langle e_i e_{i+1} : i \in A, t_i = 1 \rangle$. Therefore $|[B_6\langle v \rangle, x]| = 2^{|\{i \in A: t_i = 1\}|} \geq 2^2$. 2². Next suppose $x \in B_6\langle v \rangle B_1$. Then the action of x on V is nontrivial and is the same as that on $(B_6\langle v \rangle)/V$. Hence $|[B_6\langle v \rangle, x]| \geq |[V, x]|^2 \geq 2^2$.

LEMMA 2.6. There exists an involution \bar{x} of $C_{\bar{L}}(\bar{v})$ such that $\bar{x} \in \{\bar{b}_1^{\bar{x}}\}$ and $\bar{v}\bar{x} \in \{\bar{v}^{\bar{x}}\}$.

PROOF. We let \bar{X} act on a vector space V of dimension 8 over GF (2) with a quadratic form of plus type so that \bar{X} leaves the quadratic form invariant. We then choose \bar{x} to be an element of $\{\bar{b}_1^{\bar{x}}\}$ such that $[V, \bar{x}] \supseteq [V, \bar{v}]$. Then \bar{x} satisfies all the requirements of the lemma.

§ 3. Proof of Main Theorem.

In the remainder of this paper, we let G denote a group which satisfies the hypotheses of the Main Theorem, and use the description of L given in Section 2. Let S be a Sylow 2-subgroup of N(L) containing U.

LEMMA 3.1. If $|C(L)|_2 \ge 4$, then $L \lhd G$.

PROOF: This follows immediately from Theorem 2 of L. Finkelstein [3] and Lemma 2.1 (i).

Throughout the rest of this paper, we assume $|C(L)|_2=2$.

LEMMA 3.2. If [N(L): LC(L)]=2 and if there is no involution in N(L)-LC(L), then $z \in Z(G)$.

PROOF: By Lemma 2.1(v), $J(S) \cong Z_4 \times E_{64}$ and $\mathcal{O}^1(J(S)) = \langle z \rangle$. Therefore $S \in \operatorname{Syl}_2(G)$, and $\{z^{N(J(S))}\} = \{z\}$. Note that our assumption implies that every involution of S is conjugate to some involution of $B_6(\subseteq J(S))$ by Lemma 2.1 (vi). Since N(J(S)) controls the fusion of J(S), this means $\{z^G\} \cap S = \{z\}$. Hence Glauberman's Z*-theorem yields the desired conclusion.

From now on, we assume that either [N(L): LC(L)]=2 and N(L)-LC(L) contains involutions or [N(L): LC(L)]=1.

Lemma 3.3. $S \in Syl_2(G)$.

PROOF: This is because $Z(S) = \langle z \rangle$ by Lemma 2.1 (v).

LEMMA 3.4. $z \not\sim a$ in G.

PROOF: By way of contradiction, suppose $a^g = z$, $g \in G$. Then $C_{C(z)}(a)^g \subseteq C(z)$. From the structures of the centralizers of the involutions of C(z) (Lemma 2.1 (i)), we observe that every involution x of C(z) such that $|C_{C(z)}(x)|$ is divisible by |S|/2 is conjugate to a in C(z). Therefore there exists an element h of C(z) such that $(z^g)^h = a$. Hence, regarding gh as g, we may assume $z^g = a$. Then g normalizes $\langle z, a \rangle$, and so g normalizes also $C_{C(z)}(a)$. Hence we may regard g as an automorphism of $O_2(C_{C(z)}(a)/O(C_{C(z)}(a)))$ ($\cong O_2(C_L(a))$ which sends $aO(C_{C(z)}(a))$ to $zO(C_{C(z)}(a))$. But by Lemma 2.3 and Krull-Remak-Schmidt's theorem, we have that there is no such automorphism. This is a contradiction.

LEMMA 3.5. $z \not\sim b_1$ and $z \not\sim b_1 z$ in G.

PROOF: Suppose $b_1^g = z$ or $(b_1 z)^g = z$, $g \in G$. As in Lemma 3.4, we may assume g normalizes $C_{C(z)}(b_1)$, for every involution x of C(z) such that $x \in C_{C(z)}(x)'$ and such that $C_{C(z)}(x)$ contains a subgroup isomorphic to $E_{128} \cdot S_6$ is conjugate to either b_1 or $b_1 z$ in C(z). Again arguing as in Lemma 3.4, we get a contradiction to Lemma 2.4.

Now we finish the proof of the Main Theorem, distinguishing two cases.

LEMMA 3.6. If
$$N(L) = LC(L)$$
, then $z \in Z(G)$.

PROOF: We first prove B_6 is weakly closed in U. By way of contradiction, suppose $B_6^g = B_1$, $g \in G$. Since B_6 and B_1 are both normal in U, we may assume $U^g = U$. But by Lemma 2.1 (v), this implies $g \in C(z)$, which is absurd. Therefore B_6 is weakly closed by Lemma 2.1 (iii). On the other

hand, since $|\{z^{N(B_6)}\}|$ must divide |GL(7, 2)|, we have that $\{z^{N(B_6)}\} = \{z\}$ by Lemmas 2.1 (vi), 3.4 and 3.5. Since every involution of U is conjugate to some involution of B_6 in L by Lemma 2.1 (vi) and since B_6 is weakly closed in U, Glauberman's Z*-theorem yields the desired conclusion.

LEMMA 3.7. If [N(L): LC(L)]=2 and N(L)-LC(L) contains involutions, then $z \in Z(G)$.

PROOF: N(L) contains a subgroup X isomorphic to $W(E_8)$. We use the description of X given in Lemma 2.1. We may assume $S=U\langle v\rangle$. Thus $J(S) = B_6 \langle v \rangle$. We first prove $z \not\sim v$ in G. Suppose $v^g = z, g \in G$. As in Lemma 3.4, we may assume that either $z^{g} = v$ or $z^{g} = vz$. Thus g normalizes $C_{C(z)}(v)$, and so g normalizes also $C_{C(z)}(v)^{\infty} \cong Sp(6, 2)$. Since the outer automorphism group of Sp(6, 2) is trivial, we may assume g centralizes $C_{C(z)}(v)^{\infty}$. First assume $z^{g} = vz$. By Lemma 2.6, there is an involution x of $C_{C(z)}(v)^{\infty}$ such that $\bar{x} \in \{\bar{b}_1^{\bar{x}}\}$ and $\bar{v}\bar{x} \in \{\bar{v}^{\bar{x}}\}$. Since $x^g = x$, $(vx)^g = xz$. Since vx and xz are conjugate to either v or vz and either b_1 or b_1z , respectively, in X by our choice of x, and since z is conjugate to both v and vz in G by our assumption, this means that z is conjugate to either b_1 or b_1z . This contradicts Lemma 3.5. Therefore $z^{g} = v$. Then by taking a suitable odd power of g, we may assume g is a 2-element. Since g centralizes $C_{C(z)}(v)^{\infty}$, $|[B_6\langle v \rangle, g]| = |\langle vz \rangle| = 2$. But since $S \in Syl_2(G)$, this contradicts Lemma 2.5. Thus $z \not\sim v$. Similarly $z \not\sim vz$. Since $|\{z^{N(b_{\delta} \langle v \rangle)}\}|$ must divide |GL(8, 2)|, those antifusions together with Lemmas 3.4 and 3.5 show that $\{z^{N(B_6(v))}\} = \{z\}$. Now the desired conclusion follows again from Glauberman's Z*-theorem.

Thus the proof of our Main Theorem is complete.

284

References

- M. ASCHBACHER: A characterization of Chevalley groups over fields of odd order, Ann. of Math., 106 (1977), 353-398.
- [2] M. ASCHBACHER: On finite groups of component type, Illinois J. Math., 19 (1975). 87-115.
- [3] L. FINKELSTEIN: Finite gpoups with a standard component whose centralizer has cyclic Sylow 2-subgroups, Proc. of Amer. Math. Soc., 62 (1977), 237-241.
- [4] J. S. FRAME: "The Characters of the Weyl Group E₈, Computational Problems in Abstract Algebra" (John Leech, Ed.), Pergamon Press, New York, 1970.

Yoshimi EGAWA Department of Mathemat!cs The Ohio State University

and

Tomoyuki YOSHIDA Department of Mathematics Hokkaido University

· .