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1. Introduction

Let F be an algebraically closed field of characteristic p, and G be a
finite group with a Sylow p-subgroup P. Let B be a block ideal of the group
algebra FG which can be regarded as an indecomposable direct summand
of FG as an F(G\cross G) -module. We denote by k(G) and l(G) the number
of irreducible ordinary and modular characters in G, respectively (also by
k(B) and l(B) the number of those in the block associated with B).

In [15] the author introduced the invariant n(B) that is the number of
indecomposable direct summands of B_{P\cross P} . In the present paper, we show
that the inequality “l(B)\leqq n(B)

” holds, and this inequality is closely related
to the well-known result that k(G)\leqq|G:H|k(H) for any subgroup H of
G (see [5], [7], [14]). In section 2, we shall obtain a modular version of

the above well-known result that l(G)\leqq|G:H|l(H) for any subgroup H
of G. When H=P, our result l(B)\leqq n(B) provides a more explicit con-
sequence that l(G)\leqq|P\backslash G/P| (the number of (P, P)-double cosets in G) which
is proved in section 3. Furthermore, in section 3, we will investigate the

case that the above equality holds. In this case, for example, every pr0-

jective indecomposable FG-module in B has dimension |P| , and every irreduci-
ble FG-module in B has dimension a power of p.
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2. Let M be a right FG-module, and H be a subgroup of G. We denote

by rad_{H}(M) and soc_{H}(M) the radical and the socle of M as an FH-module.
Let r_{H}(M) and s_{H}(M) denote the number of irreducible F//-constituents
of M/rad_{H}(M) and soc_{H}(M) , r espectively.

LEMMA 1. Let F be an algebraically closed fifield of arbitrary char-
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acteristic, and let \{L_{1}, L_{2}, \cdots, L_{l(G)}\} and \{M_{1}, M_{2}, \cdots, M_{l(B)}\} be the sets of all
non-isomorphic irreducible FG and FH-modules, respectively. Then the
following hold;

1) r_{G}(V)= \sum_{j}\dim_{F}Hom_{FG}(V, L_{j}) and s_{G} ( ^{V})= \sum_{j}\dim_{F}Hom_{FG}(L_{j}, V) for
any FG-module V,

2) \sum_{i}r_{G}(M_{i}^{G})=\sum_{j}s_{H}(L_{j}) and \sum_{i}s_{G}(M_{i}^{G})=\sum_{j}r_{H}(L_{j})

PROOF. 1) is clear, and 2) is easy observation from 1) and Frobenius
reciprocity theorem : Hom_{FG}(M_{i}^{G}, L_{j})-\sim Hom_{FH}(M_{i}, L_{jH}) and Hom_{FG}(L_{f}, M_{l}^{G})

–Hom_{FH}(L_{jH}, M_{i}) .
LEMMA 2. Under the same notation as above, it holds that r_{G}(M_{i}^{G})\leqq

|G:H| and s_{G}(M_{i}^{G})\leqq|G:H| for all i.
PROOF. Let M_{i}^{G}/ rad(M_{i}^{G})=\bigoplus_{j}a_{ij}L_{j} , and soc (M_{i}^{G})= \bigoplus_{j}b_{ij}L_{j} . Then, from

Frobenius reciprocity theorem, a_{ij}\neq 0 means that M_{i}\leqq soc_{H}(L_{j}) , and also
b_{ij}\neq 0 means that M_{i}\leqq L_{j}/rad_{H}(L_{j}) . In particular, a_{ij}\neq 0 or b_{ij}\neq 0 implies
that dim M_{i}\leqq\dim L_{j} . Now, since

|G:H| \dim M_{i}=\dim M_{i}^{G}\geqq\dim(M_{i}^{G}/rad(M_{i}^{G}))=\sum_{j}a_{ij}\dim L_{j} ,

and |G:H| dim M_{i}= \dim M_{i}^{G}\geqq\dim(soc_{G}(M_{i}^{G}))=\sum_{j}b_{if}\dim L_{j} ,

we have that

|G:H| \geqq\sum_{j}a_{ij}\dim L_{j}/\dim M_{i}\geqq\sum_{j}a_{ij}=r_{G}(M_{i}^{G}) ,

and |G:H| \geqq\sum_{j}b_{ij}\dim L_{j}/\dim M_{i}\geqq\sum_{j}b_{ij}=s_{G}(M_{i}^{G}) .

THEOREM 1. It holds that l(G)\leqq|G:H|l(H) for any subgroup H of
G. Furthermore, suppose that equality holds, then HaG, G/H is abelian
p’ -group and G=C_{G}(h)H for any p’ -element h of H.

PROOF. First statement fellows from Lemmas 1, 2, since
l(G) \leqq\sum_{j}r_{H}(L_{j})=\sum_{i}s_{G}(M_{i}^{G})\leqq|G:H|l(H) , or

l(G) \leqq\sum_{j}s_{H}(L_{j})=\sum_{i}r_{G}(M_{i}^{G})\leqq|G:H|l(H)

It is easy to find that equality holds if and only if M_{i}^{G} is completely reducible
for all i, and M_{i}^{G} has exactly t=|G:H| distinct irreducible constituents
L_{i1} , \cdots , L_{it}, where L_{ij1H}=M_{i} . Let M_{1} be the trivial FH-module, then each
L_{1j} must be one dimensiona. Hence,

\bigcap_{j}
Ker (L_{1j})=H\geqq G’ and we have

H\approx G, G/H is abelian. Since O_{p}(G/H) is contained in the kernel of every
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irreducible F(G/H) -module, this forces that G/H is a p’ -group. By Clifford’s
theorem, G acts trivially on each M_{i} . Then, G fixes each p-regular classes
of H. This implies that G=C_{G}(h)H for any p’ -element h of H.

Note that Theorem 1 includes the well-known result k(G)\leqq|G:H|k(H) .
Lemma 3. Let K\leqq H be subgroups of G, U and V be an FH and

FK-module, respectively, and F be any fifield. Then
1) r_{H}(U)\leqq r_{K}(U) , s_{H}(U)\leqq s_{K}(U) ,
2) r_{K}(V)\leqq r_{H}(V^{H}) , rK(V)\leqq s_{H}(V^{H}) .
PROOF. 1). Let \overline{U}=U/rad_{H}(U)_{-}^{\sim}X_{1}\oplus\cdots\oplus X_{r_{H}(U)} , where X_{i} is an ir-

reducible FH-module. Set J_{K} to be the inverse image of rad_{K}(\overline{U}) by the
natural homomorphism from U to \overline{U}. Since rad_{K}(\overline{U})_{-}^{\sim}rad_{K}(X_{1})\oplus\cdots\oplus

rad_{K}(X_{r_{H^{(U}}},) , U/J_{K} has at least r_{H}(U) irreducible constituents. On the other
hand, since U/J_{K} is completely reducible FK-module, U/rad_{K}(U) contains
at least as many irreducible constituents as U/J_{K} does. Then, we have that
r_{H}(U)\leqq r_{K}(U) . Second statement is clear from soc_{K}(soc_{H}(U))\leqq soc_{K}(U) .

2). Let \overline{V^{H}}=V^{H}/rad_{K}(V)^{H}-\sim(V/rad_{K}(V))^{H} and J_{H} be the inverse image
of rad_{H}(\overline{V^{H}}) by the natural homomorphism from V^{H} to \overline{V^{H}}. Then V^{H}/J_{H}

has at least r_{K}(V) irreducible constituents. On the other hand, since V^{H}/J_{H}

is completely reducible, V^{H}/rad_{H}(V^{H}) contains at least as many irreducible
constituents as V^{H}/J_{H} . This shows that r_{K}(V)\leqq r_{H}(V^{H}) . Second statement
is clear from soc_{H}((soc_{K}(V))^{H})\leqq soc_{H}(V^{H}) .

It follows from Lemma 3 that the following holds, but it may be well-
known, since it holds by another easy observation.

COROLLARY 1. Let Irr (G) and IBr (G) be the set of all irreducible
ordinary and Brauer characters of G. Then

\sum_{c\epsilon Irr(H)}\zeta(1)\leqq\sum_{x\in Irr(G)}\chi(1)\leqq|G:H|\sum_{\zeta\epsilon Irr(H)}\zeta(1)j and

\sum_{\psi\in IBr(H)}\psi(1)\leqq\sum_{\psi\epsilon IBr(G)}\phi(1)\leqq|G:H|\sum_{\psi\in IBr(H)}\psi(1)

PROOF. Let F be an algebraically closed field of any characteristic, then
it suffices to show the second statement. From Lemma 3, it holds that

r_{H}(FH)\leqq r_{G}(FH^{G})=r_{G}(FG)\leqq r_{H}(FG)=|G:H|r_{H}(FH) .
And, r_{H}(FH) , r_{G}(FG) coincides with the desired term in the second in-
equality.

3. Firstly, we will show the following theorem, which may be an
unknown result in finite group theory.

THEOREM 2. Let B be a block of G, then it holds that l(B)\leqq n(B) ,
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in particular l(G)\leqq|P\backslash G/P| .
We can take some way to prove this theorem, and at first we consider

r_{G\cross G}(B) and s_{G\cross G}(B) as a block ideal B is an F(G\cross G) -module. Next, in
the proof of Theorem 3, we will show a more brief method which is owed
to Dr. Okuyama.

Lemma 4. Let F be a fifield of characteristic p, and B be a block
ideal of FG. Then n(B) rPxP(B) sPxP(B)

\dot{P}ROOF . Let [PxP] denote the F(P\cross P) -module whose basis consists
of all elements of a (P, P) -double coset PxP of G. Then, every indecom-
posable direct summand of B_{P\cross P} is isomorphic to some [PxP] (see [8], p .
105). Since [PxP] is a transitive permutation module over F(P\cross P) , we have
that s_{P\cross P}([PxP])=1 and hence s_{P\cross P}(B)=n(B) . Furthermore, since [PxP]
is cyclic over F(P\cross P) , it is a homomorphic image of F(P\cross P) . As F(P\cross P)

has the unique maximal submodule rad_{P\cross P}(F(P\cross P)) , a homomorphic image
does so. Therefore, r_{P\cross P}([PxP])=1 , and hence r_{P\cross P}(B)=n(B) .

PROOF OF THEOREM 2. Let F be an algebraically closed field of char-
acteristic p, and J(B) be the Jacobson radical of the ring B, then J(B)=
rad_{1\cross G}(B)\geqq rad_{G\cross G}(B) . Therefore, l(B)=r_{G\cross G}(B/J(B))\leqq r_{G\cross G}(B) . Then, Lem-
mas 3, 4 imply that r_{G\cross G}(B)\leqq r_{P\cross P}(B)=n(B) .

By another consideration of socle, it holds that l(B)=s_{G\cross G}(B) . Because,
let l(J(FG))=I be the left annihilator of J(FG) which is a tw0-sided ideal,

and let e be a primitive idempotent of FG, then Ie_{-}^{\sim}e\hat{I} as a left FG-module
(where e\hat{I} is the dual of eI), since FG is a symmetric algebra. Therefore,

we have that IeI_{-}^{-} \hat{eI}\bigotimes_{f}

, eI as an F(G\cross G) -module. Then B contains exactly

l(B) non-isomorphic irreducible F(G\cross G) submodule Ie_{1}I, \cdots , Ie_{l(B)}I. Thus,
we establishes that s_{G\cross G}(B)=l(B) . Hence, Lemmas 3, 4 imply that l(B)=
s_{GxG}(B)\leqq s_{P\cross P}(B)=n(B) .

In the following, we shall investigate the structure of a block B when
equality l(B)=n(B) holds. For example, if G=S_{4} , p=2 and B is the princi-
pal 2-block, then l(B)=n(B)=2, and furthermore, \phi_{1}(1)=1 , \phi_{2}(1)=2 for
\phi_{i}\in IBr(B) and \Phi_{1}(1)=\Phi_{2}(1)=8 , where \Phi_{i} is the character afforded by the
projective indecomposable FG-module corresponding to \phi_{i} . Now, we have
the following theorem.

THEOREM 3. Let F_{P} be the trivial FP-module, and e be the block
idempotent corresponding to B. Then, the following are equivalent ;

1) l(B)=n(B) ,
2) F_{P}^{G}\cdot e is completely reducible and multiplicity-free,
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3) \dim_{F}U=|P| for all projective indecomposable FG-module U in B.
Furthermore, if one of the above conditions holds, then
4) \dim_{F}L=a power of p for all irreducible FG-module L in B.

PROOF. Firstly, in order to prove our theorem, we will review that
l(B)\leqq n(B) by a different way from the proof of Theorem 2. Let us set
M=F_{P}^{G} . Then, we have that

n(B)=\dim_{F}Hom_{FG} {Me, Me) (

For, it holds that Hom_{FG} {Me, Me)_{-}\sim Hom_{FG} {Me, M) -\sim Hom_{FP}(Me_{P}, F_{P}) , by

Frobenius reciprocity theorem. Since FGe_{-}^{\sim} \bigoplus_{i=1}^{n(B)}[Px_{i}P] for some Px_{i}P in G,

we have from Mackey decomposition that

Me_{P-} \sim F_{P}\bigotimes_{FP}(\bigoplus_{i}[Px_{i}P])-\sim\bigoplus_{i}(F_{P^{x}i\cap P})^{P}

Thus, our assertion holds, since \dim_{F}Hom_{FP}((F_{P^{x}i\cap P})^{P}, F_{P})=1 .
Let L_{1} , \cdots , L_{l(B)} denote all non-isomorphic irreducible FG-modules in B,

then soc_{G} (Me) and Me/rad_{G} (Me) contains every L_{i} , respectively. Therefore,
\dim {}_{F}Hom_{FG} (Me/rad (Me), soc (Me))\geqq l (B), and hence we have the following
composite homomorphism

not. inc.Me-Me/rad (Me)\rightarrow soc (Me) – Me ,

where not. is the natural epimorphism, and inc. is the inclusion map. Thus
we have that n(B)=\dim_{F}Hom_{FG} {Me, Me) \geqq\dim_{F}Hom_{FG} (Me/rad (Me), soc (Me))
\geqq l(B) .

1)\Leftrightarrow 2) . Above argument implies that l(B)=n(B) if and only if Me/
rad (Me) —- soc (Me) ’ L_{1}\oplus\cdots\oplus L_{l(B)} (multiplicity-free) and Me=soc (Me).

2)O3) . Suppose that Me_{-}^{\sim}L_{1}\oplus\cdots\oplus L_{l(B)} . Then, Nakayama’s relation
(see p. 603 in [3]) implies that U_{P}-\sim FP for all projective indecomposable
FG-module U in B. Hence, 3) holds.

3)O2) . Suppose that \dim_{F}U=|P| for all U in B. Then, from Naka-
yama’s relation, Me contains every L_{i} , as composition factor, exactly once.
Therefore, it follows from Frobenius reciprocity theorem that Me must be
completely reducible and isomorphic to L_{1}\oplus\cdots\oplus L_{l(B)} .

The last statement is proved as follows. Suppose that Me_{-}^{\sim}L_{1}\oplus\cdots\oplus

L_{l(B)} , then Fronemius reciprocity theorem means that L_{iP} is an indecomposa-
ble FP-module. Since L_{i}|F_{P}^{G} , we have from Mackey decomposition that
L_{iP}|F^{G}PP-- \bigoplus_{x}(F_{P^{x}\cap P})^{P} . Therefore, L_{iP-}\sim(F_{P^{x}\cap P})^{P} for some x in G. Hence,

it holds that \dim_{F}L_{i}=|P:P^{x}\cap P| . This completes the proof of Theorem 3.
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REMARK 1. In the proof of Theorem 3, it is showed that if l(B)=n(B) ,
then L_{P}--(F_{P^{x}\cap P})^{P} for all irreducible FG-module L in B. This means that,
in our situation l(B)=n(B), every irreducible FG-module in B has a vertex
P\cap P^{x} for some x in G.

COROLLARY 2. Let B be a block of G with defect group D such that
DaP for some P\in Sy1_{p}(G) . Suppose that l(B)=n(B), then the following
hold.

1) Z(D)\leqq O_{p} (G mod Ker B), in particular, if D is abelian, then
D Ker BaG,

2) there exists a p-solvable subgroup N\wedge G such that D\in Sy1_{p}(N) , in
particular, if D=P, then G is p-solvable.

PROOF. Our assumption l(B)=n(B) implies that for every irreducible
FG-module L in B, L_{P}--F_{Q}^{P}, where Q is a vertex of L in P. By Kn\"orr

we can choose a defect group D as C_{D}(Q)\leqq Q\leqq D, in particular Z(D)\leqq Q

(see [11]). In our situation, we may take PxD. Hence Z(D)arrow P, and this
follows that Z(D) \leqq\bigcap_{L\in B} Ker L=O_{P} (G mod Ker B) from Mackey decomposition.

Thus 1) holds.
2). Let us set H=O_{p} (G mod Ker B) and \overline{G}=G/H. Then, every

block \overline{B} of \overline{G} which is contained in B satisfies that l(\overline{B})=n(\overline{B}) . For, let
\tau be the cannonical algebra homomorphism from FG onto F\overline{G}, and e be
the block idempotent of B, then there exists an FG homomorphism from
F_{P}^{G}\cdot e onto F_{\overline{P}}^{\overline{G}}\tau(e)(i. e., id\otimes\tau) . On the other hand, since l(B)=n(B) , we
have that F_{P}^{G}\cdot e is completely reducible and multiplicity-free. This means
that F_{\overline{P}}^{\overline{G}}\tau(e) is so as an F\overline{G}-module. Let \overline{e} be the block idempotent of \overline{B},
then F_{\overline{P}}^{\overline{G}}\cdot\overline{e} is also completely reducible and multiplicity-free, since it is a
direct summand of F_{\overline{P}}^{\overline{G}}\tau(e) . Hence our assertion holds. Therefore, if we
take \overline{B} with defect group \overline{D}, then the same argument in 1) shows that Z(\overline{D})\leqq

O_{p} (G- mod Ker \overline{B}). Repeating this argument, we have 2).

On the converse that 4) Q1) in theorem 3, we have the following.

COROLLARY 3. Let B be a block of G with abelian defect group D
such that D*P for some P\in Sy1_{p}(G) . Then the following are equivalent.

1) \dim_{F}L=|P:D| and \dim_{F}U=|P| for all irreducible FG-module L
and projective indecomposable FG-module U in B.

2) \dim_{F}L=|P:D| for all L in B.
3) \dim_{F}U=|P| for all U in B.

PROOF. 1) \subset\gg 2) is clear. 2) \subset\gg 3). Our assumption implies that L_{P} is
indecomposable and isomorphic to F_{D}^{P} . Since DaP, it follows from Mackey
decomposition that D Ker B=G (see Theorem (4 A) in [15]). We may
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assume that Ker B=1 . Let \overline{G}=G/D, then it is easy to see that every L
must be contained in a block of defect 0 of \overline{G} . Therefore, every projective
cover \overline{U} of L as an F\overline{G}-module has dimension |P:D| . Hence, every U in
B has dimension |D|\dim_{F}\overline{U}=|P| . 3)O^{1}). From Corollary 2, 1) we have
that D Ker B\wedge G . This implies that n(B)=v(B) (see Theorem (3 A) in [15]).

Then it follows from Theorem 3 that l(B)=v(B) , and this means that our
assertion 1) holds (see Proposition (2 C) in [15]).

COROLLARY 4. Let G be a p-solvable group. Then the statements
1), 2), 3) and 4) are equivalent.

PROOF. 4) \subset\gg 3) immediately follows from Theorem (2 B) of Fong’s [6].

REMARK 2. If D*P, then there exists an example that Corollary 2
does not hold. Let G=S_{5}, p=2 and B be the block of defect 1, then
l(B)=n(B\rangle . but Z(D) is not normal in G.

Further results on completely reducibility of F_{P}^{G}\cdot e are investigated in
[10], [12] and [12]. In [12], the group in which F_{P}^{G} is completely reducible
is called p-radical group.

EXAMPLE. 4) \subset\gg 1 ) in Theorem 3 need not hold in general. Let G=SL
(2,2^{m}) , p=2 and B be the principal block, then \phi(1) is a power of 2 for
all \phi\in IBr(B) (see p. 588 in [2]). However l(B)=2^{n}-1<n(B)=2^{n+1}-3 for
n\geqq 2 (it is verified from Proposition (2 B) in [15] and character table of
SL(2,2^{n})) .

In p-solvable group G, it is interesting to determine the structure of
G whose principal block B has the property that l(B)=n(B) . It is hoped
to obtain something about p-length of G, but we have only the following.

THEOREM 4. Let G be a p-solvable group, B_{0} be the principal block
of G. Let 1\leqq O_{p’}(G)\leqq O_{p’p}(G)\leqq\cdots\leqq G(^{*}) be the lower p-series of G.
Then the following are equivalent.

1) \phi(1) is a power of p for all \phi\in IBr(B_{0}) .
2) Let \overline{G}=G/O_{p’}(G) . Then, each p’ factor \overline{H}/\overline{K} appeared in (^{*}) is

abelian, and for each \acute{p} -composition factor \overline{L}/\overline{N} of \overline{G} which is afforded
by a refifinement of (^{*}),\overline{L} acts trivially on IBr (\overline{N}) .

3) Each p’ factor \overline{H}/\overline{K} appeared in (^{*}) is abelian, and every \psi\in IBr(\overline{K})

is extendible to \overline{H}.
PROOF. We may assume that O_{p’}(G\rangle =1, and hence for any subnormal

subgroup L of G, O_{p’}(L)=1 and L has only the principal block.
1)\theta^{\underline{9}}) . Let H/K be a p’ -factor appeared in (^{*}) . Let \theta\in IBr(H/K) ,

then \theta has \acute{p} -degree. On the other hand, the theorem of Clifford implies



On the number of irreducible characters in a finite group 81

that IBr (H) satisfies 1). This follows that \theta is linear, and H/K is abelian.
Let L/N be a p’ -composition factor satisfying the condition in 2), then

since L is subnormal in G, IBr (L) satisfies 1). Then, again, the theorem
of Clifford means that L acts trivially on IBr (N).

2)\subset 23) . It is known the following lemma by the same way of C-
characters (for details, refer to sections 51, 53 in [3] and section 11 in [9]).

Lemma 5. Let F be an algebraically closed fifield of any characteristic,
H\Leftrightarrow G and G/H be cyclic. Suppose \psi is a G-invariant irreducible F-
character (Brauer character) of H, then \psi is extendible to G.

Let H/K be a p’ -factor appeared in (^{*}) . Then 2) implies that every
composition factor L/N of H/K is cyclic, and every \psi\in IBr(N) is L-invariant.
Hence it follows from Lemma 5 that \psi is extendible to L. Repeating this
process, we have that every irreducible Brauer character of K is extendible
to H.

3)\subset\gg 1) . Let H be the maximal subgroup appeared in (^{*}) . Then H
satisfies the condition 3), and hence IBr (H) satisfies 1) by induction on |G| .

If |G:H| is a power of p, then U^{G} is indecomposable for every inde-
composable FH-module U by Green’s theorem (p. 337 in [4]). Then it fol-
lows from Nakayama’s relation that \phi_{H}=\psi\in IBr(H) or \phi_{H}=\psi_{1}+\cdots+\psi_{r} ,
where \psi_{i} are distinct G-conjugate irreducible Brauer characters of H and
r=|G:I_{G}(\psi_{1})| which devides |G:H| ( = a power of p). This implies that
\phi(1) is a power of p for every \phi\in IBr(G) .

If |G:H| is prime to p, then 3) implies that every \psi\in IBr(H) is
extendible to G. Hence IBr (G) satisfies 1). This completes the proof of
Theorem 4.
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