A family of difference sets having

-1 as an invariant

By Masahiko Miyamoto

(Received May 29, 1982)

A construction is given for difference sets having -1 as an invariant, whose parameters are

$$
v=\frac{1}{2} 3^{s+1}\left(3^{s+1}-1\right), k=\frac{1}{2} 3^{s}\left(3^{s+1}+1\right), \lambda=\frac{1}{2} 3^{s}\left(3^{s}+1\right), n=3^{2 s}(s \text { even })
$$

Let G be a finite group of order v. A subset D of order k is called a difference set in G with parameters (v, k, λ, n) in case every non-identity element g in G can be expressed in exactly λ way as $g=d_{1}^{-1} d_{2}$ with $d_{1}, d_{2} \in D$. The parameter n is defined by $n=k-\lambda$. For any integer t, let $D(t)$ denote the image of D under the mapping $g \rightarrow g^{t}, g \in G$. If the mapping is an automorphism of G and $D(t)$ is a translate of D, then t is called a multiplier of D. But even if it is not an automorphism, $t=-1$ has an important property, that is, it makes a non-direct graph which has a regular automorphism.

In this paper, we will show an infinite series of difference sets having -1 as an invariant. Spence [1] showed a family of difference set with parameters

$$
v=\frac{1}{2} 3^{s+1}\left(3^{s+1}-1\right), k=\frac{1}{2} 3^{s}\left(3^{s+1}+1\right), \lambda=\frac{1}{2} 3^{s}\left(3^{s}+1\right), n=3^{2 s} .
$$

By modification of his argument, we will prove the following theorem.
Theorem. There exists a difference set with parameter

$$
v=\frac{1}{2} 3^{s+1}\left(3^{s+1}-1\right), k=\frac{1}{2} 3^{s}\left(3^{s+1}+1\right), \lambda=\frac{1}{2} 3^{s}\left(3^{s}+1\right), n=3^{2 s}
$$

which has -1 as an invariant for each even integer $s \geq 2$.
Proof. Let E denote the additive group of $G F\left(3^{s+1}\right)$ and K_{1} be the multiplicative group of $G F\left(3^{s+1}\right)$, where s is an even integer ≥ 2. Then since s is even, we have $K_{1}=Z / 2 Z \times K$ for a subgroup K of odd order. Set $G=E^{*} K$ be the semi-direct product of E by K. Then we have the following;
a) $|G|=\frac{1}{2} 3^{s+1}\left(3^{s+1}-1\right)$,
b) K is a cyclic subgroup of order $r=\frac{1}{2}\left(3^{s+1}-1\right)$,
c) K acts on $E^{\#}$ as fixed point free automorphisms, and
d) K permutes all hyperplanes of E transitively and no elements of $K^{\#}$ fix a hyperplane of E .

Let H be a hyperplane of E and $k_{1}=1, k_{2}, \cdots, k_{r}$ be the elements of K. Then we will show that

$$
D=(E-H) * k_{1} \cup \bigcup_{i=1}^{r}\left(H^{\sqrt{k_{i}}-1}\right) * k_{i}
$$

is a difference set in G having -1 as an invariant, where \sqrt{k} is a square of k in K, which is well defined since K has an odd order. Using the group ring notation for $Z E$, it is readily seen that (cf. [1])

$$
\begin{aligned}
& H^{{\overline{k_{1}}}^{-1}}+H^{\bar{k}_{2}^{-1}}+\cdots+H^{{\overline{k_{r}}}^{-1}}=3^{s} . \quad 1_{E}+\frac{1}{2}\left(3^{s}-1\right) E \\
& H^{\bar{k}_{i}^{-1}} H^{\bar{k}_{i}^{-1}}=3^{s} H^{\bar{k}_{i}^{-1}}, \quad H^{{\overline{k_{i}}}^{-1}} H^{\bar{k}_{j}^{-1}}=3^{s-1} E(i \neq j) \\
& (E-H)(E-H)=3^{s}(H+E), \quad \text { and } \quad(E-H) H^{\bar{k}_{i}^{-1}}=2 \cdot 3^{s-1} E(i \neq 1)
\end{aligned}
$$

To verify that D is a difference set in G it is sufficient to show that $D(-1) D=n 1_{G}+\lambda G$, where n, λ are as above. We can easily check $D(-1)$ $=D$. Using the above results, we obtain

$$
\begin{aligned}
& D(-1) D=(E-H)(E-H) * k_{1}+\sum_{j=2}^{r}\left(H^{\overline{k_{i}}} * k_{i}^{-1}\right)\left(H^{\overline{k i}_{i}^{-1}} * k_{i}\right) \\
& +\sum_{2 \leq i \neq j \leq r}\left(H^{\overline{k_{i}}} * k_{i}^{-1}\right)\left(H^{\overline{k_{j}}}{ }^{-1} * k_{j}\right) \\
& +(E-H) \sum_{j=2}^{r} H^{\bar{k}_{j}^{-1}} * k_{j}+\left(\sum_{i=2}^{r} H^{\sqrt{k_{i}} * k_{i}^{-1}}\right)(E-H) * 1_{K} \\
& =3^{2}(E+H)^{*} 1_{K}+\sum_{i=2}^{r} H^{\overline{k_{i}}} H^{\overline{k_{i}}} * 1_{K}+\sum_{2 \leq i \neq j \leq r}^{i} H^{\overline{k_{i}}} H^{\bar{k}_{j}^{-1} k_{i} * k_{i}{ }^{-1} k_{j}} \\
& +2 \cdot 3^{s-1} E^{*}\left(K-1_{K}\right)+\sum_{i=2}^{r} H^{\overline{k_{i}}}(E-H)^{\overline{k_{i}} * k_{i}^{-1}} \\
& =3^{2}(E+H)^{*} 1_{K}+\sum_{i=2}^{r} 3^{s} H^{\overline{k_{i}} *} 1_{K}+\sum_{2 \leq i \neq j \leq r} 3^{s-1} E^{*} k_{i}{ }^{-1} k_{j} \\
& +2 \cdot 3^{s-1} E^{*}\left(K-1_{K}\right)+2 \cdot 3^{s-1} E^{*}\left(K-1_{K}\right) \\
& =3^{s} E^{*} 1_{K}+3^{s}\left(3^{s} \cdot 1_{E}+\frac{1}{2}\left(3^{s}-1\right) E\right) * 1_{K}+3^{s-1}(r+2) E^{*}\left(K-1_{K}\right) \\
& =3^{2 s} \cdot 1_{G}+\frac{1}{2} 3^{s}\left(3_{s}+1\right) E^{*} 1_{K}+3^{s-1}\left(\frac{1}{2}\left(3^{s+1}-1\right)+2\right) E^{*}\left(K-1_{K}\right) \\
& =3^{2 s} \cdot 1_{G}+\frac{1}{2} 3^{s}\left(3^{s}+1\right) G .
\end{aligned}
$$

So we have proved that D is a difference set having -1 as an invariant. This completes the proof of Theorem.

Reference

[1] E. Spence: A family of difference sets, J. Combin. Theory ser. A 22 (1977), 103-106.

Department of Mathematics
Ehime University

