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On p-nilpotent groups with extremal p-blocks

By Yasushi NINOMIYA
(Received May 29, 1981; Revised Sep. 3, 1981)

Throughout the present paper, G will represent a finite group, and p
a fixed prime number. It is well known that

(I) if G is p-closed, then every p-block of G has full defect, and
(II) if G has the pTI-property, then every p-block of G has either full

defect or defect zero.
Here, “G is p-closed” means that a Sylow p-subgroup of G is normal,

and “G has the pTI-property” means that the intersection of two distinct
Sylow p-subgroups of G is the identity. It is interesting to consider each
converse of (I) and (II). In general, neither the converse of (I) nor of (II)
is true. In fact, if H is a p-solvable group of p-length greater than 1, then
G=H/O_{p’}(H) has only one p-block, but G is neither p-closed nor has the
pTI-property. In case p=^{\underline{Q}} , several authors studied this problem ([1], [4],
[5] ) . In this paper, we shall show that each converse of (I) and (II) is true
if G is a p-nilpotent group. We shall use the following notations : Z(G)

is the center of G. Given g\in G, we put x^{g}=gxg^{-l} for any x\in G, and
S^{g}=\{s^{g}|s\in S\} for any subset S of G.

For convenience’ sake, we introduce the following definition.

DEFINITION. A group G is a pFD-group if every p-block of G has
full defect. A group G is a pFZD-group if every p-block of G has either
full defect or defect zero.

The following proposition is an immediate consequence of [7, Theorem
4], and plays an important role in our subsequent study.

PROPOSITION 1. Let G be a p-nilpotent group with a normal p-com-
plement N. Then G is a pFD-group if and only if, for every x\in N,
C_{G}(x) contains a Sylow p-subgroup of G.

By making use of Proposition 1, we can easily obtain the following,
which contains [1, Theorem 1],

THEOREM 1. Let G be a p-nilpotent group. Then G is p-closed if and
only if it is a pFD group.

PROOF. It suffices to prove the if part. We put N=O_{p’}(G) . If x\in N,



230 Y. Ninomiya

then x\in C_{G}(P)\cap N=C_{N}(P) by Proposition 1, where P is a Sylow p subgroup
of G. Hence we have N=\cup {}_{g\in N}C_{N}(P)^{q} . As is well known, this can happen
only if C_{N}(P)=N. Hence G is p-closed.

Let H be a normal subgroup of G such that |G/H| is relatively prime
to p. Then by [6, Proposition 4. 2], we see that if G is a pFD group then
H is also a pFD-group. Hence, we get the following, which contains [4,
Lemma 1].

COROLLARY 1. Let G be a p-solvable group. Then G is p-closed if
and only if it is a pFD-group and has p-length 1.

By making use of Theorem 1, we can prove the following

THEOREM 2. Let G be a p-nilpotent group, and P\cap Q an intersection
of maximal order of two distinct Sylow p-subgroups of G. Then there
exists a p-block of G with defect group P\cap Q .

In advance of proving the theorem, we shall prove the following lemmas.

LEMMA 1. Let G be a p-nilpotent group, and P a Sylow p-subgroup

of G. If D is a subgroup of P, then N_{P}(D) is a Sylow p subgroup of
N_{G}(D) .

PROOF. Let R be a Sylow p subgroup of N_{G}(D) with R\supset N_{P}(D) , and
let S be a Sylow p-subgroup of G with S\supset R . Then S^{x}=P for some x in
O_{p’}(G) . Let d be an arbitrary element of D. Then, noting that D^{x}\subset R^{x}\subset

S^{x}=P, we have d^{-1}d^{x}\in P\cap O_{p’}(G)=\{1\} . Hence d=d^{x} . Thus we see that
x\in N_{G}(D) . This implies that R^{x}\subset P\cap NG\{D) NP(D) and so |R|=|R^{x}|\leqq

|N_{P}(D)| , proving that R=N_{P}(D) .

LEMMA 2. Let G be a p-nilpotent group, and P\cap Q an intersection
of maximal order of two distinct Sylow p-subgrollps of G. Then N_{G}(P\cap

Q)/P\cap Q has the pTI-property.

PROOF. We put D=P\cap Q . Let X and Y be Sylow p-subgroups of
N_{G}(D) , and let T and U be Sylow p-subgroups of G with T\supset X and U\supset Y.
Then T\cap U\supset X\cap Y\supset D. Suppose that X\cap Y\neq D! Then by the maximality
of D, we have T=U, and hence X=N_{G}(D)\cap T=N_{G}(D)\cap U=Y. Hence
N_{G}(D)/D has the pTI-property.

PROOF OF THEOREM 2. By [2, Theorem 58.3], it sufficies to prove that
there exists a p-block of N_{G}(P\cap Q) with defect group P\cap Q . So suppose
that there exist no p-blocks of N_{G}(P\cap Q) with defect group P\cap Q . Then
by Lemma 2, N_{G}(P\cap Q) is a pFD-group. Hence by Theorem 1, N_{G}(P\cap Q)
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is p-cloded, and so N_{P}(P\cap Q)=N_{Q}(P\cap Q) (Lemma 1). This implies that
P\cap Q\supset N_{P}(P\cap Q)\supset P\cap\Leftarrow Q , a contradiction.

As a corollary to Theorem 2, we get the following, which contains
[1, Theorem 2].

THEOREM 3. Let G be a p-nilpotent group. Then G has the pTI-
property if and only if it is a pFZD-group.

The proof of [9, Lemma 1] also holds for general groups which have
the pTI-property with p\neq 2 . Therefore, we see that if a p-solvable group
G has the pTI-property, then G has p-length 1. Thus, theorem 3 together
with [6, Proposition 4. 2] implies the following

COROLLARY 2. Let G be a p-solvable group. Then G has the pTI-
property if and only if it is a pFZD-group and has p-length 1.

Now, by making use of the same argument as in [1], we shall prove
the following results.

Lemma 3 (cf. [1, Lemma 1. 1]). Let G be a p-nilpotent group, and
P a Sylow p-subgroup of G. If u\in Z(P) , then u\in Z(Q) for every Sylow
p-subgroup Q of G containing u.

PROOF. Chose x\in O_{p’}(G) with Q=P^{x} . Noting that u^{x} and u are ele-
ments of Q, we have u^{x}u^{-1}\in Q\cap O_{p’}(G)=\{1\} . Hence u=u^{x}\in Z(Q) .

PROPOSITION - (cf. [1, Lemma 1. 2]). Let G be a p-nilpotent group,
P a Sylow p-subgroup of G, and u\in Z(P) . If D is a defect group of a p-
block of H=C_{G}(u) , then there exists a p-block of G with defect group D.

PROOF. Let Q be a Sylow p-subgroup of G with Q\supset D . Since u\in D,
we have u\in Z(Q) by Lemma 3. If x\in N_{G}(D) , then u^{x}\in D^{x}=D\subset Q , and
hence u=u^{x} by [3, Theorem 21. 3]. Thus we have N_{G}(D)\subset H. Hence by
[2, Theorem 58.3], we can conclude that there exists a p-block of G with
defect group D.

Appendix. Let K be an algebraically closed field of characteristic p.
Recently, in [8], Schwarz proved the following:

THEOREM 4 ([8, Satz 6. 3]). Let B be an arbitrary block ideal of the
group algebra KG, and C=(c_{ij}) the Cartan matrix of B. If G/OP’ P\{G) is
abelian, then there holds the following:

(1) \sum_{j}c_{ij} is equal to the order of a defect group of B for all i.
(2) c_{ii}=c_{jj} for all i, j .
(3) The number of non-isomorphic irreducible B-modules is a divisor

of |G/O_{p’p}(G)| .
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In general, as was claimed in [8], the converse of this theorem need
not be true. However, we prove the following, which gives an affirmative
answer to a question posed in [8].

THEOREM 5. Let G be a group of order p^{a}m(p\parallel m) . If the projective
cover of the trivial irreducible KG-module has K-dimension p^{\alpha}, then the
following statements are equivalent:

(1) G/O_{p’p}(G) is abelian.
(2) If B is an arbitrary block ideal of KG and C=(c_{ij}) the Cart

matrix of B, then \sum_{j}c_{ij} is equal to the order of a defect group of B for
all i.

(3) If C_{0}=(c_{kl}^{0}) is the Cartan matrix of the principal block ideal of
KG, then \sum_{l}c_{kl}^{0}=p^{a} for all k.

PROOF. By Theorem 4, it remains only to prove that (3) implies (1).
Let B_{0} be the principal block ideal of KG, and let F_{1} , F_{2}, \cdots , F_{s} be a full
set of non-siomorphic irreducible B_{0}-modules, where F_{1} is the trivial B_{0}-module
and F_{2}, \cdots , F_{t}(t\leqq s) have K-dimension 1. We denote by U_{i} the projective
cover of F_{i}(1\leqq i\leqq s) . It is well known that U_{i} is isomorphic to a direct
summand of U_{1}\otimes_{K}F_{i} . Hence by our assumption, we have \dim_{K}U_{k}=p^{a} for
1\leqq k\leqq t . Therefore, we have p^{a}= \dim_{K}U_{k}=\sum_{l=l}^{s}c_{kl}^{0}\dim_{K}F_{l}\geqq\sum_{l=l}^{s}c_{kl}^{0}=p^{a} .
This implies that if c_{kl}^{0}\neq 0 then \dim_{K}F_{l}=1 . Thus we see that if \dim_{K}F_{k}=1 ,
then all composition factors of U_{k} have K-dimension 1. Since C_{0} is indecom-
posable, this shows that t=s, that is, all irreducible B_{0}-modules have K-
dimension 1. Hence, the commutator subgroup of G is contained in \bigcap_{i=1}^{s}

Ker F_{i}=O_{p’p}(G) ( [2 , Theorem 65. 2]), and so G/O_{p’p}(G) is abelian.
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