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On the nontriviality of cohomology of finite groups

By Hiroki SASAKI
(Received July 16, 1981)

1. Introduction

In this note we are concerned with the cohomology groups of a finite
group G with coefficients in a finitely generated F[G] -module, where F is
a field of characteristic p dividing the order of G. By an F[G] -module
we shall always mean a finitely generated F[G] -module. Note that if an
indecomposable F[G] -module U does not belong to the principal block, then
the cohomology groups of G with coefficients in U are trivial.

Recently Ogawa [8] has shown the following theorem of great interest.
(See also Ogawa [7].)

THEOREM 1. (Ogawa [8], THEOREM 2) Let G be a fifinite p-solvable
group with a nontrivial abelian Sylow p-subgroup and V be an irreducible
F_{p}[G] -module in the principal block, where F_{p} is the prime fifield of char-
acteristic p. Then there exists an i(1\leq i\leq|G:O_{p’,p}(G)|) for which H^{2i}(G, V)

\neq 0 .

Our purpose of this note is to generalize this theorem as follows.

THEOREM 2. Let G be a fifinite group, Fa fifield of characteristic p
dividing the order of G, and U be an irreducible F[G] -module in the
principal block. Suppose that U has an abelian vertex D(\neq 1) and a
trivial source. Then there exists an i(1\leq i\leq|N_{G}(D):C_{G}(D)|) for which
H^{2i}(G, U)\neq 0 .

THEOREM 3. Let G be a fifinite group with an abelian Sylow p-sub-
group P(\neq 1) , Fa fifield of characteristic p, and U be an indecomposable
F[G] -module in the principal block. Suppose that U has P as a vertex
and a trivial source. Then there exists an i (1\leq i\leq|N_{G}(P) : C_{\iota j}(P)|) for
which H^{2i}(G, U)\neq 0 .

These theorems will be proven by combining the following Proposition
which is a direct generalization of Theorem 1 and a transfer theorem for
cohomology groups obtained in Sasaki [10].

PROPOSITION. Let G be a fifinite group, Fa fifield of characteristic p
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dividing the order of G, and U be an irreducible F[G] -module in the
principal block. Suppose that U has a normal abelian vertex (\neq 1) . Then
there exists an i(1\leq i\leq|G:O_{p’,p}(G)|) for which H^{2i}(G, U)\neq^{-}0 .

Let G be a finite p-solvable group with O_{p’}(G)=1 and suppose that
G has an abelian Sylow p-subgroup P. Then P is normal in G so that
every irreducible F[G] -module has P as a vertex. Therefore THEOREM 1
follows from Proposition.

PROPOSITION will be proven by making use of Ogawa’s idea of [8] and
modular representation theory of finite groups, and this will be done in
section 2. THEOREM 2 and THEOREM 3 will be proven in section 3.

Our notation and terminologies are standard. See Dornhoff [1], Feit
[3], Gorenstein [5], and Weiss [11].
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2. Proof of Proposition

Throughout this section let K denote the prime field F_{p} of characteristic
p. Let D be a vertex of U. Then by our assumption D is a normal abelian
p subgroup of G.

STEP 1. The irreducible F[G] -module U has a trivial source. Also
we have D=O_{p}(G) .

PROOF. The vertex D acts on U trivially, since D is normal in G.
Hence U has a trivial source. As O_{p}(G) is included in the vertices of all
irreducible F[G] -modules, we have D=O_{p}(G) .

STEP 2. We may assume that O_{p’}(G)=1 .

PROOF. Since U is in the principal block, the subgroup O_{p’}(G) acts on
U trivially. As an F[G/O_{p’}(G)] -module, U is an irreducible module in the
principal block and has DO_{p’}(G)/O_{p’}(G) as a vertex and a trivial source.
Furtheremore H^{i}(G, U) and H^{i}(G/O_{p’}(G), U) are isomorphic for all i\geq 1 ,

since H^{i}(O_{p’}(G), U)=0 . Thus we may assume that O_{p’}(G)=1 .
STEP 3. The cohomology group H^{i}(G, U) is isomorphic with H^{i}(D, U)^{G}

for all i\geq 0 .

PROOF. Since U is D-projective, by Proposition 3. 2 of Dress [2], the
restriction map
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res_{G,D} : H^{i}(G, U)arrow H^{i}(D, U)

is a splitting monomorphism and moreover Im res_{G,D} consists of all G-stable
elements of H^{i}(D, U) . Namely, as D is normal in G, we have

H^{i}(G, U)-\sim Im res_{G,D}=H^{i}(D, U)^{G}

STEP 4. Let E=\Omega_{1}(D) . Then (E\otimes_{K}F)^{*}=Hom_{F}(E\otimes_{K}F, F) is a faithful
F[G/D] -module,

PROOF. It will suffice to show that E^{*}=Hom_{K}(E, K) is a faithful
K[G/D] -module, since (E\otimes_{K}F)^{*} is isomorphic with E^{*}\otimes_{K}F. By Corollary
3. 7 of Kn\"orr [6] there exists a Sylow p-subgroup P of G for which C_{P}(D)

\leq D. Since D is abelian, we have C_{P}(D)=D so that D is a Sylow p-
subgroup of C_{G}(D) . This implies that C_{G}(D)=D, as O_{p’}(G)=1 . Let N=
Ker E^{*} . Then N=C_{G}(E)\geq D. As D is abelian and E=\Omega_{1}(D) , a p’ -element
of N/D centralizes D. Thus N/D is a normal p-subgroup of G/D. Hence
by Step 1 we have N=D, as desired.

STEP 5. There exists an i(1\leq i\leq|G:O_{p}(G)|) for which H^{2i}(G, U)\neq 0 .

PROOF. By Step 4 and Theorem 1 of Ogawa [8] the irreducible F[G/D]-
module U^{*}=Hom_{F}(U, F) is isomorphic with a submodule of S^{i}(E^{*}\otimes_{K}F\cdot)

for some i(1\leq i\leq|G/D|) . By Proposition 1 of Ogawa [8] the i-th term
S^{i}(E^{*}\otimes_{K}F) is isomorphic with an F[G/D] -sumbodule of H^{2i}(D, F) . Hence
U^{*} is siomorphic with a submodule of H^{2i}(D, F) as F[G/D] -modules. Thus
End_{F}(U) is isomorphic with a submodule of H^{2i}(D, U) , since End_{F}(U) and
H^{2i}(D, U) are isomorphic with U^{*}\otimes_{F}U and H^{2i}(D, F)\otimes_{F}U, respectively.
Consequently H^{2i}(G, U)-\sim H^{2i}(D, U)^{G} has a submodule isomorphic with
End_{F[G]}(U)\neq 0 . The proof is complete.

REMARK. (1) In [8] Ogawa discussed only in the case of F=F_{p} , the
prime field. But the conclusion of Proposition 1 of [8] is also valid for an
arbitrary field F. (2) Since O_{p}(G/O_{p’}(G))=DO_{p’}(G)/O_{p’}(G) and C_{G}(D)=

DO_{p’}(G) , we have O_{p’} , p(G)=C_{G}(D) .

3. Proof of Theorem 2 and Theorem 3

Let G be a finite group, F a field of characteristic pdividing the order
of G, and U be an indecomposable F[G] -module with a vertex D in the
principal block. Then a Green correspondent V of U with respect to
(G, D, N_{G}(D)) also lies in the principal block of N_{G}(D) . If the vertex D is
abelian and U has a trivial source, then, by Theorem 4 of Sasaki [10], the
cohomology groups H^{i}(G, U) and H^{i}(N_{G}(D), V) are isomorphic for all i.
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If furthermore the Green correspondent V of U is an irreducible F[N_{G}(D)] -

module, then by Proposition there exists an i (1\leq i\leq|N_{G}(D) : C_{G}(D)|) for
which H^{2i}(N_{G}(D), V)\neq 0 . Thus to prove theorems it will suffice to show
that V is irreducible.

If U is irreducible, then V is also irreducible by Lemma 2. 2 of Okuyama
[9]. Theorem 2 is proven.

If the vertex D is a Sylow p-subgroup P of G, then V is an indecom-
posable F[N_{G}(P)/P] -module so that V is irreducible. Theorem 3 is proven.

REMARK. In [9] Okuyama discussed in the case that the field F is a
splitting field for G. But the conclusion of Lemma 2. 2 of [9] is also valid
for an arbitrary field.
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