On the nontriviality of cohomology of finite groups

By Hiroki SASAKI

(Received July 16, 1981)

1. Introduction

In this note we are concerned with the cohomology groups of a finite group G with coefficients in a finitely generated F[G]-module, where F is a field of characteristic p dividing the order of G. By an F[G]-module we shall always mean a finitely generated F[G]-module. Note that if an indecomposable F[G]-module U does not belong to the principal block, then the cohomology groups of G with coefficients in U are trivial.

Recently Ogawa [8] has shown the following theorem of great interest. (See also Ogawa [7].)

THEOREM 1. (Ogawa [8], THEOREM 2) Let G be a finite p-solvable group with a nontrivial abelian Sylow p-subgroup and V be an irreducible $\mathbf{F}_p[G]$ -module in the principal block, where \mathbf{F}_p is the prime field of characteristic p. Then there exists an i $(1 \le i \le |G: O_{p',p}(G)|)$ for which $H^{2i}(G, V) \ne 0$.

Our purpose of this note is to generalize this theorem as follows.

THEOREM 2. Let G be a finite group, F a field of characteristic p dividing the order of G, and U be an irreducible F[G]-module in the principal block. Suppose that U has an abelian vertex $D \ (\neq 1)$ and a trivial source. Then there exists an $i \ (1 \le i \le |N_G(D): C_G(D)|)$ for which $H^{2i}(G, U) \ne 0$.

THEOREM 3. Let G be a finite group with an abelian Sylow p-subgroup $P (\neq 1)$, F a field of characteristic p, and U be an indecomposable F[G]-module in the principal block. Suppose that U has P as a vertex and a trivial source. Then there exists an $i (1 \le i \le |N_G(P): C_G(P)|)$ for which $H^{2i}(G, U) \ne 0$.

These theorems will be proven by combining the following Proposition which is a direct generalization of Theorem 1 and a transfer theorem for cohomology groups obtained in Sasaki [10].

PROPOSITION. Let G be a finite group, F a field of characteristic p

dividing the order of G, and U be an irreducible F[G]-module in the principal block. Suppose that U has a normal abelian vertex $(\neq 1)$. Then there exists an $i (1 \le i \le |G: O_{p',p}(G)|)$ for which $H^{2i}(G, U) \ne 0$.

Let G be a finite p-solvable group with $O_{p'}(G)=1$ and suppose that G has an abelian Sylow p-subgroup P. Then P is normal in G so that every irreducible F[G]-module has P as a vertex. Therefore THEOREM 1 follows from Proposition.

PROPOSITION will be proven by making use of Ogawa's idea of [8] and modular representation theory of finite groups, and this will be done in section 2. THEOREM 2 and THEOREM 3 will be proven in section 3.

Our notation and terminologies are standard. See Dornhoff [1], Feit [3], Gorenstein [5], and Weiss [11].

Acknowledgement

Dr. Ogawa has kindly sent a copy of the preprint of [8] to the author and has given him an opportunity to do this work. The author would like to express his sincere thanks to Dr. Ogawa.

2. Proof of Proposition

Throughout this section let K denote the prime field F_p of characteristic p. Let D be a vertex of U. Then by our assumption D is a normal abelian p-subgroup of G.

STEP 1. The irreducible F[G]-module U has a trivial source. Also we have $D=O_p(G)$.

PROOF. The vertex D acts on U trivially, since D is normal in G. Hence U has a trivial source. As $O_p(G)$ is included in the vertices of all irreducible F[G]-modules, we have $D=O_p(G)$.

STEP 2. We may assume that $O_{p'}(G) = 1$.

PROOF. Since U is in the principal block, the subgroup $O_{p'}(G)$ acts on U trivially. As an $F[G/O_{p'}(G)]$ -module, U is an irreducible module in the principal block and has $DO_{p'}(G)/O_{p'}(G)$ as a vertex and a trivial source. Furtheremore $H^i(G, U)$ and $H^i(G/O_{p'}(G), U)$ are isomorphic for all $i \ge 1$, since $H^i(O_{p'}(G), U)=0$. Thus we may assume that $O_{p'}(G)=1$.

STEP 3. The cohomology group $H^i(G, U)$ is isomorphic with $H^i(D, U)^G$ for all $i \ge 0$.

PROOF. Since U is D-projective, by Proposition 3.2 of Dress [2], the restriction map

H. Sasaki

$$\operatorname{res}_{G,D}: H^i(G, U) \longrightarrow H^i(D, U)$$

is a splitting monomorphism and moreover $\operatorname{Im} \operatorname{res}_{G,D}$ consists of all G-stable elements of $H^i(D, U)$. Namely, as D is normal in G, we have

 $H^i(G, U) \simeq \operatorname{Im} \operatorname{res}_{G, D} = H^i(D, U)^G$.

STEP 4. Let $E = \Omega_1(D)$. Then $(E \bigotimes_K F)^* = \operatorname{Hom}_F(E \bigotimes_K F, F)$ is a faithful F[G/D]-module.

PROOF. It will suffice to show that $E^* = \operatorname{Hom}_{\kappa}(E, K)$ is a faithful K[G/D]-module, since $(E \otimes_{\kappa} F)^*$ is isomorphic with $E^* \otimes_{\kappa} F$. By Corollary 3.7 of Knörr [6] there exists a Sylow *p*-subgroup *P* of *G* for which $C_P(D) \leq D$. Since *D* is abelian, we have $C_P(D) = D$ so that *D* is a Sylow *p*-subgroup of $C_G(D)$. This implies that $C_G(D) = D$, as $O_{p'}(G) = 1$. Let $N = \operatorname{Ker} E^*$. Then $N = C_G(E) \geq D$. As *D* is abelian and $E = \Omega_1(D)$, a *p'*-element of N/D centralizes *D*. Thus N/D is a normal *p*-subgroup of G/D. Hence by Step 1 we have N = D, as desired.

STEP 5. There exists an $i (1 \le i \le |G: O_p(G)|)$ for which $H^{2i}(G, U) \ne 0$.

PROOF. By Step 4 and Theorem 1 of Ogawa [8] the irreducible F[G/D]module $U^* = \operatorname{Hom}_F(U, F)$ is isomorphic with a submodule of $S^i(E^*\otimes_{\kappa}F)$ for some i $(1 \le i \le |G/D|)$. By Proposition 1 of Ogawa [8] the *i*-th term $S^i(E^*\otimes_{\kappa}F)$ is isomorphic with an F[G/D]-sumbodule of $H^{2i}(D, F)$. Hence U^* is siomorphic with a submodule of $H^{2i}(D, F)$ as F[G/D]-modules. Thus $\operatorname{End}_F(U)$ is isomorphic with a submodule of $H^{2i}(D, U)$, since $\operatorname{End}_F(U)$ and $H^{2i}(D, U)$ are isomorphic with $U^*\otimes_F U$ and $H^{2i}(D, F)\otimes_F U$, respectively. Consequently $H^{2i}(G, U) \simeq H^{2i}(D, U)^G$ has a submodule isomorphic with $\operatorname{End}_{F(G)}(U) \neq 0$. The proof is complete.

REMARK. (1) In [8] Ogawa discussed only in the case of $F = F_p$, the prime field. But the conclusion of Proposition 1 of [8] is also valid for an arbitrary field F. (2) Since $O_p(G/O_{p'}(G)) = DO_{p'}(G)/O_{p'}(G)$ and $C_G(D) = DO_{p'}(G)$, we have $O_{p',p}(G) = C_G(D)$.

3. Proof of Theorem 2 and Theorem 3

Let G be a finite group, F a field of characteristic pdividing the order of G, and U be an indecomposable F[G]-module with a vertex D in the principal block. Then a Green correspondent V of U with respect to $(G, D, N_G(D))$ also lies in the principal block of $N_G(D)$. If the vertex D is abelian and U has a trivial source, then, by Theorem 4 of Sasaki [10], the cohomology groups $H^i(G, U)$ and $H^i(N_G(D), V)$ are isomorphic for all *i*. If furthermore the Green correspondent V of U is an irreducible $F[N_G(D)]$ module, then by Proposition there exists an i $(1 \le i \le |N_G(D): C_G(D)|)$ for which $H^{2i}(N_G(D), V) \ne 0$. Thus to prove theorems it will suffice to show that V is irreducible.

If U is irreducible, then V is also irreducible by Lemma 2.2 of Okuyama [9]. Theorem 2 is proven.

If the vertex D is a Sylow p-subgroup P of G, then V is an indecomposable $F[N_G(P)/P]$ -module so that V is irreducible. Theorem 3 is proven.

REMARK. In [9] Okuyama discussed in the case that the field F is a splitting field for G. But the conclusion of Lemma 2.2 of [9] is also valid for an arbitrary field.

References

- [1] L. DORNHOFF: "Group Representation Theory", Part B, Dekker, New York, 1971.
- [2] A. W. M. DRESS: On relative Grothendieck rings, 79-131 in: Representations of Algebras, Proc. International Conference on Representations of Algebras held at Carleton Univ., Springer Lecture Note Ser. 488, Springer-Verlag, Berlin/Hidelberg/New York, 1974.
- [3] W. FEIT: "Representations of Finite Groups", mimeographed note, Yale Univ., New Haven, 1969.
- [4] W. FEIT: Some properties of the Green correspondence, 139-148 in: Theory of Finite Groups, Benjamin, New York, 1969.
- [5] D. GORENSTEIN: "Finite Groups", Harper & Row, New York, 1968.
- [6] R. KNÖRR: On the vertices of irreducible modules, Ann. of Math., 110 (1971), 487-499.
- Y. OGAWA: On the cohomology of finite groups, 83-90 in: Proc. 13th Symposium on Ring Theory, Okayama Univ., Okayama, 1981.
- [8] Y. OGAWA: On the cohomology of some finite groups of *p*-length 1, Japanese J. Math., to appear.
- [9] T. OKUYAMA: Module correspondence in finite groups, Hokkaido Math. J., 10 (1981), 299-318.
- [10] H. SASAKI: Green correspondence and transfer theorems of Wielandt type for G-functors, J. Algebra, to appear.
- [11] E. WEISS: "Cohomology of Groups", Academic Press, New York/London, 1969.

Department of Mathematics Faculty of Science Hokkaido University 237