# Indefinite Einstein hypersurfaces with nilpotent shape operators 

By Martin A. Magid

(Received August 30, 1983)

## § 1. Introduction

In [4], A. Fialkow classified Einstein hypersurfaces in indefinite space forms if the shape operator is diagonalizable. In [7], it was shown that if the shape operator $A$ is not diagonalizable at each point then there are two possibilities : either $A^{2}=0$ or $A^{2}=-b^{2} I$, where $b$ is a non-zero constant. In this paper those Einstein hypersurfaces with $A^{2}=0$ and rank $A$ maximal are classified. The main results are the following.
2. 2 Theorem. If $f: M_{n}^{2 n} \rightarrow N^{2 n+1}(c)$ is an isometric immersion of $M_{n}^{2 n}$ into a space form of constant curvature $c$ with $A^{2}=0$ and rank $A=n$, then the kernel of $A$ is an integrable, totally isotropic and parallel n-dimensional distribution on $M$. (Here $M$ has signature ( $n, n$ ). This is a consequence of the conditions on A.)
2.3 Corollary. If $f$ is as above and $n>1$, then $c=0$.

In Theorem 4.2, isometric immersions $f: M_{n}^{2 n} \rightarrow \boldsymbol{R}^{2 n+1}$ with $A^{2}=0$ and $\operatorname{rank} A=n$ are classified locally.

The Einstein hypersurfaces classified in Theorem 4.2 provide a large family of examples of manifolds which have been studied extensively. A. G. Walker [10, 11, 12] and others (see [13], p. 278 for other references) investigated manifolds with parallel fields of planes. R. Rosca and others ([9], [1], [3]) study manifolds with spin-euclidean connections. In this case the spinor fields can be covariantly differentiated.

If $f: M_{1}^{n} \rightarrow N_{1}^{n+1}(c)$ is an isometric immersion with $A^{2}=0$ and rank $A=1$, then $M_{1}^{n}$ also has constant sectional curvature $c$. L. Graves [5] classifies such $f$ if $c=0$ and $M$ is complete. In [6], Graves and Nomizu show that for $n \geqslant 4$ there are no umbilic-free isometric imbeddings from $S_{1}^{n}(1)$ into $S_{1}^{n+1}(1)$.

## § 2. Kernel of $\boldsymbol{A}$ is parallel

Let $A$ be a symmetric operator in a vector space $V$ with a non-degenerate inner product (, ), so that $(A u, v)=(u, A v) \forall u, v \in V$. If $A^{2}=0$, we can find a basis of $V,\left\{\hat{L}_{1}, L_{1}, \cdots, \hat{L}_{n}, L_{n}, E_{1}, \cdots, E_{p}\right\}$, with respect to which

$$
A=\left[\begin{array}{lllllllll}
0 & 1 & & & & & & & \\
0 & 0 & & & & & & & \\
& & \cdot & & & & & & \\
& & & \cdot & & & & & \\
\\
& & & & & & & & \\
& & & 0 & 1 & & & & \\
& & & 0 & 0 & & & & \\
& & & & & 0 & & & \\
& & & & & & & & \\
& & & & & & & & \\
& & & & & & & & \\
& & & & & & & & \\
& &
\end{array}\right]
$$

Here $L_{i}, \hat{L}_{j}$ are lightlike, $\left(L_{i}, \hat{L}_{j}\right)=-\delta_{i j},\left(E_{k}, E_{l}\right)= \pm \delta_{k l}$ and all other inner products are 0 . If the ratio of the rank of $A$ to the dimension of $V$ is to be as large as possible, then $p=0$, giving a basis $\left\{\hat{L}_{1}, L_{1}, \cdots, \hat{L}_{n}, L_{n}\right\}$ with $A \hat{L}_{i}=0$ and $A L_{i}=\hat{L}_{i}$. In this case $V$ is even dimensional and has signature $(n, n)$ [7].

If $f: M^{m} \rightarrow N^{m+1}$ is a non-degenerate isometric immersion and $\boldsymbol{\xi}$ is a unit normal vector field on $M$, then the shape operator $A$ of $f$ is defined by

$$
\tilde{\nabla}_{x} \xi=-A X
$$

where $\tilde{\nabla}$ is the indefinite Riemannian connection on $N . A: T M \rightarrow T M$ and is symmetric on each $T_{x} M$, with respect to the metric on $T_{x} M$.
2.1 Lemma. If $f: M_{n}^{2 n} \rightarrow N^{2 n+1}(c)$ is an isometric immersion with $A^{2}=0$ and $\operatorname{rank} A=n$, then there are vector fields $\tilde{L}_{1}, \cdots, \tilde{L}_{n}$ defined in a neighborhood of any point of $M$ such that $\left(\tilde{L}_{i}, \tilde{L}_{j}\right)=0=\left(A \tilde{L}_{i}, A \tilde{L}_{j}\right)$ and $\left(A \tilde{L}_{i}, \tilde{L}_{j}\right)=$ $-\delta_{i j}$.

Proof. Because $A$ is symmetric and $A^{2}=0,(A X, A Y)=\left(A^{2} X, Y\right)=0$ holds for all tangent vectors $X, Y$.

Choose $x \in M$. It was noted above that in $T_{x} M$ there are vectors $\left(L_{1}\right)_{x}$, $\cdots,\left(L_{n}\right)_{x}$ such that $\left(L_{i}, L_{j}\right)_{x}=0,\left(A L_{i}\right)_{x} \neq 0$ and $\left(A L_{i}, L_{j}\right)_{x}=-\delta_{i j}, i, j=1, \cdots, n$. Extend the $\left(L_{i}\right)_{x}$ smoothly in a neighborhood of $x$ so that $\left(L_{i}, L_{j}\right)=0$. This can be done by extending the appropriate orthonormal frame fields. By continuity, $A L_{i} \neq 0$ in some, possibly smaller, neighborhood.

Consider the smooth $n$-dimensional distribution on this neighborhood given by span $\left\{L_{1}, \cdots, L_{n}\right\}$. We can define an auxiliary negative definite inner product $h$ on this distribution by

$$
h\left(L_{i}, L_{j}\right)=\left(A L_{i}, L_{j}\right)
$$

$h$ is symmetric, bilinear and negative definite near $x$. Applying the GramSchmidt process to $\left\{L_{1}, \cdots, L_{n}\right\}$ gives $\left\{\tilde{L}_{1}, \cdots, \tilde{L}_{n}\right\}$ such that

$$
h\left(\tilde{L}_{i}, \tilde{L}_{j}\right)=-\delta_{i j}
$$

These are the desired vector fields. Q.E.D.
2. 2 THEOREM. If $f: M_{n}^{2 n} \rightarrow N^{2 n+1}(c)$ is an isometric immersion of $M_{n}^{2 n}$ into a space form of constant curvature $c$ with $A^{2}=0$ and rank $A=n$, then the kernel of $A$ is an integrable, totally isotropic and parallel n-dimensional distribution on $M$.

Proof. In [7], it was proved that kernel $A$ is integrable, totally geodesic and totally isotropic (namely, totally degenerate). A totally geodesic distribution $S$ is one where

$$
\nabla_{X} Y \in S, \quad \text { if } \quad X, Y \in S
$$

To prove that kernel $A$ is parallel we must show that

$$
\nabla_{U} X \in \operatorname{ker} A \quad \text { if } \quad X \in \operatorname{ker} A \quad \text { and } \quad U \in T M
$$

or, equivalently, that

$$
A\left(\nabla_{U} X\right)=0 \quad \text { if } \quad A X=0
$$

In order to do this, let $x \in M$ and choose vector fields in a neighborhood of $x,\left\{L_{1}, \cdots, L_{n}, A L_{1}, \cdots, A L_{n}\right\}$, as in the lemma.

Consider Codazzi's equation with $L_{i}$ and $L_{j}, 1 \leqslant i, j \leqslant n$ :

$$
\nabla_{L_{i}}\left(A L_{j}\right)-A\left(\nabla_{L_{i}} L_{j}\right)=\nabla_{L_{j}}\left(A L_{i}\right)-A\left(\nabla_{L_{j}} L_{i}\right)
$$

Taking the inner product of both sides of this equation with $A L_{k}$ gives

$$
\left(\nabla_{L_{i}} A L_{j}, A L_{k}\right)=\left(\nabla_{L_{j}} A L_{i}, A L_{k}\right)
$$

since $A^{2}=0$. Denoting $A L_{j}$ by $L_{j^{\prime}}, j=1, \cdots, n$, and defining $\Gamma_{B C}^{D}$, the Christoffel symbols, as usual, we have

$$
\nabla_{L_{i}} L_{j^{\prime}}=\sum_{k=1}^{n} \Gamma_{i j^{\prime}}^{k} L_{k}+\Gamma_{i j^{\prime}}^{k^{\prime}} L_{k^{\prime}}
$$

( $\dagger$ ) becomes

$$
\begin{equation*}
\Gamma_{i j^{\prime}}^{k}=\Gamma_{j i^{\prime}}^{k}, \quad 1 \leqslant i, j, k \leqslant n \tag{1}
\end{equation*}
$$

Because the connection in $M$ is metric, $L_{i}\left(A L_{j}, A L_{k}\right)=0=\left(\nabla_{L_{i}} A L_{j}, A L_{k}\right)$ $+\left(A L_{j}, \nabla_{L_{i}} A L_{k}\right)$, so that

$$
\begin{equation*}
\Gamma_{i j^{\prime}}^{k}+\Gamma_{i k^{\prime}}^{j}=0, \quad 1 \leqslant i, j, k \leqslant n . \tag{2}
\end{equation*}
$$

Combining (1) and (2), we see that $\Gamma_{i j^{\prime}}^{k}=0$ for all $1 \leqslant i, j, k \leqslant n$. In fact,

The fact that the kernel of $A$ is totally geodesic gives $\Gamma_{i^{\prime} j^{\prime}}^{k}=0$. Thus $\Gamma_{B j^{\prime}}^{k}=0$ for $B=1, \cdots, n, 1^{\prime}, \cdots, n^{\prime}, 1 \leqslant j, k \leqslant n$. This means the kernel of $A$ is parallel. Q.E.D.
2. 3 Corollary. Let $n>1$. If $: M_{n}^{2 n} \rightarrow N^{2 n+1}(c)$ is an isometric immersion of $M_{n}^{2 n}$ into a space form of constant curvature c with $A^{2}=0$ and rank $A=n$, then $c=0$.

Proof. The Gauss equation of this isometric immersion is

$$
R(X, Y) Z=c(X \wedge Y) Z+(\xi, \xi)(A X \wedge A Y) Z,
$$

where $R$ is the curvature tensor of $M, X, Y, Z \in T_{x} M$, and $\xi$ is a unit normal field. Let Z be a vector field in ker $A$. Expanding the Gauss equation, we have

$$
\begin{aligned}
& \nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{C X, Y I} Z \\
& \quad=c((Y, Z) X-(X, Z) Y) \pm((A Y, Z) A X-(A X, Z) A Y) .
\end{aligned}
$$

Since $A Z=0$, this becomes

$$
\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{C X, Y} Z=c((Y, Z) X-(X, Z) Y) .
$$

By Theorem 2.2 the left-hand side of this equation is in ker $A$. Given $\operatorname{dim} M>2$, we can choose $X$ and $Y$ linearly independent with $(X, Z)=0$, $(Y, Z)=1$, and $X$ not in ker $A$. Then the right-hand side is $c X$, which is in $\operatorname{ker} A$ iff $c=0$. Q. E. D.
L. Graves and K. Nomizu [6] give an example of a Lorentz surface $M_{1}^{2}$ isometrically immersed in $S_{1}^{3}$ with $A$ satisfying $A^{2}=0$ and rank $A=1$, so the restriction on $n$ cannot be removed.

## § 3. Examples

Before proceeding to the proofs of Theorems 4.1 and 4.2, let us examine a few examples of Einstein hypersurfaces $M_{n}^{2 n}$ with $A^{2}=0$ and rank $A=n$.
3.1 Example. $B$-scroll over a null curve in $\boldsymbol{R}_{1}^{3}$ [5].
$\boldsymbol{R}_{1}^{3}$ is Lorentz 3 -space, with signature $(-,+,+)$. Consider a null curve $x(s)$ in $\boldsymbol{R}_{1}^{3}$, so that $(\dot{x}(s), \dot{x}(s))=0$. A null curve with a frame $\{A(s), B(s)$, $C(s)\}$ is called a Cartan-framed null curve if the following conditions hold. $A(s), B(s)$ are null $;(C(s), C(s))=1 ;(A(s), B(s))=-1$; all other inner products are zero along $x(s)$; and the Frenet equations of the derivatives of $A(s), B(s)$, $C(s)$ along $x(s)$ have the form :

$$
\begin{aligned}
\frac{d x(s)}{d s} & =A(s) \\
\frac{d A(s)}{d s} & =k_{2}(s) C(s) \\
\frac{d B(s)}{d s} & =k_{3}(s) C(s) \\
\frac{d C(s)}{d s} & =k_{3}(s) A(s)+k_{2}(s) B(s)
\end{aligned}
$$

The surface $f(u, s)=x(s)+u B(s)$ is called a $B$-scroll over the null curve $x(s)$. It is Lorentz and is flat iff $k_{3}(s)=0$. In this case,

$$
A=\left[\begin{array}{cc}
0 & -k_{2}(s) \\
0 & 0
\end{array}\right]
$$

with respect to $\{\partial / \partial u, \partial / \partial s\}$, where the unit normal $\xi(u, s)=C(s) . \quad(\nabla A)=0$ iff $k_{2}(s)$ is constant. If $k_{2} \equiv 1$, the surface is given by

$$
x(s)+u B(s)=\left(\frac{s^{3}}{6 \sqrt{2}}+\frac{s}{\sqrt{2}}, \frac{s^{3}}{6 \sqrt{2}}-\frac{s}{\sqrt{2}}, \frac{s^{2}}{2}\right)+u\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)
$$

Graves calls this the $B$-scroll over the null cubic.
3.2. Example. Sum of $B$-scrolls.

For $j=1, \cdots, n$, let $\left(u_{j}, s_{j}\right) \in I_{j} \times J_{j} \subset \boldsymbol{R} \times \boldsymbol{R}$ and suppose $f_{j}\left(u_{j}, s_{j}\right)=\left(a_{j}\left(u_{j}, s_{j}\right)\right.$, $\left.b_{j}\left(u_{j}, s_{j}\right), c_{j}\left(u_{j}, s_{j}\right)\right)$ are $n$ flat $B$-scrolls in $\boldsymbol{R}_{1}^{3}$ which, when written as $x_{j}\left(s_{j}\right)+$ $u_{j} B_{j}$ satisfy the following initial conditions :

$$
x_{j}(0)=0, \dot{x}_{j}(0)=\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right), \quad B_{j}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)
$$

and $C_{j}(0)=(0,0,1)$.
We can define a parametrized hypersurface in $\boldsymbol{R}_{n}^{2 n+1}$ by

$$
\begin{aligned}
& f\left(u_{1}, s_{1}, \cdots, u_{n}, s_{n}\right) \\
& =\left(a_{1}\left(u_{1}, s_{1}\right), \cdots, a_{n}\left(u_{n}, s_{n}\right), b_{1}\left(u_{1}, s_{1}\right),\right. \\
& \left.\quad \cdots, b_{n}\left(u_{n}, s_{n}\right), c_{1}\left(u_{1}, s_{1}\right)+\cdots+c_{n}\left(u_{n}, s_{n}\right)\right),
\end{aligned}
$$

where $\boldsymbol{R}_{n}^{2 n+1}$ has signature $(n, n+1)$. This hypersurface has

$$
A=\left[\begin{array}{ccccc}
0 & -k_{1} & & & \\
0 & 0 & & & \\
& & \cdot & & \\
& & & & \\
& & & & \\
& & & 0 & -k_{n} \\
& & & 0 & 0
\end{array}\right]
$$

If each $k_{i}\left(s_{i}\right)$ is constant, then $\nabla A=0$.
If rank $A$ is constant but not equal to $n$, $\operatorname{ker} A$ may not be parallel.
3.3 Example. A 4 -dimensional scroll with $A^{2}=0$, rank $A$ constant and $\operatorname{ker} A$ not parallel.

According to W. Bonner [2], for every smooth $k(s)$, there is a null curve $x(s)$ in $\boldsymbol{R}_{1}^{4}$ with frame $\{X(s), Y(s), Z(s), C(s)\}$ such that $(X(s), Y(s))=-1, X$ and $Y$ are null, $Z$ and $C$ are unit spacelike and whose derivatives are

$$
\begin{aligned}
& \frac{d x(s)}{d s}=X(s) \\
& \frac{d X(s)}{d s}=C(s) \\
& \frac{d Y(s)}{d s}=k(s) Z(s) \\
& \frac{d Z(s)}{d s}=k(s) X(s) \\
& \frac{d C(s)}{d s}=+Y(s)
\end{aligned}
$$

Let $x(s)$ be considered as a null curve in $\boldsymbol{R}_{1}^{5}$ by looking at $(x(s), 0)$ with frame $\{(X(s), 0), \cdots,(C(s), 0), W(s)\}$, where $W(s)=W \equiv(0,0,0,0,1)$.

The Lorentz 4 -surface parametrized by $f(u, s, t, v)=x(s)+u Y(s)+t Z(s)+$ $v W(s)$ has, with $\xi(u, s, t, v)=(C(s), 0)$, shape operator

$$
A=\left[\begin{array}{rrrr}
0 & -1 & & \\
0 & 0 & & \\
& & 0 & \\
& & & 0
\end{array}\right]
$$

with respect to $\{\partial / \partial u, \partial / \partial s, \partial / \partial t, \partial / \partial v\}$. It is easy to see that the kernel of

A, spanned by $Y(s), Z(s), W(s)$, is not parallel. In fact, $\nabla_{\partial / \partial s} \partial / \partial t=k(s) X(s)$ is not in ker A. Thus, if the rank of $A$ is not maximal, then the kernel of $A$ need not be parallel.

## § 4. Local Characterization of $M_{n}^{2 n}$ isometrically immersed in $R_{n}^{2 n+1}$ with $A^{2}=0$ and $\operatorname{rank} A=n$

4.1 Theorem. Let $f: M_{n}^{2 n} \rightarrow \boldsymbol{R}_{n}^{2 n+1}$ be an isometric immersion with rank $A=n$. Then kernel $A$ is an integrable, totally isotropic, parallel distribution on $M_{n}^{2 n}$ iff $A^{2}=0$.

Proof. If $A^{2}=0$, the conclusion was obtained in the proof of Theorem 2.2.

Assume then that ker $A$ is integrable, parallel and totally isotropic. By a motion of $\boldsymbol{R}_{n}^{2 n+1}$ we can assume that $\operatorname{ker} A$ is spanned by $B_{i}=\left(e_{i}, e_{i}, 0\right)$, $i=1, \cdots, n$, where $e_{1}, \cdots, e_{n}$ is the standard basis of $\boldsymbol{R}^{n}$. If $\left(x_{1}, \cdots, x_{2 n}\right)$ is a local coordinate system for $M_{n}^{2 n}$, then the normal unit vector field $\boldsymbol{\xi}$ must have the following form because it is perpendicular to $\operatorname{ker} A$.

$$
\xi_{f_{(\vec{x})}}=\left(\xi_{1}(\vec{x}), \cdots, \xi_{n}(\vec{x}), \xi_{1}(\vec{x}), \cdots, \xi_{n}(\vec{x}), 1\right)
$$

Then,

$$
D_{\partial / \partial x_{j}} \xi=D_{\partial / \partial x_{j}}\left(\sum_{i=1}^{n} \xi_{i}(\vec{x}) B_{i}+(0,0, \cdots, 0,1)\right)
$$

which is in ker $A$. Thus, $-A\left(D_{\partial / \partial x_{j}} \xi\right)=0=A^{2}\left(\partial / \partial x_{j}\right)$. Q. E. D.
4. 2 Theorem. $f: M_{n}^{2 n} \rightarrow \boldsymbol{R}_{n}^{2 n+1}$ is an isometric immersion with $A^{2}=0$ and $\operatorname{rank} A=n$ iff, around each $x \in M$, there is a coordinate system $\left(t_{1}, \cdots, t_{n}\right.$, $\left.u_{1}, \cdots, u_{n}\right)$ such that $f$ has the following form:

$$
f(\vec{t}, \vec{u})=\left(g_{1}(\vec{t}), \cdots, g_{n}(\vec{t}), g_{1}(\vec{t})+t_{1}, \cdots, g_{n}(\vec{t})+t_{n}, G(\vec{t})\right)+\sum u_{j} B_{j}
$$

Here $\vec{t}=\left(t_{1}, \cdots, t_{n}\right), \vec{u}=\left(u_{1}, \cdots, u_{n}\right), B_{i}, 1 \leqslant i \leqslant n$ are as in the proof of Theorem 4.1, $g_{1}, \cdots, g_{n}, G: U \subset \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}$ are smooth and $\operatorname{det}\left[\partial^{2} G / \partial t_{i} \partial t_{j}\right] \neq 0$.

Remark. Locally, then, each such $M_{n}^{2 n}$ is an $n$-planed hypersurface.
Proof. Assume we are given such an isometric immersion. The kernel of $A$ is integrable. Thus, given any $x_{0}$ in $M$, we can find a local coordinate system $\left(s_{1}, \cdots, s_{n}, v_{1}, \cdots, v_{n}\right)$ around $x_{0}$ so that $\operatorname{ker} A$ is given by $s_{1}=c_{1}, \cdots$, $s_{n}=c_{n}$, where the $c_{i}$ 's are constants.

We also can assume, as in Theorem 4.1, that, by a motion of $\boldsymbol{R}_{n}^{2 n+1}$,
$(\operatorname{ker} A)_{f(x)}$ is spanned by $B_{1}, \cdots, B_{n}$. Define $g(\vec{s})=f(\vec{s}, 0)$. It is clear then that $M_{n}^{2 n}$ can be locally parametrized near $g(\vec{s})$, with a change of coordinates, by

$$
f(\vec{s}, \vec{u})=g(\vec{s})+\sum_{j=1}^{n} u_{j} B_{j}
$$

The unit normal $\xi(\vec{s}, \vec{u})$ is of the form

$$
\xi(\vec{s}, \vec{u})=\left(\xi_{1}(\vec{s}), \cdots, \xi_{n}(\vec{s}), \xi_{1}(\vec{s}), \cdots, \xi_{n}(\vec{s}), 1\right) .
$$

In order for $f$ to have the required properties, several conditions must be satisfied.
i) $\operatorname{Rank} A=n$ iff $\left\{\partial \xi / \partial s_{1}, \cdots, \partial \xi / \partial s_{n}\right\}$ is linearly independent.
ii) $M_{n}^{2 n}$ inherits a non-degenerate metric iff $\operatorname{det}\left[\left(\partial g / \partial s_{i}, B_{j}\right)\right] \neq 0$.
iii) $\xi$ is normal iff $\left(\partial g / \partial s_{i}, \xi\right)=0 \quad i=1, \cdots, n$.

If $g(\vec{s})=\left(g_{1}(\vec{s}), \cdots, g_{2 n+1}(\vec{s})\right)$, let $h_{i}(\stackrel{\rightharpoonup}{s})=g_{n+i}(\vec{s})-g_{i}(\vec{s}) i=1, \cdots, n$. Condition ii can be rewritten as
ii') $\operatorname{det}\left[\partial h_{i} / \partial s_{j}\right] \neq 0$,
while iii becomes
iii') $\quad \sum_{i=1}^{n} \xi_{i}\left(\partial h_{i} / \partial s_{j}\right)+\partial g_{2 n+1}(\vec{s}) / \partial s_{j}=0 \quad j=1, \cdots, n$.
Finally, in order to insure that $A_{\xi}$ is symmetric and that the mixed partials of $g_{2 n+1}$ be equal, we need
iv) $\sum_{k=1}^{n}\left(\partial \xi_{k} / \partial s_{i}\right)\left(\partial h_{k} / \partial s_{j}\right)=\sum_{k=1}^{n}\left(\partial \xi_{k} / \partial s_{j}\right)\left(\partial h_{k} / \partial s_{i}\right)$.

By ii', we can change coordinates from ( $s_{1}, \cdots, s_{n}, u_{1}, \cdots, u_{n}$ ) to ( $h_{1}, \cdots, h_{n}$, $u_{1}, \cdots, u_{n}$ ) which we rename ( $t_{1}, \cdots, t_{n}, u_{1}, \cdots, u_{n}$ ). With this new coordinate system, $\mathrm{ii}^{\prime}$ is automatically fulfilled, while iii' becomes

$$
\text { iii' }) \quad \xi_{j}+\partial g_{2 n+1}(\vec{t}) / \partial t_{j}=0,
$$

and iv becomes

$$
\left.\mathrm{iv}^{\prime}\right) \quad \partial \xi_{j} / \partial t_{i}=\partial \xi_{i} / \partial t_{j} \quad i, j=1, \cdots, n
$$

Summarizing, we see that after the changes of coordinates, we must have
i) $\left\{\partial \xi / \partial t_{1}, \cdots, \partial \xi / \partial t_{n}\right\}$ linearly independent;
iii') $\quad \xi_{j}=-\partial g_{2 n+1}(\vec{t}) / \partial t_{j}$; and
iv') $\quad \partial \xi_{j} / \partial t_{i}=\partial \xi_{i} / \partial t_{j}$.
Given the immersion $f$, let $G(\vec{t})=g_{2 n+1}(\vec{t})$ which is smooth. Then by iii",
$\xi_{j}=-\partial G / \partial t_{j}$, and we have $\partial \xi_{j} / \partial t_{i}=-\partial^{2} G / \partial t_{i} \partial t_{j}=-\partial^{2} G / \partial t_{j} \partial t_{i}=\partial \xi_{i} / \partial t_{j}$ so that $\mathrm{iv}^{\prime}$ is satisfied. The only condition we must impose on $G(\vec{t})$ is $\operatorname{det}\left[\partial^{2} G / \partial t_{i} \partial t_{j}\right]$ $\neq 0$, so that i holds. Thus, given any such $f$, we have transformed it into the desired form. It is easy to check that any $f$ in this form has $A^{2}=0$ and $\operatorname{rank} A=n$. Q. E. D.

We show that sums of $B$-scrolls in 3.2 Example do not, even locally, exhaust $M_{n}^{2 n}$ as in 4.2 Theorem.
$T_{x}\left(M_{n}^{2 n}\right)$ can be given the structure of a commutative algebra using the covariant derivative of $A$.

$$
X \cdot Y:=\nabla_{X}(A Y)-A\left(\nabla_{X} Y\right)
$$

For any 4 -dimensional sum of two $B$-scrolls with $\nabla A \neq 0$ we can find a basis $\left\{e_{1}, e_{2}, u_{1}, u_{2}\right\}$ of $T_{x}$ with the following products.
$e_{1} \cdot e_{1}=u_{1}$ and $e_{2} \cdot e_{2}=u_{2}$, while all others are zero. (If $\nabla A=0, X \cdot Y=0$ everywhere.)

Use the classification theorem to define an $M_{2}^{4}$ in $\boldsymbol{R}_{2}^{5}$ by setting $g_{1}=0=g_{2}$ and $G\left(t_{1}, t_{2}\right)=t_{2}{ }^{3}+t_{1}{ }^{2} t_{2}+t_{1}+t_{2}$. Then there is a basis $\left\{f_{1}, f_{2}, v_{1}, v_{2}\right\}$ of $T_{0} M$ so that the non-zero products are

$$
\begin{aligned}
& f_{1} \cdot f_{1}=2 v_{2} \\
& f_{2} \cdot f_{2}=-6 v_{2} \\
& f_{1} \cdot f_{2}=2 v_{1}
\end{aligned}
$$

These two 4-dimensional algebras are not isomorphic. Thus, the second hypersurface is not a sum of $B$-scrolls.

## Bibliography

[1] G. ARCA: Variétés pseudo-riemanniennes structurées par une connexion spineuclidienne et possédant la propriété de Killing, C. R. Acad. Sc. Paris, t. 290 (12 Mai 1980), pp. 839-842.
[2] W. B. Bonner: Null curves in a Minkowski spacetime, Tensor, N. S., vol. 20 (1969), pp. 229-242.
[3] A. Crumeyrolle: Dérivations, formes et opérateurs usuels sur les champs spinoriels des variétés différentiables de dimension paire, Ann. Inst. H. Poincaré, vol. XVI, no. 3 (1972), pp. 171-201.
[4] A. Fialkow: Hypersurfaces of a space of constant curvature, Ann. of Math. 39 (1938), pp. 762-785.
[5] L. Graves: Codimension-one isometric immersions between Lorentz spaces, Trans. A. M. S. 252 (1979), pp. 367-392.
[6] L. Graves and K. Nomizu: Isometric immersions of Lorentzian space forms, Math. Ann. 233 (1978), pp. 125-136.
[7] M. MAGID: Shape operators of Einstein hypersurfaces in indefinite space forms, Proc. A. M. S., vol. 84, no. 2 (1982), pp. 237-242.
[8] M. MAGID: Indefinite Einstein hypersurfaces with imaginary principal curvatures, to appear in Houston J. of Math.
[9] R. Rosca: Sous-variétés pseudo-minimales et minimales d'une variété pseudoriemannienne structurée par une connexion spin-euclidienne, C. R. Acad. Sc. Paris, t. 290 (18 Fevrier 1980), pp. 331-333.
[10] A. G. Walker: On parallel fields of partially null vector spaces, Quart. J. of Math., vol. 20 (1949), pp. 135-145.
[11] A. G. Walker: A canonical form for a Riemannian space with a parallel field of null planes, Quart J. of Math. (2) 1 (1950), pp. 69-79.
[12] A. G. Walker: Canonical forms II: parallel partially null planes, Quart $J$. of Math. (2) 1 (1950), pp. 147-152.
[13] T. J. Willmore: Differential Geometry, Oxford University Press, 1959.

