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Indefinite Einstein hypersurfaces with
nilpotent shape operators

By Martin A. MAGID
(Received August 30, 1983)

\S 1. Introduction

In [4], A. Fialkow classified Einstein hypersurfaces in indefinite space
forms if the shape operator is diagonalizable. In [7], it was shown that if the
shape operator A is not diagonalizable at each point then there are two
possibilities: either A^{2}=0 or A^{2}=-b^{2}I, where b is a non-zero constant. In
this paper those Einstein hypersurfaces with A^{2}=0 and rank A maximal are
classified. The main results are the following.

2. 2 THEOREM. If f : M_{n}^{2n}arrow N^{2n+1}(c) is an isometric immersion of M_{n}^{2n}

into a space form of constant curvature c with A^{2}=0 and rank A=n, then
the kernel of A is an integrable, totally isotropic and parallel n-dimensional
distribution on M. {Here M has signature (n, n) . This is a consequence of
the conditions on A.)

2. 3 COROLLARY. Iff is as above and n>1 , then c=0.

In Theorem 4. 2, isometric immersion f:M_{n}^{2n}arrow R^{2n+1} with A^{2}=0 and
rank A=n are classified locally.

The Einstein hypersurfaces classified in Theorem 4. 2 provide a large
family of examples of manifolds which have been studied extensively. A. G.
Walker [10, 11, 12] and others (see [13], p. 278 for other references) investi-
gated manifolds with parallel fields of planes. R. Rosca and others ([9], [1],
[3] ) study manifolds with spin-euclidean connections. In this case the spinor
fields can be covariantly differentiated.

If f:M_{1}^{n}arrow N_{1}^{n+1}(c) is an isometric immersion with A^{2}=0 and rank A=1,

then M_{1}^{n} also has constant sectional curvature c. L. Graves [5] classifies
such f if c=0 and M is complete. In [6], Graves and Nomizu show that
for n\geq 4 there are no umbilic-free isometric imbeddings from S_{1}^{n}(1) into
S_{1}^{n+1}(1) .
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\S 2. Kernel of A is parallel

Let A be a symmetric operator in a vector space V with a non-degenerate
inner product (, ) , so that (Au, v) =(u, Av)\forall u , v\in V. If A^{2}=0 , we can find
a basis of V, \{\hat{L}_{1}, L_{1}, \cdots,\hat{I_{\lrcorner}}n’ L_{n}, E_{1}, \cdots, E_{p}\} , with respect to which

A=\lceil^{0}0

01

00 01

0
=

\sim

0]

Here L_{i} , L_{j} are lightlike, (L_{i}, L_{j})=-\delta_{ij} , (E_{k}, E_{l})=\pm\delta_{kl} and all other inner
products are 0. If the ratio of the rank of A to the dimension of V is to
be as large as possible, then p=0, giving a basis \{f_{\lrcorner}1’ L_{1}, \cdots, f_{\lrcorner}n’ L_{n}\} with
AL_{i}=0 and AL_{i}=\hat{L}_{i} . In this case V is even dimensional and has signature
(n, n)[7] .

If f:M^{m}arrow N^{m+1} is a non-degenerate isometric immersion and \xi is a unit
normal vector field on M, then the shape operator A of f is defined by

\nabla_{x\xi}=-AX ,

where \tilde{\nabla} is the indefinite Riemannian connection on N. A:TMarrow TM and is
symmetric on each T_{x}M, with respect to the metric on T_{x}M.

2. 1 Lemma. Iff:M_{n}^{2n}arrow N^{2n+1}(c) is an isometric immersion with A^{2}=0

and rank A=n, then there are vector fields \tilde{L}_{1} , \cdots,\tilde{L}_{n} defined in a neigh-
borhood of any point of M such that (\tilde{L}_{i},\tilde{L}_{f})=0=(A\tilde{L}_{i}, A\tilde{L}_{f}) and (AL_{i},\tilde{L}_{j})=

-\delta_{ij} .

PROOF. Because A is symmetric and A^{2}=0 , (AX, A Y) =(A^{2}X, Y)=0

holds for all tangent vectors X, Y.
Choose x\in M. It was noted above that in T_{x}M there are vectors (L_{1})_{x},

\ldots,(L_{n})_{x} such that (L_{i}, L_{j})_{x}=0 , (AL_{i})_{x}\neq 0 and (AL_{i}, L_{f})_{x}=-\delta_{ij}, i, j=1 , \cdots , n .
Extend the (L_{i})_{x} smoothly in a neighborhood of x so that (L_{i}, L_{f})=0 . This
can be done by extending the appropriate orthonormal frame fields. By con-
tinuity, AL_{i}\neq 0 in some, possibly smaller, neighborhood.
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Consider the smooth n-dimensional distribution on this neighborhood
given by span \{L_{1^{ }},\cdots, L_{n}\} . We can define an auxiliary negative definite inner
product h on this distribution by

h(L_{i}, L_{j})=(AL_{i}, L_{j})

h is symmetric, bilinear and negative definite near x. Applying the Gram-
Schmidt process to \{L_{1}, \cdots, L_{n}\} gives \{\tilde{L}_{1^{ }},\cdots,\tilde{L}_{n}\} such that

h(\tilde{L}_{i},\tilde{L}_{j})=-\delta_{if} .
These are the desired vector fields. Q. E. D.

2. 2 THEOREM. If f:M_{n}^{2n}arrow N^{2n+1}(c) is an isometric immersion of M_{n}^{2n}

into a space form of constant curvature c with A^{2}=0 and rank A=n, then
the kernel of A is an integrable, totally isotropic and parallel n-dimensional
distribution on M.

PROOF. In [7], it was proved that kernel A is integrable, totally geodesic
and totally isotropic (namely, totally degenerate). A totally geodesic distribu \cdot

tion S is one where
\nabla_{X}Y\in S,\cdot if X, Y\in S

To prove that kernel A is parallel we must show that

\nabla_{U}X\in ker A if X\in ker A and U\in TM

or, equivalently, that

A(\nabla_{U}X)=0 if AX=0
In order to do this, let x\in M and choose vector fields in a neighborhood

of x, \{L_{1}, \cdots, L_{n}, AL_{1^{ }},\cdots, AL_{n}\} , as in the lemma.
Consider Codazzi’s equation with L_{i} and L_{j} , 1\leq i, j\leq n :

\nabla_{L_{i}}(AL_{j})-A(\nabla_{L_{i}}L_{f})=\nabla_{L_{j}}(AL_{i})-A(\nabla_{L_{j}}L_{i})

Taking the inner product of both sides of this equation with AL_{k} gives

(\nabla_{L_{i}}AL_{j}, AL_{k})=(\nabla_{L_{j}}AL_{i}, AL_{k}) ( t)

since A^{2}=0 . Denoting AL_{j} by L_{f’} , j=1, \cdots , n , and defining \Gamma_{BC}^{D}, the Chris-
toffel symbols, as usual, we have

\nabla_{L_{i}}L_{j’}=\sum_{k=1}^{n}\Gamma_{ij’}^{k}L_{k}+\Gamma_{ij’}^{k’}L_{k’}

(\uparrow) becomes
\Gamma_{ij’}^{k}=\Gamma_{ji’}^{k} , 1\leq i, j, k\leq n1 (1)
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Because the connection in M is metric, L_{i}(AL_{j}, AL_{k})=0=(\nabla_{L_{i}}AL_{j}, AL_{k})

+(AL_{j}, \nabla_{L_{i}}AL_{k}) , so that

\Gamma_{ij’}^{k}+\Gamma_{ik’}^{j}=0 . 1\leq i, j, k\leq n (2)

Combining (1) and (2), we see that \Gamma_{ij’}^{k}=0 for all 1\leq i, \mathfrak{j}, k\leq n . In fact,

\Gamma_{if’}^{k}=\Gamma_{ji’}^{k}=-\Gamma_{jk’}^{i}=-\Gamma_{kf’}^{i}=\Gamma_{ki’}^{j}=\Gamma_{ik’}^{j}=-\Gamma_{ij’}^{k}\iota

(1) (2) (1) (2) (1) (2)

The fact that the kernel of A is totally geodesic gives \Gamma_{ij’}^{k},=0 . Thus
\Gamma_{Bj’}^{k}=0 for B=1, \cdots , n, 1’ , \cdots , n’ , 1\leq j, k\leq n . This means the kernel of A
is parallel. Q. E. D.

2. 3 COROLLARY. Let n>1 . Iff: M_{n}^{2n}arrow N^{2n+1}(c) is an isometric immer-
sion of M_{n}^{2n} into a space form of constant curvature c with A^{2}=0 and
rank A=n, then c=0.

PROOF. The Gauss equation of this isometric immersion is

R(X, Y)Z=c(X\wedge Y)Z+(\xi, \xi)(AX\wedge AY)Z ,

where R is the curvature tensor of M, X, Y, Z\in T_{x}M, and \xi is a unit
normal field. Let Z be a vector field in ker A. Expanding the Gauss equa-
tion, we have

\nabla_{X}\nabla_{Y}Z-\nabla_{Y}\nabla_{X}Z-\nabla_{[X,Y]}Z

=c(’(Y, Z)X-(X, Z)Y)\pm((AY, Z)AX-(AX, Z)AY) .
Since AZ=0, this becomes

\nabla_{X}\nabla_{Y}Z-\nabla_{Y}\nabla_{X}Z-\nabla_{[X,Y]}Z=c((Y, Z)X-(X, Z)Y)

By Theorem 2. 2 the left-hand side of this equation is in ker A. Given
dim M>2 , we can choose X and Y linearly independent with (X, Z)=0,
(Y, Z)=1 , and X not in ker A. Then the right-hand side is cX, which is
in ker A iff c=0. Q. E. D.

L. Graves and K. Nomizu [6] give an example of a Lorentz surface
M_{1}^{2} isometricaUy immersed in S_{1}^{3} with A satisfying A^{2}=0 and rank A=1, so
the restriction on n cannot be removed.

\S 3. Examples

Before proceeding to the proofs of Theorems 4. 1 and 4. 2, let us examine
a few examples of Einstein hypersurfaces M_{n}^{2n} with A^{2}=0 and rank A=n.

3. 1 EXAMPLE. B-scroll over a null curve in R_{1}^{3}[5] .
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R_{1}^{3} is Lorentz 3-space, with signature (–, +, +) . Consider a null curve
x(s) in R_{1}^{3} , so that (\dot{x,}(s),\dot{x}(s))=0 . A null curve with a frame \{A(s) , B(s) ,

C(s)\} is called a Cartan-framed null curve if the following conditions hold.
A(s) , B(s) are null; (C(s), C(s))=1;(A(s), B(s))=-1 ; all other inner products
are zero along x(s) ; and the Frenet equations of the derivatives of A(s) , B(s) ,

C(s) along x(s) have the form:

\frac{dx(s)}{ds}=A(s) ,

\frac{dA(s)}{ds}=k_{2}(s)C(s) ,

\frac{dB(s)}{ds}=k_{3}(s)C(s) ,

\frac{dC(s)}{ds}=k_{3}(s)A(s)+k_{2}(s)B(s) ,

The surface f(u, s)=x(s)+uB(s) is called a B-scroll over the null curve x(s) .
It is Lorentz and is flat iff k_{3}(s)=0 . In this case,

A=\{\begin{array}{ll}0 -k_{2}(s)0 0\end{array}\}

with respect to \{\partial/\partial u, \partial/\partial s\} , where the unit normal \xi(u, s)=C(s) . (\nabla A)=0 iff
k_{2}(s) is constant. If k_{2}\equiv 1 , the surface is given by

x(s)+uB(s)=( \frac{s^{3}}{6\sqrt{2}}+\frac{s}{\sqrt{2}}, \frac{s^{3}}{6\sqrt{2}}-\frac{s}{\sqrt{2}}\frac{s^{2}}{2})+u(\frac{1}{\sqrt{2}} , \frac{1}{\sqrt{2}}j0) .

Graves calls this the B-scroll over the null cubic.

3. 2. EXAMPLE. Sum of 5-scr0lls.
For j=1 , \cdots , n , let (u_{j}, s_{j})\in I_{j}\cross J_{j}\subset R\cross R and suppose f_{j}(u_{j}, s_{f})=(a_{f}(u_{f}, s_{f}) ,

b_{j}(u_{j}, s_{j}) , c_{j}(u_{j}, s_{j})) are n flat B-scrolls in R_{1}^{3} which, when written as x_{f}(s_{j})+

u_{j}B_{j} satisfy the following initial conditions:

x_{j}(0)=0, \dot{x}_{j}(0)=(\frac{1}{\sqrt{2}},\cdot - \frac{1}{\sqrt{2}} 0)j B_{j}=( \frac{1}{\sqrt{2}},\cdot \frac{1}{\sqrt{2}},0)

and C_{j}(0)=(0,0, 1) .
We can define a parametrized hypersurface in R_{n}^{2n+1} by

f(u_{1}, s_{1^{ }},\cdots, u_{n}, s_{n})

=(a_{1}(u_{1}, s_{1}), \cdots , a_{n}(u_{n}, s_{n}) , b_{1}(u_{1}, s_{1}) ,

..., b_{n}(u_{n}, s_{n}) , c_{1}(u_{1}, s_{1})+\cdots+c_{n}(u_{n}, s_{n})) ,
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where R_{n}^{2n+1} has signature (n, n+1) . This hypersurface has

A=\{

00 -k_{1}0

00

-k_{n}0]_{t}

If each k_{i}(s_{i}) is constant, then \nabla A=0 .
If rank A is constant but not equal to n, ker A may not be parallel.

3. 3 EXAMPLE. A 4-dimensional scroll with A^{2}=0 , rank A constant and
ker A not parallel.

According to W. Bonner [2], for every smooth k(s) , there is a null curve
x(s) in R_{1}^{4} with frame \{X(s), Y(s), Z(s), C(s)\} such that (X(s), Y(s))=-1, X
and Y are null, Z and C are unit spacelike and whose derivatives are

\frac{dx(s)}{ds}=X(s)f

\frac{dX(s)}{ds}=C(s)
\prime\prime

\frac{dY(s)}{ds}=k(s)Z(s) ,

\frac{dZ(s)}{ds}=k(s)X(s) ,

\frac{dC(s)}{ds}=+Y(s)r

Let x(s) be considered as a null curve in R_{1}^{5} by looking at (x(s), 0) with
frame \{(X(s), 0), \cdots, (C(s), 0), W(s)\} , where W(s)=W\equiv(0,0,0,0,1) .

The Lorentz 4-surface parametrized by f(u, s, t, v)=x(s)+uY(s)+tZ(s)+
vW(s) has, with \xi(u, s, t, v)=(C(s), 0) , shape operator

A=\{\begin{array}{llll}0 -1 0 0 0 0\end{array}\}

with respect to \{\partial/\partial u, \partial/\partial s, \partial/\partial t, \partial/\partial v\} . It is easy to see that the kernel of
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A, spanned by Y(s) , Z(s) , W(s) , is not parallel. In fact, \nabla_{\partial/\partial s}\partial/\partial t=k(s)X(s)

is not in ker A. Thus, if the rank of A is not maximal, then the kernel of
A need not be parallel.

\S 4. Local Characterization of M_{n}^{2n} isometrically immersed
in R_{n}^{2n+1} with A^{2}=0 and rank A=n

4. 1 THEOREM. Let f:M_{n}^{2n}arrow R_{n}^{2n+1} be an isometric immersion with rank
A=n. Then kernel A is an integrable, totally isotropic, parallel distribu-
tion on M_{n}^{2n} iff A^{2}=0 .

PROOF. If A^{2}=0 , the conclusion was obtained in the proof of Theorem
2. 2.

Assume then that ker A is integrable, parallel and totally isotropic. By
a motion of R_{n}^{2n+1} we can assume that ker A is spanned by B_{i}=(e_{i}, e_{t}, 0) ,

i=1 , \cdots , n, where e_{1} , \cdots , e_{n} is the standard basis of R^{n} . If (x_{1^{ }},\cdots, x_{2n}) is a
local coordinate system for M_{n}^{2n} , then the normal unit vector field \xi must

have the following form because it is perpendicular to ker A.

\xi_{f(_{\overline{x}})}=(\xi_{1}(\vec{x}), \cdots , \xi_{n}(\vec{x}) , \xi_{1}(\vec{x}) , \cdots , \xi_{n}(\vec{x}) , 1)
Then,

D_{\partial/\partial x_{j}} \xi=D_{\partial/\partial x_{j}}(_{i=1}\sum^{n}\xi_{i}(\vec{x})B_{i}+(0,0, \cdots, 0,1))

which is in ker A. Thus, - A(D_{\partial/\partial x_{f}}\xi)=0=A^{2}(\partial/\partial x_{f}) . Q. E. D.

4. 2 THEOREM. f:M_{n}^{2n}arrow R_{n}^{2n+1} is an isometric immersion with A^{2}=0

and rank A=n iff, around each x\in M, there is a coordinate system (t_{1} , \cdots , t_{n},

u_{1} , \cdots , u_{n}) such that f has the following form:
f(\hat{t},\vec{u})=(g_{1}(\hat{t}), \cdots , g_{n}(\hat{t}), g_{1}(\hat{t})+t_{1} , \cdots , g_{n}(\hat{t})+t_{n} , G( \vec{t}))+\sum u_{j}B_{j}\tau

Here \hat{t}=(t_{1^{ }},\cdots, t_{n}),\overline{u}=(u_{1}, \cdots, u_{n}) , B_{i} , 1\leq i\leq n are as in the proof of Theorem
4. 1, g_{1} , \cdots , g_{n} , G:U\subset R^{n}arrow R are smooth and det [\partial^{2}G/\partial t_{i}\partial t_{f}]\neq 0 .

REMARK. Locally, then, each such M_{n}^{2n} is an n-planed hypersurface.

PROOF. Assume we are given such an isometric immersion. The kernel
of A is integrable. Thus, given any x_{0} in M, we can find a local coordinate
system (s_{1}, \cdots, s_{n}, v_{1}, \cdots, v_{n}) around x_{0} so that ker A is given by s_{1}=c_{1} , \cdots ,

s_{n}=c_{n} , where the c_{i}’s are constants.
We also can assume, as in Theorem 4. 1, that, by a motion of R_{n}^{2n+1} ,
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(ker A)_{J^{(x)}} is spanned by B_{1} , \cdots , B_{n} . Defifine g(\hat{s})=f(\hat{s}, 0) . It is clear then that
M_{n}^{2n} can be locally parametrized near g(\hat{s}) , with a change of coordinates, by

f( \hat{s},\vec{u})=g(\hat{s})+\sum_{j=1}^{n}u_{j}B_{j}1

The unit normal \xi(\hat{s},\vec{u}) is of the form

\xi(\hat{s},\vec{u})=(\xi_{1}(\hat{s}), \cdots , \xi_{n}(\hat{s}) , \xi_{1}(\hat{s}) , \cdots , \xi_{n}(\hat{s}) , 1)

In order for f to have the required properties, several conditions must
be satisfied.

i) Rank A=n iff \{\partial\xi/\partial s_{1^{ }},\cdots, \partial\xi/\partial s_{n}\} is linearly independent.
ii) M_{n}^{2n} inherits a non-degenerate metric iff det [(\partial g/\partial s_{i}, B_{j})]\neq 0 .

iii) \xi is normal iff (\partial g/\partial s_{i}, \xi)=0i=1 , \cdots , n .
If g(\hat{s})=(g_{1}(\hat{s}), \cdots, g_{2n+1}(\hat{s})) , let h_{i}(\hat{s})=g_{n+i}(\hat{s})-g_{i}(\hat{s})i=1 , \cdots , n . Condition

ii can be rewritten as

ii’) det [\partial h_{i}/\partial s_{j}]\neq 0 .
while iii becomes

iii’) \sum_{i=1}^{n}\xi_{i}(\partial h_{i}/\partial s_{j})+\partial g_{2n+1}(\hat{s})/\partial s_{j}=0 j=1, \cdots , n

Finally, in order to insure that A_{\xi} is symmetric and that the mixed partials
of g_{2n+1} be equal, we need

iv) \sum_{k=1}^{n}(\partial\xi_{k}/\partial s_{i})(\partial h_{k}/\partial s_{j})=\sum_{k=1}^{n}(\partial\xi_{k}/\partial s_{j})(\partial h_{k}/\partial s_{i})

By ii_{:}’ we can change coordinates from (s_{1^{ }},\cdots, s_{n}, u_{1^{ }},\cdots, u_{n}) to (h_{1}, \cdots , h_{n} ,
u_{1} , \cdots , u_{n}) which we rename (t_{1}, \cdots, t_{n}, u_{1}, \cdots, u_{n}) . With this new coordinate
system, ii’ is automatically fulfilled, while iii’ becomes

iii’) \xi_{j}+\partial g_{2n+1}(\vec{t})/\partial t_{j}=0e
,

and iv becomes

id) \partial\xi_{f}/\partial t_{i}=\partial\xi_{i}/\partial t_{j} i, j=1 , \cdots , n .
Summarizing, we see that after the changes of coordinates, we must have

i) \{\partial\xi/\partial t_{1^{ }},\cdots, \partial\xi/\partial t_{n}\} linearly independent;
iii’) \xi_{j}=-\partial g_{2n+1}(\hat{t})/\partial t_{j} ; and
iv’) \partial\xi_{j}/\partial t_{i}=\partial\xi_{i}/\partial t_{j} .
Given the immersion f, let G(\vec{t})=g_{2n+1}(\hat{t}) which is smooth. Then by ii\"i,
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\xi_{j}=-\partial G/\partial t_{j} , and we have \partial\xi_{j}/\partial t_{i}=-\partial^{2}G/\partial t_{i}\partial t_{j}=-\partial^{2}G/\partial t_{j}\partial t_{i}=\partial\xi_{i}/\partial t_{j} so that
iv’ is satisfied. The only condition we must impose on G(\hat{t}) is det [\partial^{2}G/\partial t_{i}\partial t_{j}]

\neq 0 , so that i holds. Thus, given any such f, we have transformed it into
the desired form. It is easy to check that any f in this form has A^{2}=0

and rank A=n. Q. E. D.
We show that sums of B-scrolls in 3. 2 Example do not, even locally,

exhaust M_{n}^{2n} as in 4. 2 Theorem.
T_{x}(M_{n}^{2n}) can be given the structure of a commutative algebra using the

covariant derivative of A.
X\cdot Y:=\nabla_{X}(AY)-A(\nabla_{X}Y)

For any 4-dimensional sum of two B-scrolls with \nabla A\neq 0 we can find a
basis \{e_{1}, e_{2}, u_{1}, u_{2}\} of T_{x} with the following products.

e_{1}\cdot e_{1}=u_{1} and e_{2}\cdot e_{2}=u_{2} , while all others are zero. (If \nabla A=0 , X\cdot Y=0

everywhere.)
Use the classification theorem to define an M_{2}^{4} in R_{2}^{5} by setting g_{1}=0=g_{2}

and G(t_{1}, t_{2})=t_{2}^{3}+t_{1}^{2}t_{2}+t_{1}+t_{2} . Then there is a basis \{f_{1},f_{2}, v_{1}, v_{2}\} of T_{0}M

so that the non-zero products are
f_{1}.f_{1}=2v_{2} ,

f_{2}.f_{2}=-6v_{2} ,

f_{1}.f_{2}=2v_{1}

These two 4-dimensional algebras are not isomorphic. Thus, the second
hypersurface is not a sum of 2J-scrolls.
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