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In [11] we have studied those rings with trivial preradical ideals. Dually
in this paper, we shall investigate rings for which every nonzero (idempotent,
left exact or cohereditary, etc.) preradical or radical is cofaithful in the sense
of [10]. Among other things we prove the following theorems.

THEOREM I. The following properties are equivalent for a ring R :

(1) Every nonzero left exact radical for R-mod is cofaithful.
(2) There exist only two left exact radicals for R-mod.
(3) Every nonzero injective left R-module is a cogenerator for R-mod.
(4) Every nonzero QF-3’ left R-module is a cogenerator for R-mod.
(5) ([8]) R is left ChC.
(6) R is left CTF and left Kasch.

THEOREM II. The following properties are equivalent for a ring R :
(1) Every nonzero cohereditary radical for R-mod is cofaithful.
(2) Every nonzero left ideal of R is cofaithful.
(3) If a(\neq 0)\in R and RQ is injective, then RaQ=Q.
(4) If \sigma is a preradical for R-mod, then either \sigma(E(R))=0 or \sigma(E(R))

=E(R) .
(5) If \sigma is a radical for R-mod, then either \sigma(E(R))=0 or \sigma(E(R))=

E(R) .
(6) If \sigma is a left exact preradical for R-mod, then either \sigma(E(R))=0

or \sigma(E(R))=E(R) .
(7) R is left SP.
(8) R is left SSP and left CTF.

THEOREM III. The following properties are equivalent for a ring R :
(1) Every nonzero preradical for R-mod is cofaithful.
(2) Every nonzero radical for R-mod is cofaithful.
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(3) Every nonzero idempotent preradical for R-mod is cofaithful.
(4) Every nonzero left exact preradical for R-mod is cofaithful.
(5) Every nonzero factor module of an injective left R module is a

cogenerator for R-mod.
(6) Every nonzero factor module of E(R) is a cogenerator for R-mod.
(7) R is left SP and left ChC.
(8) R is left SP and left Kasch.
(9) R is left SP and has nonzero socle.
(10) R is left ChC and left weakly regular.
(11) R is simple artinian.
(12) There exist only two preradicals for R-mod.
(13) There exist only two radicals for R-mod.
(14) There exist only two idempotent preradicals for R-mod.
(15) ([4]) There exist only two left exact preradicals for R-mod.

1. Preliminaries
Let R be a ring with identity and R-mod the category of all unital left

R-modules. We denote by E(M) the injective hull of RM. We refer for
the definitions and basic properties concerning preradicals and torsion theories
to [10], [11], [12] and [14], but we shall briefly summarize them. To a
preradical \sigma for R-mod, one associate the pair (T(\sigma), F(\sigma)) of classes of
modules in R-mod given by

T(\sigma)=\{_{R}X|\sigma(X)=X\} and F(\sigma)=\{_{R}X|\sigma(X)=0\} .
For a module RQ, we define an idempotent preradical t_{Q} and a radical k_{Q}

for R-mod by

t_{Q}(M)= \sum\{{\rm Im}(\alpha)|\alpha\in Hom_{R}(Q, M)\}

k_{Q}(M)=\cap\{Ker(\beta)|\beta\in Hom_{R}(M, Q)\}

for each M\in R- mod . With respect to the partial ordering in the class of
all preradicals for R-mod, the identity functor 1 is the largest member and the
functor 0, defined by 0(M)=0 for all M\in R- mod , is the smallest one. For
each preradical \sigma, there exists a largest idempotent preradical \hat{\sigma} smaller
than \sigma, and there exists a smallest radical \overline{\sigma} larger than \sigma([14, p137]) .
Furthermore, there exists a left exact preradical h(\sigma) defined by h(\sigma)(M)=

M\cap\sigma(E(M)) for all M\in R- mod , and there exists a cotorsion radical ch(\sigma)

defined by ch(\sigma)(M)=\sigma\langle R)M for all M\in R- mod . Recall that a preradical
\sigma for R-mod is said to be faithful if \sigma(P)=0 for every pfojective P\in R- mod .
It is easy to see that a preradical \sigma is faithful if and only if \sigma(R)=0 . Dually,
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a preradical \sigma for R-mod is said to be cofaithful if \sigma(Q)=Q for every injec-
tive Q\in R -mod ([10]). Also, a module RI is called cofaithful if I generates
all injective left R-modules.

Lemma 1. 1 ([1, p88]) . E(R) is cofaithful. Hence a module RI is
cofaithful if and only if I generates E(R) .

Lemma 1. 2 ([1, p89]) . A module RI is cofaithful if and only if RR

can be embedded in some fifinite direct sum \oplus_{i=1}^{n}I.
In case I is a left ideal of R, we have

Lemma 1. 3. Let I be a left ideal of R and RQ an injective module.
Then IQ=Q if and only if I generates Q. Hence a left ideal I is cofaithful
if and only if IE(R)=E(R) .

PROOF. Suppose IQ=Q and consider, for each x\in Q , the mapping \theta_{x} :
Iarrow Q defined by \theta_{x}(r)=rx for all r\in I. Then the induced homomorphism
\oplus\theta_{x} : \oplus_{x\in Q}Iarrow Q is surjective, i . e . I generates Q.

Conversely, suppose that we have a surjective homomorphism \psi:\oplus_{A}Iarrow Q

for some index set \Lambda . Put \alpha:\oplus_{A}Iarrow\oplus_{A}R the canonical inclusion mapping,
and \eta_{i} : Rarrow\oplus_{\Lambda}R the canonical injection mapping for each i\in\Lambda . Since Q
is injective, there exists a homomorphism \psi:\oplus_{A}Rarrow Q such that \psi\alpha=\phi .
Now, for each x\in Q , there exists some a= \sum_{i=1}^{n}a_{i}\in\oplus_{A}I such that x=\phi(a) .
Therefore x= \psi\alpha(a)=\psi(\sum_{i=1}^{n}\eta_{i}(a_{i}))=\sum_{i=1}^{n}(\psi\eta_{i})(a_{i})=\sum_{i=1}^{n}a_{i}(\psi\eta_{i})(1)\in IQ , which
means Q=IQ.

Lemma 1. 4. The following conditions are equivalent for a preradical
\sigma for R-mod :

(1) \sigma is cofaithful.
(2) ([10]) \sigma(E(R))=E(R) .
(3) ([15]) \sigma(E(R))\supseteq R .
(4) \sigma\geqq t_{E(R)} .
PROOF. (1)\Leftrightarrow(2) . This is done by Lemma 1. 1, since T(\sigma) is closed

under direct sums and factors.
(2)\Rightarrow(4) . For each M\in R-mod and f\in Hom_{R}(E(R), M) , we have f(E(R))

=f(\sigma(E(R)))\subseteq\sigma(M) . Hence t_{E(R)}(M)\subseteq\sigma(M) , which means t_{E(R)}\leqq\sigma.
(4)\Rightarrow(3) . By assumption we have \sigma(E(R))\supseteq t_{E(R)}(E(R))=E(R)\supseteq R .
(3)\Rightarrow(1) . This was proved in [15, Corollary 2. 2].

To illustrate cofaithfulness of preradicals, we shall give two examples.

EXAMPLE 1. 1. The basic one of cofaithful preradicals is an idempotent
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radical t_{E(Z)} for Z-mod, where Z is the ring of integers, whose torsion class
T(t_{E(Z)}) consists of the divisible modules and torsionfree class F(t_{E(Z)}) consists
of the reduced modules.

EXAMPLE 1. 2. We shall give examples of a cofaithful cotorsion radical
and anexa ct radical which is not cofaithful. Let R be the ring of 2\cross 2 upper

triangular matrices over a field K. It was above that E(R)=(\begin{array}{ll}K KK K\end{array})([3]) .

Put I=(\begin{array}{ll}0 K0 K\end{array}) and J=(\begin{array}{ll}K K0 0\end{array}) . Since I is an idempotent ideal of R, the

radical \sigma for R-mod defined by \sigma(M)=IM for all M\in R-mod is cotorsion.

Because \sigma(E(R))=(\begin{array}{ll}0 K0 K\end{array})(\begin{array}{ll}K KK K\end{array}) =(\begin{array}{ll}K KK K\end{array}) =E(R) , \sigma is cofaithful. Now put \tau

by \tau(M)=JM for all M\in R- mod . Since J is idempotent and (R/J)_{R} is flat,
\tau is an exact radical for R-mod. But \tau is not cofaithful because \tau(E(R))=

(\begin{array}{ll}K K0 0\end{array})(\begin{array}{ll}K KK K\end{array})=(\begin{array}{ll}K K0 0\end{array})\neq E(R) . Now by a routine computation, we have

t_{E(R)}(R)=I. Since E(R) is projective, t_{E(R)} is a cotorsion radical. Thus we
notice that t_{E(R)} coincides with above \sigma .

In \S 2, we shall study those rings R for which every nonzero preradical
(or radical, cohereditary radical, etc.) \sigma for R-mod is cofaithful. In \S 3, as
a slight weaker condition, we shall consider those rings R satisfying that,
for all \sigma as in \S 2, either \sigma(E(R))=0 or \sigma(E(R))=E(R) holds. In \S 4, we
shall compare those rings discussed in \S 2 and \S 3 and give examples to
distinguish them. Some of them were investigated by several authors by
different approaches. So we recall the definitions of those rings. A ring R
is called left R if \sigma(’R)=0 for every idempotent radical \sigma\neq 1 for R-mod. A
ring R is called left SP if \sigma(R)=0 for every left exact preradical \sigma\neq 1 for
R-mod. A ring R is called left CTF if \sigma(R)=0 for every left exact radical
\sigma\neq 1 for R-mod. Some equivalent properties of those rings are summa-
rized in [11, p71] . A ring R is called left ChC if Hom_{R}(C_{1}, C_{2})\neq 0 for
every nonzero cyclic modules {}_{R}C_{1} and {}_{R}C_{2}([8, p96]) . A ring R is called
left SSP if every essential left ideal of R is cofaithful ([7]).

2. Several rings classified by its preradicals (I)

To begin with, we have the following proposition, in which the equiva-
lence of (4) and (7) was proved in [4],

PROPOSITION 2. 1. The following properties are equivalent for a ring
R :

(1) Every nonzero preradical for R-mod is cofaithful.
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(2) Every nonzero idempotent preradical for R-mod is cofaithful.
(3) Every nonzero left exact preradical for R-mod is cofaithful.
(4) R is simple artinian.
(5) There exist only two preradicals for R-mod.
(6) There exist only two idempotent preradicals for R-mod.
(7) There exist only two left exact preradicals for R-mod.

PROOF. (1)\Rightarrow(2)\Rightarrow(3) . Clear.
(3)\Rightarrow(4) . Since soc is a nonzero left exact preradical for R-mod, where

soc(M) denotes the socle of M\in R- mod , we have soc{E(R) ) =E(R) by (3).
Hence R must be completely reducible. Suppose that R is not prime. Then
we have a non-trivial ring decomposition R=S\oplus T Since S is an idempotent
ideal such that (R/S)_{R} is flat, the radical \sigma for R-mod defined by \sigma(M)=

SM for all M\in R-mod is (left) exact. Since \sigma(S)=SS=S, we have \sigma\neq 0

and so \sigma(E(R))=E(R) . Hence we obtain \sigma(R)=R\cap\sigma(E(R))=R, i . e . \sigma=1 .
But we also have \sigma(T)=ST=0 , which is a contradiction.

(4)\Rightarrow(5) . Let \sigma\neq 1 be a preradical for R-mod. Since \sigma(R) is a proper
ideal of R, we have \sigma(R)=0 . Thus for a minimal left ideal I of R, \sigma(I)\subseteq

\sigma(R)=0 . Now for each R-mod, there exists an index set \Lambda such that
M=\oplus_{A}M_{\lambda} , where M_{\lambda}\cong I for each \lambda\in\Lambda . Therefore we have \sigma(M)=\oplus_{A}\sigma(M)

=0, which means \sigma=0 .
(5)\Rightarrow(6)\Rightarrow(7)\Rightarrow(1) . Clear.
In the next theorem, we consider the ring R in which every nonzero

radical for R-mod is cofaithful. Such a ring is in fact simple artinian which
will be proved in \S 4.

THEOREM 2. 2. The following properties are equivalent for a ring R :
(1) Every nonzero radical for R-mod is cofaithful.
(2) If Q\in R-mod satisfifies k_{Q}\neq 0 , then k_{Q} is cofaithful.
(3) Every nonzero factor module of an injective left R module is

a cogenerator for R-mod.
(4) Every nonzero factor module of E(R) is a cogenerator for R-mod.

PROOF. Recall that, for a Q\in R- mod , k_{Q}=0 if and only if Q is a
cogenerator for R-mod, and k_{Q} is cofaithful if and only if Hom_{R}(E(R), Q)=0 .

(1)\Rightarrow(3) . Let RA be an injective module and B its proper submodule.
For a fixed x\in A\backslash B, there exists g\in Hom_{R}(E(R), A) such that q(1)=x.
Hence Hom_{R}(E(R), A/B)\neq 0 and so the radical k_{A/B} is not cofaithful. Thus
k_{A/B} must be zero.
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(3)\Rightarrow(4) . Clear.
(4)\Rightarrow(2) . Assume that k_{Q} is not cofaithful. Take any f(\neq 0)\in Hom_{R}

(E(R), Q) . Then Im (f) is a cogenerator for R-mod. Hence Q is also a
cogenerator for R-mod, and so k_{Q}=0 .

(2)\Rightarrow(1) . Let \sigma be a nonzero radical for R-mod. Then there exists a
class \eta of modules in R-mod such that \sigma=k_{\eta}=\bigcap_{Q\in\eta}k_{Q}[11] . Hence k_{Q}\neq 0

and so k_{Q}(E(R))=E(R) for all Q\in\eta . Thus \sigma(E(R))=E(R) as desired.

PROPOSITION 2. 3. The following properties are equivalent for a ring
R :

(1) Every nonzero idempotent radical for R-mod is cofaithful {in this
case we call R left IRC).

(2) Every radical \sigma for R-mod with T(\sigma)\neq\{0\} is cofaithful.
(3) If RM satisfifies T(k_{M})\neq\{0\} , then E(R)\in T(k_{M}) .
(4) If RA and RB satisfy Hom_{R}(A, B)=0, then either A=0 or Hom_{R}

(E(R), B)=0.
(5) Every nonzero module RA satisfifies F(t_{A})\subseteq F(t_{E(R)}) .
(6) Every nonzero idempotent preradical \sigma for R-mod satisfifies F(\sigma)\subseteq

F(t_{E(R)}) .
(7) Every nonzero idempotent radical \sigma for R-mod satisfifies F(\sigma)\subseteq

F(t_{E(R)}) .

PROOF. (1)\Rightarrow(2) . Let \sigma be a radical with T(\sigma)\neq\{0\} . Then we notice
that \hat{\sigma} is an idempotent radical for R-mod with T(\hat{\sigma})=T(\sigma) .

(2)\Rightarrow(3) . This is clear by Lemma 1. 4.
(3)\Rightarrow(4) . Let RA(\neq 0) and RB satisfy Hom_{R}(A, B)=0 . Then 0\neq A\in

T(k_{B}) and so E(R)\in T(k_{B}) by (3).

(4)\Rightarrow(5) . Let RA\neq 0 and RB\in F(t_{A}) . Then Hom_{R}(A, B)=0 which
implies Hom_{R}(E(R), B)=0 by (4). Thus we have RB\in F(t_{E(R)}) .

(5)\Rightarrow(6) . Let \sigma be a nonzero idempotent preradical for \^i-mod. Then
there exists a class \zeta of modules in R-mod such that \sigma=\sum_{Q\in\zeta}t_{Q}[11] . Since
\sigma\neq 0 , there exists a RQ\in\zeta satisfying t_{Q}\neq 0 . Note that Q\neq 0 . Now for
each RX\in F(\sigma) , \sigma(X)=0 implies t_{Q}(X)=0 . Hence X\in F(t_{Q})\subseteq F(t_{E(R)}) by (5).

(6)\Rightarrow(7) . Clear.
(7)\Rightarrow(1) . Assume that \sigma is a nonzero idempotent radical for R-mod.

Then we have F(\sigma)\subseteq F(t_{E(R)})=F(\overline{t}_{E(R)}) . Thus T(\sigma)\supseteq T(\overline{t}_{E(R)}) and so \sigma\geqq\overline{t}_{E(R)}

\geqq t_{E(R)} . Hence \sigma is cofaithful by Lemma 1. 4.

We called that a module RQ is QF-3’ if k_{Q} is left exact ([12]). Every
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cogenerator for R-mod is QF-3’ . The next theorem deals with a ring
satisfying the converse statement.

THEOREM 2. 4. The following properties are equivalent for a ring R :
(1) Every nonzero left exact radical for R-mod is cofaithful.
(2) Every nonzero QF-3’ left R-module is a cogenerator for R-mod.
(3) Every nonzero injective left R-module is a cogenerator for R-mod.
(4) There exist only two left exact radicals for R-mod.
(5) ([6]) R is left semiartinian and all simple left R-modules are

isomorphic.
(6) ([2]) R is left CTF and soc (_{R}R)\neq 0 .
(7) ([5]) R is isomorphic to the ring of all n\cross n matrices over a

local right perfect ring for some n.
(8) ([8]) R is left ChC.
PROOF. (1)\Rightarrow(2) . Let RQ be a nonzero QF-3’ module. Then k_{Q} is left

exact. If k_{Q}\neq 0 , by (1) Q=k_{Q}(Q) , a contradiction. Hence k_{Q}=0 .
(2)\Rightarrow(3) . Clear.
(3)\Rightarrow(4) . Let \sigma be a left exact radical for R-mod. It is well known

that there exists an injective module RQ such that \sigma=k_{Q} . If Q=0, then
\sigma=k_{0}=1 . If Q\neq 0 , then (3) implies \sigma=k_{0}=0 .

(4)\Rightarrow(1) . Clear.

In the references [6], [2], [5] and [8] it was proved that (4) is equi-
valent to each of (5), (6), (7) and (8).

PROPOSITION 2. 5. The following properties are equivalent for a ring
R :

(1) Every nonzero cohereditary radical for R-mod is cofaithful.
(2) If I is a nonzero ideal of R, then IE(R)=E(R) .
(3) If L is a nonzero left ideal of R, then LE(R) E(R) .
(4) Every nonzero left ideal of R is cofaithful.
(5) ([16]) Every nonzero left ideal of R generates E(R) .
(6) R is left SP.
Note that the word “left ideal” in conditions (3), (4) and (5) can be

replaced by “cyclic left ideal”-

PROOF. (1)\Leftrightarrow(2) . A preradical \sigma for R-mod is cohereditary if and only
if \sigma(M)=\sigma(R)M for all M\in R- mod . In this case \sigma\neq 0 if and only if \sigma(R)\neq 0 .
Hence we have the equivalence (1)\Leftrightarrow(2) .

(-)\Leftrightarrow(3) . Clear.
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(3)\Leftrightarrow(4)\Leftrightarrow(5) . This is clear by Lemmas 1. 1 and 1. 3.
(5)\Leftrightarrow(6) . This was proved in [16].

Now we have an analogous characterization for left SSP rings.

PROPOSITION 2. 6. The following properties are equivalent for a ring
R :

(1) R is left SSP.
(2) ([13]) If L is an essential left ideal of R, then LE(R) E(R) .
(3) Every essential left ideal of R generates E(R) .
PROOF. This is clear by Lemmas 1. 1 and 1. 3.

PROPOSITION 2. 7. The following properties are equivalent for a ring
R :

(1) Every nonzero cotorsion radical for R-mod is cofaithful {in this
case we call R left CC).

(2) If I is a nonzero idempotent ideal of R, then IE(R)=E(R) .
(3) Every nonzero idempotent ideal of R generates E(R) .
(4) Every nonzero idempotent ideal of R is cofaithful.
PROOF. Recall that a preradical \sigma for R-mod is cotorsion if and only

if \sigma(R) is an idempotent ideal and \sigma(M)=\sigma(R)M for all jR- mod. Hence
we have the equivalences by Lemmas 1. 1 and 1. 3.

PROPOSITION 2. 8. The following properties are equivalent for a ring
R :

(1) Every nonzero exact radical for R-mod is cofaithful.
(2) There exist only two exact radicals for R-mod (i . e. , R is left E2

[11, Theorem 5. 4] ) .
PROOF. (2)\Rightarrow(1) . Clear.
(1)\Rightarrow(2) . Let \sigma be a nonzero exact radical for R-mod. Since \sigma is left

exact and cofaithful, \sigma(R)=R\cap\sigma(E(R))=R\cap E(R)=R, proving \sigma=1 .

3. Several rings classified by its preradicals (II)

Let RM be a module. A submodule RN of M is called a torsion sub-
module of M if N=\sigma(M) for some idempotent radical \sigma for R-mod. It is
known that N is a torsion submodule of M if and only if Hom_{R}(N, M/N)=0

([2, Proposition 2. 6] or [9, Lemma 1]). Obviously if R is left IRC, then
every injective left R-module has no non-trivial torsion submodules. It was
proved that a ring R is left R if and only if RR has no non-trivial torsion
submodules ([2, Proposition 1. 10]). Now the next proposition is clear.
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PROPOSITION 3. 1. The following properties are equivalent for a ring
R :

(1) E(R) has no non-trivial torsion submodules, i. e. , if \sigma is an idempO-
tent radical for /2-m0d, then either \sigma(E(R))=0 or \sigma(E(R))=E(R) (in this
case we call R left DR).

(2) If K is a non-trivial submodule of E(R), then Hom_{R}(K, E(R)/K)
\neq 0 .

THEOREM 3. 2. The following properties are equivalent for a ring R :
(1) If \sigma is a preradical for R-moA, then either \sigma(E(R))=0 or \sigma(E(R))=

E(R) .
(2) If \sigma is an idempotent preradical for R-mod, then either \sigma(E(R))=

0 or \sigma(E(R))=E(R) .
(3)\backslash If \sigma is a left exact preradical for R-mod, then either \sigma(E(R\})=0

or \sigma(E(R))=E(R) , i . e. , \sigma is either faithful or cofaithful.
(4) If \sigma is a radical for R-mod, then either \sigma(E(R))=0 or \sigma(E(R))=

E(R) .
(5) If \sigma is a cohereditary radical for R-mod, then either \sigma(E(R))=0

or \sigma(E(R))=E(R) .
(6) R is left SP.
PROOF. (1)\Rightarrow(2)\Rightarrow(3) . Clear.
(3)\Rightarrow(4) . Let \sigma be a radical for R-mod. Then a left exact preradical

h(\sigma) satisfies either h(\sigma)(E(R))=0 or h(\sigma)(E(R))=E(R) by (3). Hence we
obtain (4) by noticing that h(\sigma)(E(R))=\sigma(E(R)) .

(4)\Rightarrow(5) . Clear.
(5)\Rightarrow(6) . Let I be a nonzero ideal of R. Consider a cohereditary radical

\sigma for R-mod defined by \sigma(M)=IM for each M\in R- mod . Since \sigma\neq 0 , we
have IE(R)=\sigma(E(R))=E(R) by (5). Hence R is left SP by Proposition 2. 5.

(6)\Rightarrow(1) . Let \sigma be a preradical for R-mod. Since h(\sigma) is left exact, we
have either h(\sigma)(R)=0 or h(\sigma)=1 . In the former case we have \sigma(E(R))=0 .
In the latter case we have \sigma(E(R))=h(\sigma)(E(R))=E(R) .

PROPOSITION 3. 3. The following properties are equivalent for a ring
R :

(1) If \sigma is a left exact radical for R-mod, then either \sigma(E(R))=0

or \sigma(E(R))=E(R) .
(2) Every nonzero injective left R-module cogenerates E(R) .
(3) Every nonzero injective left R-module cogenerates all projective

left R-modules.
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(4) R is left CTF.
PROOF. (1)\Rightarrow(2) . Let RQ be a nonzero injective module. Then we

obtain the left exact radical k_{Q}\neq 1 for R-mod. By assumption k_{Q}(E(R))=0 ,

which means that Q cogenerates E(R) .
(2)\Rightarrow(3) . This is clear by noticing that, if a module cogenerates RR,

then it also cogenerates all (free and so) projective left R-modules.
(3)\Rightarrow(4) . For each left exact radical \sigma\neq 1 for R-mod, there exists an

injective module RQ such that \sigma=k_{Q} . Since RQ\neq 0 , R is cogenerated by Q.
Using Q\in F(\sigma) , we have R\in F(\sigma) .

(4)\Rightarrow(1) . Let \sigma be a left exact radical for R-mod. By assumption either
\sigma=1 or \sigma(R)=0 . Thus we obtain (1), since F(\sigma) is closed under injective

huUs.
Recall that, if \tau is a left exact preradical for R-mod, then \tau(M) is

essential in \overline{\tau}(M) for all M\in R- mod .

COROLLARY 1. Let R be a left CTF ring. If \sigma is a preradical for
R-mod, then either \sigma(E(R)1=0 or \sigma(E(R)) is essential in E(R) .

PROOF. For a preradical \sigma for R-mod, consider the left exact radical
\overline{h(\sigma)} for R-mod. Then either \overline{h(\sigma)}(E(R))=0 or \overline{h(\sigma)}(E(R))=E(R) . In the
former case we have \sigma(E(R))=h(\sigma)(E(R))=0 . In the latter case, since
h(\sigma) is left exact, \sigma(E(R))=h(\sigma)(E(R)) is essential in E(R) .

Recall also that a ring R is left Kasch if and only if E(R) is a cogenera-

tor for R-mod.

COROLLARY 2. (1) A ring R is left ChC if and only if R is left
CTF and left Kasch.

(2) Let R be a left CTF ring. Then R is left Kasch if and only if
soc (_{R}R)\neq 0 .

PROOF. (1) The “only if” part is clear by Theorem 2. 4. To prove

the “if” part, let RQ\neq 0 be an injective module. Since Q cogenerates E(R)

by Proposition 3. 3 and E(R) is a cogenerator for R-mod, Q is a cogenerator

for R-mod. Hence R is left ChC by Theorem 2. 4.

(2) This is clear by Theorem 2. 4 combined with above (1).

PROPOSITION 3. 4. The following properties are equivalent for a ring
R :

(1) If \sigma is a cotorsion radical for R-mod, then either \sigma(E(R))=0 or
\sigma(E(R))=E(R) .
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(2) R is left CC.
PROOF. This is clear by Proposition 2. 7.

PROPOSITION 3. 5. The following properties are equivalent for a ring
R :

(1) If \sigma is an exact radical for R-mod, then either \sigma(E(R))=0 or
\sigma(E(R))=E(R) .

(2) R is left E2.

PROOF. The same proof of Proposition 2. 8 is valid.

4. Some relations and examples

In this section, we shall compare those rings discussed in the previous
sections. First of all we shall prove the following

PROPOSITION 4. 1. (1) A left IRC ring is left DR.
(2) A left SP ring is left DR.
(2) A left DR ring is left CTF.
(4) A left DR ring is left CC.
PROOF. (1). Clear.
(2). Suppose that R is a left SP ring and \sigma is an idempotent radical

such that \sigma(E(R))\neq 0 . Since h(\sigma) is left exact and h(\sigma)(R)=R\cap\sigma(E(R))\neq 0 ,
h(\sigma) must be 1 by assumption. Hence we have E(R)=h(\sigma)(E(R))=\sigma(E(R)) ,
which means that R is left DR.

(3). Let \sigma be a left exact radical for R-mod. Since \sigma is an idempotent
radical, we have either \sigma(E(R))=0 or \sigma(E(R))=E(R) . In the former case
we have \sigma(R)=0 . In the latter case, since \sigma is left exact, we have \sigma(R)=

R\cap\sigma(E(R))=R , i . e . \sigma=1 .
(4). Let R be a left DR ring. Assume that I is a nonzero idempotent

ideal of R. Consider the cotorsion radical \sigma for R-mod defined by \sigma(M)=IM

for all M\in R- mod . Since \sigma is an idempotent radical and \sigma(E(R))=IE(R)\supseteq

IR=I\neq 0 , we have IE(R)=\sigma(E(R))=E(R) by assumption.

In the next proposition, we give another characterizations of left IRC
rings.

PROPOSITION 4. 2. The following properties are equivalent for a ring
R :

(1) R is left IRC.
(2) R is left DR and left ChC.
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(3) R is left DR and soc (_{R}R)\neq 0 .
(4) R is left DR and left Kasch.

PROOF. (1)\Rightarrow(2) . Clear.
(2)\Rightarrow(3) . Each left \tilde{C}hC ring R satisfies soc (_{R}R)\neq 0 by Theorem 2. 4.
(3)\Leftrightarrow(4) . Since “left DR” implies “left CFT” by Proposition 4. 1, this

is proved by applying Corollary 2 of Proposition 3. 3.
(4)\Rightarrow(1) . Let \sigma be an idempotent radical for R-mod with \sigma(E(R))=0 .

We have to show that \sigma=0 . Since E(R)\in F(\sigma) and E(R) is a cogenerator
for R-mod, every left R-module is a-torsionfree.

THEOREM 4. 3. The following properties are equivalent for a ring R :

(1) Every nonzero radical for R-mod is cofaithful {see Theorem 2. 2).

(2) R is left SP and left ChC.
(3) R is left SP and left Kasch.
(4) R is left SP and soc (_{R}R)\neq 0 .
(5) R is simple artinian.
(6) There exist only two radicals for R-mod.
(7) R is left ChC and left weakly regular.

PROOF. (1)\Rightarrow(2) . This is clear by Proposition 2. 5 and Theorem 2. 4.

(2)\Rightarrow(3) . Every left ChC ring is left Kasch by Theorem 2. 4.
(3)\Rightarrow(4) . Since “left SP” implies “left CTF” by definitions, this is

proved by applying Corollary 2 of Proposition 3. 3.

(4)\Rightarrow(5) . By Proposition 2. 5, soc (_{R}R) generates E(R) . Hence E(R) is
completely reducible, and so is R. But since R is prime, we see that R

is simple artinian.
(5)\Rightarrow(6) . This is clear by Proposition 2. 1.
(5)\Rightarrow(7) and (6)\Rightarrow(1) . Clea r .
(7)\Rightarrow(2) . Since “left ChC” implies “left E2”, R is a simple ring by

[11, Corollary 5. 7]. Thus R is left SP.

PROPOSITION 4. 4. The following properties are equivalent for a ring
R :

(1) R is left SP.
(2) R is left SSP and left CTF.
PROOF. (1)\Rightarrow(2) . Clear.
(2)\Rightarrow(1) . Let \sigma\neq 1 be a left exact preradical for \^i-mod. Since R is

left SSP, we obtain \overline{\sigma}\neq 1 by [7, Theorem 1]. Now since R is left CTF,
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we have \overline{\sigma}(R)=0 and so \sigma(R)=0 . Hence R is left SP.

Finally, we shall give some examples to distinguish those rings to be
refered.

EXAMPLE 4. 1. We have an example of left IRC ring which is not

left SP. Put R=\{(\begin{array}{ll}a 0b a\end{array})|a , b\in K\} , where K is a field. Then R is a com-

mutative artinian ring with a unique non-trivial ideal J=(\begin{array}{ll}0 0K0 \end{array}) . Moreover

R is self-injective and satisfies Hom_{R}(J, R/J)\neq 0 . Thus R is (left) DR, and
so is IRC by Proposition 4. 2. But since R is not semiprime, R is not SP.

EXAMPLE 4. 2. Consider the ring Z of integers. Clearly Z is SP but
not ChC

EXAMPLE 4. 3. There exists a left DR ring which is not left SSP.
To prove this, let R=Z/(p^{n}) , where p is a prime and n is an integer greater

than 1. Since R is left R ([11, Example 3. 9]) and E(R)=R, we see that
R is (left) DR, But R is not SSP, because IE(R)\neq E(R) for some (and every)

proper essential ideal I of R.

EXAMPLE 4. 4. There exists a left SSP ring which is not left CC.
Let R=Z\cross Z. Since Z is (left) SP, R is left SSP ( [7, Theorem 1]). By

a routine verification, we have E(R)=Q\cross Q , where Q is the additive group

of rational numbers. Now I=(Z, 0) is a nonzero idempotent ideal and does
not generate E(R) , and so R is not CC.

EXAMPLE 4. 5. We shall give an example of left CC ring which is not

left CTF. Consider R=Z\cross Q/Z. Define the addition on R by component

wise and the multiplication on R by
(a, x)\cdot(b, y)=(ab, ay+bx)1

Then R is a commutative ring ([14, p45]) without non-trivial idempotent

ideals, and so R is CC Since for 0\neq w=(0,1/2+Z)\in R , Ann_{R}(w)=(2Z,

Q/Z1 is not T-nilpotent, R is not CTF by [2, Corollary 1. 4].

EXAMPLE 4. 6. Every left CC ring is left E2. But the converse is

not true. For a counter example, let R=\{(\begin{array}{ll}a 00b c0d ea\end{array})|a, b, c, d and e\in K\} ,

where K is a field. It was proved that R is a left E2 ring [11, Example

5. 9]. By aroutine computation, we have E(R)=\{(_{de}^{af}bc00)a|a, b, c, d, e and
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f\in K\} . Since I=(\begin{array}{ll}0 00K K0K K0\end{array}) is an idempotent ideal of R and IE(R)=I\neq

E(R) , we see that R is not left CC.

A table of rings
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