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Principal functions and invariant subspaces

of hyponormal operators
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1. Introduction and Theorems

A bounded linear operator T on a Hilbert space is said to be hyponormal
if its self-commutator [T^{*}, T]\equiv T^{*} T-TT* is positive semi-definite, and
pure hyponormal if, in addition, T has no nontrivial reducing subspace on
which it is normal.

It is not known at present whether every hyponormal operator has a
non-trivial invariant subspace. Putnam [7] and Apostol and Clancey [1]
presented some conditions for a hyponormal operator to have invariant
subspaces. In this paper, by using the principal function invented by Pincus
[6], we shall improve the results of Putnam, and Apostol and Clancey.

Let T=X+iY be a pure hyponormal operator, where X and Y are
seH-adjoint. Then it is known that X and Y are absolutely continuous (see
[4, Chap. 2, Th. 3. 2] ) . Let X=!.tdG(t) be the spectral resolution of X.
Then the absolutely continuous support E_{X} of X is defined as a Borel subset
of the real line (determined uniquely up to a null set) having the least
Lebesgue measure and satisfying G(E_{X})=I. Analogously E_{Y} is defined for Y.

The main results in this paper are the following:

THEOREM 1. Let T=X+iY be a pure hyponormal operator. Suppose
that, for some real \mu_{0}, the spectrum of T, \sigma(T) , has non-empty intersection
with each of the open half-planes {z : Re z<\mu_{0}} and {z : Re z>\mu_{0}}. If

\int_{E_{X}}\frac{F(x)}{(x-\mu_{0})^{2}}dx<\infty

where F(x) is the linear measure of the vertical cross section \sigma(T)\cap\{z :
Re z=x}, then T has a non-trivial invariant subspace.

THEOREM 2. In Theorem 1 the existence of a non-trivial invariant
subspace is also guaranteed if the integrability condition is replaced by

\int_{E_{X}}\frac{1}{|x-\mu_{0}|}d_{X<\infty}1
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Putnam [7] proved Theorem 1 under a more restrictive condition:
\int_{E_{X}}\frac{F(x)}{(x-\mu_{0})^{2}}dx<2\pi , while Apostol and Clancey [1] established Theorem 2

for T with rank one self-commutator.

2. Principal functions

Let T=X+iY be a pure hyponormal operator with trace class seH-
commutator. For each complex \lambda , T_{\lambda} will be used for T-\lambda I. Pincus [6]
provided a useful unitary invariant for T, called the principal function of Tt

There is a non-negative summable function g on C, which satisfies

det [(X-z)(Y-w)(X-z)^{-1} ( ^{Y-w})^{-1}]

= \exp\{\frac{1}{2\pi i}\int\int_{R^{2}}\frac{g(x+iy)}{(x-z)(y-w)}dxdy\}

for any (z, w) in C^{2}\backslash \sigma(X)\cross\sigma(Y) . The principal function is known to yield
much information about the structure of T (see, e . g . [2]). In this section
we shall also present some such information.

Lemma 1. Let T be a pure hyponormal operator with trace class

self-commutator D\equiv[T^{*}, T] . If the principal function g of T satisfies, for
some \lambda=\mu+i\nu\in C,

\frac{1}{\pi}\int\int_{n^{2}}\frac{g(x+iy)}{(x-\mu)^{2}+(y-\nu)^{2}}dxdy\leq M<\infty .
then cD\leq T_{\lambda}T_{\lambda}^{*} with c=(\exp(M)-1)^{-1} .

PROOF. Since [T_{\lambda}^{*}, T_{\lambda}]=[T^{*}, T] and the principal function of T_{\lambda} coin-
cides with g(z+\lambda) , it suffices to consider the case \lambda=0 . It is a well-known
result of M. G. Krein (see [2, \S 3]) that there is a summable function \delta(t)

on R_{+} , called the phase shift corresponding to the perturbation TT^{*}arrow T^{*}T

=TT^{*}+D, such that

det (I+D(TT^{*}-z)^{-1})

= \exp(\int_{0}^{\infty}\frac{\delta(t)}{t-z}dt) for z\in C\backslash \sigma(TT^{*})

Carey and Pincus established the connection between the principal function
g and the phase shift \delta :

\delta(t)=\frac{1}{2\pi}\int_{0}^{2\pi}g(\sqrt{t}e^{i\theta})d\theta , t\geq 0

(see [2, \S 7]). Then for any \epsilon>0
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det (I+D(TT^{*}+ \epsilon)^{-1})=\exp(\int_{0}^{\infty}\frac{\delta(t)}{t+\epsilon}dt)

= \exp(\frac{1}{\pi}\int\int_{R^{2}}\frac{g(x+iy)}{x^{2}+y^{2}+\epsilon}dxdy)

\leq\exp(M)<\infty

Since

1+tr(D^{1/2}(TT^{*}+\epsilon)^{-1}D^{1/2})\leq\det(I+D^{1/2}(TT^{*}+\epsilon)^{-1}D^{1/2})

=\det(I+D(TT^{*}+\epsilon)^{-1})

\leq\exp(M) ,

it follows that

D^{1/2}(TT^{*}+\epsilon)^{-1}D^{1/2}\leq\exp(M)-1

or equivalently

cD\leq TT^{*}+\epsilon

with c=(\exp(M)-1)^{-1} . Letting \epsilonarrow 0 , the assertion follows.
REMARK 1. If D is of finite rank, the converse of Lemma 1 is also true

in the following sense: if cD\leq TT* for some c>0 , then

\frac{1}{\pi}\int\int_{R^{2}}\frac{g(x+iy)}{x^{2}+y^{2}}dxdy<\infty(

In fact, the assumption cD\leq TT^{*} implies for any \epsilon>0

tr (D^{1/2}(TT^{*}+\epsilon)^{-1}D^{1/2})\leq c^{-1} rank (D) 1

Since

det (I+D^{1/2}(TT^{*}+\epsilon)^{-1}D^{1/2})\leq\exp\{tr(D^{1/2}(TT^{*}+\epsilon)^{-1}D^{1/2})\},\cdot

it is seen from the proof of Lemma 1 that

\frac{1}{\pi}\iint_{R^{2}}\frac{g(x+iy)}{x^{2}+y^{2}+\epsilon} dxdy\leq\exp(c^{-1} rank (D))

Since \epsilon is arbitrary and D is of finite rank, it follows that

\frac{1}{\pi}\int\int_{R^{2}}\frac{g(x+iy)}{x^{2}+y^{2}}dxdy<\infty

But above converse is not true in general. In fact, if T is a bilateral
weighted shift with weights \{a_{n}\}_{n=-\infty}^{\infty} where a_{n}= \min(2^{n/2},1) , n=0, \pm 1 , \pm 2 ,
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\ldots , then T becomes a pure hyponormal operator for which [T^{*}, T]\leq TT* .
But a simple calculation will show that the principal function g of T is the
characteristic function of the unit disc (the index result for the principal
function [2, \S 8] will also show this fact), hence

\frac{1}{\pi}\int\int_{R^{2}}\frac{g(x+iy)}{x^{2}+y^{2}}dxdy=\infty

COROLLARY 1. Let T be a pure hyponormal operator with trace class
self-commutator D and the principal function g. If \overline{\lambda} is an eigenvalue of
T^{*} , then

\int\int_{R^{2}}\frac{g(x+iy)}{|x+iy-\lambda|^{2}}dxdy=\infty c

PROOF. Suppose, for \lambda=\mu+i\nu\in C,

\int\int_{R^{2}}\frac{g(x+iy)}{|x+iy-\lambda|^{2}}dxdy<\infty

From Lemma 1, there exists a constant c>0 such that cD\leq T_{\lambda}T_{\lambda}^{*} . Since
D=T_{\lambda}^{*}T_{\lambda}-T_{\lambda}T_{\lambda}^{*} , cT_{\lambda}^{*}T_{\lambda}\leq(1-c)T_{\lambda}T_{\lambda}^{*} . This implies ran T_{\lambda}^{*}\subset ranT_{\lambda} . Be-
ca se of ker T_{\lambda}=\{0\} , it follows that ker T_{\lambda}^{*}=\{0\} , contradicting that \overline{\lambda} is an
eigenvalue of T^{*} .

The assertion of Corollary 1 is similar to the following proposition that
is proved by Carey and Pincus [3] in the case 0\leq g\leq 1 .

PROPOSITION 1. Let T be a pure hyponormal operator with trace class
self-commutator D and the principal function g. Suppose 0\leq g\leq n for an
integer n. If \overline{\lambda} is an eigenvalue for T^{*} and the dimension of ker (T-\lambda)^{*}

is n, then for some r>0

\int\int_{B_{r^{(\lambda)}}}\frac{n-g(x+iy)}{|x+iy-\lambda|^{2}}dxdy<\infty ,

where B_{r}(\lambda)=\{z\in C:|z-\lambda|<r\} .

PROOF. As in the proof of Lemma 1, it suffices to consider the case
\lambda=0 . Let \delta be the phase shift corresponding to the perturbation TT^{*}arrow

T^{*}T and let TT^{*}= \int_{0}^{\infty}tdE(t) be the spectral resolution of TT^{*} . Since,

for any \epsilon>0 ,

(TT^{*}+ \epsilon)^{-1}=\int_{0}^{\infty}\frac{1}{t+\epsilon} dE(t)

\geq\frac{1}{\epsilon}E(\{0\})’.
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it follows that

exp ( \int_{0}^{\infty}\frac{\delta(t)}{t+\epsilon}dt)=\det(I+D^{1/2}(TT^{*}+\epsilon)^{-1}D^{1/2})

\geq\det(I+\epsilon^{-1}D^{1/2}E(\{0\})D^{1/2})

=\det(I+\epsilon^{-1}E(\{0\})DE(\{0\}))

But E(\{0\}) DE({0})=E({0}) T^{*}TE(\{0\}) . Since E(\{0\}) is the orthogonal pr0-

jection onto the finite dimensional subspace ker T^{*} and ker (T^{*}T)=\{0\} , there
is an \alpha>0 such that E(\{0\})T^{*}TE(\{0\})\geq\alpha E(\{0\}) . Thus

det (I+\epsilon^{-1}E(\{0\})DE(\{0\}))\geq\det(I+\epsilon^{-1}\alpha E(\{0\}))

=(1+\epsilon^{-1}\alpha)^{n}

= \exp(\int_{0}^{\alpha}\frac{n}{t+\epsilon}dt)t

Therefore

\int_{0}^{\infty}\frac{\delta(t)}{t+\epsilon}dt\geq\int_{0}^{\alpha}\frac{n}{t+\epsilon}dt

and

\int_{0}^{\alpha}\frac{n-\delta(t)}{t+\epsilon}dt\leq\int_{a}^{\infty}\frac{\delta(t)}{t+\epsilon}d_{t}

The hypothesis 0\leq g\leq n implies 0\leq\delta\leq n . Taking limits as \epsilonarrow 0 , the mon0-

tone convergence yields

\int_{0}^{a}\frac{n-\delta(t)}{t}dt\leq\int_{a}^{\infty}\frac{\delta(t)}{t}dt<\infty

The result follows with r=\alpha^{1/2} on substituting \delta(t)=\frac{1}{2\pi}\int_{0}^{2\pi}g(\sqrt{t}e^{i\theta})d\theta into the
left-hand side.

The following proposition gives an estimate of the principal function g
on the point spectrum of T^{*} .

PROPOSITION 2. Let T be a pure hyponormal operator with trace class
self-commutator and the principal function g. Then for \lambda\in C

dim ker (T- \lambda)^{*}\leq\lim_{r\downarrow 0}\{ess\sup_{z\in B_{r}(\lambda)}g(z)\}

PROOF. It can be assumed \lambda=0 as before. Let \delta be the phase shift
corresponding to the perturbation TT^{*}arrow T^{*}T Then, for n=1,2, \cdots ,
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tr \{-(I+nT^{*}T)^{-1}+(I+nTT^{*})^{-1}\}=\int_{0}^{\infty}\frac{n}{(1+nt)^{2}}dt

(see [2, \S 3]). As narrow\infty , (I+nT^{*}T)^{-1} converges strongly to 0 and (I+
nTT^{*})^{-1} to the orthogonal projection onto ker T^{*} , say P. Since (I+nTT^{*})^{-1}

\geq(I+nT^{*}T)^{-1} for n\geq 1 , by Fatou’s lemma

\varliminf_{narrow\infty} tr \{-(I+nT^{*}T)^{-1}+(I+nTT^{*})^{-1}\}\geq trP

=\dim ker T^{*}

Hence

dim ker T^{*} \leq\varliminf_{narrow\infty}\int_{0}^{\infty}\frac{n}{(1+nt)^{2}}\delta(t)dt

For r>0 , define

M(r) \equiv ess\sup_{z\in B_{r^{(0)}}}g(z) .

M(z) is a positive, monotone non-decreasing function. Since, for any a>0 ,

ess\sup_{0<t<a}\delta(t)=ess\sup_{0<t<a}\{\frac{1}{2\pi}\int_{0}^{2\pi}g(\sqrt{t}e^{i\theta})d\theta\}

\leq M(a^{1/2})’.

it follows that

\varliminf_{narrow\infty}\int_{0}^{\infty}\frac{n}{(1+nt)^{2}}\delta(t)dt

= \varliminf_{narrow\infty}\{\int_{0}^{a}\frac{n}{(1+nt)^{2}}\delta(t)dt+\int_{a}^{\infty}\frac{n}{(1+nt)^{2}}\delta(t)dt\}

\leq\varliminf_{narrow\infty}\{M(a^{1/2})\int_{0}^{a}\frac{n}{(1+nt)^{2}}dt+\frac{n}{(1+na)^{2}}\int_{a}^{\infty}\delta(t)dt\}

\leq\varliminf_{narrow\infty}\{M(a^{1/2})+\frac{n}{(1+na)^{2}}\int_{a}^{\infty}\delta(t)dt\}

=M(a^{1/2}) .
Therefore

dim ker T^{*} \leq\lim_{r\downarrow 0}M(r)

3. Proofs of theorems

Both theorems are immediate consequences of the following.

THEOREM 3. Let T be a pure hyponormal operator with trace class
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self-commutator D\equiv[T^{*}, T] and the principal function g. If there exists
a real \mu_{0} such that the spectrum of T has non-empty intersection with each
of the open half-planes {z : Re z<\mu_{0}} and {z : Re z>\mu_{0}} and

\int\int_{R^{2}}\frac{g(x+iy)}{(x-\mu_{0})^{2}+(y-\nu)^{2}} dxdy\leq M<\infty for all real \nu ,

then T has a non-trivial invariant subspace.

PROOF. From Lemma 1, there exists a constant c>0 such that for any
\lambda=\mu_{0}+i\nu(\nu\in R)

cD\leq T_{\lambda}T_{\lambda}^{*}

By [5], there exists a family A(\lambda) (Re \lambda=\mu_{0}) of operators such that

T_{\lambda}A(\lambda)=D^{1/2} and ||A(\lambda)||\leq c^{-1}

Since each T_{\lambda} is one-t0-0ne, it is easily seen that A(\lambda) is weakly continuous.
A(\lambda) can be extended to {z : Re z=\mu_{0}} \cup\rho(T) by defining

A(z)\equiv(T-z)^{-1}D^{1/2} for z\in\rho(T)

Let \Gamma be a circle centered at \mu_{0} such that \sigma(T) is interior of \Gamma and
let \Gamma_{1} and \Gamma_{2} be the two semicircles determined by \Gamma and the line {Re z=\mu_{0}}.
Then

D^{1/2}=- \frac{1}{2\pi i}\int_{\Gamma}A(z)dz

=- \frac{1}{2\pi i}\int_{\Gamma_{1}}A(z)dz-\frac{1}{2\pi i}\int_{\Gamma_{2}}A(z)dz .

Consequently, one of these later integrals is non-zero. Suppose, for defi-

niteness, B_{1} \equiv-\frac{1}{2\pi i}\int_{\Gamma_{1}}A(z)dz\neq 0 . The operator-valued function

A_{1}(z) \equiv\frac{1}{2\pi i}\int_{\Gamma_{1}}\frac{A(w)}{w-z}dw , z\not\in\Gamma_{1}

is analytic off \Gamma_{1} and satisfies (T-z)A_{1}(z)=B_{1} in the interior of \Gamma_{1} .
Now let \sigma_{1} be the part of \sigma(T) contained in the closed semidisc with

boundary \Gamma_{1} . Then

\bigcap_{z\not\in\sigma_{1}}ran(T-z)\supset ranB_{1}\neq\{0\}

By [4, Chap. 1, Th. 3. 5],
\bigcap_{z\S\sigma_{1}}

ran(T–z) is a closed invariant subspace for

T and clearly not the whole space. This completes the proof.
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PROOF OF THEOREM 1. T can be assumed to have a cyclic vector.
For otherwise T has obviously a non-trivial invariant subspace. As pointed
out by Berger and Shaw (see [4, Chap. 3, Th. 3. 1]), the cyclicity implies
that the self-commutator [T^{*}, T] is of trace class. Furthermore, from the
Berger’s estimate {see [4, Chap. 5, Cor. 5. 1] ) , the principal function g of T
satisfies 0\leq g\leq 1 . Since g vanishes a . e . off \sigma(T) and off \{x+iy:x\in E_{X}

and y\in E_{Y}} (see [2, \S 5] and [4, Chap. 5, \S 3]), for almost all x

\int_{R}g(x+iy)dy\leq F(x)

and for all \nu\in R

\int\int_{R^{2}}\frac{g(x+iy)}{(x-\mu_{0})^{2}+(y-\nu)^{2}} dxdy \leq\int_{E_{X}}\int_{R}\frac{g(x+iy)}{(x-\mu_{0})^{2}} dydx

\leq\int_{E_{X}}\frac{F(x)}{(x-\mu_{0})^{2}}dx

<\infty t

Thus, by Theorem 3, T has a non-trivial invariant subspace.

PROOF OF THEOREM 2. As in the proof of Theorem 1, it can be
assumed that 0\leq g\leq 1 . Then it follows

\int\int_{R^{2}}\frac{g(x+iy)}{(x-\mu_{0})^{2}+(y-\nu)^{2}} dxdy \leq\int_{E_{X}}\int_{R}\frac{1}{(x-\mu_{0})^{2}+(y-\nu)^{2}}dydx

= \pi\int_{E_{X}}\frac{1}{|x-\mu_{0}|}dx

<\infty

Now Theorem 3 can be applied.

REMARK 2. Define the measurable function G on C by

G(z) \equiv\int\int_{R^{2}}\frac{g(x+iy)}{|x+iy-z|^{2}} dxdy

Then the assumption of Theorem 3 means that G is uniformly bounded on
the vertical line {z : Re z=\mu_{0}}. It is also seen from the proof of Theorem
3 that if G is uniformly bounded on some rectifiable closed curve \Gamma and
the spectrum of T lies partly in both the exterior and the interior of \Gamma,
then T has a non-trivial invariant subspace.

The author wishes to thank Prof. T. Ando for many helpful suggestions.
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