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On H-separable extensions of two sided simple rings

By Kozo SUGANO
(Received September 7, 1981;Revised November 19, 1981)

\S 1. Introduction. Throughout this paper A is a ring with the identity
1, and B is a subgring of A such that 1\in B. Each B-module (or A-
module) is unitary, and each A-A-module M satisfies that (am) b=a(mb)
for a, b\in A and m\in M. In addition we will set C=V_{A}(A) , the center of
A, and D=V_{A}(B) the centralizer of B in A

We say that A is an H-separable extension of B in the case where
AA\otimes_{B}A_{A}<\oplus_{A}(A\oplus A\oplus\cdots\oplus A)_{A} (direct summand of a finite direct sum of
copies of A). As for some characterizations and properties of //-separable
extension see for example [3], [6], [9] and [10].

In this paper we will deal with H-separable extensions of two sided
simple rings. In particular, in the case where B is a two sided simple ring
we will show that A is right B-finitely generated projective and an //-separable
extension of B, if and only if A is a two sided simple ring, V_{A}(V_{A}(B))=B and
V_{A}(B) is a simple C-algebra (Theorem 1). Furthermore, under the conditions
of Theorem 1 we will show that for any simple C-subalgebra T of D, V_{A}(T)

is two sided simple, V_{A}(V_{A}(T))=T and A is an H-separable extension of
V_{A}(T) and right V_{A}(T) -finitely generated projective (Proposition 2). Finally,
under the same conditions we will obtain a duality on two sided simple
subrings, which is similar to the well known classical inner Galois theory
on simple (artinian) rings (Theorem 2).

\S 2. We say that A is a two sided simple ring in case A has no
proper two sided ideal except 0, and a right artinian two sided simple ring
with 1 is called a simple ring. Whenever we call A a simple algebra over
a field K, A shall be a K-algebra which is two sided simple and [A:K]<\infty .
Hereafter we will call each two sided ideal simply an ideal.

Given a right A-module M, set \Omega=Hom(M_{A}, M_{A}) . Then, as is well
known, M is an \Omega-A -module, and we have an A-A-map

\tau : Hom (M_{A}, A_{A})\otimes_{\Omega}Marrow A

such that \tau(f\otimes m)=f(m) for f\in Hom(M_{A}, A_{A}) and m\in M. Im \tau is an ideal
of A, and Im \tau=A if and only if M is a right A-generator. Therefore
if A is two sided simple and Hom (M_{A}, A_{A})\neq 0 , we have 0\neq{\rm Im}\tau=A . Thus
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we have

REMARK 1. Let A be a two sided simple ring and M a right A-
module such that Hom (M_{A}, A_{A})\neq 0 . Then M is a generator of the category
of right A-modules.

PROPOSITION 1. Let B be a two sided simple ring and A an H-
separable extension of B such that Hom (A_{B}, B_{B})\neq 0 . Then A is also a two
sided simple ring.

PROOF. By Remark 1 A is a right B generator Hence B_{B}<\oplus A_{B}

(right Bindirect summand) by Lemmal [4]. Then for any ideal a of A, we
have \sigma=(a\cap B) A by Theorem 4. 1 [10]. But B is two sided simple. Hence
a\cap B=0 . Thus a=0. Hence A is also two sided simple.

COROLLARY 1. (Corollary 3. 1 [10]). Let B be a two sided simple
ring, and suppose that A is an H-separable extension of B. Then if A is
left or right B-projective, A is also a two sided simple ring.

REMARK 2. Theorem 4. 1 [10] has already shown that, if A is an
H-separable extension of a two sided simple ring B such that B_{B}<\oplus A_{B}

(or B_{B}<\oplus_{B}A), then A is also a tw0-sided simple ring.
Given an A-A-module M and a subset X of A, we set

M^{A}=\{m\in M|am=ma for all a\in A} \}

V_{A}(X)=\{a\in A|xa=ax for all x\in X\}

respectively.
REMARK 3. For any ring A, its subring B, C=V_{A}(A) and D=V_{A}(B) ,

there exists a ring homomorphism

\eta:A\otimes_{C}D^{0}-Hom(A_{B}, A_{B})

such that \eta(a\otimes d^{0})(x)=axd, for any a, x\in A , d\in D, where D^{0} is the opposite
ring of D.

K. Hirata showed that if A is an HInseparable extension of B, \eta is an
isomorphism and D is C-finitely generated projective (See Theorem 2 [2]
and Proposition 3. 1 [3] ) . Furthermore, in the case where A is right B-
finitely generated projective, A is an H-separable extension of B if and only
if D is C-finitely generated projective and \eta is an isomorphism by Corollary
3 [7].

REMARK 4. Let R be a commutative artinian ring with 1 with its
Jacobson radical J. Then, R=Re_{1}\oplus Re_{2}\oplus\cdots\oplus Re_{n} , where each e_{i} is a pri-
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mitive idempotent, and Je_{i} is the unique maximal R-submodule of Re_{i} . Fur-
thermore each isomorphism class of simple R-module is of the form Re_{i}/Je_{i}

for some i (see 54.11 and 54.13 [1]). Now denote R_{i}=Re_{i} and \mathfrak{m}_{i}=Je_{i} .
Since R is commutative, each R_{i} is an artinian local ring with its unique
maximal ideal \mathfrak{m}_{i} . R_{i} contains at least one minimal ideal. But there is
only one isomorphism class of simple R_{i} -module, namely, R_{i}/\mathfrak{m}_{i} . Therefore
each R_{i} contains an ideal isomorphic to R_{i}/\mathfrak{m}_{i} . This means that R contains
each isomorphism class of simple R-modules.

THEOREM 1. Let B be a two sided simple ring. Then, A is an H-
separable extension of B which is right B-fifinitely generated projective, if
and only following three conditions are satisfified;

(1) A is a two sided simple ring
(2) V_{A}(V_{A}(B))=B

(3) V_{A}(B) is a simple C-algebra.

PROOF. First suppose that A is an H-separable extension of B and
A is right B-finitly generated projective. Then since Hom (A_{B}, B_{B})\neq 0 , A
is a right B-generator, and consequently, B_{B}<\oplus A_{B} , which implies that
V_{A}(V_{A}(B))=B by Proposition 1. 2 [6]. A is a two sided simple ring by
Corollary 1. Thus (1) and (2) are satisfied. Since A is a right B-progenera-
form Hom (A_{B}, A_{B}) is also a two sided simple ring by Morita theorem. But
there is a ring isomorphism of A\otimes_{C}D^{0} to Hom (A_{B}, A_{B}) (See Remark 3).

Hence A\otimes_{C}D^{0} is a two sided simple ring. Then it is clear that D has no
non zero proper ideal, since C is a field. Theorem 2 [2] shows that [D:C]
<\infty . Thus we have (3). Conversely, assume conditions (1), (2) and (3).
By Remark 3 there is a ring homomorphism \eta of A\otimes_{C}D^{0} to Hom (A_{B}, A_{B}) .
We see that A\otimes_{C}D^{0} is a two sided simple ring by (1) and (3) and by PrO-
position 4. 3 [14]. Therefore Ker \eta=0 . Set \Lambda=A\otimes_{C}D^{0}, and let Z be the
center of D. Z is a finite field extension of C. Hence Z\otimes_{C}Z is a com-
mutative artinian ring. Therefore Z\otimes_{C}Z contains all of the isomorphism
classes of its simple modules. Hence Hom (_{Z\otimes Z}Z_{ Z8^{Z}},Z\otimes_{C}Z)\underline{\neg-}0’ , which means
that there exists 0\neq\Sigma x_{i}\otimes y_{i}\in Z\otimes_{C}Z such that \Sigma xx_{i}\otimes y_{i}=\Sigma x_{i}\otimes y_{i}x for all
x\in Z. On the other hand since D is a central simple Z-algebra, we have
(A\otimes_{C}D)^{Z}=D(A\otimes_{C}D)^{D} regarding A\otimes_{C}D as a D-D-module by y(a\otimes d)z=

ya\otimes dz for d, y, z\in D and a\in A . Then since C is a field, 0\neq\Sigma x_{i}\otimes y_{i}\in

(Z\otimes_{C}Z)^{Z}\underline{\subset}(A\otimes_{C}D)^{Z} . Hence (A\otimes_{C}D)^{D}\neq 0 . This means that Hom (_{A}A_{D,A}A

\otimes_{C}D_{D})=Hom(_{\Lambda\Lambda}A,\Lambda_{1}^{\backslash }\neq 0 . Therefore, A is a left \Lambda-generator by Remark 1,
and consequently, A is right Hom (_{\Lambda\Lambda}A,A) -finitely generated projective by
Morita theorem. But Hom (_{A\Lambda}A,A)=Hom(AAD, AAD)\cong VA\{D) =B by (2).
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Thus we see that A is right B-finitely generated projective. Finally, since
A is a left \Lambda-generator and B\cong Hom(_{\Lambda}A, AA) , we have an isomorphism
\Lambda\cong Hom(A_{B}, A_{B}) by Morita theorem. This isomorphism is exactly equal
to \eta . Then, since \eta is an isomorphism and A is right B-finitely generated
projective, A is an H-separable extension of B by Corollary 3 [7].

Theorem 1 includes Theorem (1. 5) [8] and Theorem 2. 1 [10], which
have intimate relations with the “Fundamental theorem on simple rings”.

COROLLARY 2 (Theorem (1. 5) [8], Theorem 2. 1 [10]). Let B be a

simple (artinian) ring. Then A is an H-separable extension of B, if and
only if following three conditions are satisfified:

(1) A is a simple ring
(2) V_{A}(V_{A}(B))=B

(3) V_{A}(B) is a simple C-algebra.

PROOF. Since B is a simple ring, B is left (as well as right) B-injective.
Therefore, we have BB<\oplus_{B}A (and B_{B}<\oplus A_{B}). Therefore, if A is an H-
separable extension of B, A is right (as well as left) B-finitely generated by
Theorem 4. 1 [10]. Hence A is artinian, and A is right B-finitely generated
projecive. Thus we have (1), (2) and (3). The converse is also clear.

REMARK 5. Theorem 2 [12] shows that, under the same conditions
as Theorem 1, all ring automorphisms of A which fixes all elements of B

are inner automorphisms. This fact has been well known under the con-
ditions of Corollary 2.

REMARK 6. Theorem 1 shows that, in the case where A is an H-
separable extension of a two sided simple ring B, A is right B-finitely
generated projective if and only if A is left B-finitely generated projective.

\S 3. In this section we will deal with simple C-subalgebras of D under
the conditions of Theorem 1.

PROPOSITION 2. Let B be a two sided simple ring and A an H-separable
extension of B, and suppose that A is right B-fifinitely generated projective.
Then for any simple C-subalgebra T of D, we have

(1) V_{A}(T) is a two sided simple ring
(2) V_{A}(V_{A}(T))=T

(3) A is an H-separable extension of V_{A}(T) and right V_{A}(T)- fifinitely

generated projective.

PROOF. Since T is simple, D is right (as well as left) T-finitely generated
projective. Therefore, A\otimes_{C}D^{0} is left A\otimes_{C}T^{0}-finitely generated projective.
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But A is left A\otimes_{C}D^{0}-finitely generated projective, because A is a right B-
generator and A\otimes_{C}D^{0}\cong Hom(A_{B}, A_{B}) . Then, A is left A\otimes_{C}T^{0}-finitely
generated projective. Set \Gamma=A\otimes_{C}T^{0} and S=V_{A}(T) . \Gamma is a two sided
simple ring, since A and T are so and C= the center of A. Hence A is
a left \Gamma-generator by Remark 1. Then by Morita theorem A is a right
Hom (_{\Gamma\Gamma}A,A) -progenerator and Hom (_{\Gamma\Gamma}A,A) is also a two sided simple ring.
But Hom (_{\Gamma\Gamma}A,A)\cong V_{A}(T)=S. Thus we have shown that A is right S-
finitely generated projective and that S is a two sided simple ring. Further-
more, since A is a left \Gamma-generator and S\cong Hom(_{\Gamma\Gamma}A,A) , we have an is0-
morphism \Gamma\cong Hom(A_{S}, A_{S}) . This isomorphism is given by \eta’(a\otimes t^{0})(x)=

axt, for a, x\in A and t\in T Set T’=V_{A}(V_{A}(T)) , and consider the follow-
ing maps

A\otimes_{C}T^{0} \subseteq A\otimes_{C}T^{\prime_{0}} \underline{\subset} A\otimes_{C}D^{0}

\downarrow\acute{\eta} \downarrow\eta’ \downarrow\eta

Hom (A_{S}, A_{S})=Hom(A_{S}, A_{S})\subseteq Hom(A_{B}, A_{B})

where \eta , \eta’ and \eta’ are all defined as in Remark 3, and \eta and \acute{\eta} are is0-
morphisms. Then it is obvious that A\otimes_{C}T’=A\otimes_{C}T, and consequently,
T=T’ . Thus we have that T=V_{A}(S) and A\otimes_{C}T^{0}\equiv Hom(A_{S}, A_{S}) with A
right S-finitely generated projective. Hence A is an H-separable extension
of V_{A}(T) by Corollary 3 [7].

Given any subring S of A, we say that S is a left relatively separable
extension of B in A, if B\subset S\subset A and the map \pi of S\otimes_{B}A to A such that
\pi(s\otimes a)=sa , for s\in S and a\in A , splits as S-A-map. Both left and right
relatively separable extensions are called simply relatively separable extensions.
Now summarizing Theorem 1 and Proposition 2, we have

THEOREM 2. Let B be a two sided simple ring and A an H-separable
extension of B such that A is right, and consequently left, B-fifinitely generated
projective. Denote by \mathfrak{T} the class of all simple C-subalgebras of D, and by
\mathfrak{S}_{r} the class of all two sided simple subrings of A which are right
relatively separable extensions of B in A. Then, the maps \Psi of \mathfrak{S}_{r} to \mathfrak{T}

and \Phi of \mathfrak{T} to \mathfrak{S}_{r} defifined by \Psi(S)=V_{A}(S) , \Phi(T)=V_{A}(T) for S\in \mathfrak{S}_{r} and
T\in \mathfrak{T}, are mutually inverse one to one correspondences.

PROOF. Let T\in \mathfrak{T} . Then we see TT<\oplus_{T}D and T_{T}<\oplus D_{T}. Hence
V_{A}(T) is a left and right relatively separable extension of B in A by PrO-
position 2. 1 (2) [10]. On the other hand let S\in \mathfrak{S}_{r} . Then since AA_{s}<\oplus

AA\otimes_{B}S_{s}, A is right S-finitely generated projective, and furthermore A\otimes_{S}A

<\oplus(A\otimes_{B}S)\otimes_{S}A=A\otimes_{B}A<\oplus(A\oplus A\oplus\cdots\oplus A) as A-A-modules. Thus A
is an H-separable extension of S. Therefore, we can apply Theorem 1 and
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Proposition 2.
Finally, we will give some examples of ring extensions which satisfy the

conditions of Theorem 1. For any two sided simple ring B with its center
Z, the n\cross n -full matrix ring (B)_{n} over B is a trivial example. Because,
(B)_{n}\cong B\otimes_{Z}(Z)_{n} , and (Z)_{n} is a central separable Z-algebra (See Proposition
1. 7 [6] ) . The other example is

EXAMPLE 1. Let B be a two sided simple ring such that the char-
acteristic of its center is not 2, and set A=B\oplus Bi\oplus Bj\oplus Bk, where i, j and
k commute with all elements of B and satisfy i^{2}=j^{2}=k^{2}=-1 and ij=k=-ji.
Denote the center of B by Z, and set D=Z\oplus Zi\oplus Zj\oplus Zk . Then since
char Z\neq 2 , D is a central simple Z-algebra. In fact, by 1/4 (1\otimes 1-i\otimes i-

jC\cross j-k\otimes k)\in(DQ\cross_{Z}D)^{D} and 1/4 (1-i^{2}-j^{2}-k^{2})=1 , we see that D is a separable
Z-algebra, while we have Z=V_{D}(D) by direct computations. Then, since
A=B\otimes_{Z}D with D central separable over Z, A is an H-separable extension
of B which is left (and right) Binfinitely generated projective (See Proposition
1. 7 [6]) . A is not artinian if B is not so.

Acknowledgement. The author gives his hearty thanks to Proof. H.
Tominaga for the useful discussion. Especially, he proposed the author the
problem concerning with Theorem 1.
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