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1. Introduction

The notion of measurable norm was introduced by Gross in 1962 ([5]).

Successively, he defined the abstract Wiener space and obtained many re-
markable properties concerning the Gaussian cylindrical measure ([6, 7]). In
1971, Dudley-Feldman-Le Cam introduced another notion of measurable norm
([4]). This induces one solution of the radonification problem with respect
to general cylindrical measures. These two concepts of measurability are
very significant respectively.

We are interested in the relation between these two measurabilities. In
[9] the author investigated rotationally invariant cylindrical measures as a
generalization of the Gaussian cylindrical measure and showed that these
two measurabilities coincide with each other with respect to every rotationally
invariant cylindrical measure. And also, Badrikian-Chevet offered the follow-
ing problem :

“Do these two measurabilities coincide with each other for every cylin-
drical measure p.” (cf. [1]).
The author showed the existence of the counter example to the above
question ([10]).

The problem of finding a largest class of cylindrical measures for which
two measurabilities are equivalent is unsolved and apparently difficult.

In this note we shall introduce a new concept “rotation.ally quasi-
invariant cylindrical measure (which is shortened to the more convenient
RQI-cylindrical measure)”, and investigate the characterization of this cylin-
drical measure. And also, we shall show that two measurabilities are equi-
valent for each RQI-cyh.ndrical measure.

2. Preliminaries

Let X be a real separable Banach space, X’ its topological dual, (\cdot, \cdot)

the natural pairing between X and X’ and \mathscr{B}(X) the Borel \sigma-algebra of X.
Let \{\xi_{1}, \cdots, \xi_{n}\} be a finite system of elements of X’ Then by –. we denote
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the operator from X into R^{n} mapping x\in X\mapsto((x, \xi_{1}) , \cdots , (x, \xi_{n}))\in R^{n} . A set
Z\subset X is said to be a cylindrical set if there are \xi_{1} , \cdots , \xi_{n}\in X’ and B\in \mathscr{B}(R^{n})

such that Z=\overline{\underline{\cdot}}-1(B) . If Y is a closed subspace of finite codimension of X
contained in the kernel of \Xi , then \Xi factorizes into

XX/Y\underline{\pi_{X/Y}}--\cdot R^{n}-’ ,

where \pi_{X/Y} is the canonical surjection. We say that (_{-}^{-\prime}.)^{-1}(B) is a base of
the cylindrical set Z. Let \mathscr{C}_{X} denote the family of all cylindrical sets of X.
A mp \mu from \mathscr{C}x into [0, 1] is called a cylindrical measure if it satisfies the
following two conditions : (1) \mu(X)=1 ; (2) Restrict \mu to the \sigma-algebra of
cylindrical sets which are generated by a fifixed finite system of functionals.
Then each such restriction is countably additive.

By putting \mu_{\xi_{1},\ldots,\xi}n(B)=\mu(_{\cup}^{--1}.(B)) each cylindrical measure \mu defines
a family of Radon probability measures. A finite Radon measure means
a finite Borel measure with inner regularity (see [11]). Throughout this
paper we shall use this expression \mu_{\xi_{1},\cdots,\xi}n .

Here we shall present two definitions of measurability. Let H be a real
separable Hilbert space with norm ||\cdot|| , FD(H) the family of all finite
dimensional subspaces of H, \mu a cylindrical measure on H and p(\cdot) be a
continuous semi-norm on H.

DEFINITION 1 (Gross [5]). We say that p(\cdot) is \mu-measurable by prO-

jections if for every \epsilon>0 , there exists G\in FD(H) such that \mu(N_{\epsilon}\cap F+F^{\perp})\geqq

1-\epsilon whenever F\in FD(H) and F\perp G, where N_{\text{\’{e}}}=\{x\in H:p(x)<\epsilon\} and p\perp

is the orthogonal complement of F.

DEFINITION 2 (Dudley-Feldman-Le Cam [4]). A continuous semi-norm
p(\cdot) is said to be \mu-measurable if for every \epsilon>0 , there exists G\in FD(H)

such that \mu(P_{F}(N_{\epsilon})+F^{\perp})\geqq 1-\epsilon whenever F\in FD(H) and F\perp G, where P_{F}

is the orthogonal projection of H onto F.
If p(\cdot) is \mu-measurable by projections, then it is also \mu-measurable.

However, the converse was the open problem ([1]). Recently the author
solved it negatively ([10]).

Let E be the Banach space obtained from H by means of p(\cdot) and i
be the canonical map from H into E. If p(\cdot) is \mu-measurable, then the
image of \mu under the map i, write i(\mu) , is countably additive, i . e. , i(\mu) is
extensible to a Radon probability measure on E, and also vice versa ([4]).

If \mu(C)=\mu(u(C)) for any C\in \mathscr{C}_{H} and any unitary operator u of H, \mu

is called a rotationally invariant cylindrical measure. We denote by RI(H)
the family of all rotationally invariant cylindrical measures on H.
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We have the following theorem.

THEOREM A ([9]). Let p(\cdot) be a continuous semi-norm defined on H
and \mu\in RI(H) . Then p(\cdot) is \mu-measurable if and only if p(\cdot) is \mu measure
ble by projections.

Moreover, let \mu\in RI(H)\backslash \{\delta_{0}\} be given. If p ( \cdot ) is \mu-measurable, then
p ( \cdot ) is \nu-measurable for every \nu\in RI(H)\backslash \{\delta_{0}\} .

The Gaussian cylindrical measure \gamma on H is the cylindrical measure
defined as follows :

\gamma(Z)=(\sqrt{2\pi})^{-n}\int_{B} exp (-||x||^{2}/2)dx

for Z=\{x\in H:Px\in B\} , where P is a finite dimensional orthogonal projection
of H, n=\dim PH, B\in \mathscr{B}(PH) and dx is the Lebesgue measure on PH.
Let p(\cdot) be a continuous norm on H, E be the completion of H with
respect to p(\cdot) and i be the inclusion map of H into E. If p(\cdot) is \gamma-

measurable by projections, then the triplet (i, H, E) is called an abstract
Wiener space.

3. RQI-cylindrical measures
Let H be a real separable Hilbert space with norm ||\cdot|| and U be the

collection of all unitary operators of H.
(*) A cylindrical measure \mu on H is said to be a rotationally quasi-

invariant cylindrical measure (RQI-cylindrical measure) if for every \epsilon>0 ,
there exists a \delta>0 such that \mu(A)<\delta implies \mu(u(A))<\epsilon for all u\in U and
all A\in \mathscr{C}_{H}.

In general, let \lambda and \nu be two cylindrical measures on a Banach space
X. We say that \nu is cylindrically absolutely continuous with respect to \lambda ,
write \nu\ll_{c}\lambda, if for every \epsilon>0 , there exists a \delta>0 such that \lambda(A)<\delta implies
\nu(A)<\epsilon for all A\in \mathscr{C}x. Two cyh.ndrical measures \lambda and \nu for which both
\nu\ll_{c}\lambda and \lambda\ll_{c}\nu are called cylindrically equivalent, in symbols \lambda\sim_{c}\nu . If \lambda

and \nu are two Borel probability measures on X, then, by replacing \mathscr{C}x by
\mathscr{B}(X) in the above, we can define the notions of absolute continuity and
equivalency between \lambda and \nu, written by \nu\ll\lambda and \lambda\sim\nu .

The definition (^{*}) means that \mu\sim_{c}u^{-1}(\mu) for all u\in U and this relation
holds uniformly with respect to u\in U. Notice that u^{-1}(\mu) is the image of
\mu under the map u^{-1} .

Here, we are concerned with the characterization of RQI-cylindrical
measures. Before getting in touch with the main subject, we shall explain
the cylindrical measures to be of type 0.
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Let X be a real Banach space, \mathfrak{S}_{X} be the collection of all closed balls
of X and \mu be a cylindrical measure on X. We say that \mu is of type 0
if for any \epsilon>0 there exists a ball A\in \mathfrak{S}_{X} such that \mu_{\xi}(\xi(A))\geqq 1-\epsilon for all
\xi\in X’ (recall that \mu_{\xi}=\mu\circ\xi^{-1}).

For each cylindrical measure \mu on X, the characteristic function of \mu

is the complex valued function \phi(\mu, .):X’arrow C defined by \phi(\mu, \xi)=\downarrow_{X}.\exp

\{i(x, \xi)\}d\mu(x) .
An immediate calculation shows that

\int_{X} exp \{i(x, \xi)\}d\mu(x)=\int_{R} exp (it) d\mu_{\xi}(t)r

that is \phi(\mu, \xi)=\phi(\mu_{\xi}, 1) .
Also it is well known that \mu determines the equivalence class of linear

random functions f:X’arrow L^{0}(\Omega, m;R) , where (\Omega, m) is a Radon probability
space and L^{0} is the linear space of all real valued random variables, satisfying
\mu_{\xi}=f(\xi)(m) , and vice versa. Here f(\xi)(m) is the image measure of m under
the mapf(\xi) .

The following theorem shows the equivalence conditions for which \mu

is of type 0.

THEOREM B([11 , p. 193, THEOREM 1 ; p. 197, COROLLARY; p. 265,
THEOREM 2]). Let \mu be a cylindrical measure on X and f:Xarrow L^{0}(\Omega, m;R)

be a linear random function associated with \mu . The following conditions
are equivalent.

(1) \mu is of type 0;
(2) the map \xi\in X’\mapsto\mu_{\xi}\in M^{1}(R) , where M^{1}(R) is the space of all finite

Radon measures on R equipped with the vague topology, is continuous;
(2)’ the map \xi\in X’\mapsto\mu_{\xi}\in M^{1}(R) is continuous at the origin;
(3) the characteristic function \phi(\mu, \cdot) is continuous;
(3)’ \phi(\mu, \cdot) is continuous at the origin;
(4) f is continuous if L^{0}(\Omega, m;R) is equipped with the topology of

convergence in probability ;
(4)’ f is continuous at the origin.

REMARKS. (1) Let Y’ be a subspace of X . Restrict \mathscr{C}x to Y’ and
denote it by \mathscr{C}_{X}[Y] , i . e. , \mathscr{C}_{X}[Y’] is the family of all cylindrical sets Z such that

Z=\{x\in X:((x, \xi J, \cdots, (x, \xi_{n}))\in B, B\in \mathscr{B}(R^{n})\} ,

where \{\xi_{1^{ }},\cdots, \xi_{n}\} is an arbitrary finite system of elements of Y’r Restrict
\mu to \mathscr{C}_{X}[Y’] . Then, we have the same result as in Theorem B which is
replaced X’ by Y’ .
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(2) Let \mathfrak{S} be the collection of all closed balls of X and L_{\tilde{9}}(X, R^{n})

be the linear space of all continuous linear maps from X into R^{n} which is
equipped with the \mathfrak{S} -topology. If \mu is of type 0, then the map –.\in L_{\mathfrak{S}}(X, R^{n})

\mapsto_{-}^{-}.(\mu)\in M^{1}(R^{n}) is continuous, where M^{1}(R^{n}) is equipped with the vague
topology.

Now we start with the next lemma. Notice that H and H’ are identified.

Lemma 1. Every RQI-cylindrical measure on H is of type 0.

PROOF. Let \mu be any RQI-cylindrical measure on H. Take x\in H such
that ||x||=1 . For any y\in H(y\neq 0) , put y’=y/||y|| . Since ||x||=||y’|| , there
is a u\in U such that y’=u^{-1}(x) . By the definition (^{*}) , for every \epsilon>0 there
exists a \delta>0 such that \mu(A)\geqq 1-\delta implies \mu(v(A))\geqq 1-\epsilon for all v\in U and
all A\in \mathscr{C}_{H}. Since \mu_{x} is a Radon probabih.ty measure on R, we have the
ball S_{r}=\{t\in H:||t||\leqq r\} satisfying that \mu_{x}(x(S_{r}))\geqq 1-\delta . Hence

(3. 1) (u(\mu))_{x}(x(S_{r}))\geqq 1-\epsilon t

On the other hand, we have

(3. 2) \mu_{y’}(y’(S_{r}))=\mu_{u^{-1}\langle x)}(u^{-1}(x)(S_{r}))

=(u(\mu))_{x}(x(u(S_{r})))

=(u(\mu))_{x}(x(S_{r}))

Also, it is easy to see that

(3. 3) \mu_{y}(y(S))=\mu_{y’}(y_{\backslash }’S)) for all S\in \mathfrak{S}_{H} .

It follows from (3. 1), (3. 2) and (3. 3) that for every \epsilon>0 there exists a ball
S_{r} such that \mu_{y}(y(S_{r}))\geqq 1-\epsilon for all y\in H. This means that \mu is of type 0.

Let \{e_{n}\}_{n=1,2},\ldots be an orthonormal basis of H and N be the set of all
positive integers. Let H_{n}(n\in N) be the subspace of H generated by \{e_{1} , \cdots ,
e_{n}\} . For each n\in N, we denote by U_{n} the subset of U consisting of u
satisfying the following two conditions: (1) Restrict u to the space H_{n} .
Then such restriction is a unitary operator of H_{n} . (2) Restrict u to the
space H_{n}^{\perp} . Then it is the identity operator on H_{n}^{\perp} . It is easy to see that
U_{n} is isomorphic to the n-dimensional orthogonal group O(n) . Since O(n)
is the compact topological group, we have the normalized Haar measure on
U_{n} , denote it by m_{n} .

Lemma 2. Let \mu be an RQI-cylindrical measure on H, and H_{n}, U_{n}

and m_{n}(n\in N) be as in the above. Define
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\lambda_{n}(A)=\int_{\sigma_{n}}\mu(u(A))dm_{n}(u) for every A\in \mathscr{C}_{H} .

Then \lambda_{n} is a cylindrical measure on H.

PROOF. Let A\in \mathscr{C}_{H} be given. There exists F\in FD(H) such that a
base of A is on F. Let G be the finite dimensional subspace generated by
F\cup H_{n} . Then we can see that a base of A is also on G. For any u\in U_{n} ,
its restriction to G is a unitary operator of G and its restriction to G^{\perp} is
the identity map on G^{\perp} . Therefore u(A) has its base on G for every u\in U_{n} .
If \mu is restricted to the \sigma-algebra of cylindrical sets of which bases are in
\mathscr{B}(G) , then such restriction is countably additive. And so we can consider
such restriction of \mu as a Radon probability measure on G. Therefore,
\lambda_{n}(A) is well defined for each A\in \mathscr{C}_{H}. Also we can conclude that \lambda_{n} is
a cylindrical measure on H.

Let \{\nu_{t}\}_{c\in I} be a collection of cylindrical measures on a Banach space X.
We say that \{\nu_{t}\}_{\ell\in I} is uniformly of type 0 for \iota\in I if for any \epsilon>0 there
exists a ball S\in \mathfrak{S}_{X} such that (\nu‘)_{\xi}(\xi(S))\geqq 1-\epsilon for all \xi\in X’ and all \vee’\in I.

Lemma 3. Notation is as in Lemma 2. Then \mu\sim_{c}\lambda_{n} for all n\in N

and this relation holds uniformly with respect to n\in N.
Furthermor\^e the class \{\lambda_{n}\}_{n\in N} is uniformly of type 0 for n\in N.

PROOF. It follows from the definition (^{*}) that for every \epsilon>0 , there
exists a \delta>0 such that \mu(A)<\delta implies \mu(u(A))<\epsilon for all u\in U and all
A\in \mathscr{C}_{H}. Therefore, \mu(A)<\delta implies \lambda_{n}(A)=\int_{ry_{n}}\mu(u(A))dm_{n}(n)<\epsilon for all
A\in \mathscr{C}_{H} and all n\in N.
Thus we have \lambda_{n}\ll_{c}\mu uniformly for n\in N.

Next, assume that \lambda_{n}(A)<\delta for some n . Then there exists a v\in U_{n}

such that \mu(v(A))<\delta . Therefore, \mu(u(v(A)))<\epsilon for all u\in U. Hence we
have \mu(A)<\epsilon . This means that \mu\ll_{c}\lambda_{n} . Thus we complete the proof of the
former half. Also, it follows from Lemma 1 that \mu is of type 0. Therefore
the rest is an immediate consequence of the former.

Lemma 4. Let \xi and \eta be in H. If ||\xi||=||\eta|| , then for every \epsilon>0 ,

there exists a positive integer m^{\epsilon} and there exists v_{m}^{\epsilon}\in U_{m} for each m\geqq m^{e}

such that ||v_{m}^{\epsilon}(\xi)-\eta||<\epsilon .
PROOF. We denote by \langle\cdot, \cdot\rangle the inner product on H. Then we can

express \xi=\sum_{n=1}^{\infty}\langle\xi, e_{n}\rangle e_{n} and \eta=\sum_{n=1}^{\infty}\langle\eta, e_{n}\rangle e_{n} . Let \xi_{N}=^{N}\sum_{n=1}\langle\xi, e_{n}\rangle e_{n} and \eta_{1v}=

\sum_{n=1}^{N}\langle\eta, e_{n}\rangle e_{n}

For every \epsilon>0 , there exists a positive integer m^{e} such that |||\xi_{N}||-||\eta_{N}|||
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<\epsilon/3 , ||\xi-\xi_{N}||<\epsilon/3 and ||\eta-\eta_{N}||<\epsilon/3 for every N\geqq m^{\epsilon} .

We can assume that ||\xi_{N}||\neq 0 and ||\eta_{N}||\neq 0 . Let \xi_{N}’=\frac{||\eta_{N}||}{||\xi_{N}||}\xi_{N}. Then
we have ||\xi_{N}’||=||\eta_{N}|| . Also, \xi_{N}’, \eta_{N}\in H_{N}.

Therefore, we have v_{\dot{N}}\in U_{N} such that v_{N}^{l}(\xi_{N}’)=\eta_{N}. Then,

||v_{\dot{N}}(\xi_{N})-\eta_{N}|| .

=|| \frac{||\xi_{N}||}{|^{1}|\eta_{N}||}\eta_{N}-\eta_{N}||

=|||\xi_{N}||-||\eta_{N}|||<\epsilon/3\iota

On the other hand, \xi=\xi_{N}+\sum_{n=N+1}^{\infty}\langle\xi, e_{n}\rangle e_{n} . Hence v_{\dot{N}}( \xi)=v_{\dot{N}}(\xi_{N})+\sum_{n=N+1}^{\infty}\langle\xi, e_{n}\rangle e_{n}

=v_{\dot{N}}(\xi_{N})+\xi-\xi_{N}, i . e. , v_{\dot{N}}(\xi-\xi_{N})=\xi-\xi_{N}. Thus we have
\}|v_{\dot{N}}(\xi)-\eta||

=||v\dot{\gamma}(\xi_{N})+\xi-\xi_{N}-\eta||

\leqq||v_{N}^{\epsilon}(\xi_{N})-\eta_{N}||+||\eta_{N}-\eta||+||\xi-\xi_{N}||

<\epsilon

Let \{\nu_{i}\} be a sequence of cylindrical measures on a Banach space X.
We say that the sequence \{\nu_{i}\} converges cylind^{\iota}rically to \nu if \{(\nu_{i})_{\xi_{1’}\cdots\xi}n\}

converges vaguely to \nu_{\xi_{1},\ldots,\xi n} for every finite system \{\xi_{1^{ }},\cdots, \xi_{n}\}\subset X’ .
Let M^{1}(X) be the linear space of all finite Radon measures on X. The

narrow topology on M^{1}(X) is defined as the topology of pointwise conver-
gence on bounded continuous functions.

Now we shall show the main theorem.
THEOREM 1. A cylindrical measure \mu on H is rotationally quasi-

invariant if and only if there exists a rotationally invariant cylindrical
measure \lambda on H such that \mu\sim_{G}\lambda .

PROOF. Suppose that \mu is an RQI-cylindrical measure. Let T be an
injective Hilbert-Schmidt operator of H, p(x)=||Tx|| and (i, H, E) be the
abstract Wiener space induced by the norm p(\cdot) . Let \{e_{n}\}_{n=1,2},\ldots be an
orthonormal basis of H. Regarding this orthonormal basis \{e_{n}\}_{n=1,2},\cdots, we
define H_{n} , U_{n} , m_{n} and \lambda_{n} as in the preceding lemmas. Since (i, H, E) is
the abstract Wiener space induced by the Hilbert-Schmidt operator T, we
can see that for every cylindrical measure of type 0, each image under the
map i is countably additive, i . e . extensible to a Radon probability measure
on E (cf. [12, XXV. 1, PROPOSITION^{\tau_{I}} (XXV, 1; 1)]). It follows from Lemmas



Measurable norms and rotationa lly quasi-invariant cylindrical measures 99

1 and 3 that the images of \mu and \lambda_{n}’s are extensible to Radon probability
measures on E, denote them by \overline{\mu} and \overline{\lambda}_{n}(n\in N) .

It is easy to see that \overline{\mu}\sim\overline{\lambda}_{n} for all n\in N and this relation holds uniformly
for n\in N. Since \overline{\mu} is the Radon probability measure on E, for every \epsilon>0 ,
there exists a compact subset K of E such that \overline{\mu}(K)\geqq 1-\epsilon . The above-
mentioned uniform equivalency among 1\overline{u} and \overline{\lambda}_{n}(n\in N) shows that for every
\epsilon>0 , there exists a compact subset K of E such that \overline{\lambda}_{n}(K)\geqq 1-\epsilon for all
n\in N. This implies that the sequence \{\overline{\lambda}_{n}\} contains a convergent subsequence
\{\overline{\lambda}_{n_{j}}\} with respect to the narrow topology, denote the limit by \overline{\lambda} (cf. [11,
p. 381, THEOREM 4; 12, III. 5, PROPOSITION (III; 4, 1)]) .

(I) First we shall show that there uniquely exists a cylindrical measure
\lambda of type 0 on H such that the extension of its image under i to the \sigma-

algebra \mathscr{B}(E) coincides with \overline{\lambda} , and also that \lambda_{n_{j}} converges cylindrically to \lambda

as jarrow\infty .
The restriction of \overline{\lambda} to \mathscr{C}_{E} is the cylindrical measure of type 0 on E.

Theorem B says that there exists the continuous linear random function
\overline{f}:E’arrow L^{0}(\Omega, m;R) associated with the restriction of \overline{\lambda} .

Let \langle\cdot, \cdot\rangle be the inner product| on H and (\cdot, \cdot) be the natural pairing
between E and E’r Let \mathscr{C}_{H}[i^{*}(E’)] be the collection of cylindrical sets Z
such that

Z=\{x\in H :( \langle x, i^{*}(\xi_{1})\rangle , \cdots , \langle x, i^{*}(\xi_{n})\rangle)\in B, B\in \mathscr{B}(R^{n})\}

for every finite system \{\xi_{1}, \cdots, \xi_{n}\}\subset E’ , where i^{*} is the adjoint of i.
Define \lambda’ as follows :

\lambda’(Z)=\overline{\lambda}(\overline{Z}) for all Z\in \mathscr{C}_{H}[i^{*}(E’)],\cdot

where \overline{Z}=\{y\in E:((y, \xi_{1}), \cdots, (y, \xi_{n}))\in B\} if

Z=\{x\in H :( \langle x, i^{*}(\xi_{1})\rangle , \cdots , \langle_{\backslash }’x, i^{*}(\xi_{n})\rangle)\in B, B\in \mathscr{B}(R^{7l})\}1

Also, define f’ on i^{*}(E’) as follows : f’(i^{*}(\xi))=\overline{f}(\xi) for all \xi\in E’r The
subspace i^{*}(E’)\subset H is dense in H and also the linear space L^{0}(\Omega, m;R) is
the complete metric space. Therefore, if we can show the continuity of f’
at the origin of H, then we have the extension of f’ to the space H, denote
it by f. It is easy to see that the associated cylindrical measure with f is of
type 0 and coincides with \chi on \mathscr{C}_{HH}[i_{\backslash }^{*/}E’)] . In other words, we have the
extension of \lambda’ to \mathscr{C}_{H}, and denote it by \lambda . Obviously we can check that the
extension of i(\lambda) to \mathscr{B}(E) is \overline{\lambda} , and such \lambda is uniquely defined because ‘\lambda is
of type 0 (see [11, p. 200, PROPOSITION 6J). Then we have to show the
continuity of f’ at the origin of H. By Lemma 3, the family \{\lambda_{n_{j}}\}_{j=1,2},\ldots is
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uniformly of type 0, i . e. , for every \epsilon>0 there exists a positive number r
such that (\lambda_{n_{j}})_{x}(x(S_{r}))\geqq 1-\epsilon for all x\in H and all j\in N, where S_{r}=\{t\in H :
||t||\leqq r\} as before. Obviously, the sequence of Radon probability measures
\{(\lambda_{n_{j}})_{x}\}_{j=1,2},\cdots vaguely converges to \lambda_{x}’ for all x\in i^{*}(E’) . Therefore, we have
\lambda_{x}’(x(S_{r}))\geqq 1-\epsilon for all x\in i^{*}(E’) . Applying the remarks of Theorem B, we
can conclude that.f’ is continuous at the origin of H.

It remains to show that \lambda_{n_{j}}arrow\lambda cylindrically as jarrow\infty , i . e. , (\lambda_{n_{j}})_{x_{1},\cdots,x_{n}}arrow

\lambda_{x_{1},\cdots,x_{n}} vaguely as jarrow\infty for every finite system \{x_{1}, \cdots, x_{n}\}\subset H. Since i^{*}(E’)

is dense in H, we can choose \xi_{k}^{m}\in i^{*}(E’)(k=1,2, \cdots, n;m=1,2, \cdots) such
that \xi_{k}^{m}arrow x_{k} as marrow\infty for each k(k=1,2, \cdots, n) . For each m,

(3. 4) (\lambda_{n_{j}})_{\xi,\cdots,\xi}1mm-n\lambda_{\xi,\cdots,\xi}mm1n vaguely as jarrow\infty

Since \lambda is of type 0, we can use the remarks of Theorem B and we have
(3. 5) \lambda_{\xi,\cdots,\xi}mm1n-\lambda_{x_{1},\cdots,x_{n}} vaguely as marrow\infty

Also, since the family \{\lambda_{n_{j}}\} is uniformly of type 0 for j\in N, we can check that

(3. 6) (\lambda_{n_{J1n}})_{\xi,\cdots,\xi}mm-(\lambda_{n_{j}})_{x_{1},\cdots,x_{n}} vaguely as marrow\infty

and this relation holds uniformly for j\in N.
The facts (3. 4), (3. 5) and (3. 6) implies that (\lambda_{n_{j}})_{x_{1’}\cdots xn}arrow\lambda_{x_{1},\cdots,x_{n}} vaguely

as jarrow\infty . Hence we have the desired result.
(II) Next, we shall show that \lambda is a rotationally invariant cylindrical

measure on H.
We have to prove \lambda=u^{-1}(\lambda) for all u\in U. It is sufficient to show that

\phi(\lambda, \xi)=\phi(u^{-1}(\lambda), \xi)=\phi(\lambda, u(\xi)) for every \xi\in H (cf. [2, 11]).
Write \eta=u(\xi) .
Since \lambda_{n_{j}}arrow\lambda cylindrically as jarrow\infty , we can see that (\lambda_{n_{j}})_{\xi}arrow\lambda_{\xi} narrowly

as jarrow\infty . Therefore, \phi((\lambda_{n_{j}})_{\xi}, 1) converges to \phi(\lambda_{\xi}, 1) as jarrow\infty , i . e. ,

(3. 7) \phi(\lambda_{n_{j}}, \xi)-\phi(\lambda, \xi) as jarrow\infty

Similarly, we have
(3. 8) \phi(\lambda_{n_{j}}, \eta)-\phi(\lambda, \eta) as jarrow\infty

Since ||\xi||=||\eta|| , we can use Lemma 4. Take \epsilon=1 in Lemma 4. There
exists a positive integer m^{1} and there exists v_{m}^{1}\in U_{m} for each m\geqq m^{1} such
that ||v_{m}^{1}(\xi)-\eta||<1 . We have j_{1} such that max (m^{1},1)<n_{j_{1}} , and put v_{n_{j_{1}}}^{1}=\overline{v}_{1} .
Next, take \epsilon=1/2 . We have j_{2} such that max (m^{1/2}, n_{j_{1}})<n_{j_{2}} , and put v_{r\iota_{j_{2}}}^{L/2}=\overline{v}_{2} .
Repeating this process, we get the subsequence \{n_{j_{k}}\} of \{n_{j}\} satisfying that
n_{j_{1}}<\cdot\cdot<n_{j_{k}}<n_{j_{k+1}}<\cdot\cdot \mathbb{C} and ||\overline{v}_{k}(\xi)-\eta||<1/k for each k\in N.
Therefore,
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(3. 9) \lim_{karrow\infty}\overline{v}_{k}(\xi)=\eta .

And also, the family \{\lambda_{n_{j_{k}}}\} is uniformly of type 0 for k\in N. Hence, it fol-
lows from (3. 8) and (3. 9) that for every \epsilon>0 there exists a positive integer
k_{0} such that

|\phi(\lambda_{n_{j_{k}}},\overline{v}_{k}(\xi))-\phi(\lambda, \eta)|

\leqq|\phi(\lambda_{n_{j_{k}}},\overline{v}_{k}(\xi))-\phi(\lambda_{n_{j_{k}}}, \eta)|+|\phi(\lambda_{n_{j_{k}}}, \eta)-\phi(\lambda, \eta)|

<\epsilon for all k\geqq k_{0} .
Thus we have

(3. 10) \phi(\lambda_{n_{j_{k}}},\overline{v}_{k}(\xi))-\phi(\lambda, \eta) as karrow\infty

On the other hand, the definition of \lambda_{n} shows that

\phi(\lambda_{n}, \xi)=\phi(\lambda_{n}, u_{n}(\xi)) for all u_{n}\in U_{n}t

Therefore, using (3. 7), we have

(3. 11) \phi(\lambda_{n_{j_{k}}},\overline{v}_{k}(\xi))=\phi(\lambda_{n_{j_{k}}}, \xi)-\phi(\lambda, \xi) as karrow\infty

By (3. 10) and (3. 11), we have \phi(\lambda, \xi)=\phi(\lambda, \eta) . This completes the proof of (II).
(Ill) Finally, we have to show that \mu\sim_{c}\lambda . However, this is the im-

mediate consequence of that \lambda_{n_{j}}arrow\lambda cylindrically as jarrow\infty and \mu\sim_{c}\lambda_{n_{j}} uniformly
for j\in N.

Thus we conclude that if \mu is an RQI-cylindrical measure, then there
exists a rotationally invariant cylindrical measure \lambda such that \mu\sim_{C}\lambda .

The converse is trivial. Then we complete the full proof.
Using the method of the above proof, we have the following corollary.

COROLLARY 1. Notation is as in Theorem 1. Let \nu be a cylindrical

measure of type 0 on H. If \nu is invariant for every u \in\bigcup_{n=1}U_{n} , then \nu is
rotationally invariant.

Let RQI (H) be the family of all RQI-cylindrical measures on H.
THEOREM 2. Let \mu be an RQI-cylindrical measure on H and p(\cdot) be

a continuous semi-norm defined on H. Then p(\cdot) is \mu -measurable if and
only if p ( \cdot ) is \mu-measurable by projections.

Moreover, let \mu\in RQI(H)\backslash \{\delta_{0}\} be given. If p(\cdot) is \mu-measurable, then
p(\cdot) is \nu -measurable for every \nu\in RQI(H)\backslash \{\delta_{0}\} .

PROOF. Assume that p(\cdot) is \mu-measurable. Theorem 1 says that there
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exists a rotationally invariant cylindrical measure \lambda such that \mu\sim_{c}\lambda . There-
fore, p(\cdot) is \lambda-measurable . Using Theorem A, we can say that p(\cdot) is \lambda -

measurable by projections. Hence, using the fact \mu\sim_{c}\lambda again, we conclude
that p(\cdot) is \mu-measurable by projections. Thus we have the proof of the
former half. Similarly, using Theorems A and 1, we have the latter half.

Thus we have a generalization of Theorem A.

4. Examples and application

In this section, first we shall show some examples of RQI-cylindrical
measure.

Let H be a real separable Hilbert space as ever and \mu be a cylindrical
measure on H. We say that \mu is cylindrically equivalent to the Lebesgue
measure if each \mu_{e_{1},\cdots,e_{n}} is equivalent to the Lebesgue measure on R^{n} for
any finite orthonormal system \{e_{1^{ }},\cdots, e_{n}\}\subset H.

EXAMPLE 1. Let \lambda be a rotationally invariant cylindrical measure on H
which is cylindrically equivalent to the Lebesgue measure. Define the transla-
tion of \lambda as follows: for each x\in H, \lambda^{x}(A)=\lambda(A+x) for all A\in \mathscr{C}_{H}. Then
every \lambda^{x} is an RQI-cylindrical measure.

Indeed, we have \lambda^{x}\sim_{c}\lambda for every x\in H (cf. [8]).

EXAMPLE 2. Let \{e_{i}\}_{i=1,2},\ldots be an orthonormal basis of H and \phi be the
bounded continuous positive function defined on R^{n} . Let \lambda be a rotationally
invariant cylindrical measure on H and f(x)=\phi(\langle x, e_{1}\rangle, \cdots, \langle x, e_{n}\rangle) . If.\backslash _{H}\cdot f(x)

d\lambda=1 , then we can define the cylindrical measure \mu as follows:

\mu(A)=\int_{A}f(x)d\lambda for A\in \mathscr{C}_{H} .

It is easy to check that \mu\sim_{C}\lambda and \mu is an RQI-cylindrical measure.
REMARK. Clearly, we can choose \phi such that \mu is not any translation

of a rotationally invariant cylindrical measure.

EXAMPLE 3. Let \{e_{i}\}_{i=1,2},\cdots be an orthonormal basis of H, for each
n\in N, F_{n} be the 1-dimensional subspace of H generated by \{e_{n}\} , H^{n}=

(F_{1}\oplus\cdots\oplus F_{n})^{\perp} and \gamma be the Gaussian cylindrical measure on H. Put f(x)=
(\sqrt{2\pi})^{-1} exp (-x^{2}/2) for x\in R . Let \{f_{n}(x)\}_{n=1,2},\ldots be the sequence of positive
real valued continuous functions defined on R satisfying that

\int_{-\infty}^{\infty}f_{n}(x)dx=1 and \int_{-\infty}^{\infty}|f_{n}(x)-f(x)|dx<2^{-n} for all n\in N

We define probability measures \nu^{n}=f_{n}(x)dx(n\in N) on R. For each n\in N,
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using the mapping t\in R- te_{n}\in F_{n} , we have the image measure of \nu^{n} on F_{n}

and denote by \nu_{n} .
Since H=F_{1}\oplus\cdots\oplus F_{n}\oplus H^{n} , we can define a cylindrical measure \mu_{n}=\nu_{1}

\otimes\cdots\otimes\nu_{n}\otimes\gamma^{n} on H, where \gamma^{n} is the Gaussian cylindrical measure on H^{n} .
Using the method of Theorem 1, we have the result that there is a

subsequence \{\mu_{n_{j}}\} of \{\mu_{n}\} which converges cylindrically to some cylindrical
measure, denote it by \mu . It is easy to check that \mu is an RQI-cylindrical
measure. Indeed we have \mu\sim_{c}\gamma .

Thus we conclude that there exist mahy RQI,cylindrical measures which
are neither rotationally invariant cylindrical measures nor translations of them.

Let \mu be a cylindrical measure on a Banach space X. Suppose that
\mu^{x}\sim_{C}\mu for every x\in X. Then \mu is said to be quasi-invariant ([8]).

PROPOSITION 1. If \mu is an RQI-cylindrical measure on H which is
cylindrically equivalent to the Lebesgue measure, then \mu\acute{\iota}s quasi-invariant.

PROOF. Since \mu is an RQI-cylindrical measure, there exists a rotationally
invariant cylindrical measure \lambda such that \mu\sim_{c}\lambda . It is easy to see that \lambda is
cylindrically equivalent to the Lebesgue measure. The result in [8] says that
\lambda is quasi-invariant. The fact \mu-_{C}\lambda implies that \mu^{x}-_{C}\lambda^{x} for every x\in H.
Therefore, \mu is quasi-invariant.

This proposition and Examples 2 and 3 say that every quasi-invariant
cylindrical measure on H is not necessary the translation of a rotationally
invariant cylindrical measure.

REMARK. Linde offered in [8] the following problem: “Is every quasi-
invariant cylindrical measure on a Hilbert space the translation of a rota-
tionally invariant cylindrical measure .p”

Chevet solved negatively this problem by the counter example ([3]).
Here, we showed ano\dagger her method of construction of counter examples.
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