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Introduction

Let M be a riemannian manifold and g its riemannian metric. Then
we call M a C_{l} manifold and g a C_{l} Crmetric if all of its geodesies are closed
and have the common length l. As is well-known, the unit sphere S^{n} in
the euclidian space R^{n+1} equipeed with the induced metric (the standard
metric) g_{0} is a C_{2\pi} manifold

Let us consider a one-parameter family \{g_{t}\} of C_{2\pi} metrics on S^{n} such
that g_{0}=g_{t}|_{t=0} is the standard one. Put

h= \frac{d}{dt}g_{t}|_{t=0} .

We shall call such a family \{g_{t}\} a C_{2\pi}-deformation of the standard metric
g_{0} , and h an infinitesimal C_{2\pi}-deformation of g_{0} . It is known that each
infinitesimal C_{2\pi}-deformation h satisfies the s0-called zer0-energy condition, i . e. ,

\int_{0}^{2\pi}h(\dot{\gamma}(s),\dot{\gamma}(s))ds=0

for any geodesic \gamma(s) of (S^{n}, g_{0}) parametrized by arc-length (cf. [1] p. 151).
We denote by \mathscr{K}^{2} the vector space of symmetric 2-forms on S^{n} which
satisfy the zer0-energy condition.

In his paper [3] Guillemin proved that in the case of S^{2} any symmetric
2-form h\in \mathscr{K}^{2} is necessarily an infinitesimal C_{2\pi}-deformation of g_{0} . On the
other hand, for C_{2\pi}-deformations on S^{n}(n\geq 3) , the examples constructed by
Weinstein ([1] p. 119) are all that we know up to now, and the correspond-
ing infinitesimal C_{2\pi}-deformations form a rather small subset of \mathscr{K}^{2} .

The main purpose of this paper is to introduce and study a necessary
condition for a symmetric 2-form h\in \mathscr{K}^{2} to be an infinitesimal C_{2\pi}-deforma-
tion of the standard metric g_{0} on the n-dimensional sphere S^{n}(n\geq 3) . This
condition is called the second order condition, and is naturally obtained
through the interpretation of the C_{2\pi}-property in terms of the symplectic
geometry on the cotangent bundle T^{*}S^{n} (Proposition 1. 4).
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Let \iota_{0} : S^{n}arrow R^{n+1} be the natural embedding, and let (x_{1}, \cdots, x_{n+1}) be the
canonical coordinate system of R^{n+1} . In this paper we restrict our attention
to the symmetric 2-forms of the form h=(\iota_{0}*f)g_{0} , where f is a polynomial
function on R^{n+1} (or a polynomial in the variables x_{1} , \cdots , x_{n+1}) and h\in \mathscr{K}^{2} .
In general it is known for a function v on S^{n} that the symmetric 2-f0rm
vg_{0} satisfies the zer0-energy condition if and only if v is odd with respect
to the antipodal map of S^{n} . Hence we may assume that f is an odd poly-
nomial, i . e. , polynomial whose terms of even degrees vanish.

The main result in this paper (Theorem 4. 1) may be stated as follows;

THEOREM. Assume that the dimension n of the sphere under considera-
tion is equal to or greater than 3. Let f be an odd polynomial in the varia-
bles x_{1} , \cdots , x_{n+1} . Then the symmetric 2-form (\iota_{0}*f)g_{0}\in \mathscr{K}^{2} satisfies the second
order condition if and only if f has one of the following forms:

(i) f \equiv h_{1}+h_{3}+\sum_{i=2}^{m}(\sum_{k}a_{k}x_{k})^{2i}(\sum_{j}b_{ij}x_{j}) mod (1- \sum_{i=1}^{n+1}x_{i}^{2}) ,

where h_{1} and h_{3} are homogeneous polynomials of degrees 1 and 3 respectively,
and a_{k} and b_{ij} are real numbers;

(ii) f\equiv h_{1}+h_{3}+cA^{*}h mod (1- \sum_{i=1}^{n+1}x_{i}^{2}) :

where h_{1} and h_{3} are as in (i), c\in R, A\in O(n+1, R) , and h is a polynomial
of degree 21 in the variables (x_{1}, x_{2}) whose coefficients satisfy certain relations
(for a strict form, see \S 4).

As an immediate consequence of this theorem, we see that the zer0-

energy condition is no more sufficient for a symmetric 2-form to be an
infinitesimal C_{2\pi}-deformation of g_{0} in the case of S^{n}(n\geqq 3) .

The infinitesimal C_{2\pi}-deformations given by Weinstein are essentially of
the form ( \iota_{0^{*}}u(\sum_{k}a_{k}x_{k}))g_{0} , where u=u(t) is any function in one variable t

satisfying u(-t)=-u(t) . Hence we have a subclass of (i) consisting of odd
polynomials f of the form

(i)’ f \equiv h_{1}+\sum_{i=1}^{m}c_{i}(\sum_{k}a_{k}x_{k})^{2i+1} mod (1- \sum_{-,i,1}^{n+1}x_{i}^{2})- , c_{i}\in R ,

and for these polynomials the symmetric 2-forms (\iota_{0^{*}}f)g_{0} are really infinitesi-
mal C_{2\pi}-deformations of g_{0} . For the other polynomials f satisfying (i) or (ii)

we do not know whether (\iota_{0^{*}}f)g_{0} is an infinitesimal C_{2\pi}-deformation or not.
Recently Tsukamoto [6] proved that the second order condition is not

satisfied for a certain subclass of \mathscr{K}^{2} . It should be noted that this subclass
is in some sense a complement of the subspace of \mathscr{K}^{2} spanned by the Lie
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derivatives \mathscr{L}_{X}g_{0} , X being vector fields on S^{n} , and the symmetric 2-forms \in

\mathscr{K}^{2} which are conformal to g_{0} (see also [5]).
This paper consists of five sections. In \S 1 we introduce the second

order condition. In \S 2 we deal with the laplacian acting on the functions
on the unit cotangent bundle S^{*}S^{n} . We restrict this operator to the subspace
consisting of functions which are constant along each orbit of the geodesic
flow, and decompose it into a sum of eigenspaces. The second order condi-
tion for a symmetric 2-form (\iota_{0^{*}}f)g_{0} is then interpretted as the vanishing of
some eigenspace components of a function G\iota^{*}F(f, f) which is suitably
defined by f. In \S 3 we prove Proposition 3. 1, which is the first step to
Theorem 4. 1. The proof consists of two steps; the explicit calculations for
polynomials in two variables (x_{1}, x_{2}) and the reduction of the general case to
two variables case. For this reduction we use some algebraic geometric
properties of complex quadrics (Proposition 3. 11). This trick is also used
extensively in subsequent sections. \S 4 and \S 5 are devoted to the proof of
Theorem 4. 1. There appear a kind of polynomials of degree 21 as an
exceptional case. This case is considered in detail in \S 5.

The author expresses his sincere thanks to Prof. N. Tanaka for his
constant encouragement and valuable advices during the preparation of this
paper.

The contents of this paper were partially anounced in [4].

\S 1. The second order condition

Throughout the paper we assume the differentiability of class C^{\infty} .
We first introduce some terminologies.
Set

[mathring]_{T}^{*}S^{n}=T^{*}S^{n}- {0 -section}
Let R^{*} (resp. R_{+}) be the multiplicative group of non-zero real numbers

(resp. of positive real numbers). We say that a function f on [mathring]_{T}^{*}S^{n} is hom0-
geneous (resp. positively homogeneous) of degree d if

f(s\lambda)=s^{d}f(\lambda)

for any \lambda\in T^{0}*S^{n} and any s\in R^{*} (resp. s\in R_{+}). A vector field X on [mathring]_{T}^{*}S^{n} is
called homogeneous (resp. positively homogeneous) if it is invariant under the
R^{*} -action (resp. the R_{+} -action).

Let \alpha be the canonical 1-form on T^{*}S^{n} , which is defined by

\alpha(X)=\lambda(\pi_{*}X) , \lambda\in T^{*}S^{n} , X\in T_{\lambda}T^{*}S^{n} ,
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\pi being the projection T^{*}S^{n}arrow S^{n} . As is well-known, the 2-form d\alpha defines
a symplectic structure on T^{*}S^{n} .

To each function f on an open subset U of T^{*}S^{n} we assign a symplectic
vector field X_{f} on U in the usual way;

i_{x_{f}}d\alpha=-df

It is easy to see that if a function f on T^{0}*S^{n} is (positively) homogeneous of
degree one, then the vector field X_{f} is (positively) homogeneous, and \alpha(X_{J})=f.

A riemannian metric g on S^{n} induces a bundle isomorphism \#_{\mathcal{G}} from the
cotangent bundle T^{*}S^{n} to the tangent bundle TS^{n} such that

g ( \# g(\lambda) , v)=\lambda(v) , \lambda\in T_{x}^{*}S^{n} . v\in T_{x}S^{n} . x\in S^{n}

Let \overline{\mathscr{A}}^{2} be the vector space of functions on T^{*}S^{n} which are hom0-
geneous polynomials of degree 2 on each fibre T_{x}^{*}S^{n}(x\in S^{n}) . To each
symmetric 2-form h we assign an element h^{\#_{g}} of \tilde{\mathscr{F}}^{2} by

h^{t_{g}}(\lambda)=h(_{\backslash }\#_{\sigma}(\lambda), \# g(\lambda)) , \lambda\in T^{*}S^{n}

In particular we call E= \frac{1}{2}g^{\#_{g}} the energy function and X_{E} (or the one-

parameter group of transformations generated by it) the geodesic flow as-
sociated with the riemannian metric g.

Now let \{g_{t}\} be a C_{2\pi}-deformation of the standard metric g_{0} on S^{n} . Put
h_{t}= \frac{d}{dt}g_{t} .

Lemma 1. 1. For any geodesic \gamma(s) of (S^{n}, g_{t}) parametrized by arc-
length, we have

\int_{0}^{2\pi}h_{t}(\dot{\gamma}(s),\dot{\gamma}(s))ds=0 .

For the proof we refer to [1] Proposition 5. 86.

For simplicity’s sake we shall write \#_{t} instead of \#_{gt} . Put

E_{t}= \frac{1}{2}g_{t}^{\#_{t}}

The following proposition is another representation of Lemma 1. 1, which
is essentially due to Weinstein [7] (see also [1] Proposition 4. 46).

PROPOSITION 1. 2. There is a one-parameter family of homogeneous
symplectic vector fifields \{X_{t}\} on [mathring]_{T}^{*}S^{n} such that

X_{t}E_{t}=\dot{E}_{t;}
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where the dot denotes the derivative in the parameter t .
PROOF. Let \{\xi_{s}^{t}\}_{s\in R} be the geodesic flow associated with the the rieman

nian metric g_{t} . Then \{\xi_{s}^{l}\}_{s\in R} induces a free S^{1}-action of period 2\pi on the
unit cotangent bundle S_{(t)}^{*}S^{n}=E_{l}^{-1}( \frac{1}{2}) . It is easy to see that

\dot{E}_{t}=-\frac{1}{2}h_{t}^{r_{t}}

and \#_{t}(\xi_{s}^{t}(\lambda))=\dot{\gamma}(s) , where \lambda\in S_{(t)}^{*}S^{n} and \gamma(s) denotes the geodesic \pi(\xi_{s}^{t}(\lambda)) of
(S^{n}, g_{t}) . Hence it follows from Lemma 1. 1 that

\int_{0}^{2\pi}\dot{E}_{t}(\xi_{s}^{l}(\lambda))ds=0 . \lambda\in S_{(l)}^{*}S^{n}

Define a function H_{t} on [mathring]_{T}^{*}S^{n} by the conditions

(i) H_{t}( \lambda)=\frac{1}{2\pi}\int_{0}^{2n}\int_{0}^{s}\dot{E}_{t}(\xi_{r}^{t}(\lambda)) drds, \lambda\in S_{(t)}^{*}S^{n} ,

(ii) H_{t} is positively homogeneous of degree one.
From the condition (ii) it follows that X_{E_{t}}H_{t} is positively homogeneous of
degree two. For \lambda\in S_{(t)}^{*}S^{n} we have

(X_{E_{t}}H_{t})( \lambda)=\frac{d}{ds}H_{t}(\xi_{s}^{l}(\lambda))|_{s=0}=-\dot{E}_{t}(\lambda)

Since \dot{E}_{t} is also positively homogeneous of degree two, we see that
X_{E_{t}}H_{t}=-\dot{E}_{t}

on T[mathring]_{*}S^{n} . Clearly we have
H_{t}(-\lambda)=-H_{t}(\lambda)

,\cdot
\lambda\in S_{(t)}^{*}S^{n}

Hence H_{t} is homogeneous of degree one. Set

X_{t}=X_{H_{t}}

Then X_{t} is homogeneous and we have
X_{t}E_{t}=\dot{E}_{t}

by the anti-commutativity of the Poisson bracket.
For simplicity’s sake we shall write \# , \{\xi_{s}\} , and S^{*}S^{n} instead of \#_{0}, \{\xi_{s}^{0}\} ,

and S_{(0)}^{*}S^{n} respectively.
Define a linear operator G on the vector space C^{\infty}(S^{*}S^{n}) of C^{\infty} function

on S^{*}S^{n} by
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G(f)( \lambda)=\frac{1}{2\pi}\int_{0}^{2\pi}f(\xi_{s}\lambda)ds , f\in C^{\infty}(S^{*}S^{n}) , \lambda\in S^{*}S^{n} .

We assign a homogeneous symplective vector field X(h) to each h\in \mathscr{K}^{2}

as follows: Let H be the function on [mathring]_{T}^{*}S^{n} which is positively homogeneous
of degree one and satisfies

H( \lambda)=\frac{1}{2\pi}\int_{0}^{2\pi}\int_{0}^{s}h^{\#}(\xi_{r}\lambda) drds, \lambda\in S^{*}S^{n} ;

We set X(h)=X_{H}. By the proof of Proposition 1. 2 we see that X(h) is
homogeneous and satisfies

X(h)E_{0}=h^{g} .

It should be noticed that X(h) is uniquely determined by the conditions
X(h)E_{0}=h^{g} and G(\alpha(X(h)))=0 .

We then define a bilinear map K:\mathscr{K}^{2}\cross \mathscr{K}^{2}arrow C^{\infty}(S^{*}S^{n}) by

K(f, h)=G(X(f)h^{\#}) . f, h\in \mathscr{K}^{2} ,

where X(f)h^{r} should be considered as a function on S^{*}S^{n} by restriction.

Lemma 1. 3. K is symmetric.

PROOF. Let f and h be elements of \mathscr{K}^{2} , and let F and H be the func-
tions defined as above by f and h respectively. Then we have

X(f)h^{f}=X_{F}h^{\#}=X_{F}X_{H}E_{0} .
Thus

X(f)h^{\#}-X(h)f^{\#}=[X_{F}, X_{H}]E_{0}

=X_{Xffi}E_{0}=-X_{E_{0}}(X_{F}H)

Since G\circ X_{E_{0}}=0 , it follows that

G(X(f)h^{p})=G(X(h)f^{t})

Let \mathscr{A}^{2} be the vector space of functions on S^{*}S^{n} which are the restric-
tions of elements of \overline{\mathscr{F}}^{2} . We shall say that an element h of \mathscr{K}^{2} satisfies
the second order condition if

K(h, h)\in G(\mathscr{A}^{2})(

PROPOSITION 1. 4. Every infifinitesimal C_{2\pi}-deformation of g_{0} satisfy the
second order condition.

PROOF. Let \{g_{t}\} be a C_{2\pi}-deformation of g_{0} and put \frac{d}{dt}g_{t}|_{t=0}=h . Let
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\{E_{l}\} be the corresponding energy functions. Following the proof of Proposi-
tion 1. 2 we construct the one-parameter family of homogeneous symplectic
vector fields \{X_{t}\} on T^{c}*S^{n} . By differentiating the formula X_{t}E_{t}=\dot{E_{t}(} in the
parameter t and putting t=0, we have

\dot{X}_{0}E_{0}+X_{0}\dot{E}_{0}=\dot{E}_{0} .
Since \dot{X}_{0} is homogeneous, it follows that \dot{X}_{0}=X_{f}, f being \alpha(\dot{X}_{0}) . Thus

\dot{X}_{0}E_{0}=-X_{E_{0}}f ,

which implies G(\dot{X}_{0}E_{0})=0 . Since \overline{E}_{0}=-\frac{1}{2}h^{\#} and X_{0}=- \frac{1}{2}X(h) by the
construction, we have

G(X(h)h^{\#})=4G(\dot{E}_{0})\in G(\mathscr{F}^{2}) .

REMARK. In the case of S^{2} it is known that

G(\mathscr{A}^{2})=G(C^{\infty}(S^{2})E_{0})=the image of G

(cf. [3] Appendix). Therefore Proposition 1. 4 turns out to be trivial in this
case.

Next we shall give more explicit expression of the second order condition
in the case where symmetric 2-forms are conformal to g_{0} . Let f be a function
on S^{n} . Then it is known that fg_{0} belongs to \mathscr{K}^{2} if and only if f is an
odd function, i . e. , \tau^{*}f=-f, \tau being the antipodal map of S^{n} (cf. [1] p. 123).

Let \iota_{0} : S^{n}arrow R^{n+1} be the canonical embedding. Then we can embed
T^{*}S^{n} into R^{2n+2}=TR^{n\dagger 1} by the map \iota_{1}=\iota_{0*}\circ\# .

Let x=(x_{1}, \cdots, x_{n+1}) be the canonical coordinate system of R^{n+1} and
(x, \zeta)=(x_{1}, \cdots, x_{n+1}, \zeta_{1}, \cdots, \zeta_{n+1}) be that of R^{2n+2}=TR^{n\dagger 1} . It is easy to see that

\iota_{1}(T^{*}S^{n})=\{(x, \zeta)\in R^{2n+2}|\sum_{i}x_{i}^{2}=1 , \sum_{i}x_{i}\zeta_{i}=0\}\sim,

\iota_{1}(S^{*}S^{n})=\{(x, \zeta)\in R^{2n+2}|\sum_{i}x_{i}^{2}=\sum_{i}\zeta_{i}^{2}=1 , \sum_{i}x_{i}\zeta_{i}=0\}

We shall denote by \iota the restriction of \iota_{1} onto S^{*}S^{n} .
Define a one-parameter group of transformations \{\tilde{\xi}_{t}\} of R^{2n+2} by

\overline{\xi}_{t}(x, \zeta)= (x cos t+\zeta sin t,- x sin t+\zeta cos t)
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Let \tilde{X}_{E_{0}} be its infinitesimal generator. Then

X_{E_{0}}= \sum_{i}(\zeta_{i}\frac{\partial}{\partial x_{i}}-x_{i}\frac{\partial}{\partial\zeta_{i}}) .

Define a linear operator G:C^{\infty}(R^{2n\dagger 2})arrow C^{\infty}(R^{2n+2}) by

G(f)(x, \zeta)=\frac{1}{2\pi}\int_{0}^{2\pi}f(\overline{\xi}_{t}(x, \zeta))dt .

It is easy to see that \tilde{\xi}_{t}(\iota(\lambda))=\iota(\xi_{t}(\lambda)) for \lambda\in S^{*}S^{n} . Hence it follows that
X_{E_{0}}=\iota_{*}X_{E_{0}} on \iota(S^{*}S^{n}) , and \iota^{*}G(f)=G(\iota^{*}f) for any function f defined on
a neighborhood of \iota(S^{*}S^{n}) .

Let \alpha_{0} be the 1-form on R^{2n\dagger 2} defined by \alpha_{0}=\sum_{i}\zeta_{i}dx_{i} . Then d\alpha_{0} defines

a symplectic structure on R^{2n+2} . It is easy to see that \iota_{1^{*}}\alpha_{0}=\alpha . To each
function u on an open subset U of R^{2n+2} we assign a symplectic vector field
Y_{u} on U by

i_{Y_{u}}d\alpha_{0}=-du .

Let f be a function defined on a neighborhood U of \iota_{0}(S^{n}) in R^{n+1} .

Put f(x, \zeta)=f(\frac{x}{|x|}) . Then \tilde{f} is a function on (R^{n+1}-\{0\})\cross R^{n\dagger 1} .

Lemma 1. 5. \iota_{1}.X_{e_{1}}*\gamma=Y_{\tilde{f}} on \iota_{1}(T^{*}S^{n}) .

PROOF. Since \iota_{1^{*}}d\alpha_{0}=d\alpha, we only need to verify that Yf is tangent to
\iota_{1}(T^{*}S^{n}) at each point of \iota_{1}(T^{*}S^{n}) . We have

Y_{\tilde{J}}=- \sum_{i}\frac{\partial\tilde{f}}{\partial x_{i}}\frac{\partial}{\partial\zeta_{i}}

=- \sum_{ij}\frac{\partial f}{\partial x_{f}}(\delta_{ij}-x_{i}x_{j})\frac{\partial}{\partial\zeta_{i}}

at (x, \zeta)\in\iota_{1}(T^{*}S^{n}) . Thus we have

Y_{f}( \sum_{i}x_{i}^{2})=Y_{\tilde{f}}(\sum_{i}x_{i}\zeta_{i})=0

on \iota_{1}(T^{*}S^{n}) , which implies that Y_{\tilde{f}} is tangent to \iota_{1}(T^{*}S^{n}) .
Define a bilinear map F:C^{\infty}(R^{n+1})\cross C^{\infty}(R^{n+1})arrow C^{\infty}(R^{2n+2}) by

F(f, h)(x, \zeta)=\sum_{i,j=1}^{n+1}(\delta_{ij}-x_{i}x_{j}-\zeta_{i}\zeta_{j})\frac{\partial f}{\partial x_{i}}(x)\int_{0}^{\pi}\frac{\partial h}{\partial x_{j}}

(xcos t+\zeta sin t) sin tdt, f, h\in C^{\infty}(R^{n\dagger 1}) .

Let f and h be odd functions on R^{n+1} , i . e. , f(-x)=-f(x), h(-x)=
-h(x) . Then (\iota_{0^{*}}f)g_{0} and (\iota_{0^{*}}h)g_{0} belong to \mathscr{K}^{2}, and we have
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PROPOSITION 1. 6. K((\iota_{0^{*}}f)g_{0}, (\iota_{0^{*}}h)g_{0})\in G(\mathscr{A}^{2}) if and only if G\iota^{*}F

(f, h)\in G(\mathscr{A}^{2}) .

PROOF. For simplicity’s sake we put \hat{f}=(\iota_{0^{*}}f)g_{0} and \hat{h}--\backslash (\iota_{0^{*}}h)|g_{0} . Define
a function H on (R^{n\dagger 1}-\{0\})\cross(R^{n\dagger 1}-\{0\}) by

H(x, \zeta)=\frac{1}{2}|x||\zeta|\int_{0}^{\pi}h(\frac{x}{|x|} cos t+ \frac{\zeta}{|\zeta|} sin t)dte
|

Then the function \iota_{1^{*}}H on \dot{T}^{*}S^{n}\cap is positively homogeneous of degree one,
and satisfies

(X_{E_{0}}\iota_{1^{*}}H)(\lambda)=-(\iota_{0^{*}}h)(\pi(\lambda))’. \lambda\in S^{*}S^{n} .

This shows that X_{E_{0}}\iota_{1^{*}}H=-\hat{h}^{t} on [mathring]_{T}^{*}S^{n} . Moreovler, since \iota_{1^{*}}H is odd with
respect to \tau^{*} , the differential of the antipodal map, it follows that G(\iota_{1^{*}}H)=0 .
Thus we have

X(\hat{h})=X_{\iota_{1}^{*}H} .

Then

X(\hat{h})\hat{f}^{\#}=X_{\iota_{1^{*}}H}(2(\iota_{0^{*}}f)E_{0})

=2(X_{e_{1}^{*}H}\iota_{0^{*}}f)E_{0}+4(\iota_{0^{*}}f)(\iota_{0^{*}}h)E_{0} .
Since X_{\iota_{1}^{*}H}\iota_{0^{*}}f=-X_{e_{0^{l}}f}\iota_{1^{*}}H=-\iota_{1}^{*}(Y,H) by Lemma 1. 5, we see that the
condition K(\acute{f},\hat{h})\in G(\mathscr{F}^{2}) is equivalent to the condition G\iota^{*}(Y_{\tilde{f}}H)\in G(\mathscr{F}^{2}) .
An explicit claculation shows that

Y_{\tilde{f}}H=- \frac{1}{2}F(f, h)-\frac{1}{2}X_{E_{0}}(f(x)\int_{0}^{\pi}h (x cos t+\zeta sin t) dt)-fh

on \iota(S^{*}S^{n}) , which proves the proposition.

PROPOSITION 1. 7. Let f and h be odd functions on R^{n+1} . Then

GF(f, h)=GF(h,f)

PROOF. We have

GF(f, h)= \sum_{i,j}(\delta_{ij}-x_{i}x_{j}-\zeta_{i}\zeta_{j})\cross u_{ij} ,

where

u_{ij}= \int_{0}^{2\pi}\frac{\partial f}{\partial x_{i}} (x cos r+\zeta sin r) \int_{0}^{\pi}\frac{\partial h}{\partial x_{j}}(x cos (t+r)+\zeta sin (t+r)) sin tdtdr.

Then it is easy to see that
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u_{ij}= \int_{0}^{2\pi}\frac{\partial h}{\partial x_{j}} (x cos r+\zeta sin r) \int_{0}^{\pi}\frac{\partial f}{\partial x_{i}}(x cos (t+r)+\zeta sin (t+r)) sin tdtdr,

which proves the proposition.

\S 2. The laplacian on C^{\infty}(S^{*}S^{n})

We first define a riemannian metric on S^{*}S^{n} . The riemannian metric
g_{0} on S^{n} induces the horizontal subspace H_{v} of T_{v}TS^{n} at each v\in TSn .
Let V_{v} be the vertical subspace of T_{v}TS^{n} . Then we have the decomposition
T_{v}TS^{n}=V_{v}+H_{v} (direct sum). Let \pi:TS^{n}arrow S^{n} be the projection and \pi(v)=

x. Define a riemannian metric \tilde{g}_{1} on TS^{n} by the conditions:
(i) The canonical identification V_{v}arrow T_{x}S^{n} is an isometry;
(ii) \pi_{*}; H_{v}arrow T_{x}S^{n} is an isometry;
(iii) V_{v} and H_{v} are orthogonal to each other.
Let g_{1} be the riemannian metric on the unit tangent bundle SS^{n} which

is the pull back of \tilde{g}_{1} by the inclusion SS^{n}arrow TS^{n} . Then the riemannian
manifold (SS^{n}, g_{1}) has the following properties (cf. [1] Chapter 1, K) :

(a) Each fibre S_{x}S^{n} is totally geodesic ;
(b) The parallel translation of a unit vector along a geodesic of (S^{n}, g_{0})

is a geodesic.
Now we define a riemannian metric on S^{*}S^{n} in such a way that \# :

S^{*}S^{n}arrow SS^{n} is an isometry. We shall also denote this metric by g_{1} .
Let \Delta be the laplacian defined by the riemannian metric g_{1} which operates

on C^{\infty}(S^{*}S^{n}) . We need the explicit expression of \Delta in terms of the euclidian
coordinates. Let \iota:S^{*}S^{n}arrow R^{2n+2}=\{(x, \zeta)\} be the embedding defined in \S 1.

Lemma 2. 1. Let f(x, \zeta) be a function defifined on a neighborhood of
\iota(S^{*}S^{n}) . Then

\Delta(\iota^{*}f)=\iota^{*}\{(n-1)(\sum_{i}x_{i}\frac{\partial f}{\partial x_{i}}+\sum_{i}\zeta_{i}\frac{\partial f}{\partial\zeta_{i}})+(\sum_{i}x_{i}\frac{\partial}{\partial x_{i}})^{2}f+(\sum_{i}\zeta_{i}\frac{\partial}{\partial\zeta_{i}})^{2}f

+2 \sum_{j,k}x_{j}\zeta_{k^{\frac{\partial^{2}f}{\partial\zeta_{f}\partial x_{k}}}}-\sum_{i}\frac{\partial^{2}f}{\partial x_{i}^{2}}-\sum_{i}\frac{\partial^{2}f}{\partial\zeta_{i}^{2}}\} .

PROOF. We identify S^{*}S^{n} with \iota(S^{*}S^{n}) . Fix (x, \zeta)\in S^{*}S^{n} and choose
vectors e_{1} , \cdots , e_{n-1} in R^{n+1} such that (x, \zeta, e_{1^{ }},\cdots, e_{n-1}) is an orthonormal basis
of R^{n+1} . Consider the following curves on S^{*}S^{n} starting at (x, \zeta) ;

\gamma_{i}(t)= (x, \zeta\cos t+e_{i} sin t) (1 \leqq i\leqq n-1) ,

\eta_{i}(t)= (x cos t+e_{\dot{l}} sin t^{\sim},\zeta) (1 \leqq i\leqq n-1) ,

\xi(t)= (x cos t+\zeta sin t, - x sin t+\zeta\cos t) =\xi_{t}(x, \zeta)
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It is easily seen from the properties (a) and (b) that these curves are geodesies
of (S^{*}S^{n}, g_{1}) . Moreover, the vectors \dot{\mathcal{T}}_{i}(0),\dot{\eta}_{i}(0)(1\leqq i\leqq n-1) , and \dot{\xi}(0) form
an orthonormal basis of T_{(x,\zeta)}S^{*}S^{n} . Thus we have

\Delta(\iota^{*}f)(x, \zeta)

=- \sum_{i=1}^{n-1}\frac{d^{2}}{dt^{2}}f(\gamma_{i}(t))|_{t=0}-\sum_{i=1}^{n-1}\frac{d^{2}}{dt^{2}}f(\eta_{i}(t))|_{t=0}-\frac{d^{2}}{dt^{2}}f(\xi(t))|_{i=0} ,

from which the lemma immediately follows.

lemma 2. 2. X_{E_{0}} is an infifinitesimal isometry of (S^{*}S^{n}, g_{1}) .

For the proof we refer to Besse [1] Proposition 1. 104.

The following corollary is an immediate consequence of Lemma 2. 2.

COROLLARY 2. 3. The operators \xi_{t}^{*} , X_{E_{0}} , and G\vee on C^{\infty}(S^{*}S^{n}) commute
with \Delta .

The riemannian metric g_{1} naturally induces an inner product on C^{\infty}(S^{*}S^{n}) ;

(f, h)= \int_{s*s}fhd\mu_{1}n , f, h\in C^{\infty}(S^{*}S^{n}) ,

where d\mu_{1}i\dot{s} the canonical measure defined by g_{1} .
Lemma 2. 4. The operator G is self-adjoint with respect to the inner

product (, ) .
PROOF. Let GeodS^{n} be the quotient manifold of S^{*}S^{n} by the S^{1}-action

of \{\xi_{t}\}_{t\in R} . Since \{\xi_{t}\} are isometries, we can take a riemannian metric on
GeodS^{n} such that the projection S^{*}S^{n}arrow GeodS^{n} is a riemannian submersion.
Let d\rho be the measure on GeodS^{n} defined by this riemannian structure.
Then we have

(f, h)=2 \pi\int_{GeodS}G(fh)d\rho n ’ f, h\in C^{\infty}(S^{*}S^{n})’.

where the function G(fh) should be considered as a function on GeodS”.
Since G(G(f)h)=G(G(f)G(h))=G(fG(h)) , it follows that

(G(f) , h)=(G(f), G(h))=(f, G(h))

Let R[x, \zeta] be the polynomial algebra in the variables (x, \zeta)=(x_{1}, \cdots ,

x_{n+1} , \zeta_{1} , \cdots , \zeta_{n+1}) with real coefficients. We set

P=\iota^{*}R[x, \zeta]\subset C^{\infty}(S^{*}S^{n})

Let R[x, \zeta]_{k} be the subspace of R[x, \zeta] spanned by homogeneous poly-
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nomials of degree k. We say that a monomial f(x, \zeta) is of bidegree (i,j) if
f(x, \zeta) is of degree i in x and of degree j in \zeta . Let R[x, \zeta]_{i,j} be the vector
space spanned by monomials of bidegree (i,j) . We set

P_{k}=\iota^{*}R[x, \zeta]_{kj} P_{i,j}=\iota^{*}R[x, \zeta]_{i,j} ,

and P^{j}= \sum_{i\geqq 0}P_{i,j} . It is easy to see that P_{k}\subset P_{k+2}, P= \sum_{k\geqq 0}P_{k} , and P_{k}= \sum_{i+j=k}P_{i,j} .
Let Q_{k} be the orthogonal complement of P_{k-2} in P_{k} with respect to the

inner product ( , ) ; P_{k}=P_{k-2}+Q_{k} (direct sum).

Lemma 2. 5. The operators \Delta and G preserves the vector spaces P_{k} and
Q_{k} .

PROOF. By Lemma 2. 1 we immediately have \Delta(P_{k})\subset P_{k} . Since G\circ\iota^{*}=

\iota^{*}\circ G and G preserves R[x, \zeta]_{k} , it follows that G(P_{k})\subset P_{k} . Since P_{k-2} is
also preserved by these operators, so is its orthogonal complement Q_{k} .

The following corollary is an immediate consequence of Lemma 2. 5 and
Corollary 2. 3.

COROLLARY 2. 6. ( i) G(P_{k})=G(P_{k-2})+G(Q_{k}) (orthogonal direct sum),
(ii) The laplacian \Delta preserves the vector spaces G(P_{k}) and G(Q_{k}) .
In general, for a function h on S^{*}S^{n} we denote by h_{G(Q_{k})} the G(Q_{k}) -

component of h. Let V be a s,ubspace of C^{\infty}(S^{*}S^{n}) which is invariant by
the laplacian \Delta . Then we denote by Spec (\Delta, V) the set of spectra of \Delta on V.

Put k!!= \prod_{p=0}^{[(k-1)/2]}(k-2p) for a positive integer k, and put 0 !!=(-1)!!=1 .
Define real numbers a_{\beta}^{\alpha}(\alpha\geqq 0, \beta\geqq 0) by

\alpha_{\beta}^{\alpha}=(-1)^{\beta}\frac{(2\alpha-1)!!}{(2^{1}\beta)!!(2\alpha+2\beta-1)!!}

PROPOSITION 2. 7. ( i) G(P_{2m+1})=G(Q_{2m+1})=0(m\geqq 0) .
(ii) Spec (\Delta, G(Q_{2m}))\subset\{N_{i,j}|i+j=2m, i\geqq j\geqq 0\} , where N_{i,j}=i(i+n-1)+

\mathfrak{j}(j+n-1)-2j .
PROOF. ( i) Since \tilde{\xi}_{\pi}(x, \zeta)=(-x, -\zeta) , it follows that \tilde{\xi}_{\pi}^{*}=(-1)\cdot identity

on R[x, \zeta]_{2m+1} . Thus \xi_{\pi}^{*}=(-1)\cdot identity on P_{2m+1} . Since G\circ\xi_{\pi}^{*}=G, we have
G(P_{2m+1})=0 .

(ii) Since \tilde{\xi}_{\pi/2}(x, \zeta)=(\zeta, -x) , we have \tilde{\xi}_{\pi/2}^{*}R[x, \zeta]_{i,j}=R[x, \zeta]_{j,i} . This
shows that G(P_{i,f})=G(P_{j,i}) , and we have

G(P_{2m})=_{i+j} \sum_{-2m} i\geq J’ G(P_{i,f})-

Let f\in R[x, \zeta]_{i,j} (i\geqq j, i+j=2m) . By Lemma 2. 1 we see that
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\Delta G\iota^{*}f=G\iota^{*}\{(_{\backslash }i(i+n-1)+j(j+n-1))f

+2 \sum_{k,l}x_{k}\zeta_{l^{\frac{\partial^{2}f}{\partial\zeta_{k}\partial x_{l}}}}-\sum_{k}\frac{\partial^{2}f}{\partial x_{k}^{2}}-\sum_{k}\frac{\partial^{2}f}{\partial\zeta_{k^{2}}}\} .

Since

\sum_{k,l}x_{k}\zeta_{l}\frac{\partial^{2}f}{\partial\zeta_{k}\partial x_{l}}=X_{E_{0}}(\sum_{k}x_{k}\frac{\partial f}{\partial\zeta_{k}})-\sum_{k}\zeta_{k}\frac{\partial f}{\partial\zeta_{k}}+\sum_{k,l}x_{k}x_{l^{\frac{\partial^{2}f\backslash }{\partial\zeta_{k}\partial\zeta_{l}}}\prime}.

we can rewrite it as

\Delta G\iota^{*}f=N_{i,j}G\iota^{*}f+2G\iota^{*}((\sum_{k}x_{k}\frac{\partial}{\partial\zeta_{k}})^{2}f)-\cdot G\iota^{*}(\sum_{k}\frac{\partial^{2}f}{\partial x_{k}^{2}}+\sum_{k}\frac{\partial^{2}f}{\partial\zeta_{k^{2}}}) .

By applying this formula to ( \sum_{k}x_{k}\frac{\partial}{\partial\zeta_{k}})^{2p}f\in R[x, \zeta]_{i+2p,f-2p}(0\leqq p\leqq[j/2]) , we

also have

\Delta G\iota^{*}((\sum_{k}x_{k}\frac{\partial}{\partial\zeta_{k}})^{2p}f)=N_{i+2p,j-2p}G\iota^{*}(( \sum_{k}x_{k}\frac{\partial}{\partial\zeta_{k}})^{2p}f)

+2G \iota^{*}((\sum_{k}x_{k}\frac{\partial}{\partial\zeta_{k}})^{2p\dagger 2}f)-G\iota^{*}( \sum_{l}(\frac{\partial^{2}}{\partial x_{l}^{2}}+\frac{\partial^{2}}{\partial\zeta_{l}^{2}})(\sum_{k}x_{k}\frac{\partial}{\partial\zeta_{k}})^{2p}f) .

Put

f_{p}= \sum_{q=p}^{[j/2]}a_{q-p}^{m-j+1+2p}(\sum_{k}x_{k}\frac{\partial}{\partial\zeta_{k}})^{2q}f (0\leqq p\leqq[j/2])

Then the above formulas imply that

\Delta G\iota^{*}f_{p}=N_{i+2p,j-2p}G\iota^{*}f_{p}-G\iota^{*}(\sum_{l}(\frac{\partial^{2}}{\partial x_{l}^{2}}+\frac{\partial^{2}}{\partial\zeta_{l}^{2}})f_{p}) .

By taking the G(Q_{2m}) -components of both sides, we obtain

\Delta(G\iota^{*}f_{p})_{G(Q_{2m})}=N_{i+2p,f-2p}(G\iota^{*}f_{p})_{G(Q_{2m})} (0\leqq p\leqq[j/2])

This shows that (G\iota^{*}f_{p})_{G(Q_{2m})} is an eigenfunction of \Delta corresponding to the
eigenvalue N_{i+2p,j-2p} if it does not vanish.

Put c_{0}^{i,j}=1 , and define real numbers c_{q}^{i,j}(1\leqq q\leqq[j/2]) inductively by

c_{q}^{i,j}=- \sum_{p=0}^{q-1}c_{p}^{i,j}a_{q-p}^{m-f+1+2p}

Then it follows that

(G \iota^{*}f)_{G(Q_{zm})}=\sum_{p=0}^{[j/2]}c_{p}^{i,j}(G\iota^{*}f_{p})_{G(Q_{2m})} ,

which proves the proposition.
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We set

Q_{i,j}=\{f\in G(Q_{2m})|\Delta f=N_{i,j}f\}

for each (i,j) such that i\geqq j\geqq 0 and i+j=2m. Since
N_{m,m}<N_{m+1,m-1}<\cdots<N_{2m,0} ,

the subspaces Q_{i,j}(i+j=2m, i\geqq j\geqq 0) of G(Q_{2m}) are mutually orthogonal.
We note that some Q_{i,j} may be {0}.

Set

I_{m}=\{(i,j)\in Z\cross Z|i\geqq j\geqq 0 , i+j=2m\} ,,

and I=\cup I_{m} . Let c_{q}^{i,j} be the constants defined in the proof of Proposition
m\geqq 0

2. 7. For h\in C^{\infty}(S^{*}S^{n}) we denote by h_{Q_{i,j}} the Q_{i,j} component of h . The
following corollary is immediately obtained from the proof of Proposition 2. 7.

COROLLARY 2. 8. ( i) G(Q_{2m})= \sum_{(i,j)\epsilon I_{m}}Q_{i,j}, G(P)= \sum_{(i,j)\epsilon I}Q_{i,j} (orthogonal
direct sum).

(ii) For f\in R[x, \zeta]_{i,j}((i,j)\in I_{m})

(G \iota^{*}f)_{Q_{i+zp.jp}}-2=c_{p}^{i,j}G\iota^{*}(\sum_{q=p}^{[j/2]}a_{q-p}^{m-j+1+2p}(\sum_{k}x_{k}\frac{\partial}{\partial\zeta_{k}})^{2q}f)_{G(Q_{2m})}

(0\leqq p\leqq[j/2])

REMARK. It possively occurs that N_{i,j}=N_{k,l} with i+j\neq k+l . For
example, N_{2m-2,4}=N_{2m,0} if n=4m-5. Thus the decomposition G(P)= \sum_{(i,j)\in I}Q_{i,j}

is in general finer than the simple eigenspace decomposition.
We define a partial ordering on the set of indices I as follows: (k, l)\leqq

(i,j) if k+l\leqq i+j, l\leqq j , and j-l is even.
PROPOSITION 2. 9. ( i) G(P_{i,j}) \subset\sum_{(k,l)\leq(i,j)}Q_{k,l} , (i,j)\in I.
(ii) Q_{i,j} \subset\sum_{(k,l)\leqq(i,j)}G(P_{k,l}) , (i,j)\in I.
(iii) G(P^{j})= \sum Q_{k,l} , where the sum is taken over all (k, l)\in I such that

l\leqq j and j– l is even.
PROOF. We first prove (i) and (ii) at the same time by induction on the

integer i+j. It is clear that G(P_{0,0})=Q_{0,0}= {constant functions}. Fix an
integer m>0 and assume that (i) and (ii) hold for every (i,j)\in I with i+j<2m .

Take (i,j)\in I_{m} and f\in R[x, \zeta]_{i,j} . By the proof of Proposition 2. 7 we
can write

f= \sum_{p=0}^{[j/2]}c_{p}^{i,j}f_{p}’.
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where f_{p}= \sum_{q=p}^{[j/2]}a_{q-p}^{m-j+1+2p}(\sum_{k}x_{k}\frac{\partial}{\partial\zeta_{k}})^{2q}f. Each f_{p} satisfies

\Delta G\iota^{*}f_{p}=N_{i+2p,j-2p}G\iota^{*}f_{p}-G\iota^{*}(\sum_{k}(\frac{\partial^{2}}{\partial x_{k}^{2}}+\frac{\partial^{2}}{\partial\zeta_{k^{2}}})f_{p}) ,

and

G \iota^{*}(\sum_{k}(\frac{\partial^{2}}{\partial x_{k}^{2}}+\frac{\partial^{2}}{\partial\zeta_{k}^{2}})f_{p})\in\sum_{q=p}^{[j/2]}G(P_{i+2q-2,j_{4}-2q})

If i>j , then (i-2,j)\in I. Since (i+2q-2, j-2q)\leqq(i-2,j) , it follows that

G(P_{i+2q-2,jarrow 2q}) \subset\sum_{(k,l)\leqq(i-2,j)}Q_{k,l}
(0\leqq q\leqq[j/2])

by the assumption. If i=j, then G(P_{i-2,j})=G(P_{i,i-2}) and (i, i-2)\in I. Since
(i+2q-2,j-2q)\leqq(i, i-2)(1\leqq q\leqq[j/2]) , we have in this case

G(P_{i+2q-2,j-2q}) \subset\sum_{(k,l)\leqq(i,i-2)}Q_{k,l}
(0\leqq q\leqq[j/2]) .

Hence we see that \Delta G\iota^{*}f_{p}-N_{i+2p,j-2p}G\iota^{*}f_{p} lies in\sum_{(k,l)\leqq(i-2,j)}Q_{k,l} if i>j, and

in\sum_{(k,l)\leqq(i,i-2)}Q_{k,l} if i=j.
Let

\Delta G\iota^{*}f_{p}-N_{i+2p,j-2p}G\iota^{*}f_{p}=\sum_{(k,l)}f_{p}^{k,l}
(f_{p}^{k,l}\in Q_{k,l})

be the corresponding decomposition. We notice here that N_{k,l}\neq N_{i+2p,j-2p}

if f_{p}^{k,l}\neq 0 , because
N_{k,l}(G\iota^{*}f_{p},f_{p}^{k,l})=(G\iota^{*}f_{p}, \Delta f_{p}^{k,l})=(\Delta G\iota^{*}f_{p},f_{p}^{k,l})

=N_{i+2p,j-2p}(G\iota^{*}f_{p},f_{p}^{k,l})+(f_{p}^{k}" {}^{t}f_{p}^{k,l}) ‘

Then it is easily seen that the function

h_{p}=G \iota^{*}f_{p}+\sum_{(k,l)}(N_{i+2p,j-2p}-N_{k,l})^{-1}f_{p}^{k,l}

is an eigenfunction corresponding to the eigenvalue N_{i+2p,j-2p} if it does not

vanish.
We must show that h_{p} \in\sum_{(k,l)\leqq(i,j)}Q_{k,l} . Since h_{p}\in G(P_{2m}) , we have the

decomposition

h_{p}=
(rs) \epsilon I\dotplus_{s\xi 2m}\sum_{r},

h_{p\prime}^{r,s}. h_{p}^{r,s}\in Q_{r,s}

The eigenvalue condition implies that h_{p}^{r,s}=0 if N_{r,s}\neq N_{i+2p,j-2p} . If r+s=2m
and N_{r,s}=N_{i+2p,j-2p} , then we have (r, s)=(i+2p 2p) . Suppose that r+s<
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2m and N_{r,s}=N_{i+2p,j-2p} . Since N_{i+2p,j-2p}=N_{r,s}<N_{2m-s,s} and N_{2m-s,s} is m0-
notonously decreasing in s, it follows that s<j-2p . Let \sigma be the isometry
of (S^{*}S^{n}, g_{1}) defined by \sigma(x, \zeta)=(x, -\zeta) . Since \sigma\circ\xi_{t}=\xi_{-t}\circ\sigma, it follows that
\sigma^{*}\circ G=G\circ\sigma^{*} . This implies \sigma^{*}=(-1)^{s}\cdot id\dot{e}ntity on G(P_{r,s}) . Hence by the
induction assumption we have \sigma^{*}=(-1)^{s}\cdot identity on Q_{r,s} if r+s<2m . Thus
we have \sigma^{*}h_{p}=(-1)^{j}h_{p} by the definition of h_{p} . Since (\sigma^{*}h_{p}, \sigma^{*}\prime h_{p}^{r,s})=(h_{p}, h_{p}^{r,s}) ,
it follows that h_{p}^{r,s}=0 if r+s<2m and j– s is odd. Hence we have h_{p}\in

\sum_{(k,l)\leqq(i,j)}Q_{k,l} , and therefore

G \iota^{*}f_{p}=h_{p}-\sum_{(k,l)}(N_{i+2p,j-2p}-N_{k,l})^{-1}f_{p}^{k,l}\in\sum_{(k,l)\leqq(i,J)}Q_{k,l} .

Furthermore, considering the case p=0 we have
(G\iota^{*}f_{0})_{Q_{i,j}}=h_{0}^{i,j}

.=G \iota^{*}f_{0}-\sum_{(r,s)\neq(i,j)}h_{0}^{r.s}+\sum_{(k,l)}(N_{i,j}-N_{k,l})^{-1}f_{0}^{k,l}

The second and the third term of the right-hand side belong to
(k,l) \leqq(i,j)\sum_{k+l<2m}Q_{k,l}

,

which is contained in \sum_{(k,l)\leqq(i,j)}G(P_{k,l}) by the induction assumption. Since the
linear map G(P_{i,f})-arrow Q_{i,j} defined by G\iota^{*}farrow(G\iota^{*}f_{0})_{Q_{i,j}} is surjective, it follows
that

Q_{i,j} \subset\sum_{(k,l)\leqq(i,j)}G(P_{k,l})

Hence (i) and (ii) have been proved.
For (iii) we observe that G(P^{j})= \sum_{p\geqq 0}G(P_{j+2p,j}) . Then (Hi) immediately

follows from (i) and (ii).
Let \mathscr{F}^{k}(k\geqq 0) be the vect\‘or space of functions f on S^{*}S^{n} such that

f|_{s_{x}s^{n}}* are the restrictions of homogeneous polynomials of degree k on T_{x}^{*}S^{n}

to S_{x}^{*}S^{n} for all x\in S^{n} .

PROPOSITION 2. 10. G(P^{k}) is C^{0}-dense, and hence L^{2}-dense, in G(\mathscr{F}^{k}) .
PROOF. First remark that \mathscr{A}^{k} is generated by

\{\iota^{*}(\zeta_{i_{1}}\cdots\zeta_{i_{k}})|1\leqq i_{1}\leqq\cdots\leqq i_{k}\leqq n+1\}

as a C^{\infty}(S^{n}) -module. By the Stone-Weierstrass approximation theorem (cf.
[2] 7. 3. 1) we see that \iota_{0^{*}}R[x_{1^{ }},\cdots, x_{n+1}] is dense in C^{\infty}(S^{n}) in the C^{0}-topology.
Hence P^{k} is C^{0} dense in \mathscr{A}^{k} . Since the operator G is C^{0}-continuous, the
proposition follows.

REMARK. By applying the Stone-Weierstrass theorem we can also see
that G(P) is C^{0} dense in G(C^{\infty}(S^{*}S^{n})) . But this fact is not used in this paper.
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\S 3. A result for homogeneous polynomials

In the rest of the paper we shall assume that n, the dimension of the
sphere under consideration, is equal to or greater than 3. The main purpose
of this section is to prove

PROPOSITION 3. 1. Let f\in R[X_{1}^{ },\cdots, X_{n+1}]_{2j+1}(j\geqq 2) , and suppose that
G\iota^{*}F(f,f)\in G(\mathscr{F}^{2}) . Then there are constants a_{i} , b_{i}\in R(1\leqq i\leqq n+1) such
that

f \equiv(\sum_{i}a_{i}x_{i})^{2j}(\sum_{i}b_{i}x_{i}) mod ( \sum_{i}x_{i}^{2})R[x]_{2j-1} .

We first give another representation of GF(f, h) defined in \S 1. Set

R[x]_{od}= \sum_{k>0},R[x]_{2k+1} .

Lemma 3. 2. Let f\in R[x]_{2j+1}(j\geqq 0) and h\in R[x]_{od} . Then

GF(f, h)=G( \sum_{i}\frac{\partial f}{\partial x_{i}}(x)\int_{0}^{\pi}\frac{\partial h}{\partial x_{i}} (xcos t+\zeta sin t) sin tdt)

-(2j+3)G(f(x) \int_{0}^{\pi}\sum_{i}\frac{\partial h}{\partial x_{i}} (x cos t+\zeta sin t) x_{i} sin tdt)

+2G(f(x)h(x))

PROOF. By the homogeneity of f we have

\sum_{i,j}x_{i}x_{j}\frac{\partial f}{\partial x_{i}}(x)\int_{0}^{\pi}\frac{\partial h}{\partial x_{j}} (x cos t+\zeta sin t) sin tdt

=(2j+1)f(x) \int^{nn}\sum_{j}\frac{\partial h}{\partial x_{j}} (x cos t+\zeta sin t) x_{j} sin tdt ‘

Since \sum_{i}\zeta_{i}\frac{\partial f}{\partial x_{i}}=X_{E_{\mathbb{C}}}f and G\circ\tilde{X}_{E_{0}}=0 , it follows that

G( \sum_{i,j}\zeta_{i}\zeta_{j}\frac{\partial f}{\partial x_{i}}(x)\int_{0}^{\pi}\frac{\partial h}{\partial x_{j}} (x cos t+\zeta sin t) sin tdt)

=-G(f(x) \int_{0}^{\pi}\sum_{j}\frac{d}{dt}\{\frac{\partial h}{\partial x_{j}} (x cos t+\zeta sin t) \}\zeta_{j} sin tdt)

+G(f(x) \int_{0}^{\pi}\sum_{j}.\frac{\partial h}{\partial x_{j}} (x cos t+\zeta sin t) x_{j} sin tdt).
The first term of the right-hand side is

G(f(x) \int^{\pi\pi}\sum_{j}\frac{\partial h}{\partial x_{j}} (x cos t+\zeta sin t) \zeta_{j} cos tdt)
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=G(f(x) \int^{\pi\pi}\sum_{j}\frac{\partial h}{\partial x_{j}} (x cos t+\zeta sin t) x_{f} sin tdt)

+G(f(x) \int^{\pi\pi}\frac{d}{dt}h (x cos t+\zeta sin t) dt).
The lemma easily follows from these formulas.

The following corollary is an immediate consequence of Lemma 3. 2.

COROLLARY 3. 3. Let f\in R[x]_{od} and h\in R[x]_{1}+R[x]_{3} . Then
G\iota^{*}F(f, h)\in G(\mathscr{F}^{2})

In particular, if G\iota^{*}F(f,f)\in G(\mathscr{F}^{2}) , then
G\iota^{*}F(f+h, f+h)\in G(\mathscr{F}^{2})

Define bilinear maps F_{l} : R[x]_{2i+1}\cross R[x]_{2j+1}arrow R[x, \zeta]_{2i+2l+2,2f-2l}(0\leqq l\leqq j)

by

F_{l}(f, h)=f(x)( \sum_{k}x_{k}\frac{\partial}{\partial\zeta_{k}})^{2l+1}h(\zeta) , f\in R[x]_{2i+1} , h\in R[x]_{2j+1}

Put

I_{l}^{j}= \int_{0}^{\pi}(\cos t)^{2l}(\sin t)^{2j+1-2l}dt=\frac{2(2l-1)!!(2j-2l)!!}{(2j+1)!!} (0\leqq l\leqq j)
‘

Then we have

f(x) \int_{0}^{\pi}\sum_{k}\frac{\partial h}{\partial x_{k}} (x cos t+\zeta sin t) x_{k} sin tdt

= \sum_{l=0}^{j}\frac{1}{(2l)!}I_{l}^{j}F_{l}(f, h)

We now assume i\geqq j\geqq 0 . Define real constants d_{l}^{i,j}(0\leqq l\leqq j) inductively
by d_{0}^{i,j}=I_{0}^{j} and

d_{l}^{i,j}= \frac{1}{(2l)!}I_{l}^{j}-\sum_{p=0}^{l-1}d_{p}^{i,j}a_{l-p}^{i\sim j+2+2p} (l\geqq 1) .

Then we have

f(x) \int_{0}^{\pi}\sum_{k}\frac{\partial h}{\partial x_{k}} (x cos t+\zeta sin t) x_{k} sin tdt

= \sum_{p=0}^{f}d_{p}^{i,j}\sum_{q=p}^{j}a_{q-p}^{i-j+2+2p}F_{q}(f, h)

Put

J_{\beta}^{\alpha}=(-1)^{\beta}a_{\beta}^{\alpha}= \frac{(2\alpha-1)!!}{(2\beta)!!(2\alpha+2\beta-1)!!} (\alpha\geqq 0, \beta\geqq 0)
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LEMMA 3. 4. ( i) \sum_{p=0}^{\beta}a_{p}^{\alpha}J_{\beta-p}^{\alpha+\beta-1+p}=\delta_{\beta,0}(\alpha\geqq 1, \beta\geqq 0) .
(ii) d_{l}^{i,j}>0 (0\leqq l\leqq j\leqq i) .
PROOF. ( i) In case \beta=0 the formula is obvious. Assume \beta\geqq 1 , and

consider the identity

t^{2\alpha+2\beta-3}(1+t^{2})^{\beta}= \sum_{p=0}^{\beta}(\begin{array}{l}\beta p\end{array}) t^{2\alpha+2\beta\dagger 2p-3} .

By applying (t^{-1} \frac{d}{dt})^{\rho-1} to both sides and putting t=\sqrt{-1}
,\cdot we have

\sum_{p=0}^{\beta}(-1)^{p}(\begin{array}{l}\beta p\end{array}) \frac{(2\alpha+2\beta+2p-3)!!}{(2\alpha+2p-1)!!}=0 .

This proves (i).

(ii) Since \sum_{p=0}^{q}d_{p}^{i,j}a_{q-p}^{i-j+2+2p}=\frac{1}{(2q)!}I_{q}^{j} , it follows that

\sum_{q=0}^{l}\frac{1}{(2q)!}I_{q}^{j}J_{l-q}^{i-j+1+l+q}

= \sum_{p=0}^{l}d_{p}^{i,j}\sum_{q=p}^{l}a_{q-p}^{i-j+2+2p}J_{l-q}^{i-j+1+l+q}

= \sum_{p=0}^{l}d_{p}^{i,j}\delta_{l,p}=d_{i}^{i,j}

Hence we have the lemma.

PROPOSITION 3. 5. Let f\in R[x]_{2i+1} and h\in R[x]_{2j+1}(i\geqq j\geqq 2) . Suppose
that G\iota^{*}F(f, h)\in G(\mathscr{F}^{2}) . Then

(G\iota^{*}F_{p}(f, h))_{Q_{zi+zp+z,zj-zp}}=0

for all p such that 0\leqq p\leqq\dot{|}-2 .
PROOF. We have

G(P^{2})= \sum_{r\geqq 0}Q_{2r,0}+\sum_{r\geq 1}Q_{2t,2}

by Proposition 2. 9 (iii). Since G(P^{2}) is L^{2}-dense in G(\mathscr{F}^{2}) , it thus follows
that

(G\iota^{*}F(f, h))_{Q_{2i+zp+2,2jp}}-2=0 (0\leqq p\leqq j-2) .

Now observe the formula stated in Lemma 3. 2. Since G\iota^{*}(f(x)h(x))\in

G(P^{0})= \sum_{r\geqq 0}Q_{2r,0} and
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G \iota^{*}(\sum_{k}\frac{\partial f}{\partial x_{k}}(x\rangle \int_{0}^{\pi}\frac{\partial h}{\partial x_{k}} (x cos t+\zeta sin t\rangle sin tdt) \in G(P_{2i+2j}) ,

it follows that

(G\iota^{*}F(f, h))_{Q_{2i+p+2,2j-2}}2p

=-(2i+3)(G \iota^{*}(f(x)\int_{0}^{\pi}\sum_{k}\frac{\partial h}{\partial x_{k}} (x cos t+\zeta sin t) x_{k} sin tdt))_{Q_{2i+zp+z,2jp}}-2

We have seen above that

G \iota^{*}(.f(x)\int^{\pi\pi}\sum_{k}\frac{\partial h}{\partial x_{k}} (x cos t+\zeta sin t) x_{k} sin tdt)

= \sum_{r=0}^{j}d_{r}^{i,j}G\iota^{*}(q\sum_{-r}^{j}a_{q-r}^{i-j+2+2r}F_{q}(fh))-,

But Corollary 2. 8 (ii) implies that

G \iota^{*}(\sum_{q=\gamma}^{j}a_{q-r}^{i-j+2+2r}F_{q}(f, h))_{G(Q_{2})}\backslash i+2j+2

=(G\iota^{*}F_{r}(f, h))_{Q_{2}}i+zr+2,2j-zr (0\leqq r\leqq j)

Therefore we have

(G\iota^{*}F(f, h))_{Q_{2}}i+2p+z,2j-2v=-(2i+3)d_{p}^{i,j}(G\iota^{*}F_{p}(f, h))_{Q_{2}}i+2p+2,2j-2p

Since d_{p}^{i,j}>0 , the proposition follows.
We denote by C_{C}^{\infty}(M) the vector space of complex-valued functions on

a manifold M. The operators G, G, X_{E_{0}} , X_{E_{0}} , \iota^{*} , and \Delta can be naturally
extended to C-linear operators (the complexifications) on the spaces C_{C}^{\infty}(S^{*}S^{n}) ,
C_{C}^{\infty}(R^{2n+2}) , etc., which will be deboted by the same symbols.

Let C[x] (resp. C[x, \zeta] ) be the polynomial algebra in the variables x=
(X_{1}^{ },\cdots, X_{n+1}) (resp. (x, \zeta)=(x_{1}, \cdots , x_{n+1} , \zeta_{1} , \cdots , \zeta_{n+1})) with complex coefficients.
We denote by C[x]_{k} and C[x, \zeta]_{k} (resp. C[x, \zeta]_{i,j}) the vector spaces spanned
by homogeneous polynomials of degree k (resp. bihomogeneous polynomials of
bidegree (i,j)) as in the real polynomials. In general, for a commutative
ring R we denote by (f_{1^{ }},\cdots,f_{r}) the ideal in R generated by f_{1} , \cdots , f_{r}\in R .

Considering C[x, \zeta] as a subalgebra of C_{C}^{\infty}(R^{2n+2}) , we have

Lemma 3. 6. The kernel of \iota^{*}|_{C[x,\zeta]_{zk}}(k_{=}^{\sim}\prime 1) is

( \sum_{i}(x_{i}^{2}-\zeta_{i}^{2}))C[x, \zeta]_{2k-2}+(\sum_{i}x_{i}\zeta_{i})C[x, \zeta]_{2k-2} .

PROOF. Let \sigma_{1} and \sigma_{2} be the linear transformations of R^{2n+2} defined by
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\sigma_{1}(x, \zeta)=(x, -\zeta) . \sigma_{2}(x, \zeta)=(\zeta, x) .

Then \sigma_{1^{*}}\sigma_{2}^{*}=\sigma_{2^{*}}\sigma_{1^{*}} on C[x, \zeta]_{2k} , and we have the decomposition

C[x, \zeta]_{2k}=V_{0,0}+V_{1,0}+V_{0,1}+V_{1,1} .

where V_{i,j}=\{f\in C[x, \zeta]_{2k}|\sigma_{1}^{*}f=(-1)^{i}f, \sigma_{2^{*}}f=(-1)^{j}f\}(i, j=0,1) . Identify
S^{*}S^{n} with \iota(S^{*}S^{n})\subset R^{2n+2} . Then we see that \sigma_{1} and \sigma_{2} preserve S^{*}S^{n} , and
\iota^{*}\sigma_{i^{*}}=\sigma_{i^{*}}\iota^{*}(i=1,2) . Hence

Kernel of \iota^{*}|_{C[x,\zeta]_{2k}}=\sum_{i,j0}^{1} Kernel of \iota^{*}|_{V_{i,j}}

Take f\in V_{0,0} such that \iota^{*}f=0 . Since \sigma_{1^{*}}f=f, we can write

f= \sum_{p-0}^{k}f_{p} . f_{p}\in C[x, \zeta]_{2p,2k-2p}

Let W_{1}= \{(x, \zeta)\in R^{2n+2}|\sum_{i}(x_{i}^{2}-\zeta_{i}^{2})=\sum_{i}x_{i}\zeta_{i}=0\} . Since f=0 on S^{*}S^{n} and f is
homogeneous, it follows that f=0 on W_{1} . Let W_{2}= \{(x, \zeta)\in R^{2n+2}|\sum_{i}x_{i}\zeta_{i}=0\} .
Define f’\in C[x, \zeta]_{2k,2k} by

f’= \sum_{p=0}^{k}(\sum_{i}x_{i}^{2})^{k-p}(\sum_{i}\zeta_{i}^{2})^{p}f_{p}(

Then f’=0 on W_{1} . Since f’ is bihomogeneous, it follows that f’=0 on W_{2} .
It is clear that

( \sum_{i}x_{i}^{2})^{k}f-f’\in(\sum_{i}(x_{i}^{2}-\zeta_{i}^{2}))C[x, \zeta]_{4k-2} .

Since \sigma_{2^{*}}f=f, we see that f_{p}(x, \zeta)=f_{k-p}(\zeta, x)(0\leqq p\leqq k) . Hence \sigma_{2^{*}}f’=f’ .
Put y_{i}=x_{i}+\zeta_{i} , \xi_{i}=x_{i}-\zeta_{i}(1\leqq i\leqq n+1) , and define f_{p}’\in C[y, \xi]_{p,4k-p}(0\leqq

p\leqq 4k) by

f’ (\frac{y+\xi}{2} , \frac{y-\xi}{2})=\sum_{p=0}^{4k}f_{p}’(y, \xi)

Since \sigma_{2}(y, \xi)=(y, -\xi) , it follows that f_{p}’=0 if p is odd. Define f’\in C[y, \xi]_{4k,4k}

by

f^{\prime j}(y, \xi)=\sum_{p=0}^{2k}(\sum_{i}y_{i}^{2})^{2k-p}(\sum_{i}\xi_{i}^{2})^{p}f_{2p}’(y, \xi)

Since f’(y, \xi)=(\sum_{i}y_{i}^{2})^{*k}f’(\frac{y+\xi}{2}, \frac{y-\xi}{2})=0 on

W_{2}= \{(y, \xi)\in R^{2n+2}|\sum_{i}y_{i}^{2}=\sum_{i}\xi_{i}^{l}\}. ’
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it follows that f’ is identically zero. We have

( \sum_{i}y_{i^{2}})^{2k}f’(\frac{y+\xi}{2} , \frac{y-\xi}{2})-f’(y, \xi)\in(\sum_{i}(y_{i^{2}}-\xi_{i}^{2}))C[y, \xi]_{8k-2}

This implies

( \sum_{i}(x_{i}^{2}+\zeta_{i}^{2}))^{2k}f’(x, \zeta)\in(\sum_{i}x_{i}\zeta_{i})C[x, \zeta]_{8k-2} .

Hence we have

( \sum_{i}(x_{i}^{2}+\zeta_{i}^{2}))^{3k}f(x, \zeta)\in(\sum_{i}(x_{i}^{2}-\zeta_{\tau}^{2}))C[x, \zeta]_{8k-2}+(\sum_{i}x_{i}\zeta_{i})C[x, \zeta]_{8k-2} .

In general, it is known that the ring C[X_{1}, \cdots, X_{m}]/(\sum_{i1}^{m}X_{i}^{2})\backslash is a UFD

(a unique factorization domain) if m\geqq 5 . Hence the ring C[x, \zeta]/(\sum_{i}(x_{i}^{2}-\zeta_{i}^{2}))

is a UFD. It is easy to see that the image of \sum_{i}x_{i}\zeta_{i} by the homomorphism

C[x, \zeta]- C[x, \zeta]/(\sum_{i}(x_{i}^{2}-\zeta_{i}^{2})) is irreducible, and hence is a prime element.

Therefore the ideal ( \sum_{i}(x_{i}^{2}-\zeta_{i}^{2}), \sum_{i}x_{i}\zeta_{i}) in C[x, \zeta] is prime. Since \sum_{i}(x_{i}^{2}+\zeta_{i}^{2})

does not belong to this ideal, it follows that

f \in(\sum_{i}(x_{i}^{2}-\zeta_{i}^{2}), \sum_{i}x_{i}\zeta_{i})

In case that f belongs to V_{1.0} or V_{0,1} or V_{1,1} , we define h\in V_{0,0} by
h=x_{1}\zeta_{1}f if f\in V_{1,0}, h=(x_{i}^{2}-\zeta_{i}^{2})f if f\in V_{0,1} , and h=x_{1}\zeta_{1}(x_{1}^{2}-\zeta_{1}^{2})f if f\in V_{1,1} .
If \iota^{*}f=0 , then \iota^{*}h=0 , and we have h \in(\sum_{i}(x_{i}^{2}-\zeta_{i}^{2}), \sum_{i}x_{i}\zeta_{i}) . Since x_{1}\zeta_{1} and
x_{1}^{2}-\zeta_{1}^{2} do not belong to this prime ideal, we also have f \in(\sum_{i}(x_{i}^{2}-\zeta_{i}^{2}) ,

\sum_{i}x_{i}\zeta_{i}) in these cases. By considering the homogeneity we have the lemma.
We complexify the vector spaces G(P_{k}) , G(P_{i,j}) , G(P^{f}) , G(Q_{k}) , and Q_{i,f} ,

and denote them by the same symbols.

COROLLARY 3. 7. Let f\in C[x, \zeta]_{2k}(k\geqq 1) .
(i) (G\iota^{*}f)_{G(Q_{2})}k=0 if and only if Gf belong to the ideal ( \sum_{i}x_{i}^{2}, \sum_{i}\zeta_{i}^{2},

\sum_{i}x_{i}\zeta_{i}) .
(ii) Suppose that f is a polynomial in only 4 variables (x_{1}, x_{2}, \zeta_{1}, \zeta_{2}) .

Then (G\iota^{*}f)_{G(Q_{2})}k=0 if and only if Gf–0.
PROOF. ( i) First assume that Gf \in(\sum_{i}x_{i}^{2}, \sum_{i}\zeta_{i}^{2}, \sum_{i}x_{i}\zeta_{i}) . Then there

are homogeneous polynomials R_{i}\in C[x, \zeta]_{2k-2}(i=1,2,3) such that

Gf= \sum_{i}x_{i}^{2}R_{1}+\sum_{i}\zeta_{i}^{2}R_{2}+\sum_{i}x_{i}\zeta_{i}R_{3} .
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By applying \iota^{*} to this formula, we have

G\iota^{*}f=\iota^{*}(R_{1}+R_{2})=G\iota^{*}(R_{1}+R_{2})\in G(P_{2k-2}) .

Hence (G\iota^{*}f)_{G(Q_{2k})}=0 .
Next assume that (G\iota^{*}f)_{G(Q_{2})}k=0 . Then there is h_{0}\in C[x, \zeta]_{2k-2} such that

G\iota^{*}f=G\iota^{*}h_{0} . This shows that

\iota^{*}(Gf-\frac{1}{2}\sum_{i}(x_{i}^{2}+\zeta_{i}^{2})Gh_{0})=0 .

Thus by Lemma 3. 6 there are polynomials h_{1} , h_{2}\in C[x, \zeta]_{2k-2} such that

Gf= \frac{1}{2}\sum_{i}(x_{i}^{2}+\zeta_{i}^{2})Gh_{0}+\sum_{i}(x_{i}^{2}-\zeta_{i}^{2})h_{1}+\sum_{i}x_{i}\zeta_{i}h_{2} .

(ii) Since f is a polynomial in the variables (x_{1}, x_{2}, \zeta_{1}, \zeta_{2}) , so is Gf.
Assume that Gf is in the ideal ( \sum_{i}x_{i}^{2}, \sum_{i}i, 2\sum_{i}x_{i}\zeta_{i}) . Fix (x_{1}, x_{2}, \zeta_{1}, \zeta_{2})\in R^{4}

and put

x_{3}=\sqrt{-1}\sqrt{x_{1}^{2}+x_{2}^{2}} cos \theta , \zeta_{3}=\sqrt{-1}\sqrt{\zeta_{1}^{2}+\zeta_{2}^{2}} cos \eta ,

x_{4}=\sqrt{-1}\sqrt{x_{1}^{2}+x_{2}^{2}} sin \theta , \zeta_{4}=\sqrt{-1}\sqrt{\zeta_{1}^{2}+\zeta_{2}^{2}} sin \eta ,

and x_{i}=\zeta_{i}=0\langle 5\leqq i\leqq n+1), where \theta and \eta are real numbers such that

\sqrt{(x_{1}^{2}+x_{2}^{2})(\zeta_{1}^{2}+\zeta_{2}^{2})} cos (\theta-\eta)=x_{1}\zeta_{1}+x_{2}\zeta_{2} .

Then we have \sum_{i}x_{i}^{2}=\sum_{i}\zeta_{i}^{2}=\sum_{i}x_{i}\zeta_{i}=0 , and hence

(Gf) (x_{1}, x_{2}, \zeta_{1}, \zeta_{2})=0 .
Since (x_{1}, x_{2}, \zeta_{1}, \zeta_{2})\in R^{4} is arbitrary, it follows that Gf \frac{-}{}0 . This completes
the proof.

PROPOSITION 3. 8. Let f\in C[x]_{2i+1} and h\in C[x]_{2f+1}(i\geqq j\geqq 2) . Suppose
that f and h are polynomials in two variables (x_{1}, x_{2}) . Then

(i) (G\iota^{*}F_{p}(f, h))_{Q_{2i+p+2,zj-2}}2p=0 if and only if
G(_{q=p} \sum^{j}a_{q-p}^{i-j+2+2p}F_{q}(f, h)J/=0 (0\leqq p\leqq j) [

(ii) If (G\iota^{*}F_{i-2}(f,f))_{Q_{4}}i^{i_{2,4}}=0, then f must be of the form
f=(a_{1}x_{1}+a_{2}x_{2})^{2i}(b_{1}x_{1}+b_{2}x_{2})f

where a_{1}, a_{2} and b_{1} , b_{2} are complex constants.

PROOF. ( i) Since
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(G \iota^{*}F_{p}(f, h))_{Q_{2}}i+2p+2,2j-2p=(.G\iota^{*}\sum_{q=p}^{j}a_{q-p}^{i-j+2+2p}F_{q}(f, h))_{G(Q_{zi+2j+2})} ,

(i) follows from Corollary 3. 7 (ii).
(ii) The general linear group GL(2, C) naturally acts on the polynomial

algebras C[x_{1}, x_{2}] and C[x_{1}, x_{2}, \zeta_{1}, \zeta_{2}] . It is easy to see that these actions
commute with the operators G and F_{p} . Hence we see from (i) that (G\iota^{*}F_{i-2}

(f,f))_{Q_{4}}i-2,4=0 if and only if

(G\iota^{*}F_{i-2}(A^{*}f, A^{*}f))_{Q}\cdot i-2,4=0 for f\in C[x_{1}, x_{2}]_{2i+1} and A\in GL(2, C)

Put

f= \sum_{k=0}^{2i+1}c_{k}x_{1}^{k}x_{2:}^{2i+1-k}

By considering A^{*}f instead of f for a suitable A\in GL(2, C) if necessary, we
may assume that c_{0}=0 . A direct computation shows that

F_{i-2}(x_{1}^{k}x_{2}^{2i+1-k}, x_{1}^{l}x_{2}^{2i+1^{-l}})

= \frac{(2i-3)!}{4!}\{l(l-1)(l-2)(l-3)x_{1}^{k+\iota-4}x_{2}^{4i+2-(k+l)}\zeta_{1}^{4}

+4l(l-1)(l-2)(2i+1-l)x_{1}^{k+l-3}x_{2}^{4i+1-(k+l)}\zeta_{1}^{3}\zeta_{2}

+6l(l-1)(2i+1-l)(2i-l)x_{1}^{k+l-2}x_{2}^{4i-(k+l)}\zeta_{1}^{2}\zeta_{2}^{2}

+4l(2i+1-l)(2i-l)(2i-1-l)x_{1}^{k+l-1}x_{2}^{4i-1-(k+l)}\zeta_{1}\zeta_{2}^{3}

+(2i+1-l)(2i-l)(2i-1-l)(2i-2-l)x_{1}^{k+l}x_{2}^{4i-2-(k+l)}\zeta_{2}^{4}\}

(0\leqq k, l\leqq 2i+1) . For each p, q such that 0\leqq p-q\leqq 4i-1,0\leqq q\leqq 3 , we have
X_{E_{0}}(x_{1}^{p-q}x_{2}^{4i-1-p+q}\zeta_{1}^{q}\zeta_{2}^{3-q})=(p-q)x_{1}^{p-q-1}x_{2}^{4i-1-p+q}\zeta_{1}^{q+1}\zeta_{2}^{3-q}

+(4i-1-p+q)x_{1}^{p-q}x_{2}^{4i-2-p+q}\zeta_{1}^{q}\zeta_{2}^{4-q}+h :

where h\in C[x, \zeta]_{4i,2} . Since (G\iota^{*}h)_{Q_{4}}i-2,4=0 by Proposition 2. 9 (i), it follows
that

(p-q)(G\iota^{*}(x_{1}^{p-q-1}x_{2}^{4i-1-p+q}\zeta_{1}^{q+1}\zeta_{2}^{3-q}))_{Q_{4}}i-2,4

=-(4i-1-p+q)(G\iota^{*}(x_{1}^{p-q}x_{2}^{4i-2-p+q}\zeta_{1}^{q}\zeta_{2}^{4-q}))_{Q_{4}}i-2,4

for p, q with 0\leqq p-q\leqq 4i-1,0\leqq q\leqq 3 . Using this formula successively,
we have

(G\iota^{*}F_{i-2}(x_{1}k2i+1-x_{2}k,l2i+1- x_{1}x_{2}l))_{Q_{4i-2,4}}

=A_{k,l}^{i}(G\iota^{*}(x_{1}^{k+l}x_{2}^{4i-2-(k+l)}\zeta_{2}^{4})_{)_{Q_{4}}i-2}^{\backslash },. (0\leqq k, l\leqq 2i+1) ,
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where A_{k,l}^{i}=0 if 0\leqq k+l\leqq 3 or 4i-1\leqq k+l\leqq 4i+2 , and

A_{k,l}^{i}= \frac{(2i-1)!}{4!}\frac{1}{(k+l)(k+l-1)(k+l-2)(k+l-3)}

\cross[2i(2i+1)\{k(k-1)(k-2)(k-3)+l(l-1)(l-2) (l-3)\}

-4 (i-1)lk\{i(4k^{2}+4l^{2}-6lk-6k-6l+10)+3kl-3k-3l+3\}]

if 4\leqq k+l\leqq 4i-2 . Especially we have

A_{k,1}^{i}=A_{1,k}^{i}= \frac{(2i)!}{4!}\frac{(2i+1)(k-7)+12}{k+1} (3\leqq k\leqq 2i+1)

and

A_{k,k}^{i}= \frac{3\cdot(2i-1)!}{4!}\frac{(2i+1-k)(2i-k)}{(2k-1)(2k-3)} (2\leqq k\leqq 2i-1)r

which are not zero.
Now we can write

(G\iota^{*}F_{i-2}(f,f))_{Q_{4i-2,4}}

= \sum_{p=4}^{4i-2}\sum_{k+l=p}c_{k}c_{l}A_{k,l}^{i}(G\iota^{*}(x_{1}^{p}x_{2}^{4i-2_{-}-p}\zeta_{2}^{4}))_{Q_{4i-2}}. .
In Lemma 3. 9 stated later we shall prove that

(G\iota^{*}(x_{1}^{p}x_{2}^{4i-2-p}\zeta_{2}^{4}))_{Q_{4i-2,4}} (4\leqq p\leqq 4i-2)

are linearly independent. By using this fact we have

(\#)_{p}
\sum_{k+l=p}c_{k}c_{l}A_{k,l}^{i}=0 (4\leqq p\leqq 4i-2)

If c_{1}=0 , then by the formulas (\#)_{2p}(2\leqq p\leqq 2i-1) and the fact A_{p.p}^{i}\neq 0

(2\leqq p\leqq 2i-1) we have c_{k}=0(1\leqq k\leqq 2i-1) . In this case
f=x_{1}^{2i}(c_{2i}x_{2}+c_{2i+1}x_{1}) .

If c_{1}\neq 0 , then by the formulas (\#)_{p}(4\leqq p\leqq 2i+2) and the fact A_{p,1}^{i}\neq 0(3\leqq p\leqq

2i+1) we see that c_{k}(3\leqq k\leqq 2i+1) are uniquely determined by c_{1} and c_{2} .
In this case we consider the following polynomial;

g(x)=c_{1}x_{1}(x_{2}+ \frac{c_{2}}{2ic_{1}}x_{1})^{2i}

Put g(x)= \sum_{k=0}^{2i+1}b_{k}x_{1}^{k}x_{2}^{2i+1-k} . Then b_{0}=0, b_{1}=c_{1}, and b_{2}=c_{2}. Moreover, for
a suitable A\in GL(2, C) , A^{*}g becomes



176 K. Kiyohara

\alpha x_{1}^{2i}x_{2}+\beta x_{1}^{2i+1} (\alpha, \beta\in C) .
Then it follows from the above formula that

(G\iota^{*}F_{i-2}(A*g, A^{*}g))_{Q_{4i-2,4}}=0 ,

and hence

(G\iota^{*}F_{i\sim 2}(g, g))_{Q_{si-2,4}}=01

Thus we have

\sum_{k+l=p}b_{k}b_{l}A_{k,l}^{i}=0 (4\leqq p\leqq 4i-2) [

Since b_{1}=c_{1} and b_{2}=c_{2}, we can conclude that b_{k}=c_{k}(0\leqq k\leqq 2i+1) . Therefore
f=g, and the proposition has been proved.

LEMMA 3. 9. 2k-3 elements (G\iota^{*}(x_{1}^{p}x_{2}^{2k-p}\zeta_{2}^{4}))_{Q_{2k,4}}(4\leqq p\leqq 2k) of Q_{2k,4}

are linearly independent, where k\geqq 2 .
PROOF. By Corollary 2. 8 (ii) we see that

(G\iota^{*}(x_{1}^{p}x_{2}^{2k-p}\zeta_{2}^{4}))_{Q_{ak,4}}

=(G\iota^{*}\{ x_{1}^{p}x_{2}^{2k-p} \zeta_{2}^{4}-\frac{6}{2k-1}x_{1}^{p}x_{2}^{2k-p+g}\zeta_{2}^{2}

+ \frac{3}{(2k+1)(2k-1)}x_{1}^{p}x_{2}^{2k-p+4))_{G(Q_{zk+4})}}

Thus in view of Corollary 3. 7 (ii) it is enough to show that 2k-3 polynomials

h_{p}=G(x_{1}^{p}x_{2}^{2k-p} \zeta_{2}^{4}-\frac{6}{2k-1}x_{1}^{p}x_{2}^{2k-p+2}\zeta_{2}^{2}+\frac{3}{(2k+1)(2k-1)}x_{1}^{p}x_{2}^{2k-p+4)}

(4\leqq p\leqq 2k) are linearly independent. An explicit computation shows that the
coefficient of x_{1}^{p}\zeta_{2}^{2k-p+4} in h_{p} is

\frac{(p-1)!!(2k-p-1)!!}{(2k)!!}\frac{p(p-2)}{(2k+1)(2k-1)}

if p is even, and the coefficient of x_{1}^{p-1}\zeta_{1}\zeta_{2}^{2k-p+4} in h_{p} is

\frac{(p-2)!!(2k-2p)!!}{(2k)!!}\frac{(p-1)^{2}(p-3)}{(2k+1)(2k-1)}

if p is odd. Thus we have h_{p}\neq 0(4\leqq p\leqq 2k) . Since h_{p}(4\leqq p\leqq 2k) have
mutually different degrees in the variables (x_{1}, \zeta_{1}) , it follows that they are
linearly independent.

We set
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S = \{x\in C^{n+1}|\sum_{i}x_{i}^{2}=0\} ,

S_{1}= \{(x, \zeta)\in C^{2n+2}|\sum_{i}x_{i}^{2}=\sum_{i}\zeta_{i}^{2}=\sum_{i}x_{i}\zeta_{i}=0\}

Let V be a 2-dimensional subspace of C^{n+1} which is contained in S, and
let \kappa:C^{2}=\{(x_{1}, x_{2})\} - V be a linear isomorphism. Then the isomorphism \kappa

induces the isomorphism

\kappa\cross\kappa:C^{4}=\{(x_{1}, x_{2}, \zeta_{1}, \zeta_{2})\}arrow V\cross V\subset C^{2n+2}=\{(x, \zeta)\} ,

which will also be denoted by \kappa . In this case it is easy to see that V\cross V

is contained in \tilde{S}_{1} .
By identifying C[x_{1}, x_{2}] (resp. C[x_{1}, x_{2}, \zeta_{1} , \zeta_{2}] ) with a subalgebra of C[x]

(resp. C[x, \zeta] ) naturally, the operators G and F_{p} are defined on C[x_{1}, x_{2}, \zeta_{1}, \zeta_{2}]

and on C[x_{1}, x_{2}]\cross C[x_{1}, x_{2}] respectively. Then we have G\circ\kappa^{*}=\kappa^{*}\circ G and
F_{p}(\kappa^{*}f, \kappa^{*}h)=\kappa^{*}F_{p}(f, h) , f, h\in C[x] .

PROPOSITION 3. 10. Let V and \kappa:C^{2}=\{(x_{1}, x_{2})\} - V be as above. Sup-
pose that f\in C[x]_{2f+1}(j\geqq 2) satisfifies G\iota^{*}F(f,f)\in G(\mathscr{F}^{2}) . Then

(\kappa^{*}f)(x_{1}, x_{2})=(a_{1}x_{1}+a_{2}x_{2})^{2j}(b_{1}x_{1}+b_{2}x_{2})

for some constants a_{k} , b_{k}\in C(k=1,2) .
PROOF. By Proposition 3. 5 we have

(G\iota^{*}F_{f-2}(f,f))_{Q_{4j-2,4}}=0\tau

By Corollary 2. 8 (ii) this implies

(G \iota^{*}\sum_{q=J-2}^{j}a_{q-(j-2)}^{2+2(j-2)}F_{q}(f,f))_{G(Q_{4j+2})}=0

Hence we have

G( \sum_{q=j-2}^{j}a_{q-(j-2)}^{2+2(j-2)}F_{q}(f,f))\in(\sum_{i}x_{i}^{2}, \sum_{i}\zeta_{i}^{2}, \sum x_{i}\zeta_{i})

by Corollary 3. 7 (i). By applying \kappa^{*} we have

G( \sum_{q=j-2}^{j}a_{q-(f-2)}^{2+2(j-2)}F_{q}(\kappa^{*}f, \kappa^{*}f))=0

The proposition now follows from Proposition 3. 8 (i) (ii).

In view of Proposition 3. 10, it is enough to prove the following prop0-

sition i\dot{n} order to show Proposition 3. 1.

PROPOSITION 3. 11. Let f\in R[x_{1^{ }},\cdots, x_{n+1}]_{2j+1}(j\geqq 2) . Suppose that for
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each 2-dimensional subspace V of C^{n+1}=\{(x)\} contained in S, f|_{V} has the
form (\alpha_{1}z_{1}+\alpha_{2}z_{2})^{2j}(\beta_{1}z_{1}+\beta_{2}z_{2}) , \alpha_{i} , \beta_{i}\in C(i=1,2) , where (z_{1}, z_{2}) is a linear
coordinate system of V. Then there are constants a_{i} , b_{i}\in R(1\leqq i\leqq n+1)

such that

f \equiv(\sum_{i}.a_{i}x_{i})^{2f}(\sum_{i}b_{i}x_{i}) mod ( \sum_{i}x_{i}^{2})R[x]_{2f-1}

PROOF. We need different considerations according as n=3 or n\geqq 4 .
I. The case n=3. Define a bilinear map \psi:C^{2}\cross Carrow C^{4} by

\psi(y, z)=

(\frac{1}{2}(y_{1}z_{1}+y_{2}z_{2}) , \frac{1}{2\sqrt{-1}}(y_{1}z_{1}-y_{2}z_{2}) , \frac{1}{2}(y_{2}z_{1}-y_{1}z_{2}) , \frac{1}{2\sqrt{-1}}(y_{2}z_{1}+y_{1}z_{2})) :

where (y, z)=((y_{1}, y_{2}), (z_{1}, z_{2}))\in C^{2}\cross C^{2} . (The induced map P^{1}\cross P^{1}arrow P^{S} is
known as Segre embedding, where P^{k} denotes the k-dimensional complex
projective space.) It is easy to see that the image of \psi is S. Moreover any

2–..d\underline{i}men.s.!.ona1- subspace V of C^{4} which is contained in S is of the form
\psi(C^{2}\cross\{a\}) or. \psi(\{a\}\cross C^{2}) , a\in G-\{0\} . Thus \psi^{*}f\in C[y, z] is homogeneous of
degree 2j+1 in both variables y and z, and for each a\in C^{2}-\{0\} there are
constants \alpha_{1} , \alpha_{2} , \beta_{1} , \beta_{2}\in C (resp. \alpha_{1}’ , \alpha_{2}’ , \beta_{1}’ , \beta_{2}’\in C) such that \psi^{*}f(y, a)=(\alpha_{1}y_{1}+

\alpha_{2}y_{2})^{2f}(\beta_{1}y_{1}+\beta_{2}y_{2}) (resp. \psi^{*}f(a, z)=(\alpha_{1}’z_{1}+\alpha_{2}’z_{2})^{2j}(\beta_{1}’z_{1}+\beta_{2}’z_{2}) ).

We denote by C[y, z]_{k,l} the vector space of polynomials which are
homogeneous of degree k in the variables y and homogeneous of degree l
in the variables z.

LEMMA 3. 12. Let h\in C[y, z]_{k,l}(l\geqq 3) . Assume that h satisfifies the
following condition \cdot. For each a\in G-\{0\} there are constants \alpha_{1} , \alpha_{2}, \beta_{1} ,

\beta_{2}\in C such that
h(a, z)=(\alpha_{1}z_{1}+\alpha_{2}z_{2})^{l-1}(\beta_{1}z_{1}+\beta_{2}z_{2})

Then there are homogeneous polynomials h_{0}, \gamma_{1} , \gamma_{2} , \delta_{1} , \delta_{2}\in C[y] with deg \gamma_{1}=

deg \gamma_{2}, deg \delta_{1}=\deg\delta_{2} such that
h(y, z)=h_{0}(\gamma_{1}z_{1}+\gamma_{2}z_{2})^{\iota-1}(\delta_{1}z_{1}+\delta_{2}z_{2}) .

and \gamma_{1}z_{1}+\gamma_{2}z_{2} and \delta_{1}z_{1}+\delta_{2}z_{2} are irreducible in C[y, z] .
PROOF 0F LEMMA 3. 12. Let P_{y}^{1} be the complex projective line with

homogeneous coordinates [y_{1}, y_{2}] , and let C(P_{y}^{1}) its function field, i . e. ,

C(P_{y}^{1})-= \{\frac{v}{u}|v, u\in C[y_{1}, y_{2}] , homogeneous of the same degree, u\neq 0\} .

For ahomogeneous polynomial \^u C[y] we set
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V(u)=\{[a_{1}, a_{2}]\in P_{y}^{1}|u(a_{1}, a_{2})=0\}’\wedge

and for v\in C(P_{y}^{1})

W(v)=\{p\in P_{y}^{1}|v(p)=0 or v(p)=\infty\}r

Moreover for a polynomial v= \sum_{i}v_{i}t^{i}\in C(P_{y}^{1})[t](v_{i}\in C(P_{y}^{1})) we set W(v)=\cup

W(v_{i}) , where the union is taken over all i such that v_{i}\neq 0 .
We assume that h is not identically zero. By changing the coordinates

(z_{1}, z_{2}) linearly if necessary, we may also assume that the coefficient h_{1}(y\rangle\in

C[y]_{k} of z_{1}^{l} in h(y, z) is not zero. Define the monic polynomial q. =g(y_{1}, y_{2}, t)

\in C(P_{y}^{1})[t] of degree l by the formula

h(y, z)=h_{1}(y)z_{2}^{l}g(y_{1}, y_{2}, \frac{z_{1}}{z_{2}}) .

Let

g=g_{1^{Y_{1}}}\cdots g_{m}^{r_{m}}.’ g_{i}=g_{i}(y_{1}, y_{2}, t)\in C(P_{y}^{1})[t] (1 ^{j}-<i\leqq m)

be its irreducible decomposition in C(P_{y}^{1})[t] . We assume that each g_{i} is
monic and deg g_{1}\leqq\cdots\leqq\deg g_{m} . Let D(g_{i})\in C(P_{y}^{1}) be the discriminant of g_{i}

and D(g_{i}, g_{f})\in C(P_{y}^{1}) the resultant of g_{i} and g_{f}(i\neq j) . Since g_{i}(1\leqq i\leqq m)

are irreducible and mutually prime, they do not vanish. Set

W=V(h_{1}) \cup\bigcup_{i}W(g_{i})\cup\bigcup_{i}W(D(g_{i}))\cup\bigcup_{i\neq j}W(_{\backslash }D(g_{i}, g_{f})) .

Then W is a finite subset of P_{y}^{1} .
Take [a_{1}, a_{2}]\in P_{y}^{1}-W. Then g_{i}(a_{1}, a_{2}, t)\in C[t](1\leqq i\leqq m) . Moreover we

see that the polynomials g_{i}(a_{1}, a_{2}, t) are mutually prime and each algebraic

equiation g_{i}(a_{1}, a_{2}, t)=0 has only simple roots. Hence by the assumption

we easily have deg g_{i}=1(1\leqq i\leqq m) , m=1 or 2, and r_{1}=1 or r_{2}=1 in case

m=2. In any case we can write

h(y, z)=h_{1}(z_{1}+ \frac{\gamma_{2}}{\gamma_{1}}z_{2})^{l-1}(z_{1}+\frac{\delta_{2}}{\delta_{1}}z_{2})

= \frac{h_{1}}{\gamma_{1}^{\iota-1}\delta_{1}}(\gamma_{1}z_{1}+\gamma_{2}z_{2})^{l-1}(\delta_{1}z_{1}.+\delta_{2}z_{2}) ,

where \gamma_{1} and \gamma_{2} (resp. \delta_{1} and \delta_{2}) are homogeneous polynomials !.n the-va-r!.ablea.
y of the same degree and mutually prime. Since \gamma_{1}z_{1}+\gamma_{2}z_{2} and \delta_{1}z_{1}+\delta_{2}z_{2}

are irreducible in C[y, z] , it follows that \frac{h_{1}}{\gamma_{1}^{\iota-1}\delta_{1}}\in C[y_{1}, y_{2}] . This finishes

the proof of the lemma.
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We now continue the proof of the case n=3. By applying Lemma
3. 12 to \psi^{*}f(y, z) in both variables y and z, we see that the irreducible
decomposition of \psi^{*}f in C[y, z] must be one of the following:

(i) f_{1}(y, z)^{2j}f_{2}(y, z) , f_{1} , f_{2}\in C[y, z]_{1,1} ,
(ii) f_{1}(y, z)^{2j}f_{2}(y)f_{3}(z) , f_{1}\in C[y, z]_{1,1} , f_{2}\in C[y]_{1} , f_{3}\in C[z]_{1} ,
(iii) f_{1}(y)^{2j}f_{2}(z)^{2j}f_{3}(y, z) , f_{1}\in C[y]_{1} , f_{2}\in C[z]_{1} , f_{3}\in C[y, z]_{1,1} ,
(iv) f_{1}(y)^{2j}f_{2}(z)^{2j}f_{3}(y)f_{4}(z) , f_{1} , f_{3}\in C[y]_{1} , f_{2}, f_{4}\in C[z]_{1} .

Here it is not assumed that f_{1} and f_{2} are mutually prime in the case (i),
and so are not the pairs (f_{1},f_{3}) and (f_{2},f_{4}) in the case (iv). In any case \psi^{*}f

is of the form

( \sum_{i,k=1}^{2}\alpha_{i,k}y_{i}z_{k})^{2j}(\sum_{i,k=1}^{2}\beta_{i,k}y_{i}z_{k})’. \alpha_{i,k} , \beta_{i,k}\in Ct

Thus there are constants a_{i} , b_{i}\in C(1\leqq i\underline{\leq}4) such that

f(x)=( \sum_{i}a_{i}x_{i})^{2j}(\sum_{i}b_{i}x_{i}) on \tilde{S}c

Since the ideal ( \sum_{i=1}^{4}x_{l}^{2})C[x] is prime, it follows that

f \equiv(\sum_{i}a_{i}x_{i})^{2j}(\sum_{i}b_{i}x_{i}) mod ( \sum_{i}x_{i}^{2}\rangle C[x]_{2j-1}

Next we must show that the coefficients a_{i} , b_{i}(1\leqq i\leqq 4) can be taken
from the real numbers. We may assume that the vectors a=(a_{1}, a_{2}, a_{\}, a_{4})

and b=(b_{1}, b_{2}, b_{3}, b_{4}) are not zero. Since f is real, we have

( \sum_{i}\overline{a}_{i}x_{i})^{2j}(\sum_{i}\overline{b}_{i}x_{i})\equiv(\sum_{i}a_{i}x_{i})^{2j}(\sum_{i}b_{i}x_{i}) mod ( \sum_{i}x_{i}^{2})C[x]_{2f-1} ,\cdot

where the bars denote the complex conjugates. Then there are two cases;
the ideal J=( \sum_{i}a_{i}x_{i}, \sum_{i}x_{i}^{2}) in C[x] is prime or not.

Case 1. J is prime. In this case

( \sum_{i}\overline{a}_{i}x_{i})^{2j}(\sum_{i}\overline{b}_{i}x_{i})\equiv 0 mod J

If \sum_{i}\overline{b}_{i}x_{i}\not\in J, then \sum_{i}\overline{a}_{i}x_{i}\in J. If \sum_{i}\overline{b}_{i}x_{i}\in J, then we have \sum_{i}\overline{b}_{i}x_{i}=c\sum_{i}a_{i}x_{i}

(c\in C-\{0\}) by comparing the degrees. Then

c( \sum_{i}\overline{a}_{i}x_{i})^{2f}\equiv(\sum_{i}a_{i}x_{i})^{2j-1}(\sum_{i}b_{i}x_{i}) mod ( \sum_{i}x_{i}^{2}) ,

and we also have \sum_{t}\overline{a}_{i}x_{i}\in J. By comparing the degrees we see that

\sum_{i}\overline{a}_{i}x_{i}=d\sum_{i}a_{i}x_{i} , d\in C, |d|=1

Take e\in C such that e^{2}=d. Then e \sum_{i}a_{i}x_{i}\in R[x] . Moreover, since
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e^{2j} \sum_{i}\overline{b}_{i}x_{i}\equiv\overline{e}^{2j}\sum_{i}b_{i}x_{i} mod ( \sum_{i}x_{i}^{2}) ,

it follows that e^{2j} \sum_{i}\overline{b}_{i}x_{i}=\overline{e}^{2j}\sum_{i}b_{i}x_{i} . Thus \overline{e}^{2j}\sum_{i}b_{i}x_{i}\in R[x] , and

f \equiv(e\sum a_{i}x_{i})^{2f}(\overline{e}^{2j}\sum b_{i}x_{i}) mod ( \sum x_{i}^{2})R[x]_{2f-1} .

Case 2. J is not prime. In this case the image of \sum_{i}x_{i}^{2} by the con -

morphism C[x] arrow C[x]/(\sum_{i}a_{i}x_{i}) is not irreducible, because the ring C[x]/

( \sum_{i}a_{i}x_{i}) is a UFD. Thus we can write

\sum_{i}x_{i}^{2}\equiv(\sum_{i}c_{i}x_{i})(\sum_{i}d_{i}x_{i}) mod ( \sum_{i}a_{i}x_{i})

Then the 2-dimensional subspace V defined by \sum_{i}a_{i}x_{i}=\sum_{i}c_{i}x_{i}=0 is con-

tained in S. On the other hand, it is easy to see that the real orthogonal
group o(4, R) acts transitively on the set of 2-dimensional subspaces contained
in S. Since the 2-dimensional subspace defined by x_{1}+\sqrt{-1}x_{2}=x_{3}+\sqrt{-1}x_{4}

=0 is contained in S, it follows that

\sum_{i}a_{i}x_{i}=A^{*}(\alpha(x_{1}+\sqrt{-1}x_{2})+\beta(x_{3}+\sqrt{-1}x_{4}))

for a suitable A\in O(4, R) and \alpha, \beta\in C. This implies that a=(a_{1}, \cdots, a_{4}) is
in S. Moreover, we see that o(4, R) acts transitively on S-\{0\} up to posi-
tive constant factors. Hence there is B\in O(4, R) such that

B^{*} \sum_{i}a_{i}x_{i}=e(x_{1}+\sqrt{-1}x_{2}) , e>0 .

By applying B^{*} to the congruence

( \sum_{i}\overline{a}_{i}x_{i})^{2j}(\sum_{i}\overline{b}_{i}x_{i})\equiv(\sum_{i}a_{i}x_{i})^{2j}(\sum_{i}b_{i}x_{i}) mod ( \sum_{i}x_{\dot{f}}^{2}) ,

we have

(x_{1}- \sqrt{-1}x_{2})^{2j}(\sum_{i}\overline{b}_{i}’x_{i})\equiv(x_{1}+\sqrt{-1}x_{2})^{2j}(\sum_{i}b_{i}’x_{i}) mod ( \sum_{i}x_{i}^{2}) ,

where \sum_{i}b_{i}’x_{i}=B^{*}\sum_{i}b_{i}x_{i} . Since x_{1}-\sqrt{-1}x_{2} does not belong to the prime

ideals (x_{1}+\sqrt{-1}x_{2}, x_{3}+\sqrt{-1}x_{4}) and (x_{1}+. \sqrt{-1}x_{2}, x_{3}-\sqrt{-1}x_{4}) , and since

(x_{1}+ \sqrt{-1}x_{2}, x_{3}+\sqrt{-1}x_{4})\cap(x_{1}+\sqrt{-1}x_{2}, x_{3}-\sqrt{-1}x_{4})=(x_{1}+\sqrt{-1}x_{2}.’. \sum_{i}x_{i}^{2}) ,

it follows that \sum_{i}\overline{b}_{i}’x_{i}\in(x_{1}+\sqrt{-1}x_{2}, \sum_{i}x_{i}^{2}) . Thus

\sum_{i}\overline{b}_{i}’x_{i}=d(x_{1}+\sqrt{-1}x_{2}) , d\in C-\{0\}

Then the above congruence shows that
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x_{1}- \sqrt{-1}x_{2}\in(x_{1}+\sqrt{-1}x_{2}, \sum_{i}x_{i}^{2})j

which is a contradiction. Therefore we see that the ideal J must be prime.
This completes the proof of the case n=3.
II. The case n\geqq 4 . We may assume that f\neq 0 mod ( \sum_{i}x_{i}^{2}) . We first

decompose f into irreducible components in the ring C[x]/( \sum_{i}x_{i}^{2}) ;

f\equiv f_{1}^{r_{1}}\cdots f_{m}^{r_{m}} mod ( \sum_{i}x_{i}^{2}) ,

where f_{i}\in C[x] are homogeneous polynomials, deg f_{1}\leqq\cdots\leqq degf_{m} , and the
images of f_{i} by the homomorphism C[x] arrow C[x]/(\sum x_{i}^{2}) are irreducible and
mutually prime.

Let P^{n} be the complex projective space of dimension n with the hom0-
geneous coordinates [x]=[x_{1^{ }},\cdots, x_{n+1}] . In general, for homogeneous poly-
nomials h_{1} , \cdots , h_{k}\in C[x] we denote by V(h_{1}, \cdots, h_{k}) the algebraic subset of
P^{n} defined by h_{1}=\cdots=h_{k}=0 . We set

S=V( \sum_{i}x_{i}^{2}) .

Let h\in C[x] be a homogeneous polynomial whose image by the hom0-
morphism C[x] arrow C[x]/(\sum_{i}x_{i}^{2}) is not zero, and is irreducible. Since the ring
C[x]/( \sum_{i}x_{i}^{2}) is a UFD, it follows that the ideal (h, \sum_{i}x_{i}^{2}) in C[x] is prime.
Set

Sing V(h)= \{[x]\in V(h)|\frac{\partial h}{\partial x_{1}}(x)=\ldots=\frac{\partial h}{\partial x_{n+1}}(x)=0\}

and Reg V(h)=V(h)- Sing V(h) . We denote by V(h)_{p} (resp. S_{p}) the tangent
hyperplane to V(h) (resp. S) at p\in RegV(h) (resp. p\in S). Set

U=\{p\in RegV(h)\cap S|V(h)_{p}\neq S_{p}\}

and U(p)=S_{p}\cap S-S_{p}\cap S\cap V(h)_{p} for p\in U. Then we set

T=\{(p, q)\in P^{n}\cross P^{n}|p\in S\cap V(h) , q\in S_{p}\cap S\} ,

U_{1}=\{(p, q)\in P^{n}\cross P^{n}|p\in U, q\in U(p)\}

LEMMA 3. 13. The subset U_{1} is open and dense in the set T

S\cap V

and \{

PROOF OF LEMMA 3. 13. We shall first show that U is open and dense in
(h). Since [a_{1^{ }},\cdots, a_{n+1}]\in S\cap V(h) is in U if and only if a=(a_{1^{ }},\cdots, a_{n+1})

\frac{\partial h}{\partial x_{1}}(a) , \cdots , \frac{\partial h}{\partial x_{n+1}}(a)) are linearly independent, it follows that U is open
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in S\cap V(h) in the Zariski topology. If (a_{1}, \cdots, a_{n+1}) and ( \frac{\partial h}{\partial x_{1}}(a), \cdots , \frac{\partial h}{\partial x_{n+1}}(a))

are linearly dependent for all [a]\in S\cap V(h) , then there are polynomials \alpha_{i,j},
\beta_{i,j}(1\leqq i,j\leqq n+1) such that

x_{i} \frac{\partial h}{\partial x_{j}}-x_{j}\frac{\partial h}{\partial x_{i}}=\alpha_{i,j}\sum_{k}x_{k}^{2}+\beta_{i,j}h ,

\alpha_{j,i}=-\alpha_{i,j}, \beta_{j,i}=-\beta_{i,j} . By the homogeneity we may assume that \beta_{i,j}\in C.
Then we have

(deg h) x_{i}h- \sum_{j}x_{j}^{2}\frac{\partial h}{\partial x_{i}}=\sum_{j}\alpha_{i,j}x_{j}\sum_{k}x_{k}^{2}+\sum_{j}\beta_{i,j}x_{j}h (1 \leqq i\leqq n+1),\cdot

and hence

(deg h) x_{i} \equiv\sum_{j}\beta_{i,j}x_{j} mod ( \sum_{i}x_{i}^{2})1

Since \beta_{i,i}=0 , this is a contradiction. Therefore we see that U\neq\phi . Since
S\cap V(h) is an algebraic variety, it follows that U is open and dense in
S\cap V(h) in the classical topology.

Next we shall show that U(p) is open and dense in S_{p}\cap S for each
p\in U. As is easily seen, S_{p}\cap S is a variety and U(p) is its Zariski-0pen
subset. If U([a])=\phi for an [a]\in U, then V(h)_{taJ}\supset S_{[a]}\cap S. This implies that

\sum_{i}x_{i}\frac{\partial h}{\partial x_{i}}(a)\in(\sum_{i}x_{i}^{2}, \sum_{i}a_{i}x_{i})
‘

Then we have by the homogeneity \sum_{i}x_{i}\frac{\partial h}{\partial x_{i}}(a)\in(\sum_{i}a_{i}x_{i}) , which is impossible

when [a]\in U. Hence U(p)\neq\phi for each p\in U, and we see that U(p) is open
and dense in S_{p}\cap S for each p\in U.

Let

pr_{1} : Tarrow S\cap V(h)

be the projection to the first term. Then we see that pr_{1} : Tarrow S\cap V(h) is
locally trivial, i . e. , for each p\in S\cap V(h) there is a neighborhood W of p
in S\cap V(h) and a fibre-preserving homeomorphism

pr_{1}^{-1}(W)arrow W\cross(S_{p}\cap S)

This, together with the above facts, implies that U_{1} is dense in T Since
U(p) depends continuously on p\in U, we also see that U_{1} is open in T

COROLLARY 3. 14. Let K be a Zariski-closed subset of S such that
V(h)\cap S\not\subset K. Then there is a projective line L contained in S such that
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V(h)\cap L\cap K=\phi and V(h)\cap L consists of k distinct points, where k=\deg h .
PROOF OF COROLLARY 3. 14. First take (p, q)\in U_{1} such that p\not\in K.

Then the projective line L_{0} through p and q lies in S, and L_{0} and V(h)\cap S

intersect transversally at p. Assume that there is a projective line L in S
such that L and U–K intersect transversally at least at l distinct points,
say p_{1} , \cdots , p_{l}(1\leqq l<k) . Since l<k, there is another point p_{l+1} in V(h)\cap L .
Take any point r\in L-\{p_{l+1}\} . Then (p_{l+1}, r)\in T If p_{l+1}\in K or L and
S\cap V(h) does not intersect transversally at p_{l+1} , then we can take (p_{l+1}’, r’)\in

U_{1} near (p_{l+1}, r) such that p_{l+1}\not\in K. Let L’ be the projective line through
p_{l+1}’ and f . If we take (p_{l+1}’, r’) sufficiently close to (p_{l+1}, r) , then L’ and
V(h)\cap S intersect transversally at points p_{i}’\not\in K near p_{i}(1\leqq i\leqq l) . Therefore
we have found a line L’ such that L’ and V(h)\cap S-K intersect transversally
at least at l+1 distinct points. The corollary now follows by industion.

We now continue the proof of the case n\geqq 4 . As usual \# (K) will
denote the number of elements in a set K. Corollary 3. 14 shows that there
is a projective line L_{1} in S such that L_{1}\not\subset V(f) and \# (V(f_{m})\cap LJ=\deg f_{m} .
Then we have

deg \mathcal{F}_{m}\leqq\#(V(f)\cap L_{1})<\infty

Since \# (V(f)\cap L_{1})=1 or 2 or \infty by the assumption on f, it follows that
degf_{m}\leqq 2 . Assume that degf_{m}=2 . In this case we have degf_{1}=1 , since
\deg f is odd. Since V(f_{m})\cap S\not\subset V(f;)\cap S, we see by Corollary 3. 14 that
there is a projective line L_{2} in S such that L_{2}\not\subset V(f) and (V(f_{1})\cup V(f_{m}))\cap L_{2}

consists of three points. This being a contradiction, we have degf_{m}=1 .
Now we may assume that r_{1}\geqq\cdots\geqq r_{m} . Since V(f_{i})\cap S\not\subset V(f_{j})\cap S(i\neq j) ,

an induction argument as in the proof of Corollary 3. 14 implies that there
is a projective line L_{3} in S such that \# (V(f)\cap L_{3})=m . Hence m=1 or 2.
Let V be the 2-dimensional subspace of C^{n+1} whose image by the quotient
map C^{n+1}-\{0\}arrow P^{n} is L_{3} . Then by considering f|_{V} we see that r_{1}=2j and
r_{2}=1 if m=2. Thus we have

f \equiv(\sum_{t}a_{i}x_{i}^{2j})(\sum_{i}b_{i}x_{i}) mod ( \sum_{i}x_{i}^{2}) , a_{i}, b_{i}\in C (1\leqq i\leqq n+1)

Since f is real and C[x]/( \sum_{i}x_{i}^{2}) is a UFD, it easily follows that the
coefficients a_{i} and b_{i}(1\leqq i\leqq n+1) can be taken from the real numbers.

This completes the proof of Proposition 3. 11.

\S 4. The main result

Let O(n+1, R) be the orthogonal group of degree n+1 , which naturally
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acts on R^{n+1}=\{(x)\} and hence on R[x] . In this and the next sections we
shall prove the following

THEOREM 4. 1. Let f\in R[X_{1}^{ },\cdots, x_{n+1}]_{od} . Then f satisfifies the condition
G\iota^{*}F(f,f)\in G(\mathscr{A}^{2}) if and only iff has one of the following forms (i) and
(ii) :

(i) f \equiv h_{1}+h_{3}+\sum_{i=2}^{m}(\sum_{k}a_{k}x_{k})^{2i}(\sum_{j}b_{i,j}x_{j}) mod (1- \sum_{i}x_{i}^{2}) ,

where a_{k} , b_{i}
, j\in R, h_{1}\in R[x]_{1} , and h_{3}\in R[x]_{3} ;

(ii) f\equiv h_{1}+h_{3}+cA^{*}h mod (1- \sum_{i}x_{i}^{2}) ,

where h_{1}\in R[x_{1}] , h_{3}\in R[x]_{3}, c\in R , A\in O(n+1, R) , and h is a polynomial
of degree 21 in the variables (x_{1}, x_{2}) of the following form

h= \sum_{i\simeq 2}^{10}\alpha_{2i+1}x_{1}^{2i+1}+\sum_{i=2}^{6}\beta_{2i+1}x_{1}^{2i}x_{2}+\sum_{i=2}^{6}\gamma_{2i+1}x_{1}^{2i-1}x_{2}^{2}

+\delta_{5}x_{1}^{2}x_{2}^{3}+\epsilon_{5}x_{1}x_{2}^{4} ,

with \beta_{13}\in R, \gamma_{13}\in R-\{0\} , and

\alpha_{5}=\frac{10}{13}\gamma_{13}-\frac{25}{13^{2}\cdot 192}\frac{\beta_{13}^{4}}{\gamma_{13^{2}}}+\frac{15}{4}\frac{\beta_{13^{2}}}{\gamma_{13}}+45r
,

\alpha_{7}=-\frac{10}{13}\gamma_{13}-5^{\frac{\beta_{13}^{2}}{\gamma_{13}}}-120j \alpha_{9}=\frac{5}{13}\gamma_{13}+\frac{15}{4}\frac{\beta_{13}^{2}}{\gamma_{13}}+210 ,

\alpha_{11}=-\frac{1}{13}\gamma_{13}-\frac{3}{2}\frac{\beta_{13}^{2}}{\gamma_{13}}-252-
,

\alpha_{13}=\frac{1}{4}\frac{\beta_{13}^{2}}{\gamma_{13}}+210 ,

\alpha_{15}=-120 , \alpha_{17}=45 , \alpha_{19}=-10 , \alpha_{21}=1,\cdot

\beta_{5}=\frac{75}{13}\beta_{13}-\frac{25}{13^{2}\cdot 24}\frac{\beta_{13}^{3}}{\gamma_{13}} , \beta_{7}=-\frac{140}{13}\beta_{13}’. \beta_{9}=\frac{135}{13}\beta_{13} ,

\beta_{11}=-\frac{66}{13}\beta_{13} , \gamma_{5}=\frac{25}{13}\gamma_{13}-\frac{25}{13^{2}\cdot 8}\beta_{13^{2}} ,

\gamma_{7}=-\frac{70}{13}\gamma_{13}’. \gamma_{9}=\frac{90}{13}\gamma_{13} , \gamma_{11}=-\frac{55}{13}\gamma_{13} ,

\delta_{5}=-\frac{25}{13^{2}\cdot 6}\beta_{13}\gamma_{13} , \epsilon_{5}=-\frac{25}{13^{2}\cdot 12}\gamma_{13^{2}} .

We first remark various actions of the orthogonal group. The orthogonal
group O(n+1, R) acts on R^{2n+2} by the map (x, \zeta)arrow(Ax, A\zeta)(A\in O(n+1, R)) ,

and via the inclusions \iota_{0} : S^{n}arrow R^{n+1} and \iota:S^{*}S^{n}arrow R^{2n+2}, it also acts on (S^{n}, g_{0})

and (S^{*}S^{n}, g_{1}) as isometries. Clearly the induced actions of O(n+1, R) on
C^{\infty}(R^{n+1}) , C^{\infty}(R^{2n+2}) , C^{\infty}(S^{n}) , and C^{\infty}(S^{*}S^{n}) commute with the operators G, G,
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\iota^{*} , \Delta, F_{p}, and F. It follows that the subspaces G(P_{k}) , G(Q_{k}) , and Q_{i,j} of
C^{\infty}(S^{*}S^{n}) are preserved by this action. In particular we see that G\iota^{*}F(f,f)

\in G(\mathscr{A}^{2}) if and only if G\iota^{*}F(A^{*}f, A^{*}f)\in G(\mathscr{F}^{2}) , where f\in R[x]_{od} and
A\in O(n+1, R) .

PROPOSITION 4. 2. Let f\in R[x]_{od} . Suppose that f is of the form (i) in
Theorem 4. 1. Then f satisfifies the condition G\iota^{*}F(f,f)\in G(\mathscr{F}^{2}) .

PROOF. Let u, v\in R[x]_{od} . Proposition 1. 6 shows that if u or v belongs
to the ideal (1- \sum x_{i}^{2}) , then G\iota^{*}F(u, v)\in G(\mathscr{F}^{2}) . Thus we may assume that

f=h_{1}+h_{3}+ \sum_{i=2}^{m}(\sum_{k}a_{k}x_{k})^{2i}(\sum_{j}b_{i,j^{X_{j})}}l

In view of Corollary 3. 3 we may further assume that

f= \sum_{i=2}^{m}(\sum_{k}a_{k}x_{k})^{2i}(\sum_{j}b_{i,j}x_{f})

By considering the action of the orthogonal group, we may consequently
assume that f is of the form

\sum_{i=2}^{m}x_{1}^{2i}(\sum_{j}b_{i,j}x_{j}) , b_{i,j}\in R

Then the proposition follows from the next lemma.

Lemma 4. 3. G\iota^{*}F(x_{1}^{2i}x_{k}, x_{1}^{2j}x_{l})\in G(\mathscr{A}^{2}) (1 \leq k, l\leqq n+1) .

PROOF. Let U_{m}(m\geq 3) be the real vector space spanned by

\{G\iota^{*}(x_{1}^{2p}x_{k}x_{l}\zeta_{1}^{2q}) , G\iota^{*}(x_{1}^{2p+1}x_{k}\zeta_{1}^{2q-1}\zeta_{l}) , G\iota^{*}(x_{1}^{2p\dagger 1}x_{l}\zeta_{1}^{2q-1}\zeta_{k^{\backslash }j},

G\iota^{*}(x_{1}^{2p+2}\zeta_{1}^{2q-2}\zeta_{k}\zeta_{l})|p+q=m\}

Then from the definition of F we have

G\iota^{*}F(x_{1}^{2i}x_{k}, x_{1}^{2j}x_{l})\in U_{i+j}+U_{i+j-1}

Consider the following identities :

\tilde{X}_{E_{0}}(x_{1}^{2p+1}x_{k}x_{l}\zeta_{1}^{2q-1})=(2p+1)x_{1}^{2p}x_{k}x_{l}\zeta_{1}^{2q}+x_{1}^{2p+1}x_{l}\zeta_{1}^{2q-1}\zeta_{k}

+x_{1}^{2p+1}x_{k}\zeta_{1}^{2q-1}\zeta_{l}-(2q-1)x_{1}^{2p+2}x_{k}x_{l}\zeta_{1}^{2q-2},\cdot

\tilde{X}_{E_{0}}(x_{1}^{2p+2}x_{l}\zeta_{1}^{2q-2}\zeta_{k})=(2p+2)x_{1}^{2p\dagger 1}x_{l}\zeta_{1}^{2q-1}\zeta_{k}+x_{1}^{2p\dagger 2}\zeta_{1}^{2q-2}\zeta_{k}\zeta ,
-(2q-2)x_{1}^{2p+\S}x_{l}\zeta_{1}^{2q-3}\zeta_{k}-x_{1}^{2p+2}x_{k}x_{l}\zeta_{1j}^{2q-2}

X_{E_{0}}(x_{1}^{2p+2}x_{k}\zeta_{1}^{2q-2}\zeta_{l})=(2p+2)x_{1}^{2p+1}x_{k}\zeta_{1}^{2q-1}\zeta_{l}+x_{1}^{2p+2}\zeta_{1}^{2q-2}\zeta_{k}\zeta_{l}

-(2q-2)x_{1}^{2p+3}x_{k}\zeta_{1}^{2q-3}\zeta_{l}-x_{1}^{2p+2}x_{k}x_{l}\zeta_{1}^{2q-2} ,
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\tilde{X}_{E_{0}}(x_{1}^{2p+3}\zeta_{1}^{2q-3}\zeta_{k}\zeta_{l})=(2p+3)x_{1}^{2p+2}\zeta_{1}^{2q-2}\zeta_{k}\zeta_{l}-(2q-3)x_{1}^{2p+4}\zeta_{1}^{2q-4}\zeta_{k}\zeta_{l}

-x_{1}^{2p+3}x_{k}\zeta_{1}^{2q-3}\zeta_{l}-x_{1}^{2p+3}x_{l}\zeta_{1}^{2q-3}\zeta_{k} .
These identities imply that G\iota^{*}(x_{1}^{2p}x_{k}x_{l}\zeta_{1}^{2q}) , G\iota^{*}(x_{1}^{2p+1}x_{k}\zeta_{1}^{2q-1}) , G\iota^{*}(x_{1}^{2p+1}x_{l}

\zeta_{1}^{2q-1}\zeta_{k}) , and G\iota^{*}(x_{1}^{2p+2}\zeta_{1}^{2q-2}\zeta_{k}\zeta_{l}) are linear combinations of G\iota^{*}(x_{1}^{2p+2}x_{k}x_{l}\zeta_{1}^{2q-2}) ,
G\iota^{*}(x_{1}^{2p\dagger 3}x_{k}\zeta_{1}^{2q-3}\zeta_{l}) , G\iota^{*}(x_{1}^{2p+3}x_{l}\zeta_{1}^{2q-3}\zeta_{k}) , and G\iota^{*}(x_{1}^{2p+4}\zeta_{1}^{2q-4}\zeta_{k}\zeta_{l}) , provided q\geq 2

By using this fact successively, we have U_{m}\subset G(\mathscr{A}^{2}) . This proves the
lemma.

Hereafter we make the convention that the degree of the polynomial
0 is -\infty . Let f\in R[x]_{oa} with degf=2m+1(m\geq 2) . Consider the following
conditions for f :

(i) The homogeneous part of f of degree 2m+1 is of the form x_{1}^{2m}

(ax_{1}+bx,) , (a, b)\in R^{2}-\{0\} ;
(ii) The homogeneous parts of f of degrees 1 and 3 are zero;
(iii) The degree of f in the variable x_{n+1} is at most 1.

Lemma 4. 4. Let h\in R[x]_{od} with deg h=2m+1(m\geq 2) . Suppose that
G\iota^{*}F(h, h)\in G(\mathscr{F}^{2}) . Then there are A\in O(n+1, R) , h_{1}\in R[x]_{1}, h_{3}\in R[x]_{3},
and f\in R[x]_{od} such that {a) either f=0 or 5\leq\deg f\leq 2m+1 and f satisfifies
the above conditions (i) (ii) (iii), and

(b) A^{*}h\equiv h_{1}+h_{3}+f mod (1- \sum_{i}x_{i}^{2})t

PROOF. We may assume that h\not\equiv 0 mod (1- \sum_{i}x_{i}^{2}) . Then there are
m’(0\leq m’\leq m) and h’\in R[x]_{2m’+1} such that

h\equiv h’ mod (1- \sum_{i}x_{i}^{2})

and h’\not\equiv 0 mod \sum_{i}x_{i}^{2} . If m’\leq 1 , then there is nothing to prove. We now
assume m’\geq 2 . Since

G\iota^{*}F(h’, h’)\in G(\mathscr{F}^{2}) ,

it follows from Proposition 3. 1 that there are constants a_{i}, b_{i}\in R(1\leq i\leq

n+1) such that

h’ \equiv(\sum_{i}a_{i}x_{i})^{2m’}(\sum_{i}b_{i}x_{i}) mod ( \sum_{i}x_{i}^{2})R[x]_{2m’-1} .

Hence there are A\in O(n+1, R) , (a, b)\in R^{2}-\{0\} , and h’\in R[x]_{2m’-1} such that
A^{*}h’\equiv x_{1}^{2m’}(ax_{1}+bx_{2})+h’ mod (1- \sum_{i}x_{i}^{2}) .

It is easy to see that there are homogeneous polynomials h_{2k+1}\in R[x]_{2k+1}

(0\leq k\leq m’-1) such that the degrees of h_{2k+1} in the variable x_{n+1} are at most
1 and
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h’ \equiv\sum_{k=0}^{m’-1}h_{2k+1} mod (1- \sum_{i}x_{i}^{2})

By putting f=x_{1}^{2m’}(ax_{1}+bx_{2})+ \sum_{k=2}^{m’-1}h_{2k+1} , we have the lemma.

In view of this lemma we may restrict our attention to the polynomials
satisfying the above conditions (i) (ii) (iii). Now we fix f\in R[x]_{od} with degf=
2m+1(m\geq 2) which satisfies the above conditions (i) (ii) (iii) and the condition

G\iota^{*}F(f,f)\in G(\mathscr{A}^{2}) .

Let f_{2i+1}(2\leq i\leq m) be the homogeneous part of f of degree 2i+1, .f= \sum_{i=2}^{m}f_{2i+1} ,

and let f_{2m+1}=x_{1}^{2m}(ax_{1}+bx_{2}) , (a, b)\in R^{2}-\{0\} .
For a polynomial h\in C[x, \zeta] we denote by \deg_{1}h (resp. \deg_{2}h) the degree

of h in the variables (x_{1}, \zeta_{1}) (resp. in the variables (x_{2}, \cdots, x_{n+1}, \zeta_{2}, \cdots, \zeta_{n+}J) .
For elements of C[x] we shall also apply this notation by considering C[x]
as a subalgebra of C[x, \zeta] . Put

d_{i}=\deg_{2}f_{2i+1} (2\leq i\leq m)

Let i_{0} be the index such that d_{i}\leq d_{i_{0}} if 2\leq i\leq i_{0} and d_{i}<d_{i_{0}} if i_{0}<i\leq m . In
particular d_{m}=0 or 1, and d_{i_{0}}= \max_{i}d_{i} . Consider f_{2i+1}(2\leq i\leq m) as a poly-

nomial in the variables (X_{2}^{ },\cdots, X_{n+1}) with coefficients in R[x_{1}] , and let h_{2i+1}

be its homogeneous part of degree d_{i} . Then f_{2i+1}=h_{2i+1} if d_{i}\leq 0 , and \deg_{2}

(f_{2i+1}-h_{2i+1})\leq d_{i}-1 if d_{i}\geq 1 .
If d_{i_{0}}\leq 1 , then it is clear that f is of the form (i) in Theorem 4. 1.

Now we assume that d_{i_{0}}\geq 2 . In this case we have i_{0}<m . Let i_{1}(>i_{0}) be
the index such that d_{i}\leq d_{i_{1}} if i_{0}<i\leq i_{1} and d_{i}<d_{i_{1}} if i_{1}<i\leq m . In the rest
of this section we shall prove the following

PROPOSITION 4. 5. Under the assumption d_{i_{0}}\geq 2 , we have m=10 (deg
f=21), i_{0}=2 , i_{1}=6 , d_{i_{0}}=4 , d_{i_{1}}=2 , and d_{i}\leq 0(7\leq i\leq 10) .

We shall prepare some lemmas. For any positive integer N, let V_{N} be
the direct sum of vector spaces Q_{2p,2q} in G(P_{4m+2}) such that N_{2p,2q}=N.

LEMMA 4. 6. Let u\in R[x, \zeta]_{2k,2l}(k\geq l, k+l\leq 2m+1) with \deg_{2}u=d.
Then there is a polynomial v=’ \sum_{j=0}^{+l}v_{2j}\dot{h}(v_{2j}\in R[x, \zeta]_{2j}) such that \deg_{2}v\leq d and

(G\iota^{*}u)_{r_{N}}=G\iota^{*}v .
where (G\iota^{*}u)_{V_{N}} stands for the V_{N}-component of G\iota^{*}u .

PROOF. We shall prove this by induction on the integer 2k+2l=\deg u .
If deg u\leq 0 , then it is obvious. Assume that for each u’\in R[x, \zeta]_{2k’,2t’} with
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k’+l’<k+l and for each N there is a polynomial v’=k^{l}+l’ \sum v_{2j}’(v_{2j}’\in R[x, \zeta]_{2j})

j–0

such that \deg_{2}v’\leq\deg_{2}u’ and (G\iota^{*}u’)_{V_{N}}=G\iota^{*}v’ By the proof of Proposition
2. 7 we can write

u= \sum_{p=0}^{l}u_{p\prime}. u_{p} \in\sum_{q=p}^{l}R[x, \zeta]_{2k+2q,2l-2q}

such that

\Delta G\iota^{*}u_{p}=N_{2k+2p,2l-2p}G\iota^{*}u_{p}+G\iota^{*}w_{p} , w_{p}=- \sum_{i}(\frac{\partial^{2}u_{p}}{\partial x_{i}^{2}}+\frac{\partial^{2}u_{p}}{\partial\zeta_{i}^{2}}) ,

and \deg_{2}u_{p}\leq d. Let G \iota^{*}w_{p}=\sum_{N}(G\iota^{*}w_{p})_{V_{A}}v be the eigenspace decomposition.

As was seen in the proof of Proposition 2. 9, (G\iota^{*}w_{p})_{r_{N}}=0 if N=N_{2k+2p,2l-2p}.\cdot

Therefore if we put N_{p}=N_{2k+2p,2l-2p} , we see that

G \iota^{*}u_{p}+\sum(N_{p}-N)^{-1}(G\iota^{*}w_{p})_{r_{N}}N\neq N_{p}

is an eigenfunction corresponding to the eigenvalue N_{p} , and we have the

decomposition of G\iota^{*}u_{p} into eigenfunctions;

G \iota^{*}u_{p}=(G\iota^{*}u_{p}+\sum_{N\neq N_{p}}(N_{p}-N)^{-1}(G\iota^{*}w_{p})_{V_{N}})-\sum_{N\neq N_{p}}(N_{p}-N)^{-1}(G\iota^{*}w_{p})_{V_{N}} .

Since \deg_{2}w_{p}\leq d, the assumption implies that for each N there is a poly-

nomial v= \sum_{j=0}^{k+l}v_{2j} such that \deg_{2}v\leq d and (G\iota^{*}u_{p})_{V_{N}}=G\iota^{*}v . This proves

the lemma.
Fix an index (2p, 2q) such that q\leq p and p+q\leq 2m+1 . Let V(resp. V’)

be the direct sum of vector spaces Q_{2p’,2q’} in G(P_{4m+2}) such that N_{2p’.2q’}=

N_{2p,2q} (resp. N_{2p’,2q’}=N_{2p,2q} and p’+q’\geq p+q).

COROLLARY 4. 7. Let u_{1}\in R[x]_{2k+1} and u_{2}\in R[x]_{2l+1}(k, l\leq m) with
\deg_{2}u_{1}+\deg_{2}u_{2}=d. Then there are polynomials v= \sum_{j=0}^{k+l+1}v_{2j}(v_{2j}\in R[x, \zeta]_{2f})

and w\in R[x, \zeta]_{2p+2q-2} such that \deg_{2}v\leq d and

(G\iota^{*}F(u_{1}, u_{2}))_{V}=G\iota^{*}v+G\iota^{*}w .

PROOF. By the definition of V and V’ we have

(G\iota^{*}F(u_{1}, u_{2}))_{V}-(G\iota^{*}F(u_{1}, u_{2}))_{V}\in G(P_{2p+2q-2}) .

Moreover we see from the definition of F that \deg_{2}F(u_{1}, u_{2})\leq d. Hence the
corollary follows from Lemma 4. 6.

LEMMA 4. 8. Let w\in R[x, \zeta]_{2k}(k\geq 2) . Suppose that w belongs to the
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ideal ( \sum_{i}x_{i}^{2}, \sum_{i}\zeta_{i}^{2}, \sum_{i}x_{i}\zeta_{i}) in R[x, \zeta] . Then there are polynomials w_{i}\in

R[x, \zeta]_{2k-2}(i=1,2,3) with \deg_{2}w_{i}\leq\deg_{2}w-2 such that

w= \sum_{i}(x_{i}^{2}+\zeta_{i}^{2})w_{1}+\sum_{i}(x_{i}^{2}-\zeta_{i}^{2})w_{2}+\sum_{i}x_{i}\zeta_{i}w_{3}

PROOF. We first put

w= \sum_{i}(x_{i}^{2}+\zeta_{i}^{2})w_{1}+\sum_{i}(x_{i}^{2}+\zeta_{i}^{2})w_{2}+\sum_{i}x_{i}\zeta_{i}w_{3}

for some w_{i}\in R[x, \zeta]_{2k-2}(i=1,2,3) . Let w_{i}= \sum_{j=0}^{2k-2}w_{i,j}(i=1,2,3) be the

decomposition of w_{i} into its homogeneous parts in the variables (x_{2}, \cdots , x_{n+1} ,
\zeta_{2}, \cdots , \zeta_{n+1}) , \deg_{2}w_{i,j}=j if w_{i,j}\neq 0 . Assume that \deg_{2}w=d<2k, and that
there is d_{1} with d-2<d_{1}\leq 2k-2 such that w_{i,j}=0 for all j>d_{1} and i. By
comparing the homogeneous parts of degree d_{1}+2 in the variables (x_{2}, \cdots ,

x_{n+1}, \zeta_{2}, \cdots , \zeta_{n+1}) , we have

0= \sum_{i\geq 2}(x_{i}^{2}+\zeta_{i}^{2})w_{1,a_{1}}+\sum_{\sim},(x_{i}^{2}-\zeta_{i}^{2})w_{2,d_{1}}+\sum_{ii\geq\geq 2}x_{i}\zeta_{i}w_{3,d_{1}}

Since the ideal ( \sum_{i\geq 2}(x_{i}^{2}-\zeta_{i}^{2}),\sum_{i\geq 2}x_{i}\zeta_{i}) is prime (cf. the proof of Lemma 3. 6),

we can find polynomials v_{i}\in R[x, \zeta]_{2k-4}(i=1,2,3) such that they are hom0-
geneous of degree d_{1}-2 in the variables (x_{2}, \cdots, x_{n+1}, \zeta_{2}, \cdots, \zeta_{n+1}) and

w_{1,a_{1}}= \sum_{i\geq 1}(x_{i}^{2}-\zeta_{i}^{2})v_{2}+\sum_{i\geq 2}x_{i}\zeta_{i}v_{3} ,

w_{2,a_{1}}=- \sum_{i\geq 2}(x_{i}^{2}+\zeta_{i}^{2})v_{2}+\sum_{i\geq 2}x_{i}\zeta_{i}v_{1} ,

w_{3,a_{1}}=- \sum_{i\geq 2}(x_{i}^{2}+\zeta_{i}^{2})v_{3}-\sum_{i\geq 2}(x_{i}^{2}-\zeta_{i}^{2})v_{1}

Define w_{i}’\in R[x, \zeta]_{2k-2}(i=1,2,3) by the conditions ;

w_{i}’= \sum_{j=0}^{2k-2}w_{i,j}’ , w_{i,j}’=w_{i,f}(j\neq d_{1}, d_{1}-2) , w_{i,a_{1}}’=0
,
\cdot

w_{1,a_{1}-2}’=w_{1,d_{1}-2}-(x_{1}^{2}-\zeta_{1}^{2})v_{2}-x_{1}\zeta_{1}v_{3} ,

w_{2,d_{1}-2}’=w_{2,d_{1}-2}-x_{1}\zeta_{1}v_{1}+(x_{1}^{2}+\zeta_{1}^{2})v_{2} ,
w_{3,d_{1}-2}’=w_{\epsilon,a_{1}-2}+(x_{1}^{2}-\zeta_{1}^{2})v_{1}+(x_{1}^{2}+\zeta_{1}^{2})v_{31}

Then we have

w= \sum_{i}(x_{i}^{2}+\zeta_{i}^{2})w_{i}’+\sum_{i}(x_{i}^{2}-\zeta_{i}^{2})w_{2}’+\sum_{i}x_{i}\zeta_{i}w_{3}’

and \deg_{2}w_{t}’\leq d_{1}-1(i=1,2,3) . Therefore the lemma can be proved by
induction on the integer d_{1} .

COROLLARY 4. 9. Let w\in R[x, \zeta]_{2k}-\{0\}(k\geq 2) be also homogeneous in
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the variables (x_{2}, \cdots, x_{n+1}, \zeta_{2}, \cdots, \zeta_{n+1}) . Suppose that there are polynomials
v_{2i}\in R[x, \zeta]_{2i}(0\leq i\leq l, k\leq l) and w’\in R[x, \zeta]_{2k-2} such that \deg_{2}v_{2i}<\deg_{2}w

(k\leq i\leq l) and

\iota^{*}w=\iota^{*}\sum_{i=0}^{l}v_{2i}+\iota^{*}w’

Then w belongs to the ideal ( \sum_{i\geq 2}x_{i}^{2},\sum_{i\geq 2}\zeta_{i}^{2},\sum_{i\geq 2}x_{i}\zeta_{i}) .

PROOF. We can easily deduce from Lemma 3. 6 that there are poly-
nomials u_{i}\in R[x, \zeta] with deg u_{i}\leq 2l-2(i=1,2,3) such that

w- \sum_{i=0}^{l}v_{2i}-w’=(\sum_{i}(x_{i}^{2}+\zeta_{i}^{2})-2)u_{1}+\sum_{i}(x_{i}^{2}-\zeta_{i}^{2})u_{2}+\sum_{i}x_{i}\zeta_{i}u_{3}

Put

u_{i}= \sum_{j=0}^{l-1}u_{i,2j} , u_{i,2f}\in R[x, \zeta]_{2j}(i=1,2,3)(

Assume that k<l, and there is j_{0} (k – 1<j_{0}\leq l-1) such that

\deg_{2}u_{i,2j}<\deg_{2}w-2

for all j>j_{0} and i. Take the homogeneous parts of degree 2j_{0}+2 in the
above formula ;

-v_{2j_{0}+2}+2u_{1,2j_{0}+2}= \sum_{i}(x_{i}^{2}+\zeta_{i}^{2})u_{1,2f_{0}}+\sum_{i}(x_{i}^{2}-\zeta_{i}^{2})u_{2,2j_{0}}

+ \sum_{i}x_{i}\zeta_{i}u_{3,2j_{0}}

Since \deg_{2} (-v_{2j_{0}+2}+2u_{1,2j_{0}+2})<\deg_{2}w, we see by Lemma 4. 8 that there are
polynomials u_{i,2j_{0}}’\in R[x, \zeta]_{2j_{0}}(i=1,2,3) such that \deg_{2}u_{i,2j_{0}}’<\deg_{2}w-2 and

-v_{2j_{0}+2}+2u_{1,2j_{0}+2}= \sum_{i}(x_{i}^{2}+\zeta_{i}^{2})u_{1,2j_{0}}’+\sum_{i}(x_{i}^{2}-\zeta_{i}^{2})u_{2,2j_{0}}’

+ \sum_{i}x_{i}\zeta_{i}u_{3,2j_{0}}’

Since

\sum_{i}(x_{i}^{2}+\zeta_{i}^{2})(u_{1,2j_{0}}’-u_{1,2j_{0}})+\sum_{i}(x_{i}^{2}-\zeta_{i}^{2})(u_{2.2j_{0}}’-u_{2,2f_{0}})

+ \sum_{i}x_{i}\zeta_{i}(u_{3,2j_{0}}’-u_{3,2j_{0}})=0’.

there are polynomials \alpha_{i}\in R[x, \zeta]_{2j_{0}-2}(i=1,2,3) such that

u_{1,2j_{0}}’=u_{1,2j_{0}}+ \sum_{\dot{l}}(x_{i}^{2}-\zeta_{i}^{2})\alpha_{2}+\sum_{i}x_{i}\zeta_{i}\alpha_{3} ,

u_{2.2j_{0}}’=u_{2,2j_{0}}- \sum_{i}(x_{i}^{2}+\zeta_{i}^{2})\alpha_{2}+\sum_{i}x_{i}\zeta_{i}\alpha_{1} ,
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u_{3,2j_{0}}’=u_{3,2j_{0}}- \sum_{i}(x_{i}^{2}+\zeta_{i^{2}})\alpha_{3}-\sum_{i}(x_{i}^{2}-\zeta_{i}^{2})\alpha_{1}

Set u_{1,2f_{0}-2}’=u_{1,2j_{0}-2}, u_{2,2j_{0}-2}’=u_{12,2j_{0}-2}+2\alpha_{2}, u_{3,2j_{0}-2}’=u_{3,2j_{0}-2}+2\alpha_{3} , and u_{i,2j}’=u_{i,2j}

if j\neq j_{0}, j_{0}-1(i=1,2,3) . Then setting u_{i}’= \sum_{j=0}^{l-1}u_{i,2j}’ we have

w- \sum_{j=0}^{l}v_{2f}-w’=(\sum_{i}(x_{i}^{2}+\zeta_{\iota^{2}})-2)u_{1}’+\sum_{i}(x_{i}^{2}-\zeta_{i}^{2})u_{2}’+\sum_{i}x_{i}\zeta_{i}u_{3:}’

and \deg_{2}u_{i,2f}’<\deg_{2}w-2 for all j\geq j_{0} and i. Thus by induction on j_{0} we see

that there are polynomials u_{t}’= \sum_{j=0}^{l-1}u_{i,2f}’, u_{i,2j}’\in R[x, \zeta]_{2j}(i=1,2,3) such that

w- \sum_{j=0}^{l}v_{2f}-w’=(\sum_{i}(x_{i}^{2}+\zeta_{j}^{2})-2)u_{i}’+\sum_{i}(x_{i}^{2}-\zeta_{i}^{2})u_{2}’+\sum_{i}x_{i}\zeta_{i}u_{3}’

and
\deg_{2}u_{i,2f}’<\deg_{2}w-2

for all j\geq k and i.
In case k=l we put u_{i}’=u_{i}(i=1,2,3) . Consider the homogeneous parts

of degree 2k ;

w-v_{2k}+2u_{1.2k}’= \sum_{i}(x_{i}^{2}+\zeta_{i}^{2})u_{1,2k-2}’+\sum_{i}(x_{i}^{2}-\zeta_{i}^{2})u_{2.2k-2}’

+ \sum_{i}x_{i}\zeta_{i}u_{3,2k-2}’

( u_{1,2k}’=0 if k=l). Since \deg_{2}(w-v_{2k}+2u_{1,2k}’)\leq\deg_{2}w , we may assume that
\deg_{2}u_{i,2k-2}’\leq\deg_{2}w-2(i=1,2,3) by Lemma 4. 8. Then, by taking the hom0-
geneous parts of degree \deg_{2}w in the variables (x_{2}, \cdots, x_{n+1}, \zeta_{2}, \cdots, \zeta_{n+1}) in
the above formula, we have

w \in(\sum_{i\geq 2}(x_{l}^{2}+\zeta_{i}^{2}),\sum_{i\geq 2}(x_{i}^{2}-\zeta_{t}^{2}),\sum_{i\geq 2}x_{i}\zeta_{i})

Let V and V’ be as before Corollary 4. 7. We remark that V’ is also
defined as the direct sum of vector spaces Q_{2p’,2q’} in G(P_{4m+2}) such that
N_{2p’,2q’}=N_{2p,2q} and q’\geq q. This can be easily seen from the fact that karrow

N_{2k,2l} , larrow N_{2k,2l} , and larrow N_{2k+2l2k-2l} are monotonously increasing.

COROLLARY 4. 10. Take u_{1}\in R[x]_{2k+1} and u_{2}\in R[x]_{2l+1} such that l\leq k\leq

m, q\leq l, and k+l+1=p+q. Suppose that u_{1} and \prime u_{2} are also homogeneous
in the variables (x_{2}, \cdots, x_{n+1}) and \deg_{2}u_{1}+\deg_{2}u_{2}=d. Furthermore suppose
that there are polynomials v_{i}, w_{i}\in R[x]_{od}(i=1, \cdots, r) such that deg v_{i}\leq

2m+1, deg w_{i}\leq 2m+1 , \deg_{2}v_{i}+\deg_{2}w_{i}<d(i=1, \cdots, r) , and

(G\iota^{*}F(u_{1}, u_{2}))_{V}, = \sum_{i=1}^{r}(G\iota^{*}F(v_{i}, w_{i}))_{V},
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Then the polynomial

\sum_{j=l-q}^{l}a_{j-(l-q)}^{k-\iota+2+2(\iota-q)}GF_{j}(u_{1}, u_{2})

belongs to the ideal ( \sum_{i\geq 2}x_{i}^{2}, \sum_{i\geq 2}\zeta_{i}^{2},\sum_{i\geq 2}x_{i}\zeta_{i})

PROOF. Since deg GF(u_{1}, u_{2})\leq 2p+2q, and since V\cap G(P_{2p+2q})=Q_{2p,2q},

it follows that

(G\iota^{*}F(u_{1}, u_{2}))_{V}, =(_{\backslash }Gt^{*}F(u_{1}, uj))_{Q_{zp,q}}2

As we have seen in the proof of Lemma 3. 5,

(G\iota^{*}F(u_{1}, u_{2}))_{Q_{2}}p,2q

=-(2k+3)d_{l-q(G\iota^{*}\sum_{j=l-q}^{l}a_{j-(l-q)}^{k-l+2+2(\iota-q)}F_{j}(u_{1},u_{2}))_{G(Q_{zp+2})}}^{k,l}q

Hence there is \alpha_{1}\in R[x, \zeta]_{2p+2q-2} such that

(G\iota^{*}F(u_{1}, u_{2}))_{V’}

= \iota^{*}\{-(2k+3)d_{l-q}^{k,l}\sum_{j=l-q}^{l}a_{j-(l-q)}^{k-l+2+2(t-q)}GF_{j}(u_{1}, ui)+\alpha_{1}\}

On the other hand, it follows from Corollary 4. 7 that there are polynomials
\beta\in R[x, \zeta] and \alpha_{2}\in R[x, \zeta]_{2p+2q-2} such that deg \beta\leq 4m+2 , \deg_{2}\beta<d, and

\sum_{i=1}^{r}(’G\iota^{*}F(v_{i}, w_{i}))_{V’}=\iota^{*}(\beta+\alpha_{2}) .

Therefore the corollary follows from Corollary 4. 9.

Let \nu=(\nu_{2}, \cdots, \nu_{n+1})\in C^{n}-\{0\} satisfy \sum_{i=2}^{n+1}\nu_{i}^{2}=0 . Define a homomorphism

C[x, \zeta]- C[x_{1}, x_{2}, \zeta_{1}, \zeta_{2}](uarrow u^{\nu}) by

u^{\nu}(x_{1}, x_{2}, \zeta_{1}, \zeta_{2})=u(_{X_{1}},\cdots, \nu_{n+1}x_{2}, \zeta_{1}, \nu_{2}\zeta_{2}, \cdots, \nu_{n+1}\zeta_{2}) .

The following formulas are easily verified:

\sum_{i=1}^{2}x_{i}\frac{\partial u^{\nu}}{\partial\zeta_{i}}=(\sum_{i=1}^{n+1}x_{i}\frac{\partial u}{\partial\zeta_{i}})^{\nu} , F_{j}(u_{1}^{\nu}, u_{2}^{\nu})=F_{j}(u_{1}, u_{2})^{\nu} ,

G(u^{\nu})=(Gu)^{\nu}j u\in C[x, \zeta] . u_{1} , u_{2}\in C[x] .

LEMMA 4. 11. Under the same assumptions and terminologies as in
Corollary 4. 10, we have

(G\iota^{*}F_{l-q}(u_{1}^{\nu}, u_{2}^{\nu}))_{Q_{2}2}p,q=0t
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PROOF. Since the ideal ( \sum_{i\geq 2}x_{i}^{2},\sum_{i\geq 2}\zeta_{i}^{2},\sum_{i\geq 2}x_{i}\zeta_{i}) im C[x, \zeta] is contained in
the kernel of the homomorphism

C[x, \zeta]arrow C[x_{1}, x_{2}, \zeta_{1}, \zeta_{2}] (uarrow u^{\nu}) ,

we have

\sum_{j=l-q}^{l}a_{j-(l-q)}^{k-l+2+2(\iota-q)}GF_{f}(u_{1}^{\nu}, u_{2}^{\nu})=0

by Corollary 4. 10. Since

(G\iota^{*}F_{l-q}(u_{1}^{\nu}, u_{2}^{\nu}))_{Q_{2}}p,2q

=(G \iota^{*}\sum_{f=l-q}^{l}a_{j-(l-q)}^{k-l+2+2(l-q)}F_{j}(u_{1}\nu,\nu u_{2}))_{G(Q_{2})}p+zq ,

the lemma follows.

PROOF of Proposition 4. 5. Let V_{1} (resp. V_{1}’) be the direct sum of vector
spaces Q_{2p,2q}\cap G(P_{4m+2}) such that N_{2p,2q}=N_{4i_{0}-2,4} (resp. N_{2p,2q}=N_{4i_{0}-2,4} and q\geq 2).
Since V_{1}’ is orthogonal to G(P^{2}) and G(P_{4i_{0}}) , we have

0=(G\iota^{*}F(f,f))_{r_{\acute{1}}}

=(G\iota^{*}F(h_{2i_{0}+1}, h_{2i_{0}+1}))_{r_{1}},+2(G\iota^{*}F(h_{2i_{0}+1},f_{2i_{0}+1}-h_{2i_{0}+1}))_{r_{1}},

+(G\iota^{*}F(f_{2i_{0}+1}-h_{2i_{0}+1},f_{2i_{0}+1}-h_{2i_{0}+1}))_{V_{\acute{1}}}

+ \sum(G\iota^{*}F(f_{2i+1},f_{2f+1}))_{V_{\acute{1}}} .

where the sum in the last term is taken over all 2-tuples of integers (i.j\vee)

such that 2\leq i, j\leq m, i+j\geq 2i_{0}, (i,j)\neq(i_{0}, \iota_{0}^{-}) . For such (i,j) we have \deg_{2}f_{2i+1}

+\deg_{2}f_{2f+1}<2d_{i_{0}} by the definition of i_{0} . Hence it follows from Lemma 4. 11
that

(G\iota^{*}F_{i_{0}-2}(h_{2i_{0}+1}^{\nu}, h_{2i_{0}+}^{\nu}J)_{Q_{4i_{0}-2,4}}=0\tau

Since h_{2i_{0}+1}\neq 0 and the degree of h_{2i_{0}+1} in the variable x_{n+1} is at most 1, it
follows that h_{2i_{0}+1} does not belong to the ideal ( \sum_{i\geq 2}x_{i}^{2}) in C[x] . This ideal

being prime, we \dot{c}a\dot{n} choose \nu=(\nu_{2^{ }},\cdots, \nu_{n+1})\in C^{n}-\{0\} with \sum_{i\geq 2}\nu_{i}^{2}=0 such that
h_{2i_{0}+1}^{\nu}\neq 0 . Then by Proposition 3. 8 (ii)

.:.
\cdot

: -.-
h_{2i_{0}+1}^{\nu}=(\alpha_{L}x_{1}+\alpha_{2}x_{2})^{u_{0}}(\beta_{1}x_{1}+\beta_{2}x_{2})..

for some \alpha_{1} , \alpha_{2} . \beta_{1} . \beta_{2}\in C. On the other hand, h_{2i_{0}+1}^{\nu} must be of the form
cx_{1}^{2i_{0}+1-a_{i_{0}X_{2}}a_{i_{0}}} , c\in C-\{0\}
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by the definition of h_{2i_{0}+1} . Since i_{0}\geq 2 and d_{i_{0}}\geq 2 , we can conclude that

d_{i_{0}}=2i_{0} or 2i_{0}+1

Let V_{2} (resp. V_{2}’) be the direct sum of vector spaces Q_{2p,2q} in G(P_{4rn+2})

such that N_{2p,2q}=N_{2i_{0}+2i_{1}-2,4} (resp. N_{2p,2q}=N_{2i_{0}+2i_{1}-2,4} and q\geq 2). Then we have

0=(G\iota^{*}F(f,f))_{V_{\acute{2}}}

=2(G\iota^{*}F(h_{2i_{1}+1}, h_{2i_{0}+}J)_{r_{\acute{2}}}+2(G\iota^{*}F(h_{2i_{1}+1},f_{2i_{0}+1}-h_{2i_{0}+}J)_{r_{\acute{2}}}

+2(G\iota^{*}F(f_{2i_{1}+1}-h_{2i_{1}+1}, h_{2i_{0}+}J)_{V_{\acute{2}}}+2(G\iota^{*}F(f_{2i_{1}+1}-h_{2i_{1}+1},f_{2i_{0}+1}-h_{2i_{0}+}J)_{r_{\acute{2}}}

+ \sum(G\iota^{*}F(f_{2i+1}, f_{2j+1}))_{V_{\acute{2}}} .

where the sum in the last term is taken over all 2-tuples of integers (i,j) ,such

that 2\leq i, j\leq m, i_{0}+i_{1}\leq i+j, \{i,j\}\neq\{i_{0}, i_{1}\} . For such (i,j) we easily see that

\deg_{2}f_{2i+1}+\deg_{2}f_{2f+1}<d_{i_{0}}+d_{i_{1}}t

Hence it follows from Lemma 4. 11 that

(G\iota^{*}F_{i_{0}-2}(h_{2i_{1}+1}^{\nu}, h_{2i_{0}+}^{\nu}J)_{Q_{2i_{0}+2i_{1}-2,4}}=0

for each \nu=(\nu_{2}, \cdots , \nu_{n+}J\in C^{n+1}-\{0\} with \sum_{i\geq 2}\nu_{i}^{2}=0 . We can choose \nu such

that h_{2i_{0}+1}^{\nu} and h_{2i_{1}+1}^{\nu} do not vanish. We shall consider the two cases sepa-
rately; I) d_{i_{0}}=2i_{0}+1 , II) d_{i_{0}}=2i_{0} .

I. d_{i_{0}}=2i_{0}+1 . In this case, h_{2i_{0}+1}^{\nu}=c_{0}x_{2}^{2i_{0}\dagger 1} and h_{2i_{1}+1}^{\nu}=c_{1}x_{1}^{2i_{1}+1-a_{i_{1}}}x_{2}^{a_{i_{1}}}

(c_{0}, c_{1}\in C-\{0\}) . Then we have

0=(G\iota^{*}F_{i_{0}-2}(x_{1}^{2i_{1}\dagger 1-d_{i_{1}X_{2}}d_{i_{1}X_{2}^{2i_{0}+1}))_{Q_{2i_{0}+2i_{1}-2,4}}}},

=^{\frac{(2i_{0}+1)!}{4!}(G\iota^{*}(x_{1}^{2i_{1}+1-a_{i_{1}x_{2}^{2i_{0}-3+a_{i_{1}}}\zeta_{2}^{4}))_{Q_{2i_{0}+2i_{1}-2,4}}}}}

In view of Lemma 3. 9 the last term does not vanish if 2i_{1}+1-d_{i_{1}}\geq 4 .
Thus we have d_{i_{1}}\geq 2i_{1}-2 . On the other hand, the definition of d_{i_{1}} implies
that d_{i_{1}}\leq d_{i_{0}}-1=2i_{0}\leq 2i_{1}-2 . Therefore it follows that

d_{i_{1}}=2i_{1}-2 . i_{1}=i_{0}+1

Since d_{i_{1}}\geq 4 in this case, it follows that i_{1}\neq m . Let i_{2}(i_{1}<i_{2}\leq m) be the
index such that d_{i}\leq d_{i_{2}} if i_{1}<i\leq i_{2} and d_{i}<d_{i_{2}} if \dot{r}_{2}<i\leq m . Then there.\backslash are
three cases; 1-1) d_{i_{2}}\leq d_{i_{1}}-2 , 1-2) d_{i_{2}}=d_{i_{1}}-1 , i_{2}\geq i_{1}+2 , 1-3) d_{t_{2}}=d_{i_{1}}-1;
i_{2}=i_{1}+1 .

1-1. d_{i_{l}}\leq d_{i_{1}}-2 . Let V_{3} (resp. V_{3}’) be the direct sum of vector sapces
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Q_{2p,2q} in G(P_{4m+2}) such that N_{2p,2q}=N_{4i_{1}-2,4} (resp. N_{2p,2q}=N_{4i_{1}-2,4} and q\geq 2).
Then we have

0=(G\iota^{*}F(f,f))_{V_{\acute{3}}}

=(G\iota^{*}F(h_{2i_{1}+1}, h_{2i_{1}+}J)_{r_{\acute{3}}}+2(.G\iota^{*}F(f_{2i_{1}+1}-h_{2i_{1}+1}, h_{2i_{1}+1}))_{V_{\acute{3}}}

+(G \iota^{*}F(f_{2i_{1}+1}-h_{2i_{1}+1}, f_{2i_{1}+1}-h_{2i_{1}+}J)_{v_{\acute{3}}}+\sum(G\iota^{*}F(f_{2i+1}, f_{2j+1}))_{r_{\acute{3}}\prime}.

where the sum in the last term is taken over all 2-tuples of integers (i,j)
such that 2\leq i, j\leq m , i+j\geq 2i_{1} , (i,j)\neq(i_{1}, iJ . If (i,j) (i\geq j) satisfies these
conditions, then i>i_{1} , and hence

\deg_{2}f_{2i+1}\leq d_{i_{2}}\leq d_{i_{1}}-21

Thus it follows that

\deg_{2}f_{2i+1}+\deg_{2}f_{2j+1}\leq d_{i_{1}}-2+d_{i_{0}}=2d_{i_{1}}-1

Then we have by Lemma 4. 11

(G\iota^{*}F_{i_{1}-2}(h_{2i_{1}+1}^{\nu}, h_{2i_{1}+1}^{\nu}))_{Q_{4i_{1}-2,4}}=0 .

We can choose \nu such that h_{2i+1}^{\nu}‘\neq 0 . Since 2i_{1}-2\geq 4 and
h_{2i_{1}+1}^{\nu}=cx_{1}^{2i_{1}+1-d_{i_{1}X_{2}}d_{i_{1}=cx_{1}^{3}x_{2}^{2i_{1}-2}}} (c\in C-\{0\}\rangle .

the above formula contradicts Proposition 3. 8 (ii).
1-2. d_{i_{2}}=d_{i_{1}}-1 , i_{2}\geq i_{1}+2 . Let V_{4} (resp. V_{4}’) be the direct sum of Q_{2p,2q}

in G(P_{4m+2}) such that N_{2p,2q}=N_{2i_{0}+2i_{2}-2,4} (resp. N_{2p,2q}=N_{2i_{0}+2i_{2}-2,4} and q\geq 2).
Then we have

0=(G\iota^{*}F(f,f))_{r_{\acute{4}}}

=2(G\iota^{*}F(h_{2i_{2}+1}, h_{2i_{0}+1}))_{r_{4}},+2(G\iota^{*}F(f_{2i_{2}+1}-h_{2i_{I}+1}, h_{2i_{0}+1}))_{r_{4}},

+2(G\iota^{*}F(h_{2i_{2}+1}, f_{2i_{0}+1}-h_{2i_{0}+1}))_{r_{\acute{4}}}

+2(G\iota^{*}F(f_{2i_{2}+1}-h_{2i_{2}+1}, f_{2i_{0}+1}-h_{2i_{0}+}J)_{r_{\acute{4}}}

+ \sum(G\iota^{*}F(f_{2i+1}, f_{2f+}J)_{r_{\acute{4}}\prime}.

where the sum in the last term is taken over all 2\cdot tuples of integers (i,j)
such that 2\leq i, j\leq m, i+j\geq i_{0}+i_{2} , \{i,j\}\neq\{i_{0}, i_{2}\} . Let (i,j) be such 2-tuple
and assume that i\geq j. Since i_{2}\geq i_{1}+2 , it follows that i>i_{1} . Hence we have
either i_{1}<i\leq i_{2} and i_{0}<j or i_{2}<i. In any case we have
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\deg_{2}f_{2i+1}+\deg_{2}f_{2j+1}\leq d_{i_{0}}+d_{i_{2}}-1

Thus by applying Lemma 4. 11 we have

(G\iota^{*}F_{i_{0}-2}(h_{2i_{2}+1\prime}^{\nu}h_{2i_{0}+}^{\nu}J)_{Q_{2i_{0}+2i_{2}-2,4}}=0 .

We can choose \nu such that h_{2i_{0}+1}^{\nu}\neq 0 and h_{2i_{2}+1}^{\nu}\neq 0 . Since h_{2i_{0}+1}^{\nu}=c_{0}x_{2}^{2l_{0}+1}

and h_{2i_{2}+1}^{\nu}=c_{2}x_{1}^{2i_{2}+1-d_{i_{2}}}x_{2}^{d_{i_{2}}}(c_{0}, c_{2}\in C-\{0\}) , it follows that

(G\iota^{*}(x_{1}^{2i_{2}+1-a_{i_{2}}}x_{2}^{2i_{0}-\S+a_{i_{2}}}\zeta_{2}^{4}))_{Q_{2i_{0}+2i_{2}-2,4}}=0

But, since 2i_{2}+1-d_{i_{2}}\geq 2i_{1}+5-(d_{i_{1}}-1)=8 , this contradicts Lemma 3. 9.
1-3. d_{i_{2}}=d_{i_{1}}-1 , i_{2}=i_{1}+1 . Let V_{3} and V_{3}’ be as before. In this case

we have

0=(G\iota^{*}F(f,f))_{V_{\acute{3}}}

=(G\iota^{*}F(h_{i_{1}+1}, h_{2i_{1}+1}))_{V_{\acute{3}}}+2(G\iota^{*}F(h_{2i_{2}+1}, h_{2i_{0}+1}))_{V_{\acute{3}}}

+2(G\iota^{*}F(f_{2i_{1}+1}-h_{2i_{1}+1}, h_{2i_{1}+1}))_{V_{\acute{3}}}+(G\iota^{*}\prime F(f_{2i_{1}+1}-h_{2i_{1}+1}, f_{2i_{1}+1}-h_{2i_{1}+1}))_{V_{3}’}

+2(G\iota^{*}F(f_{2i_{2}+1}-h_{2i_{2}+1}, h_{2i_{0}+}J)_{r_{\acute{3}}}+2(G\iota^{*}F(h_{2i_{2}+1}, f_{2i_{0}+1}-h_{2i_{0}+}J)_{V_{\acute{3}}}

+2(G \iota^{*}F(f_{2i_{2}+1}-h_{2i_{2}+1}, f_{2i_{0}+1}-h_{2i_{0}+}J)_{V_{\acute{3}}}+\sum(G\iota^{*}F(f_{2i+1}, f_{2f+}J)_{r_{\acute{3}}} ,

where the sum in the last term is taken over all 2-tuples of integers (i,j)

such that 2\leq i, j\leq m, i+j\geq 2i_{1} , (i,j)\neq ( i_{1}, iJ , (i_{0}, i_{2}) , (i_{2}, i_{0}) . For such \{i.j)

we have
\deg_{2}f_{2i+1}+\deg_{2}f_{2f+1}\leq 2d_{i_{1}}-1

Since

(G\iota^{*}F(h_{2i_{1}+1}, h_{i_{1}+}J)_{r_{\acute{3}}}

=-(2i_{1}+3)d_{i_{1}-2}^{i_{1},i_{1}}(G\iota^{*}F_{i_{1}-2}(h_{2\dot{t}_{1}+1}, h_{2i_{1}+}J_{)_{Q_{4i_{1}-2,4}}}^{\backslash } ,

(G\iota^{*}F(h_{2i_{2}+1}, h_{2i_{0}+}J)_{r_{\acute{3}}}

=-(2i_{2}+3)d_{i_{0}-2}^{i_{2},i_{0}}(G\iota^{*}F_{i_{0}-2}(h_{2i_{3}+1}, h_{2i_{0}+}J)_{Q_{4i_{1}-2,4}} ,

it is easily seen from the proof of Lemma 4. 11 that

(2i_{1}+3)d_{i_{1}-2}^{i_{1}i_{1}(G\iota^{*}F_{i_{1}-2}(h_{2i_{1}+1}^{\nu}, h_{2i_{1}+1}^{\nu}))_{Q_{4i_{1}-2,4}}},\cdot

+2(2i_{2}+3)d_{i_{0}-2}^{i_{2},i_{0}}(G\iota^{*}F_{i_{0}-2}(h_{2i_{2}+1}^{\nu}, h_{2i_{0}+1}^{\nu}))_{Q_{4i_{1}-2,4}}=0 .
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Fix \nu=(\nu_{2}, \cdots, \nu_{n+1})\in C^{n}-\{0\} with \sum_{i\geq 2}\nu_{i}^{2}=0 such that h_{2i_{0}+1}^{\nu} , h_{-i_{1}+1}^{\nu}, , h_{2i_{2}+1}^{\nu} do
not vanish. Then

h_{2i_{0}+1}^{\nu}=c_{0}x_{2\prime t}^{2i_{0}+1} h_{2i_{1}+1}^{\nu}=c_{1}x_{1}^{3}x_{2}^{2i_{1}-2} ,

h_{\underline{v}_{i_{l}+1}}^{\nu}=c_{2}x_{1}^{6}x_{2}^{2i_{I}-5} (c_{0}, c_{1}, c_{2}\in C-\{0\})

We have

(G \iota^{*}F_{i_{0}-2}(h_{2i_{2}+1}^{\nu}, h_{2i_{0}+1}^{\nu}))_{Q_{4i_{1}-2,4}}=\frac{(2i_{0}+1)!}{4!}c_{0}c_{2}(G\iota^{*}(x_{1}^{6}x_{2}^{4i_{1}-8}\zeta_{2}^{4}))_{Q_{4i_{1}-2,4}} ,

(G\iota^{*}F_{i_{1}-2}(h_{2i_{1}-1}^{\nu}, h_{2i_{1}+1}^{\nu}))_{Q_{4i_{1}-2,4}}=A_{3,3}^{i_{1}}c_{1}^{2}(G\iota^{*}(x_{1}^{6}x_{2}^{4i_{1}-8}\zeta_{2}^{4}))_{Q_{4t_{1}-2,4}}

by the proof of Proposition 3. 8, where A_{3^{1}3}^{i},= \frac{(2i_{1}-1)!}{5!}(2i_{1}-2)(2i_{1}-3) . Since
(G\iota^{*}(x_{1}^{6}x_{2}^{4i_{1}-8}\zeta_{2}^{4}))_{Q_{4i_{1}-2,4}}\neq 0 by Lemma 3. 9, it follows that

\frac{1}{5}(2i_{1}+3)(2i_{1}-2)(2i_{1}-3)d_{i_{1}-2}^{i_{1},i_{1}}c_{1}^{2}+2(2i_{2}+3)d_{i_{0}-2}^{i_{2},i_{0}}c_{0}c_{2}=0 .
In particular we have c_{0}c_{2}c_{1}^{-2}<0 .

Let V_{5} (resp. V_{5}’) be the direct sum of vector spaces Q_{2p,2q} in G(P_{4m+2})

such that N_{2p,2q}=N_{4i_{1}-4,6} (resp. N_{2p,2q}=N_{4i_{1}-4,6} and q\geq 3). Since V_{5}’ is orthog0-
nal to G(P^{2}) and G(P_{4i_{1}}) , we have

0=(G\iota^{*}F(f,f))_{V_{\acute{5}}}

=(G\iota^{*}F(h_{2i_{1}+1}, h_{2i_{1}+1}))_{V_{\acute{5}}}+2(G\iota^{*}F(h_{2i_{2}+1}, h_{2i_{0}+}J)_{V_{\acute{5}}}

+2(G\iota^{*}F(f_{2i_{1}+1}-h_{2i_{1}+1}, h_{2i_{1}+1}))_{V_{\acute{5}}}+2(G\iota^{*}F(f_{2i_{1}+1}-h_{2i_{1}+1\prime}f_{2i_{1}+1}-h_{2i_{1}+1}))_{V_{5}’}

+2(G\iota^{*}F(f_{2i_{2}+1}-h_{2i_{2}+1}, h_{2i_{0}+1}))_{V_{\acute{5}}}+2(G\iota^{*}F(h_{2i_{l}+1}, f_{2i_{0}+1}-h_{2i_{0}+}J)_{V_{\acute{5}}}

+2(G \iota^{*}F(f_{2i_{2}+1}-h_{2i_{2}+1}, f_{2i_{0}+1}-h_{2i_{0}+1}))_{V_{\acute{5}}}+\sum(G\iota^{*}F(f_{2i+1}, f_{2j+1}))_{V_{5}’} ,

where the sum in the last term is taken over all 2-tuples of integers (i,j)
such that 2\leq i, j\leq m, i+j\geq 2i_{1} , (i,j)\neq(i_{1}, i_{1}) , (i_{0}, i_{2}) , (i_{2}, i_{0}) . For such (i,j) we
have

\deg_{2}f_{2i+1}+\deg_{2}f_{2j+1}\leq 2d_{i_{1}}-1

Since

(G\iota^{*}F(h_{2i_{1}+1}, h_{2i_{1}+1}))_{v_{\acute{5}}}=-(2i_{1}+3)d_{i_{1}-3}^{i_{1}.i_{1}}(G\iota^{*}F_{i_{1}-3}(h_{2i_{1}+1}, h_{2i_{1}+1}))_{Q_{4i_{1}-4,6}} ,

(_{\backslash }G\iota^{*}F(h_{2i_{2}+1}, h_{2i_{0}+1}))_{V_{\acute{5}}}=-(2i_{2}+3)d_{i_{0}-3}^{i_{2},i_{0}}(G\iota^{*}F_{i_{0}-3}(h_{2i_{2}+1}, h_{2i_{0}+}J)_{Q_{4i_{1}-4,6}}.
,
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it follows from the proof of Lemma 4. 11 that

(2i_{1}+3)d_{i_{1}-3}^{i_{1},i_{1}}(G\iota^{*}F_{i_{1}-3}(h_{2i_{1}+1}^{v}, h_{2i_{1}+1}^{\nu}))_{Q_{4i_{1}-4,6}}

+2(2i_{2}+3)d_{i_{0}-3}^{i_{2},i_{0}(G\iota^{*}F_{i_{0}-3}(h_{2i_{2}+1}^{\nu}, h_{2i_{0}+1}^{\nu}))_{Q_{4i_{1}-4,6}}}=0i

where \nu is the same one as above, and d_{i_{0}-3}^{i_{2},i_{0}} is considered to be zero in case
i_{0}=2 . We have

(G \iota^{*}F_{i_{0}-3}(h_{2i_{2}+1}^{\nu}, h_{2i_{0}+1}^{\nu}))_{Q_{4i_{1}-4,6}}=\frac{(2i_{0}+1)!}{6!}c_{0}c_{2}(G\iota^{*}(x_{1}^{6}x_{2}^{4i_{1}-10}\zeta_{2}^{6}))_{Q_{4i_{1}-4,6}}

(i_{0}\neq 2) ,

(G\iota^{*}F_{i_{1}-3}(h_{2i_{1}+1}^{\nu}, h_{2i_{1}+1}^{\nu}))_{Q_{4i_{1}-4,6}}=c_{1}^{2}(G\iota^{*}F_{i_{1}-3}(x_{1}^{3}x_{2}^{2i_{1}-2}, x_{1}^{3}x_{2}^{2i_{1}-2}))_{Q_{4i_{1}-4,6}} .

Lemma 4. 12. ( i)

(G\iota^{*}F_{i_{1}-3}(x_{1}^{3}x_{2}^{2i_{1}-2}, x_{1}^{3}x_{2}^{2i-2}))_{Q_{4i_{1}-4,6}}

=- \frac{(2i_{1}-2)!}{6!}(2i_{1}-2)(2i_{1}-3)(2i_{1}-4)(G\iota^{*}(x_{1}^{6}x_{2}^{4i_{1}-10}\zeta_{2}^{6}))_{Q_{4i_{1}-4,6}} .

(ii) (G\iota^{*}(x_{1}^{6}x_{2}^{4i_{1}-10}\zeta_{2}^{6}))_{Q_{4i_{1}-4,6}}\neq 0 .

PROOF. ( i) We have

F_{i_{1}-3}(x_{1}^{3}x_{2}^{2i_{1}-2}, x_{1}^{3}x_{2}^{2i_{1}-2})

= \frac{(2i_{1}-2)!}{3!}x_{1}^{3}x_{2}^{4i_{1}-7}\zeta_{1}^{3}\zeta_{2}^{3}+3(2i_{1}-5)\frac{(2i_{1}-2)!}{4!}x_{1}^{4}x_{2}^{4i-8}\zeta_{1}^{2}\zeta_{2}^{4}

+6(\begin{array}{l}2i_{1}-52\end{array}) \frac{(2i_{1}-2)!}{5!}x_{1}^{5}x_{2}^{4i_{1}-9}\zeta_{1}\zeta_{2}^{5}+6(\begin{array}{l}2i_{1}-53\end{array}) \frac{(2i_{1}-2)!}{6!}x_{1}^{6}x_{2}^{4i_{1}-10}\zeta_{2}^{6} .

Since

X_{E_{0}}(x_{1}^{k}x_{2}^{4i_{1}-\succ k}\zeta_{1}^{6-k}\zeta_{2}^{k-1})=kx_{1}^{k-1}x_{2}^{4i_{1}-3-k}\zeta_{1}^{7-k}\zeta_{2}^{k-1}

+(4i_{1}-3-k)x_{1}^{k}x_{2}^{4i_{1}-4-k}\zeta_{1}^{6-k}\zeta_{2}^{k}-(6-k)x_{1}^{k+1}x_{2}^{4i_{1}-\S-k}\zeta_{1}^{5-k}\zeta_{2}^{k-1}

-(k-1)x_{1}^{k}x_{2}^{4i_{1}-2-k}\zeta_{1}^{6-k}\zeta_{2}^{k-2} (4\leq k\leq 6) ,

it follows that

(G \iota^{*}(x_{1}^{5}x_{2}^{4i_{1}-0}\zeta_{1}\zeta_{2}^{5}))_{Q_{4i_{1}-4,6}}=-\frac{4i_{1}-9}{6}(G\iota^{*}(x_{1}^{6}x_{2}^{4i_{1}-10}\zeta_{2}^{6}))_{Q_{4i_{1}-4,6}} ,

(G \iota^{*}(x_{1}^{4}x_{2}^{4i_{1^{-}}8}\zeta_{1}^{2}\zeta_{2}^{4}))_{Q_{4i_{1}-4,6}}=\frac{(4i_{1}-8)(4i_{1}-9)}{5\cdot 6}(\backslash G\iota^{*}(x_{1}^{6}x_{2}^{4i_{1}-10}\zeta_{2}^{6}))_{Q_{4i_{1}-4,6}} ,
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(G\iota^{*}(x_{1}^{3}x_{2}^{4i_{1^{-}}7}\zeta_{1}^{3}\zeta_{2}^{3}))_{Q_{4i_{1}-4,6}}

=-^{\frac{(4i_{1}-7)(4i_{1}-8)(4i_{1}-9)}{4\cdot 5\cdot 6}}(G\iota^{*}(x_{1}^{6}x_{2}^{4i_{1}-10}\zeta_{2}^{6}))_{Q_{4i_{1}-4,6}}|

Then (i) is easily obtained from these formulas.
(ii) By Corollary 2. 8 (ii) we have

(_{\backslash }G\iota^{*}(x_{1}^{6}x_{2}^{4i_{1}-10}\zeta_{2}^{6}))_{Q_{4i_{1}-4,6}}=(G\iota^{*}\{x_{1}^{6}x_{2}^{4i_{1}-10} \zeta_{2}^{6}-\frac{15}{4i_{1}-7}x_{1}^{6}x_{2}^{4i_{1}-8}\zeta_{2}^{4}

+ \frac{45}{(4i_{1}-5)(4i_{1}-7)}x_{1}^{6}x_{2}^{4i_{1}-6}\zeta_{2}^{2}

- \frac{15}{(4i_{1}-3)(4i_{1}-5)(4i_{1}-7)}x_{1}^{6}x_{2}^{4i_{1}-4))_{G(Q_{4})}}i_{1}+_{2}

Then, in view of Corollary 3. 7 it is enough to prove that

J=G(x_{1}^{6}x_{2}^{4i_{1}-10} \zeta_{2}^{6}-\frac{15}{4i_{1}-7}x_{1}^{6}x_{2}^{4i_{1^{-}}8}\zeta_{2}^{4}+\frac{45}{(4i_{1}-5)(4i_{1}-7)}x_{1}^{6}x_{2}^{4i_{1}-6}\zeta_{2}^{2}

- \frac{15}{(4i_{1}-3)(4i_{1}-5)(4i_{1}-7)}x_{1}^{6}x_{2}^{4i_{1}-4)}

does not vanish. A direct computation shows that the coefficient of x_{1}^{6}\zeta_{2}^{4i_{1}-4}

in the polynomial J is

I_{6,2i_{1}-5}’- \frac{15}{4i_{1}-7}I_{5,2i_{1}-4}’+\frac{45}{(4i_{1}-5)(4i_{1}-7)}I_{4,2i_{1}-3}’

- \frac{15}{(4i_{1}-3)(4i_{1}-5)(4i_{1}-7)}I_{3,2i_{1}-2}’

= \frac{1}{(4i_{1}-5)(4i_{1}-7)}\{\frac{11\cdot 9\cdot 7}{4i_{1}-9}-\frac{15\cdot 9\cdot 7}{4i_{1}-7}+\frac{45\cdot 7}{4i_{1}-5}-\frac{15}{4i_{1}-3}\}I_{3,2i_{1}-2}’>0’.

where I_{a,b}’= \frac{1}{2\pi}\int_{0}^{2\pi}(\cos t)^{2a} (sin t) \% hdt . Thus we have J\neq 0 , proving the lemma.
As a consequence of this lemma, we have

-(2\dot{\iota}_{1}+3)(2i_{1}-2)(2i_{1}-3)(2i_{1}-4)d_{i_{1}-3}^{i_{1},i_{1}}c_{1}^{2}

+2(2i_{2}+3)(2i_{0}+1)d_{i_{0}-3}^{i_{2},i_{0}}c_{0}c_{2}=0 .

If i_{0}=2 , then we have a contradiction, because c_{1}\neq 0 . If i_{0}\geq 3 , then we have
c_{0}c_{2}c_{1}^{-2}>0 , which also contradicts the previous result. Hence we have con-
tradictions in any case under the assumption d_{i_{0}}=2i_{0}+1 .

II . d_{i_{0}}=2i_{0} . In this case, h_{2i_{0}+1}^{\nu}=c_{0}x_{1}x_{2}^{2i_{0}} and h_{2i_{1}+1}^{\nu}=c_{1}x_{1}^{2i_{1}+1-a_{i_{1}\chi_{2}}a_{i_{1}}} ,
where \nu=(\nu_{2}, \cdots, \nu_{n+1}) is chosen such that c_{0}\neq 0 , c_{1}\neq 0 . Then it follows that
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(G\iota^{*}F_{i_{0}-2}(X_{1}^{2i_{1}+1-a_{i_{1}\chi_{2}}a_{i_{1} x_{1}x_{2}^{2i_{0}}))_{Q_{2i_{0}+2i_{1}-2,4}}=0}},

We have
F_{i_{0}-2}(x_{1}^{2i_{1}+1-a_{i_{1}X\underline{\circ}}a_{i_{1} X_{1}X_{2}^{2i_{0}})}},

= \frac{(2i_{0})!}{3!}X_{1}^{2i_{1}+1-d_{i_{1}x_{2}}2i_{0}-3+a_{i_{1}\zeta_{1}\zeta_{2}^{3}+(2i_{0}-3)\frac{(2i_{0})!}{4!}x_{1}^{2i_{1}+2-d_{i_{1}X_{2}}2i_{0^{-}}4+a_{i_{1}\zeta_{2}^{4}}}}} .

By using the formula
X_{E_{0}}(_{X_{1}^{2i_{1}+2-d_{i_{1X_{2}}}2i_{0}-3+a_{i_{1}}}}\zeta_{2}^{3})=(2i_{1}+2-d_{i_{1}})x_{1}^{2i_{1}+1-a_{i_{1}X_{2}}2i_{0}-3+a_{i_{1}}}\zeta_{1}\zeta_{2}^{3}

+(2i_{0}-3+d_{i_{1}})x_{1}^{2i_{1}+2-d_{i_{1}\chi_{2}}2i_{0}-4+a_{i_{1}\zeta_{2}^{4}\zeta_{2}^{2}}}-3x_{1}^{2i_{1}+2-a_{i_{1}}}x_{2}^{2i_{0}-2+a_{i_{1}}} ,

we have

(G\iota^{*}F_{i_{0}-2}(x_{1}^{2i_{1}+1-a_{i_{1}x_{2}}a_{i_{1} x_{1}x_{2}^{2i_{0}}))_{Q_{2i_{0}+2i_{1}-2,4}}}},

= \frac{(2i_{0})!}{3!}(_{-}\frac{2i_{0}-3+d_{i_{1}}}{2i_{1}+2-d_{i_{1}}}+\frac{2i_{0}-3}{4})(G\iota^{*}(x_{1}^{2i_{1}+_{2}-d_{i_{1}x_{2}}2i_{0}-4\dagger a_{i_{1}}}\zeta_{2}^{4}))_{Q_{2i_{0}+2i_{1}-2,4}}

Since 2i_{1}+2-d_{i_{1}}\geq 2(i_{0}+1)+2-(d_{i_{0}}-1)=5 , we see by lemma 3. 9 that

(G\iota^{*}(x_{1}^{2i_{1}\dagger 2-d_{i_{1}X_{2}}2i_{0}-4+a_{i_{1}}}\zeta_{-}^{4},))_{Q_{2i_{0}+2i_{1}-2,4}}\neq 0 .

Hence it follows that

- \frac{2i_{0}-3+d_{i_{1}}}{2i_{1}+2-d_{i_{1}}}+\frac{2i_{0}-3}{4}=0 .

Remarking the conditions 2\leq i_{0}<i_{1} and d_{i_{1}}\leq d_{i_{0}}-1=2i_{0}-1 , we then obtain
i_{0}=2 ; i_{1}=6,\cdot d_{i_{0}}=4_{r} d_{i_{1}}=2

Let i_{2} be as in Case I. We shall prove that i_{-},=10 and d_{i_{2}}=0 . First
assume that either d_{i_{2}}=1 or d_{i_{2}}=0 and i_{2}>10 are satisfied. Let V_{4} and V_{4}’

be as in 1-2. Then we have

0=(G\iota^{*}F(f,f))_{V_{\acute{4}}}

=2(G\iota^{*}F(h_{2i_{2}+1}, h_{5}))_{V_{4}},+2(G\iota^{*}F(f_{2i_{g}+1}-h_{2i_{2}+1}, h_{5}))_{r_{4}},

+2 (G\iota^{*}F(h_{2i_{2}+1}, f_{5}-h_{5}))_{r_{4}},+2(G\iota^{*}F(f_{2i_{2}+1}-h_{2i_{2}+1}, f_{5}-h_{5}))_{V_{4}},

+(G\iota^{*}F(f_{2i+1}, f_{2j+1}))_{V_{4}’} ,

where the sum in the last term is taken over all 2-tuples of integers (i,j)
such that 2\leq i, j\leq m, i+j\geq i_{2}+2, \{i,j\}\neq\{i_{2},2\} . Such (i,j) with i\geq j satisfies
i\geq j>2 or i>i_{2} , j=2. Thus we have



202 K. Kiyohara

\deg_{2}f_{2i+1}+\deg_{2}f_{2j+1}\leq 4 .
Moreover we have

\deg_{2}f_{2i+1}+\deg_{2}f_{2j+1}\leq 2

in the case where i_{2}>10 and d_{i_{2}}=0 , because \deg_{2}f_{2i+1} or \deg_{2}f_{2j+1} must be
zero (or -\infty ) in this case. Thus we can apply Lemma 4. 11 to each case
and obtain

(G\iota^{*}F_{2}(h_{2i_{2}+1}^{\nu}, h_{5}^{\nu}))_{Q_{2i_{2}+2,4}}=0

Since h_{2i_{2}+1}^{\nu}=c_{2}x_{1}^{2i_{2}+1-a_{i_{2}\chi_{2}}tz_{i_{2}}} and h_{5}^{\nu}=c_{0}x_{1}x_{2}^{4} , and \nu=(\nu_{2}, \cdots , \nu_{n+}J can be chosen
so that c_{0}\neq 0 , c_{2}\neq 0 , it follows that

(G\iota^{*}F_{2}(x_{1}^{2i_{2}+1-d_{i_{2}\chi_{2}^{\{}}l_{i_{2} x_{1}x_{2}^{4}))_{Q_{2i_{2}+2,4}}}},=0 .

But, as we have already seen, this equality holds if and only if i_{2}=6 and
d_{i_{2}}=2 . This is a contradiction. Thus we have i_{2}\leq 10 and d_{i_{2}}=0 .

Next assume that i_{2}<10 . Let V_{3} and V_{3}’ be as in I-1 . Then we have

0=(G\iota^{*}F(f,f))_{V_{\acute{3}}}

=(_{\backslash }G\iota^{*}F(h_{13}, h_{13}))_{r_{3}},+2(G\iota^{*}F(f_{13}-h_{13}, h_{13}))_{r_{3}},

+(G \iota^{*}F(f_{13}-h_{13},f_{13}-h_{13}))_{V_{\acute{3}}}+\sum(G\iota^{*}F(f_{2i+1},f_{2i+}J)_{V_{\acute{3}}} ,

where the sum in the last term is taken over all 2-tuples of integers (i,j)
such that 2\leq i, j\leq m , i+j\geq 12 , (i,j)\neq(6,6) . Since such (i,j) must satisfy
either 2<i, 6<j or 2<j, 6<i, it follows that

\deg_{2}f_{2i+1}+\deg_{2}f_{2j+1}\leq 2

Hence by Lemma 4. 11 we have

(G\iota^{*}F_{4}(h_{13}^{\nu}, h_{13}^{\nu}))_{Q_{22,4}}=0 .

But since h_{13}^{\nu}=cx_{1}^{11}x_{2}^{2}(c\in C) and \nu can be chosen so that c\neq 0 , this con-
tradicts to Proposition 3. 8 (ii). Consequently we have

i_{2}=10 , d_{i_{2}}=0 .

Since d_{i_{2}}=0 , i_{2} must be equal to m. Hehce it follows that

m=10 , d_{i}\leq 0 (7\leq i\leq 10)

This completes the proof of Proposition 4. 5.
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\S 5. The case where deg f=21

In this section we shall prove the rest part of Theorem 4. 1. Let
f\in R[x]_{od} satisfy the conditions (i) (ii) (iii) stated before Lemma 4. 4. Suppose
that f satisfies the condition G\iota^{*}F(f,f)\in G(\mathscr{F}^{2}) . Then we have seen in
Proposition 4. 5 that either f is of the form (1) in Theorem 4. 1, or

(a) degf=21, i_{0}=2 , i_{1}=6 , d_{i_{0}}=4 , d_{i_{1}}=2 , d_{i}\leq 0(7\leq i\leq 10) . Let f=
\sum_{i}f_{2i+1}(f_{2i+1}\in R[x]_{2i+1}) be the decomposition of f into its homogeneous parts,

and h_{2i+1} the homogeneous part of degree d_{i} of f_{2i+1} in the variables (x_{2}, \cdots ,
x_{n+}j) . In case f satisfies the above condition (a), we further consider the
following conditions on f :

(b) f_{21}=x_{1}^{21} ;

(c) h_{13}=( \sum_{i=2}^{k}\lambda_{i}x_{i}^{2})x_{1}^{11}, where \lambda_{i}\in R-\{0\}(2\leq i\leq k) , 2\leq k\leq n , and \{\lambda_{i}\} do
not satisfy \lambda_{2}=\cdots=\lambda_{n} if k=n.

Lemma 5. 1. Let f\in R[x]_{oa} satisfy the conditions (i) (ii) (iii) stated before
Lemma 4. 4 and (a) above. Then there are A\in O(n+1, R) , c\in R-\{0\} ,
u_{1}\in R[x]_{1} , u_{3}\in R[x]_{3} , and f\in R[x]_{oa} such that f satisfifies the conditions
(i) (ii) (iii) before Lemma 4. 4 and (a) (b) (c) above, and

A^{*}f’\equiv u_{1}+u_{3}+cf mod (1- \sum_{i=1}^{n+1}x_{i})

PROOF. Let f_{i+1}’(2\leq i\leq 10) be the homogeneous part of degree 2i+1
of f’ . and h_{2i+1}’ the homogeneous part of degree \deg_{2}f_{2i+1}’ of f_{2i+1}’ in the
variables (x_{2} , \cdots , x_{n+}J . Since h_{13}’/x_{1}^{11} is a real quadratic form, there is an
orthogonal transformation A in the variables (x_{2} , \cdots , x_{n+}J such that A^{*}h_{13}’

is of the form

( \sum_{i=1}^{k}\lambda_{i}x_{i}^{2})x_{1}^{11} .

where \lambda_{2}\geq\lambda_{3}\geq\cdots\geq\lambda_{k} , \lambda_{i}\neq 0(2\leq i\leq k) , 2\leq k\leq n+1 . Since h_{13}’ and h_{5}’ do not

belong to the ideal ( \sum_{i=1}^{n+2}x_{i}^{2}) , so do not A^{*}h_{13}’ and A^{*}h_{5}’ . Let c\in R-\{0\} be

the constant such that f_{21}’=cx_{1}^{21} . By substituting 1- \sum_{i=1}^{n}x_{i}^{2} for x_{n+1}^{2} in A^{*}f’ ,

we can find f’= \sum_{i=2}^{10}f_{2i+1}’(f_{i+1}’\in R[x]_{2i+1}) , u_{1}\in R[x]_{1} , u_{3}\in R[x]_{3} such that f’
satisfies the conditions (i) (ii) (iii) and (a) (b), and

A^{*}f\equiv u_{1}+u_{3}+cf’ mod (1- \sum_{i}x_{i}^{2})\backslash .
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Moreover h_{13}’ , the homogeneous part of degree 2 of f_{13}’ in the variables
(X_{2}^{ },\cdots, X_{n+};) , is equal to c^{-1}A^{*}h_{13}’ if k\leq n , and equal to c^{-1} \sum_{i=2}^{n}(\lambda_{i}-\lambda_{n+}Jx_{i}^{2}x_{1}^{11}

if k=n+1. Hence if k<n , or if k\geq n and \{\lambda_{i}\} do not satisfy \lambda_{2}=\cdots=\lambda_{n} ,

then f’ also satisfies the condition (c). If k\geq n and \lambda_{2}=\cdots=\lambda_{n} , then h_{13}’ is
of the form

c’( \sum_{i=2}^{n}x_{i}^{2})x_{1}^{11} , c’\in R-\{0\}

Let B be the orthogonal transformation such that B^{*}x_{2}=-x_{n+1} , B^{*}x_{n+1}=x_{2} ,

and the other variables are fixed by B. By substituting 1- \sum_{i=1}^{n}x_{i}^{2} for x_{n+1}^{2}

in B^{*}f_{\backslash }’ we can find f= \sum_{i=2}^{10}f_{2i+1}(f_{2i+1}\in R[x]_{2i+}J, u_{1}’\in R[x]_{1} , and u_{3}’\in R[x]_{3}

such that f satisfies the conditions (i) (ii) (iii) and (a) (b), and

B^{*}f’\equiv u_{1}’+u_{3}’+f mod (1- \sum x_{i}^{2})1

Since h_{13} , the homogeneous part of degree 2 of f_{13} in the variables (x_{2}, \cdots ,
x_{n+}i) , is of the form

dx_{1}^{11}x_{2}^{2} (d\in R-\{0\})’.

f also satisfies the condition (c). This completes the proof of the lemma.
Now we fix f\in R[x]_{od} which satisfies the conditions (i) (ii) (iii) stated

before Lemma 4. 4 and (a) (b) (c) above, and satisfies
G\iota^{*}F(f,f)\in G(\mathscr{F}^{2})

Then f is of the form
f=(A_{b}x_{1}^{5}+B_{b}x_{1}^{4}+C_{5}x_{1}^{3}+D_{6}x_{1}^{2}+E_{5}xJ

+ \sum_{i=3}^{6}(A_{2i+1}x_{1}^{2i+1}+B_{2i+1}x_{1}^{2i}+C_{2i+1}x_{1}^{2i-1})+\sum_{i=7}^{10}A_{2i+1}x_{1}^{2i\dagger 1} ,

where A_{2i+1}\in R(2\leq i\leq 10) , B_{2i+1}\in R[X_{2}^{ },\cdots, x_{n+1}]_{1} , C_{2i+1}\in R[X_{2}^{ },\cdots, x_{n+1}]_{2}k(2\leq

i\leq 6) , D_{5}\in R[X_{2}^{ },\cdots, X_{n+1}]_{3} , E_{5}\in R[X_{2}^{ },\cdots, X_{n+1}]_{4}, A_{21}=1 , E_{b}\neq 0 , C_{13}= \sum_{i=2}\lambda_{i}x_{i}^{2},

\lambda_{i}\in R-0(2\leq i\leq k) , 2\leq k\leq n , and \{\lambda_{i}\} do not satisfy \lambda_{2}=\ldots=\lambda_{n} if k=n.
We shall prove the following

PROPOSITION 5. 2. B_{2i+1}\in R[x_{2}]_{1} , C_{2i+1}\in R[x_{2}]_{2}(2\leq i\leq 6) , D_{b}\in R[x_{2}]_{3} ,
E_{5}\in R[x_{2}]_{4} .

We need some lemmas to prove this proposition.

Lemma 5. 3. Let J be the ideal ( \sum_{i=1}^{n+1}x_{1}^{2},\sum_{i=1}^{n+1}\zeta_{i}^{2},\sum_{i=1}^{n+1}x_{i}\zeta_{i}) in C[x, \zeta] , and

put J_{0}=J\cap C[x_{1^{ }},\cdots, x_{n}, \zeta_{1^{ }},\cdots, \zeta_{n}] . Then
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J_{0}=( \sum_{i=1}^{n}x_{i}^{2}\sum_{i=1}^{n}\zeta_{i}^{2}-(\sum_{i=1}^{n}x_{i}\zeta_{i})^{2})C[x_{1^{ }},\cdots, x_{n}, \zeta_{1}, \cdots, \zeta_{n}]

PROOF. First remark that the polynomial \sum_{i=1}^{n}x_{i}^{2}\sum_{i=1}^{n}\zeta_{i}^{2}-(\sum_{i=1}^{n}x_{i}\zeta_{i})^{2} is ir-

reducible, provided n\geq 3 . Let u be a polynomial in the ideal J_{0} . Fix a point
(p_{1^{ }},\cdots, p_{n}, q_{1^{ }},\cdots, q_{n})\in C^{2n} such that

\sum_{i=1}^{n}p_{i}^{2}\sum_{i=1}^{n}q_{i^{2}}-(\sum_{i=1}^{n}p_{i}q_{i})^{2}=0 .

Let p_{n+1} (resp. q_{n+1}) be one of the square roots of - \sum_{i=1}^{n}p_{i}^{2}((resp. - \sum_{i=1}^{n}q_{i}^{2}).
Since

p_{n+1^{2}}q_{n+1^{2-}}-( \sum_{i=1}^{n}p_{i}q_{i})^{2} ,

we can take p_{n+1} and q_{n+1} such that \sum_{i=1}^{n+1}p_{i}q_{i}=0 . Since u\in J_{0}, there are
polynomials v_{1} , v_{2}, v_{3} such that

u= \sum_{i=1}^{n+1}x_{i}^{2}v_{1}+\sum_{t=1}^{n+1}\zeta_{i}^{2}v_{2}+\sum_{i=1}^{n+1}x_{i}\zeta_{i}v_{3} .

By substituting (p_{1}, \cdots, p_{n+1}, q_{1}, \cdots, q_{n+1}) into both sides, we have
u(p_{1^{ }},\cdots, p_{n}, q_{1^{ }},\cdots, q_{n})=0 .

This implies that u \in(\sum_{i=1}^{n}x_{i}^{2}\sum_{i=1}^{n}\zeta_{i}^{2}-(\sum_{i=1}^{n}x_{i}\zeta_{i})^{2^{\backslash }}) . Hence

J_{0} \subset(\sum_{i=1}^{n}x_{i}^{2}\sum_{i=1}^{n}\zeta_{i}^{2}-(\sum_{i=1}^{n}x_{i}\zeta_{i})^{2})

On the other hand, since

\sum_{i=1}^{n}x_{i}^{2}\sum_{i=1}^{n}\zeta_{i}^{2}-(\sum_{i=1}^{n}x_{i}\zeta_{i})^{2}

\equiv x_{n+1}^{2}\zeta_{n+1}^{2}-(x_{n+1}\zeta_{n+1})^{2}\equiv 0 mod J ,

we ako have

( \sum_{i=1}^{n}x_{i}^{2}\sum_{i=1}^{n}\zeta_{i}^{2}-(\sum_{i=1}^{n}x_{i}\zeta_{i})^{2})\subset J_{0} .

Therefore the lemma follows.
Let v, w\in R[X_{2}^{ },\cdots, X_{n+1}] be homogeneous polynomials with deg v=a_{1}

and deg w=a_{2} . Put a=a_{1}+a_{2} and let b and k be integers such that a\leq b,
a+b=2k, k\geq 4 . Let p be an integer such that 0\leq p\leq b and p+a_{2} is even,
and put
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u=x_{1}^{b-p}\zeta_{1}^{p}v(x)w(\zeta)

Then \deg_{1}u=b, \deg_{2}u=a , and

u\in R[x, \zeta]_{b-p+a_{1},p+a_{2}}\subset R[x, \zeta]_{2k} .
In this case we have

Lemma 5. 4. If a is even, then

G\iota^{*}u\equiv cG\iota^{*}(x_{1}^{b-a}v(x)w(x)\zeta_{1}^{a}) mod G(P^{a-2})

for some c\in R . If a is odd, then

G\iota^{*}u\equiv 0 mod G(P^{a-1}) .

PROOF. Put Y= \sum_{i=1}^{n+1}x_{i}\frac{\partial}{\partial\zeta_{i}} . Then u= \frac{1}{a_{1}!}x_{1}^{b-p}\zeta_{1}^{p}(Y^{a_{1}}v(\zeta))w(\zeta) .

For integers t , r , s satisfying 1\leq t\leq b+1,0\leq r\leq a_{1},0\leq s\leq a_{2} , we have

X_{E_{0}}(x_{1}^{b-t+1}\zeta_{1}^{t-1}Y^{r}v(\zeta)Y^{s}w(\zeta))

=-(b-t+1)x_{1}^{b-t}\zeta_{1}{}^{t}Y^{r}v(\zeta)Y^{s}w(\zeta)-(t-1)x_{1}^{b-t\dagger 2}\zeta_{1}^{t-2}Y^{r}v(\zeta)Y^{s}w(\zeta)

+r(a_{1}-r+1)x_{1}^{b-t+1}\zeta_{1}^{t-1}Y^{r-1}v(\zeta)Y^{s}w(\zeta)-x_{1}^{b-t+1}\zeta_{1}^{t-1}Y^{r+1}v(\zeta)Y^{s}w(\zeta)

+s(a_{2}-s+1)x_{1}^{b-t+1}\zeta_{1}^{l-1}Y^{r}v(\zeta)Y^{s-1}w(\zeta)-x_{1}^{b-t\dagger 1}\zeta_{1}^{t-1}Y^{r}v(\zeta)Y^{s+1}w(\zeta)

Let W_{2q,t} (0 \leq q\leq\frac{p+a_{2}}{2} , max \{0, 2q-a\}\leq t\leq\min\{2q, b\} ) be the subspace

of C^{\infty}(S^{*}S^{n}) spanned by the functions

G\iota^{*}(x_{1}^{b-t}\zeta_{1}{}^{t}Y^{r}v(\zeta)Y^{s}w(\zeta)) (0\leq r\leq a_{1},0\leq s\leq a_{2}, t+a-(r+s)=2q)

Put W_{2q}= \sum_{t}W_{2q,t} , where the sum is taken over all possible t . Then

W_{2q}\subset G(P^{2q}) .
In the case where p+a_{2}<a , we have p+a_{2}\leq a-2 if a is even, and p+a_{2}\leq

a–l if a is odd. Hence the lemma follows in this case by putting c=0.
If p+a_{2}\geq a+1 , then the above formula shows that

W_{2q,t}\subset W_{2q,t-1}+W_{2q-2} , W_{2q,2q-a}\subset W_{2q-2}

for each q and t with [a/2]+1 \leq q\leq(p+a_{2})/2,2q-a+1\leq t\leq\min\{2q, b\} .
Hence in this case we have W_{2q}\subset W_{2q-2} , and consequently

W_{2q}\subset W_{2[a/2]}

for each q with [a/2]+1\leq q\leq(p+a_{2})/2 .



On infinitesimal C_{2\pi}-deformations of standa 7^{\cdot}d metrics on spheres 207

Assume that a is odd and p+a_{2}\geq a . Then we have p+a_{2}\geq a+1 .
Hence it follows that

W_{p+a_{2}}\subset W_{2\ddagger a/2J}=W_{a-1} ,

which implies
G\iota^{*}u\equiv 0 mod G(P^{a-1})

Next assume that a is even and p+a_{2}\geq a . In this case we see from
the above consideration that

W_{p+a_{2}}\subset W_{a}\tau

Therefore, in order to show the lemma it is enough to prove that

W_{a}\subset W_{a,a}+W_{a-2} .
By considering the above formula in the case where 1\leq t\leq a , 0\leq r\leq a_{1} ,
0\leq s\leq a_{2} , and t=r+s, we have

W_{a,l}\subset W_{a,t-1}+W_{a-2}

and hence
W_{a}\subset W_{a,0}+W_{a-2} .

Remark that W_{a,0} is generated by G\iota^{*}(x_{1}^{b}v(\zeta)w(\zeta)) and W_{a,a} is generated
by G\iota^{*}(x_{1}^{b-a}\zeta_{1}^{a}v(x)w(x)) . We then consider the following formula;

X_{E_{0}}(x_{1}^{b-s+1}\zeta_{1}^{s-1}Y^{s}(v(\zeta)w(\zeta))

=(b-s+1)x_{1}^{b-s}\zeta_{1}^{s}Y^{s}(v(\zeta)w(\zeta))-(s-1)x_{1}^{b-s+2}\zeta_{1}^{s-2}Y^{s}(v(\zeta)w(\zeta))

+s(a-s+1)x_{1}^{b-s+1}\zeta_{1}^{s-1}Y^{s-1}(v(\zeta)w(\zeta))-x_{1}^{b-s+1}\zeta_{1}^{s+1}Y^{s+1}(v(\zeta)w(\zeta)) ,

(1\leq s\leq a)1

This formula shows that there is a non-zero constant c^{f}\in R such that

x_{1}^{b}v(\zeta)w(\zeta)\equiv c’x_{1}^{b-a}\zeta_{1}^{a}v(x)w(x) mod W_{a-2}c

Hence we have
W_{a}\subset W_{a,a}+W_{a-2} ,

which proves the lemma.

COROLLARY 5. 5. Let u\in R[x, \zeta]_{2k}(k\geq 4) .
(i) If \deg_{2}u\leq 3 , then G\iota^{*}u\in G(\mathscr{F}^{2}) .
(ii) If \deg_{2}u=4 , then there is a homogeneous polynomial v\in R[x_{2}, \cdots ,

x_{n+1}]_{4} such that
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G\iota^{*}u\equiv G\iota^{*}(x_{1}^{2k-8}v(x)\zeta_{1}^{4}) mod G(\mathscr{A}^{2}) ,

and such that the degree of v in the variable x_{n+1} is not greater than that
of u . Especially (G\iota^{*}u)_{Q_{2}}k-4,4=0 if and only if G\iota^{*}u\in G(\mathscr{F}^{2}) .

PROOF. ( i) and the former part of (ii) are immediate consequences of
the previous lemma. For the latter part of (ii) we put

w=x_{1}^{2k-8}v(x)\zeta_{1}^{4}+12a_{1}^{k-3}x_{1}^{2k-6}v(x)\zeta_{1}^{2}+24a_{2}^{k-3}x_{1}^{2k-4}v(x) .
Then we have

(G\iota^{*}u)_{Q_{2}}k-4,4=(G\iota^{*}(x_{1}^{2k-8}v(x)\zeta_{1}^{4}))_{Q_{2k-4,4}}

=(G\iota^{*}w)_{G(Q_{2k})}

by Corollary 2. 8 (ii). Hence we see by Corollary 3. 7 that (G\iota^{*}u)_{Q_{2k-4,4}}=0

if and only if Gw \in(\sum_{i}x_{i}^{2}, \sum_{i}\zeta_{i}^{2}, \sum_{i}x_{i}\zeta_{i}) . Now assume that Gw belongs to

the ideal ( \sum_{i}x_{i}^{2}, \sum_{i}\zeta_{i^{2}}, \sum_{i}x_{i}\zeta_{i}) . Since Gw is homogeneous in the variables
( x_{2}, \cdots , x_{n+1} , \zeta_{2}, \cdots , \zeta_{n+}J , it is easily seen by Lemma 4. 8 that

Gw \in(\sum_{i\geq 2}x_{i}^{2},\sum_{i\geq 2}\zeta_{i}^{2},\sum_{i\geq 2}x_{i}\zeta_{i}) .

Hence for any \nu=(\nu_{2^{ }},\cdots, \nu_{n+1})\in C^{n} satisfying \sum_{i=2}^{n+1}\nu_{i}^{2}=0 we have

c_{w^{\nu}=0t}

Since w^{\nu}=v(\nu)(x_{1}^{2k-8}x_{2}^{4}\zeta_{1}^{4}+12a_{2}^{k-3}x_{1}^{2k-6}x_{2}^{4}\zeta_{1}^{2}+24a_{2}^{k-3}x_{1}^{2k-4}x_{2}^{4}) , it thus follows
that

0=(G\iota^{*}w^{\nu})_{G(Q_{zk})}=v(\nu)(G\iota^{*}(x_{1}^{2k-8}x_{2}^{4}\zeta_{1}^{4}))_{Q_{2k-,4}}

‘

Since (G\iota^{*}(x_{1}^{2k-8}x_{2}^{4}\zeta_{1}^{4}))_{Q_{2k-4,4}}\neq 0 by Lemma 3. 9, we have v(\nu)=0 . This
implies that v(x) belongs to the ideal ( \sum_{i\geq 2}x_{i}^{2}) . Put

v= \sum_{i\geq 2}x_{i}^{2}v’ , v’\in R[X_{2}^{ },\cdots, x_{n+1}]_{2} .

Then G\iota^{*}(x_{1}^{2k-8}v(x)\zeta_{1}^{4})=G\iota^{*}(x_{1}^{2k-8}v’(x)\zeta_{1}^{4})-G\iota^{*}(x_{1}^{2k-6}v’(x)\zeta_{1}^{4}) . Since deg v’

=2 unless v’=0, we see from (i) that the right-hand side of this formula is
in G(\mathscr{F}^{2}) . This proves the corollary.

Lemma 5. 6. Let w\in R[x, \zeta]_{2k-2p,2p}(0\leq p\leq[k/2]) . Supppse that w is
also homogeneous in the variables (x_{2^{ }},\cdots, x_{n+1}, \zeta_{2^{ }},\cdots, \zeta_{n+1}) with \deg_{2}w=2q

(p\leq q\leq[k/2]) and that (G\iota^{*}w)_{Q_{zkp.p}}-22=0 . Then

(G\iota^{*}w^{\nu})_{Q_{2}}k-2p,2p=0
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for all \nu=(\nu_{2}, \cdots, \nu_{n+1})\in C^{n} such that \sum_{i=2}^{n+1}\nu_{i}^{2}=0 .

PROOF. Corollary 2. 8 (ii) shows that

(G \iota^{*}w)_{Q_{2kp,p}}-22=(G\iota^{*}\sum_{l=0}^{p}a_{l}^{k-2p\dagger 1}(\sum_{j}x_{j}\frac{\partial}{\partial\zeta_{j}})^{2l}w)_{G(Q_{2k})}

j

Then the assumption implies that the polynomial

G^{\tau} \sum_{l=0}^{p}a_{l}^{k-2p+1}(\sum_{j}x_{f}\frac{\partial}{\partial\zeta_{j}})^{2l}w

belongs to the ideal ( \sum_{i}x_{i}^{2}, \sum_{i}\zeta_{i}^{2}, \sum_{i}x_{i}\zeta_{i}) . Since w is homogeneous in the

variables (x_{2}, \cdots, x_{n+1}, \zeta_{2}, \cdots, \zeta_{n+1}) , we see by Lemma 4. 8 that this polynomial
also belongs to the ideal \langle\sum_{i\geq 2}x_{i}^{2},\sum_{i\geq 2}\zeta_{i}^{2},\sum_{i\geq 2}x_{i}\zeta_{i}) . Hence it follows that

c \sum_{l=0}^{p}a_{l}^{k}-2p+1(\sum_{j=1}^{2}x_{j}\frac{\partial}{\partial\zeta_{j}})^{2l}w^{\nu}=0

for all \nu=(\nu_{2}, \cdots , \nu_{n+}J\in C^{n} with \sum_{i\geq 2}\nu_{i}^{2}=0 . This shows that

(G\iota^{*}w^{\nu})_{Q_{2}2}k-2p,p=0 ,

which proves the lemma.
In general, for homogeneous polynomials u_{1} , u_{2}\in R[x] we set

F^{1}(u_{1}, u_{2})=- \sum_{i,j}(x_{i}x_{j}+\zeta_{i}\zeta_{j})\frac{\partial u_{1}}{\partial x_{i}}\int_{0}^{\pi}\frac{\partial u_{2}}{\partial x_{j}} (x cos t+\zeta sin t) sin tdt ,

F^{2}(u_{1}, u_{2})= \sum_{i}\frac{\partial u_{1}}{\partial x_{i}}\int_{0}^{\pi}\frac{\partial u_{2}}{\partial x_{i}} (x cos t+\zeta sin t) sin tdt

Then F(u_{1}, u_{2})=F^{1}(u_{1}, u_{2})+F^{2}(u_{1}, u_{2}) . Furthermore we set

F^{3}(u_{1}, u_{2})= \frac{\partial u_{1}}{\partial x_{1}}\int_{0}^{\pi}\frac{\partial u_{2}}{\partial x_{1}} (x cos t+\zeta sin t) sin tdt ,

F^{4}(u_{1}, u_{2})= \sum_{i\geq 2}\frac{\partial u_{1}}{\partial x_{i}}\int_{0}^{\pi}\frac{\partial u_{2}}{\partial x_{i}} (x cos t+\zeta sin t) sin tdt

Then F^{2}(u_{1}, u_{2})=F^{3}(u_{1}, u_{2})+F^{4}(u_{1}, u_{2}) . It is easily seen from the proof of
Proposition 1. 7 that GF^{i}(u_{2}, u_{1})=GF^{i}(u_{1}, u_{2}) for each i(1\leq i\leq 4) .

PROOF 0F PROPOSITION 5. 2. Put

F(f,f)= \sum_{i=4}^{21}R_{2\ell} , R_{2i}\in R[x^{1}, \zeta]_{2i} .

Then
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R_{2i}= \sum_{l+m=i-1}F^{1}(f_{2l+1},f_{2m+1})+\sum_{l+m=i}F^{2}(f_{2l+1},f_{2m+}J .
We first see that \deg_{2}R_{2i}\leq 2 when 14\leq i\leq 21 . Thus for such i we have

G\iota^{*}R_{2i}\in G(\mathscr{F}^{2})

by Corollary 5. 5 (i).
Next we shall prove that G\iota^{*}R_{2i}\in G(\mathscr{F}^{2})(10\leq i\leq 13) and that E_{b} is a

constant multiple of C_{13^{2}} . The above fact shows that

0=(G \iota^{*}F(f,f))_{Q_{22,4}}=\sum_{i=13}^{21}(G\iota^{*}R_{2i})_{Q_{22,4}}=(G\iota^{*}R_{26})_{Q_{22,4}}

In view of Corollary 5. 5 (i),

G\iota^{*}R_{26}\equiv 2G\iota^{*}F^{1}(x_{1}^{21}, E_{6}xJ+G\iota^{*}F^{1}(C_{13}x_{1}^{11}, C_{13}x_{1}^{11}) mod G(\mathscr{F}^{2})1

Then it follows from Corollary 5. 5 (ii) that G\iota^{*}R_{26}\in G(\mathscr{A}^{2}) and

46d_{0}^{10,2}(G\iota^{*}F_{0}(x_{1}^{21}, E_{b}x_{1}))_{Q_{22.4}}+15d_{4}^{6,6}(G\iota^{*}F_{4}(C_{13}x_{1}^{11}, C_{13}x_{11}))_{Q_{22,4}}=0 .
This implies that

46d_{0}^{10,2}E_{B}(\nu)G\iota^{*}F_{0}(x_{1}^{11}, x_{1}x_{2}^{4}))_{Q_{22,4}}

+15d_{4}^{6.6}C_{13}(\nu)^{2}(G\iota^{*}F_{4}(x_{1}^{11}x_{2}^{2}, x_{1}^{11}x_{2}^{2}))_{Q_{22,4}}\backslash =0

for all \nu=(\nu_{2}, \cdots, \nu_{n+1})\in C^{n} satisfying \sum_{i=2}^{n+1}\nu_{i}^{2}=0 . We shall see later in Lemma
5. 10 that there are non-zero constants c and d such that

(G\iota^{*}F_{0}(x_{1}^{21}, x_{1}x_{2}^{4}))_{Q_{22,4}}=c(G\iota^{*}(x_{1}^{22}\zeta_{2}^{4}))_{Q_{22,4}} ,

(G\iota^{*}F_{4}(x_{1}^{11}x_{2}^{2}, x_{1}^{11}x_{2}^{2}))_{Q_{22,4}}=d(G\iota^{*}(x_{1}^{22}\zeta_{2}^{4}))_{Q_{22,4}}

Since (G\iota^{*}(x_{1}^{22}\zeta_{2}^{4}))_{Q_{22,4}} does not vanish by Lemma 3. 9, it follows that
46cd_{0}^{10,2}E_{b}+15c’d_{4}^{6,6}C_{13^{2}}\equiv 0 mod ( \sum_{i\geq 2}x_{i}^{2}) .

Since C_{13} does not contain the variable x_{n+1} , and the degree of E_{5} in x_{n+1} is
at most 1, we thus obtain

46cd_{0}^{10,2}E_{b}+15c’d_{4}^{6.6}C_{13^{2}}=0 .
Take an integer i_{0} such that 10<i_{0}+1\leq 13 and fix it. Assume that

G\iota^{*}R_{2i}\in G(\mathscr{F}^{2}) for all i satisfying i_{0}+1\leq i\leq 13 . Then

0=(G\iota^{*}F(f,f))_{Q_{2i_{0}-4,4}}

= \sum_{i=i_{0}}^{21}(G\iota^{*}R_{2i})_{Q_{2i_{0}-4,4}}=(G\iota^{*}R_{2i_{0}})_{Q_{2i_{0}-4,4}} .
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Remarking that 2i_{0}\geq 20 , we see that \deg_{2}R_{2i_{0}}\leq 4 . Thus it follows that
G\iota^{*}R_{2i_{0}}\in G(\mathscr{A}^{2}) from Corollary 5. 5 (ii). Therefore we have

G\iota^{*}R_{2i}\in G(\mathscr{A}^{2}) (10\leq i\leq 13)

by induction on i.
Next we shall prove the following:
(i) There are v_{i}\in R[X_{2}^{ },\cdots, x_{n+1}]_{4} such that

G \iota^{*}F(f,f)\equiv\sum_{j=4}^{i-1}G\iota^{*}R_{2j}+G\iota^{*}(x_{1}^{2i-10}v_{i}(x)\zeta_{1}^{4}) mod G(\mathscr{F}^{2})(6\leq i\leq 9) ;

(ii) D_{b} is a constant multiple of B_{13}C_{13} ;
(iii) C_{2i-5} and B_{2i-5} are constant multiples of C_{13} and B_{13} respectively

(6\leq i\leq 9) .
In view of Corollary 5. 5 we see that

G\iota^{*}R_{18}\equiv 2G\iota^{*}F^{1}(C_{13}x_{1}^{11}, E_{b}x_{1})+2G\iota^{*}F^{1}(C_{13}x_{1}^{11}, D_{5}x_{1}^{2})

+2G\iota^{*}F^{1}(B_{13}x_{1}^{12}, E_{f}xJ+G\iota^{*}((x_{1}^{10}w_{9}(x)\zeta_{1}^{4})\backslash modG(\mathscr{F}^{2})

for some w_{9}\in R[X_{2}^{ },\cdots, X_{n+1}]_{4} . Thus it follows that

G\iota^{*}R_{18}\equiv-30d_{0}^{6,2}G\iota^{*}\{F_{0}(C_{13}x_{1}^{11}, E_{5}x_{1})+F_{0}(C_{13}x_{1}^{11}, D_{b}x_{1}^{2})

+F_{0}(B_{13}x_{1}^{12}, E_{5}xJ\}+G\iota^{*}(x_{1}^{10}w_{9}(x)\zeta_{1)}^{4^{\backslash }} mod G(\mathscr{F}^{2}) .

Put

X=-30d_{0}^{6,2}G( \sum_{i=0}^{2}a_{i}^{6}F_{i}(C_{13}x_{1}^{11}, E_{f}xJ) ,

Y=-30d_{0}^{6,2}G( \sum_{i=0}^{2}a_{i}^{6}F_{i}(C_{13}x_{1}^{11}, D_{f}x_{1}^{2})+\sum_{i=0}^{2}a_{i}^{6}F_{i}(B_{13}x_{1}^{12}, E_{f}xJ)

z=G(x_{1}^{10}w_{9}(x)\zeta_{1}^{4}+12a_{1}^{6}x_{1}^{12}w_{9}(x)\zeta_{1}^{2}+24a_{2}^{6}x_{1}^{14}w_{9}(x))

Then
G\iota^{*}R_{18}\equiv\iota^{*}(X+Y+Z) mod G(\mathscr{F}^{2}) ,

and

(G\iota^{*}R_{18})_{Q_{1,4}}‘=(\iota^{*}(X+Y+Z))_{G(Q_{18})}

Since 0=(G\iota^{*}F(f,f))_{Q_{14}},.=(G\iota^{*}R_{18})_{Q}‘ 4,4 ’ it follows that

X+Y+Z \in(\sum_{i}x_{i}^{2}, \sum_{i}\zeta_{i}^{2}, \sum_{i}x_{i}\zeta_{i})

Remarking the degrees in the variables (x_{2}, \cdots , x_{n+1} , \zeta_{2} , \cdots , \zeta_{n+}J , we see that
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X+Z and Y belong to the ideal ( \sum_{i}x_{i}^{2}, \sum_{i}\zeta_{i}^{2}, \sum_{i}x_{i}\zeta_{i}) . Then by Lemma
4. 8 there are polynomials H_{i} , H_{i}’\in R[x, \zeta]_{16}(i=1,2,3) such that \deg_{2}H_{i}\leq 4 ,
\deg_{2}H_{i}’\leq 3 and

X+Z= \sum_{i}x_{i}^{2}H_{1}+\sum_{i}\zeta_{i}^{2}H_{2}+\sum_{i}x_{i}\zeta_{i}H_{3} ,

Y= \sum_{i}x_{i}^{2}H_{i}’+\sum_{i}\zeta_{i}^{2}H_{i}’+\sum_{i}x_{i}\zeta_{i}H_{3}’ .
Then \iota^{*}(X+Z)=\iota^{*}(H_{1}+H_{2}) and \iota^{*}Y=\iota^{*}(H_{1}’+H_{2}’) . Thus we see by Corol-
lary 5. 5 that \iota^{*}Y\in G(\mathscr{F}^{2}) and

\iota^{*}(X+Z)\equiv G\iota^{*}(_{\backslash }x_{1}^{8}v_{9}(x)\zeta_{4}^{1}) mod G(\mathscr{F}^{2})

for some v_{9}\in R[X_{2}^{ },\cdots, x_{n+1}]_{4} . Hence it follows that

G^{*}R_{18}\equiv G\iota^{*}(x_{1}^{8}v_{9}(x)\zeta_{1}^{4}) mod G(\mathscr{F}^{2})

and that

G \iota^{*}F(f,f)\equiv\sum_{i=4}^{9}G\iota^{*}R_{2i}

\equiv\sum_{i=4}^{8}G\iota^{*}R_{2i}+G\iota^{*}(x_{1}^{8}v_{9}(x)\zeta_{1}^{4}) mod G(\mathscr{A}^{2}) .

Now consider the formula

Y= \sum_{i}x_{i}^{2}H_{1}’+\sum_{i}\zeta_{i}^{2}H_{2}’+\sum_{i}x_{i}\zeta_{i}H_{3}’ .

By taking the homogeneous part of degree 5 in the variables (x_{2}, \cdots , x_{n+1} ,
\zeta_{2}, \cdots , \zeta_{n+}J , we see that Y belong to the ideal ( \sum_{i\geq 2}x_{i}^{2},\sum_{i\geq 2}\zeta_{i}^{2},\sum_{i\geq 2}x_{i}\zeta_{i}) . This
implies that

C_{13}(\nu)D_{f}(\nu)(G\iota^{*}F_{0}(x_{1}^{11}x_{2}^{2}, x_{1}^{2}x_{2}^{3}))_{Q_{14,4}}

+B_{13}(\nu)E_{5}(\nu)(G\iota^{*}F_{0}(x_{1}^{12}x_{2}, x_{1}x_{2}^{4}))_{Q_{14,4}}=0

for all \nu=(\nu_{2}, \cdots, \nu_{n+1})\in C^{n} satisfying \sum_{i=2}^{n+1}\nu_{i}^{2}=0 . Lemma 5. 10 stated later
shows that

(G\iota^{*}F_{0}(x_{1}^{11}x_{2}^{2}, x_{1}^{2}x_{2}^{3}))_{Q_{14,4}}=c(G\iota^{*}(x_{1}^{13}x_{2}\zeta_{2}^{4}))_{Q_{14,4}} ,

(G\iota^{*}F_{0}(x_{1}^{12}x_{2}, x_{1}x_{2}^{4}))_{Q_{14,4}}=c’(G\iota^{*}(x_{1}^{13}x_{2}\zeta_{2}^{4}))_{Q_{14,4}}

for some non-zero constants c and c’ . Since (G\iota^{*}(x_{1}^{13}x_{2}\zeta_{2}^{4}))_{Q_{14.4}} , does not
vanish by Lemma 3. 9, it follows that
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cC_{13}D_{5}+dB_{13}E_{5}

belongs to the ideal ( \sum_{i\geq 2}x_{i}^{2}) . But the degree of this polynomial in the variable

x_{n+1} being at most 1, it must be zero. Since E_{f} is a constant multiple of
C_{13}^{2}, it therefore follows that D_{5} is a constant multiple of B_{13}C_{13} .

Fix an integer m(6\leq m\leq 8) and assume that

G \iota^{*}F(f,f)\equiv\sum_{i=4}^{m}G\iota^{*}R_{2i}+G\iota^{*}(x_{1}^{2m-8}v_{m+1}(x)\zeta_{1}^{4}) mod G(\mathscr{F}^{2})

for some v_{m+1}\in R[X_{2}^{ },\cdots, X_{n+1}]_{4} , and that C_{2i-b} and g_{i-b} are constant multiples
of C_{13} and B_{13} respectively for all i satisfying m+1\leq i\leq 9 . By Corollary 5. 5
we see that

G\iota^{*}R_{2m}\equiv 2G\iota^{*}F^{1}(C_{2m-5}x_{1}^{2m-7}, E_{b}x_{1})+2G\iota^{*}F^{1}(C_{2m-5}x_{1}^{2m-7}, D_{b}x_{1}^{2})

+2G\iota^{*}F^{1}(B_{2m-5}x_{1}^{2m-6}, E_{f}x_{1})+2G\iota^{*}F^{3}(C_{2m-3}x_{1}^{2m-b}, E_{f}xJ

+2G\iota^{*}F^{3}(C_{2m-3}x_{1}^{2m-5}, D_{5}x_{1}^{2})+2G\iota^{*}F^{3}(B_{2m-3}x_{1}^{2m-4}, E_{f}x_{1})

+G\iota^{*}(x_{1}^{2m-8}w_{m}(x)\zeta_{1}^{4}) mod G(\mathscr{F}^{2})

for some w_{m}\in R[X_{2}^{ },\cdots, X_{n+1}]_{4} . We have

G \iota^{*}F^{3}(u_{1}, u_{2})\equiv\int_{0}^{\pi}(\sin t)^{f}dtG\iota^{*}(\frac{\partial u_{1}}{\partial x_{1}}\frac{\partial u_{2}(\zeta)}{\partial\zeta_{1}}) mod G(\mathscr{F}^{2})

for u_{1}\in R[x]_{2m-3} and u_{2}\in R[x]_{5} , and d_{0}^{m-3,2}= \int_{0}^{\pi}(\sin t)^{5}dt . Put

X’=-2(2m-3)d_{0}^{m-3,2}G( \sum_{i=0}^{2}a_{i}^{m-3}F_{i}(C_{2m-b}x_{1}^{2\tau n-7}, E_{f}x_{1}))

+2(2m-5)d_{0}^{m-3,2}G( \sum_{i=0}^{2}a_{i}^{m-3}(\sum_{j}x_{j}\frac{\partial}{\partial\zeta_{f}})^{2i}x_{1}^{2m-6}C_{2m-3}(x)E_{f}(\zeta)) ,

Y=-2(2m-3)d_{0}^{m-3,2}G( \sum_{i=0}^{2}a_{i}^{m-3}F_{i}(C_{2m-b}x_{1}^{2m-7}, D_{5}x_{1}^{2}))

-2 (2m-3)d_{0}^{m-3,2}G( \sum_{i=0}^{2}a_{i}^{m-3}F_{i}(B_{2m-5}x_{1}^{2m-6}, E_{f}xJ)

+4(2m-5)d_{0}^{m-3,2}G( \sum_{i=0}^{2}a_{i}^{m-3}(\sum_{j}x_{j}\frac{\partial}{\partial\zeta_{j}})^{2i}x_{1}^{2m-6}C_{2m-3}(x)\zeta_{1}D_{f}(\zeta))

+2(2m-4)d_{0}^{m-3,2}G( \sum_{i=0}^{2}a_{i}^{m-3}(\sum_{j}x_{j}\frac{\partial}{\partial\zeta_{J}})^{2i}x_{1}^{2m-b}B_{2m-3}(x)E_{5}(\zeta)) ,

Z=G( \sum_{i=0}^{2}a_{i}^{m-3}(\sum_{j}x_{j}\frac{\partial}{\partial\zeta_{j}})^{2i}x_{1}^{2m-8}w_{m}(x)\zeta_{1}^{4}) ,

W’=G( \sum_{i=0}^{2}a_{i}^{m-3}(\sum_{j}x_{j}\frac{\partial}{\partial\zeta_{j}})^{2i}x_{1}^{2m-8}v_{m+1}(x)\zeta_{1}^{4}) .
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Then G\iota^{*}R_{\eta}.m\equiv\iota^{*}(X’+Y’+Z’) mod G(\mathscr{F}^{2}) . Moreover,

0=(G\iota^{*}F(f,f))_{Q_{zm-4,4}}=(G\iota^{*}R_{2m}+G\iota^{*}(x_{1}^{2m-8}v_{m+1}(x)\zeta_{1}^{4}))_{Q_{2m\sim 4,4}}

=(\iota^{*}(X+Y’+Z+W’))_{G(Q_{2m})}

Remarking the degrees in the variables (X_{2}^{ },\cdots, x_{n+1}, \zeta_{2}, \cdots, \zeta_{n+1}) , we see that
X’+Z+W’ and Y’ belong to the ideal ( \sum_{i}x_{i}^{2}, \sum_{i}\zeta_{i}^{2}, \sum_{i}x_{i}\zeta_{i}) . Hence as
before, we have \iota^{*}Y’\in G(\mathscr{F}^{2}) and

\iota^{*}(X’+Z’+W’)\equiv G\iota^{*}(x_{1}^{2m-6}v_{?n}(x)\zeta_{1}^{4}) mod G(\mathscr{F}^{2})

for some v_{m}\in R[X_{2}^{ },\cdots, X_{n+1}]_{4} . From these it follows that

G \iota^{*}F(f,f)\equiv\sum_{i=4}^{m-1}G\iota^{*}R_{2i}+G\iota^{*}(x_{1}^{2m-10}v_{m}(x)\zeta_{1}^{4}) mod G(\mathscr{F}^{2})1

Moreover we see that X’ and Y’ belong to the ideal ( \sum_{i\geq 2}x_{i}^{2},\sum_{i\geq 2}\zeta_{i}^{2},\sum_{i\geq 2}x_{i}\zeta_{i}) .
This implies that

-(2m-3)C_{2m-b}(\nu)E_{5}(\nu)(.G\iota^{*}F_{0}(x_{1}^{2m-7}x_{2}^{2}, x_{1}x_{2}^{4}))_{Q_{2m-4,4}}

+(2m-5)C_{2m-3}(\nu)E_{5}(\nu)(G\iota^{*}(x_{1}^{2m-6}x_{2}^{2}\zeta_{2}^{4}))_{Q_{zm-4,4}}=0 .

-(2m-3)C_{2m-5}(\nu)D_{5}(\nu)(G\iota^{*}F_{0}(x_{1}^{2m-7}x_{2}^{2}, x_{1}^{2}x_{2}^{3}))_{Q_{zm-4,4}}

-(2m-3)B_{2m-b}(\nu)E_{5}(\nu)(G\iota^{*}F_{0}(x_{1}^{2m-6}x_{2}, x_{1}x_{2}^{4}))_{Q_{zm-,4}}

‘

+2(2m-5)C_{2m-3}(\nu)D_{5}(\nu)(G\iota^{*}(x_{1}^{2m-6}x_{2}^{2}\zeta_{1}\zeta_{2}^{3}))_{Q_{2m-4,4}}

+(2m-4)B_{2m-3}(\nu)E_{5}(\nu)(G\iota^{*}(x_{1}^{2m-5}x_{2}\zeta_{2}^{4}))_{Q_{2m-4,4}}=0

for all \nu=(\nu_{2}, \cdots , \nu_{n+}J\in C^{n} with \sum_{i=1}^{n+1}\nu_{i}^{2}=0 . By Lemma 5. 10 stated later,
(G\iota^{*}F_{0}(x_{1}^{2?n-7}x_{2}^{2}, x_{1}^{2}x_{2}^{3}))_{Q_{2m-4,4}} is a non-zero constant multiple of

(G\iota^{*}(x_{1}^{2m-6}x_{2}^{2}\zeta_{2}^{4}))_{Q_{2m-4,4}} , and (G\iota^{*}F_{0}(x_{1}^{2m-7}x_{2}^{2}, x_{1}^{2}x_{2}^{3}))_{Q_{am-4}}, . ’

(G\iota^{*}F_{0}(x_{1}^{2m-6}x_{2}, x_{1}x_{2}^{4}))_{Q_{2m-4,4}} and (G\iota^{*}(x_{1}^{2m-6}x_{2}^{2}\zeta_{1}\zeta_{2}^{3}))_{Q_{2m-4}}, .
are non-zero constant multiples of (G\iota^{*}(x_{1}^{2m-6}x_{2}\zeta_{2}^{4}))_{Q_{zm-4,4}} . Hence there are
constants c, c’ such that

C_{2m-5}E_{b}\equiv cC_{13}E_{5} , B_{2m-5}C_{13^{2}}\equiv dB_{13}C_{13^{2}} mod ( \sum_{i\geq 2}x_{i}^{2}) .
Since the degrees of both sides of the above congruences in the variable
x_{n+1} are at most 1, it follows that
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C_{2m-5}=cC_{13} , B_{2m-5}=c’B_{13}t

Thus the assertions (i), (ii), and (iii) have been shown by induction.
Next we shall show that B_{13} and B_{5} (resp. C_{13} and C_{5}) are constant

multiples of x_{2} (resp. x_{2}^{2}), from which Proposition 5. 2 will follows. We shall
consider two cases according as B_{13} is zero or not.

I. B_{13}\neq 0 . We have already seen that the polynomial

G( \sum_{i=0}^{2}a_{i}^{6}F_{i}(C_{13}x_{1}^{11}, D_{b}x_{1}^{2}))+G(\sum_{i=0}^{2}a_{i}^{6}F_{i}B_{13}x_{1}^{12}, E_{5}xJ)

belongs to the ideal ( \sum_{i}x_{i}^{2}, \sum_{i}\zeta_{i}^{2}, \sum_{i}x_{i}\zeta_{i}) . Let ( p_{2} , \cdots , p_{n+}J and (q_{2}, \cdots , q_{n+}J

be non-zero vectors in C^{n} such that

\sum_{i=2}^{n+1}p_{i}^{2}=\sum_{i=2}^{n+1}p_{i}q_{i}=0’. 1+ \sum_{i=1}^{n+1}q_{i^{2}}=0 .

Then the subspace of C^{n+1} spanned by (0, p_{2}, \cdots, p_{n+1}) and (1, q_{2} , \cdots , q_{n+}J is
contained in S. Let

\kappa:C^{4}=\{(x_{1}, x_{2}, \zeta_{1}, \zeta_{2})\}arrow\sigma^{n+2}=\{(x, \zeta)\}

be the linear map defined by

\kappa^{*}x_{1}=x_{1} , \kappa^{*}\zeta_{1}=\zeta_{1} , \kappa^{*}x_{j}=q_{j}x_{1}+p_{j}x_{2}, \kappa^{*}\zeta_{j}=q_{j}\zeta_{1}+p_{j}\zeta_{2} (j\geq 2)\tau

Then as in \S 3 we have

c( \sum_{j-0}^{2}a_{j}^{6}F_{j}(\kappa^{*}C_{13}x_{1}^{11}, \kappa^{*}D_{5}x_{1}^{2}))+G(\sum_{j=0}^{2}a_{j}^{6}F_{j}(\kappa^{*}B_{13}x_{1}^{12}, \kappa^{*}E_{5}xJ)=0 ,

which implies that

(G\iota^{*}F_{0}(\kappa^{*}C_{13}x_{1}^{11}, \kappa^{*}D_{5}x_{1}^{2}))_{Q_{14,4}}+(G\iota^{*}F_{0}(\kappa^{*}B_{13}x_{1}^{12}, \kappa^{*}E_{5}x_{1}))_{Q_{14}}, . =01

Put

B_{13}= \sum_{i=2}^{n+1}b_{i}x_{i} , E_{5}=dC_{13^{2}} , D_{5}=d’B_{13}C_{13} (b_{i}, d, d’\in R) .

Then

\kappa^{*}C_{13}=(\sum_{j=2}^{k}\lambda_{j}q_{j^{2}})x_{1}^{2}+2(\sum_{j=2}^{k}\lambda_{j}p_{j}q_{j})x_{1}x_{2}+(\sum_{j=2}^{k}\lambda_{j}p_{j^{2}})x_{2}^{2} ,

\kappa^{*}B_{13}=(\sum_{f=2}^{n+1}b_{j}q_{f})x_{1}+(\sum_{j=2}^{n+1}b_{j}p_{j})x_{2\prime}.

and we have

(G\iota^{*}F_{0}(\kappa^{*}C_{13}x_{1}^{11}, \kappa^{*}D_{\delta}x_{1}^{2}))_{Q_{14.4}}
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=d’ \{(\sum\lambda_{j}p_{j}^{2})^{2}(\sum b_{j}p_{j})(.G\iota^{*}F_{0}(x_{1}^{11}x_{2}^{2}, x_{1}^{2}x_{2}^{3}))_{Q_{14,4}}

+2( \sum\lambda_{j}p_{j}q_{j})(\sum\lambda_{j}p_{j}^{2})(\sum b_{j}p_{j})(G\iota^{*}F_{0}(x_{1}^{12}x_{2}, x_{1}^{2}x_{2}^{3}))_{Q_{14}}

, ‘

+2(\Sigma\lambda_{j}p_{j}q_{j})(\Sigma\lambda_{j}p_{j}^{2})(\Sigma b_{j}p_{j})(G\iota^{*}F_{0}(x_{1}^{11}x_{2}^{2}, x_{1}^{3}x_{2}^{2}))_{Q_{14,\ell}}

+(\Sigma\lambda_{j}p_{j}^{2})^{2}(\Sigma b_{j}q_{j})(G\iota^{*}F_{0}(x_{1}^{11}x_{2}^{2}, x_{1}^{3}x_{2}^{2}))_{Q_{14}},‘\},\cdot

(G\iota^{*}F_{0}(\kappa^{*}B_{13}x_{1}^{12}, \kappa^{*}E_{b}xJ)_{Q_{14,4}}

=d \{(\sum\lambda_{j}p_{j^{2}})^{2}(\Sigma b_{j}p_{f})(G\iota^{*}F_{0}(x_{1}^{12}x_{2}, x_{1}x_{2}^{4}))_{Q_{14,4}}

+( \sum\lambda_{j}p_{J^{2}})^{2}(\sum b_{j}q_{j})(G\iota^{*}F_{0}(x_{1}^{13}, x_{1}x_{2}^{4}))_{Q_{14,4}}

+4( \sum\lambda_{j}p_{j^{2}})(\sum\lambda_{j}p_{j}q_{j})(\sum b_{j}p_{f})(G\iota^{*}F_{0}(x_{1}^{12}x_{2}, x_{1}^{2}x_{2}^{3}))_{Q_{1,4}}‘\}(

By Lemma 5. 10 stated later,

(G \iota^{*}F_{0}(x_{1}^{11}x_{2}^{2}, x_{1}^{2}x_{2}^{3}))_{Q_{14,4}}=\backslash -\frac{5}{26}(G\iota^{*}(x_{1}^{13}x_{2}\zeta_{2}^{4}))_{Q_{14,4}} ,

(G \iota^{*}F_{0}(x_{1}^{12}x_{2}, x_{1}x_{2}^{4}))_{Q_{1,4}}‘=\frac{5}{13}(G\iota^{*}(x_{1}^{13}x_{2}\zeta_{2}^{4}))_{Q_{14,4}},,

(G \iota^{*}F_{0}(x_{1}^{12}x_{2}, x_{1}^{2}x_{2}^{3}))_{Q_{14,4}}=-\frac{10}{13\cdot 7}(G\iota^{*}(x_{1}^{14}\zeta_{2}^{4}))_{Q_{14,4}} ,

(G \iota^{*}F_{0}(x_{1}^{11}x_{2}^{2}, x_{1}^{3}x_{2}^{2}))_{Q_{14,4}}=\frac{5}{13\cdot 14}(G\iota^{*}(x_{1}^{14}\zeta_{2}^{4}))_{Q_{14,4}}’\backslash

(G \iota^{*}F_{0}(x_{1}^{13}, x_{1}x_{2}^{4}))_{Q_{14,4}}=\frac{5}{7}(G\iota^{*}(x_{1}^{14}\zeta_{2}^{4}))_{Q_{14,4}}

Since (G\iota^{*}(x_{1}^{13}x_{2}\zeta_{2}^{4}))_{Q_{14,4}} and (G\iota^{*}(x_{1}^{14}\zeta_{2}^{4}))_{Q_{14,4}} do not vanish, we have

(-d’+2d)( \sum_{j=2}^{k}\lambda_{j}p_{j}^{2})(\sum_{j}b_{j}p_{j})=0 ,

(d’+26d)( \sum_{j=2}^{k}\lambda_{j}p_{j}^{2})^{2}(\sum_{j}b_{j}q_{j})

-(6d’+16d)( \sum_{j=2}^{k}\lambda_{j}p_{j}^{2})(\sum_{j=2}^{k}\lambda_{j}p_{j}q_{j})(\sum_{i}b_{j}p_{j})=0

Since B_{13}\neq 0 , B_{13}C_{13} does not belong to the ideal ( \sum_{i\geq 2}x_{i}^{2}) . Then there is
a vector (p_{2}, \cdots,p_{n+}j)\in C^{n} such that

\sum_{i=2}^{n+1}p_{i^{2}}=0 , ( \sum_{j=2}^{k}\lambda_{j}p_{j^{2}})(\sum_{j}b_{j}p_{f})\neq 0

It is easy to see that for such (p_{2^{ }},\cdots,p_{n+1}) there is a vector (q_{2}, \cdots , q_{n+}J\in C^{n}
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such that 1+ \sum_{i=2}^{n+1}q_{i^{2}}=0 and \sum_{i=2}^{n+1}p_{i}q_{i}=0 . Therefore it follows that

d=2d
If some b_{i}(3\leq i\leq n) does not vanish, then put p_{2}=1 , p_{n+1}=\sqrt{-1}, p_{j}=0

(3\leq j\leq n) , and q_{i}=\sqrt{-1}, q_{j}=0(j\neq i) in the above formula. Then we have
d’+26d=0, which is a contradiction because d\neq 0 . Hence

b_{i}=0 (3\leq i\leq n)

Next assume that b_{n+1} does not vanish. Take (p_{i}) and (q_{i}) as follows:
q_{n+1}=\sqrt{-1} , q_{i}=0(2\leq i\leq n) ;

p_{2}=1 , p_{n}=\sqrt{-1} , p_{i}=0(i\underline{\neq}2, n) if k<n ,

p_{2}=1 , p_{i_{0}}=\sqrt{-1}
,\cdot

p_{i}=0(i\neq 2, i_{0}) if k=n ,

where i_{0} is chosen such that \lambda_{2}\neq\lambda_{i_{0}} .
By substituting these (p_{i}) and (q_{i}) into the above formula, we have d’+26d=0,
which is again a contradiction. Hence

b_{n+1}=0 .
and B_{13} is a constant multiple of x_{2} . Moreover, if k\geq 3 , then put p_{3}=1 ,
p_{n+1}=\sqrt{-1}jp_{i}=0(i\neq 3, n+1) , and q_{2}=\sqrt{-1}, q_{i}=0(3\leq i\leq n+1) in the above
formula. Then we have d’+26d=0, which is a contradiction. Hence we
also see that C_{13} is a constant multiple of x_{2}^{2} under the assumption B_{13}\neq 0 .

Next we shall show that C_{5} is a constant multiple of x_{2}^{2} . We have
already seen that X+Z belongs to the ideal ( \sum_{i}x_{i}^{2}, \sum_{i}\zeta_{i^{2}}, \sum_{i}x_{i}\zeta_{i}) , where

X=-30d_{0}^{6,2}G( \sum_{i=0}^{2}a_{i}^{6}F_{i}(C_{13}x_{1}^{11}, E_{5}x_{1}))j

Z=G( \sum_{i=0}^{2}a_{i}^{6}(\sum_{j}x_{j}\frac{\partial}{\partial\zeta_{j}})^{2i}x_{1}^{10}w_{9}(x)\zeta_{1}^{4}) ,

and w_{9}\in R[X_{2}^{ },\cdots, X_{n+1}] is defined by the condition
2G\iota^{*}F^{1}(A_{13}x_{1}^{13}, E_{b}x_{1})+2G\iota^{*}F^{1}(B_{13}x_{1}^{12}, D_{b}x_{1}^{2})

+ \sum_{i+j=8}G\iota^{*}F^{1}(C_{2i+1}x_{1}^{2i-1}, C_{2j+1}x_{1}^{2j-1})+2G\iota^{*}F^{3}(A_{15}x_{1}^{15},
E_{5}xJ

+ \sum_{i+j=9}G\iota^{*}F^{3}(C_{2i+1}x_{1}^{2i-1}, C_{2j+1}x_{1}^{2j-1})\equiv G\iota^{*}(x_{1}^{10}w_{9}(x)\zeta_{1}^{4})

mod G(\mathscr{F}^{2}) .

In view of Corollary 5. 5 (ii) we may assume that the degree of w_{9} in the
variable x_{n+1} is at mosy 1. Remarking that



218 K. Kiyohara

(GF^{3}(C_{2i+1}x_{1}^{2i-1}, C_{2j+1}x_{1}^{2j-1}))^{\nu}=C_{2i+1}(\nu)C_{2j+1}(\nu)GF^{3}(x_{1}^{2i-1}x_{2}^{2}, x_{1}^{2j-1}x_{2}^{2}) ,

we have by Lemma 5. 6.

w_{9}(\nu)(G\iota^{*}(x_{1}^{10}x_{2}^{4}\zeta_{1}^{4}))_{Q_{14,4}}

=-30d_{0}^{6,2}C_{5}(\nu)C_{13}(\nu)(G\iota^{*}F_{0}(x_{1}^{11}x_{2}^{2}, x_{1}^{3}x_{2}^{2}))_{Q_{14.4}}

-30d_{0}^{6,2}B_{13}(\nu)D_{f}(\nu)(G\iota^{*}F_{0}(x_{1}^{12}x_{2}, x_{1}^{2}x_{2}^{3}))_{Q_{14}}

, ‘

+cC_{13}(\nu)^{2}(G\iota^{*}(x_{1}^{14}\zeta_{2}^{4}))_{Q_{14,4}} (c\in R\rangle

for all \nu=(\nu_{2}, \cdots, \nu_{n+1})\in C^{n} with \sum_{i}\nu_{i}^{2}=0 . We see from the last part of the
proof of Lemma 5. 4 that

(G \iota^{*}(x_{1}^{10}x_{2}^{4}\zeta_{1}^{4}))_{Q_{14,4}}=\frac{1}{7\cdot 11\cdot 13}(G\iota^{*}(x_{1}^{14}\zeta_{2}^{4}))_{Q_{14,4}} ,

and from Lemma 5. 10 stated leater that

-30d_{0}^{6,2}(’G \iota^{*}F_{0}(x_{1}^{11}x_{2}^{2}, x_{1}^{3}x_{2}^{2}))_{Q_{14,4}}=-\frac{3\cdot 25}{7\cdot 13}d_{0}^{6,2}(G\iota^{*}(x_{1}^{14}\zeta_{2}^{4}))_{Q_{14,4}}

and (G\iota^{*}F_{0}(x_{1}^{12}x_{2}, x_{1}^{2}x_{2}^{3}))_{Q_{14,4}} is a constant multiple of (G\iota^{*}(x_{1}^{14}\zeta_{2}^{4}))_{Q_{14,4}} . Hence
there are constants c_{j}’c’\in R such that

w_{9}\equiv-3\cdot 25\cdot 11d_{0}^{6,2}C_{5}C_{13}+c’B_{13}D_{5}+d’C_{13^{2}} mod ( \sum_{i\geq 2}x_{i}^{2})

On the other hand, we have already seen in the part II of the proof of
Proposition 4. 5 that (G\iota^{*}F_{0}(x_{1}^{11}x_{2}^{2}, x_{1}x_{2}^{4}))_{Q_{14,4}}=0 . Since C_{13} and E_{5} are con-
stant multiples of x_{2}^{2} and x_{2}^{4} respectively in the present case, it follows that
X=0. Hence z \in(\sum_{i}x_{i}^{2}, \sum_{i}\zeta_{i}^{2}, \sum_{i}x_{i}\zeta_{i}) , and (G\iota^{*}(x_{1}^{10}w_{9}(x)\zeta_{1}^{4}))_{Q_{14,4}}=0 . Then
by Lemma 5. 6 we have

w_{9}(\nu)(G\iota^{*}(x_{1}^{10}x_{2}^{4}\zeta_{1}^{4}))_{Q_{1\cdot,4}}=0

for all \nu=\nu_{2}, \cdots , \nu_{n+1}) \in C^{n} with \sum_{i}\nu_{i}^{2}=0 . Since (G\iota^{*}(x_{1}^{10}x_{2}^{4}\zeta_{1}^{4}))_{Q_{14,4}} does not
vanish and the degree of w_{9} in the variable x_{n+1} is at most 1, it follows
that w_{9}=0 . This shows that C_{5} is a constant multiple of x_{2}^{2} .

Next we shall show that B_{5} is a constant multiple of x_{2} . We have
already shown that there is v_{6}\in R[X_{2}^{ },\cdots, X_{n+1}]_{4} such that

G \iota^{*}F(f,f)\equiv\sum_{j=4}^{5}G\iota^{*}R_{2j}+G\iota^{*}(x_{1}^{2}v_{6}(x)\zeta_{1}^{4}) mod G(\mathscr{F}^{2}) .

This implies that
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0=(G\iota^{*}R_{10})_{Q_{6,4}}+(G\iota^{*}(x_{1}^{2}v_{6}(x)\zeta_{1}^{4}))_{Q_{6,4}} .

Remark that in the present case G\iota^{*}(E_{5}x_{1}, D_{5}x_{1}^{2})\in G(\mathscr{F}^{2}) by Corollary 5. 5
(i). By taking the parts of odd degree in the variables (x_{2}, \cdots , x_{n+1}, \zeta_{2}, \cdots ,
\zeta_{n+1}) , we then have

-7d_{0}^{2,2}\{G\iota^{*}F_{0}(E_{5}x_{1}, B_{b}x_{1}^{4}))_{Q_{6,4}}+(G\iota^{*}F_{0}(D_{6}x_{1}^{2}, C_{b}x_{1}^{3}))_{Q_{6,4}}\}

+(G\iota^{*}F^{3}(B_{7}x_{1}^{6}, E_{5}xJ)_{Q_{6,4}}+(G\iota^{*}F^{3}(C_{7}x_{1}^{5}, D_{5}x_{1}^{2}))_{Q_{6,4}}=0 .
By Lemma 5. 10 stated later there are non-zero constants b_{i}(1\leq i\leq 4) such
that

\{b_{1}E_{5}(v)B_{5}(v)+b_{2}D_{b}(\nu)C_{5}(\nu)+b_{3}B_{7}(\nu)E_{5}(\nu)+b_{4}C_{7}(\nu)D_{5}(\nu)\}

\cross(G\iota^{*}(x_{1}^{5}x_{2}\zeta_{2}^{4}))_{Q_{6,4}}=0

Since (G\iota^{*}(x_{1}^{5}x_{2}\zeta_{2}^{4}))_{Q_{6,4}}\neq 0 and the degree of B_{5} in the variable x_{n+1} is at
most 1, it follows that B_{5} is a constant multiple of x_{2} .

II. B_{13}=0 . In this case we have X+Z \in(\sum_{i}x_{i}^{2}, \sum_{i}\zeta_{i}^{2}, \sum_{i}x_{i}\zeta_{i}) , X and
Z being as in I, and

w_{9}=-3\cdot 25\cdot 11d_{0}^{6,2}C_{5}C_{13}+d’C_{13^{2}} , d’\in R .
By considering the homogeneity in the variables (x_{2} , \cdots , x_{n+1} , \zeta_{2}, \cdots , \zeta_{n+}J , we
also have X \in(\sum_{i\geq 2}x_{i}^{2},\sum_{i\geq 2}\zeta_{i}^{2},\sum_{i\geq 2}x_{i}\zeta_{i}) . First assume that k \leq n-1(C_{13}=\sum_{i=2}^{k}\lambda_{i}x_{i}^{2}) .
Then X does not contain the variables (x_{n}, x_{n+1}, \zeta_{n}, \zeta_{n+1}) . Since for each
(x_{2} , \cdots , x_{n-1} , \zeta_{2} , \cdots , \zeta_{n-}J\in C^{2n-4} we can choose (x_{n}, x_{n+1}, \zeta_{n}, \zeta_{n+1})\in C^{4} such that
\sum_{i\geq 2}x_{i}^{2}=\sum_{i\geq 2}\zeta_{i}^{2}=\sum_{i\geq 2}x_{i}\zeta_{i}=0 , it follows that X=0. Next assume that k=n and
n\geq 4 . Then, since X does not contain the variables (x_{n+1} , \zeta_{n+}J , we have

X \in(i-\sum_{-2}^{n}x_{i}^{2}\sum_{i=2}^{n}\zeta_{i2}-(\sum_{i=2}^{n}x_{i}\zeta_{i})^{2})

by Lemma 5. 3. Put \mu=\sum_{i=2}^{n}x_{i}^{2}, and consider the following polynomial;

X_{0}=G( \sum_{i=0}^{2}a_{i}^{6}F_{i}(\mu x_{1}^{11}, \mu^{2}x_{1})) .

We have seen that (G\iota^{*}F_{0}(x_{1}x_{n+1}, x_{1}x_{n+1})1124)_{Q_{14,4}}=0 . By substituting 1-x_{1}^{2}-\mu

for x_{n+1}^{2} we have

(G\iota^{*}F_{0}(x_{1}^{11}\mu, x_{1}\mu^{2}))_{Q_{14,4}}+(G\iota^{*}F_{0}(x_{1}^{13}, x_{1}\mu^{2}))_{Q_{14,4}}

+2 (G\iota^{*}F_{0}(x_{1}^{11}\mu, x_{1}^{3}\mu))_{Q_{14,4}}=0 .
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This implies that X_{0} \in(\sum_{i\geq 2}x_{i}^{2},\sum_{i\geq 2}\zeta_{i}^{2},\sum_{i\geq 2}x_{i}\zeta_{i}) , and hence

X_{0} \in(\sum_{i=2}^{n}x_{i}^{2}\sum_{i=2}^{n}\zeta_{i}^{2}-(’\sum_{i=2}^{n}x_{i}\zeta_{i})^{2})

Note that C_{13} is the image of \mu under the transformation x_{i}arrow\sqrt{\lambda_{i}}x_{i}\langle 2\leq i\leq n) ,
x_{1}arrow x_{1} , x_{n+1}arrow x_{n+1} . Since this transformation commutes with the operators

G and \sum_{i}x_{i}\frac{\partial}{\partial\zeta_{i}} , it follows that

X \in(\sum_{i=2}^{n}\lambda_{i}x_{i}^{2}\sum_{i=2}^{n}\lambda_{i}\zeta_{i}^{2}-(\sum_{i=2}^{n}\lambda_{i}x_{i}\zeta_{i})^{2})

Since n\geq 4 , the polynomials \sum_{i=2}^{n}x_{i}^{2}\sum_{i=2}^{n}\zeta_{i}^{2}-(\sum_{i=2}^{n}x_{i}\zeta_{i})^{2} and \sum_{i=2}^{n}\lambda_{i}x_{i}^{2}\sum_{i=2}^{n}\lambda_{i}\zeta_{i}^{2}-(\sum_{i=2}^{n}\lambda_{i}x_{i}\zeta_{i})^{2}

are irreducible and mutually prime. Hence X must be divided by their
product. But since \deg_{2}X=6 , it follows that X=0.

Now we assume that X=0 and k\geq 3 . Then an explicit computation
shows that the coefficient of x_{1}^{12}x_{2}^{2}\zeta_{3}^{4} in the polynomial X is, putting I_{a,b}’=

\frac{1}{2\pi}\int_{0}^{2\pi} {cos t)^{2a} (sin t)^{2b}dt and E_{5}=d_{1}C_{13}^{2},

-30d_{1}d_{0}^{6,2}\lambda_{2}\lambda_{3}^{2}\{(I_{9,0}’-4I_{8,1}’+6I_{7,2}’-4I_{6.3}’)+a_{1}^{6}(48I_{8,1}’-96I_{7,2}’+36I_{6,3}’)

+a_{2}^{6}\cdot 360I_{7,2}’\}

=-30d_{1}d_{0}^{6,2} \lambda_{2}\lambda_{3}^{2}\cross(-\frac{5979}{5\cdot 13^{2}\cdot 17})I_{9,0}’ ,

which is not zero. This is a contradiction. Hence C_{13} is a constant multiple
of x_{2}^{2} if X=0. Moreover that X=0 implies that Z \in(\sum_{i\geq 2}x_{i}^{2},\sum_{i\geq 2}\zeta_{i}^{2},\sum_{i\geq 2}x_{i}\zeta_{i}) ,

and we see that C_{5} is a constant multiple of x_{2}^{2} as in the case I. For B_{b}

we can also use the argument in I, from which that B_{b}=0 is easily deduced.
It remains to consider the case where n=3 and k=3. We shall compute

C_{5} in two ways, and show a contradiction. Let X, Z, and X_{0} be as above.
A direct cqnputation shows that

X_{0}=44G(_{\backslash }x_{1}^{10}(x_{2}^{2}+x_{3}^{2})\zeta_{1}^{2}+2a_{1}^{6}x_{1}^{12}(x_{2}^{2}+x_{3}^{2}))(x_{2}\zeta_{3}-x_{3}\zeta_{2})^{2} .

Put

W=-30d_{0}^{6,2}d_{1}\cross 44\lambda_{2}\lambda_{3}G(x_{1}^{10}(\lambda_{2}x_{2}^{3}+\lambda_{S}x_{3}^{2})\zeta_{1}^{2}+2a_{1}^{6}x_{1}^{12}(\lambda_{2}x_{2}^{2}+\lambda_{3}x_{3}^{2})) ,

where d_{1}=E_{5}/C_{13^{2}} and C_{13}=\lambda_{2}x_{2}^{2}+\lambda_{3}x_{3}^{2} . Then

X=W(x_{2}\zeta_{3}-x_{2}\zeta_{2})^{2} .
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Since X+Z \in(\sum_{i}x_{i}^{2}, \sum_{i}\zeta_{i}^{2}, \sum_{i}x_{i}\zeta_{i}) , we can write

X+Z= \sum_{i}x_{i}^{2}\sum_{j0}^{2}H_{1^{J}}^{2}+\sum_{i}\zeta_{i}^{2}\sum_{j0}^{2}H_{2}^{2j}+\sum_{i}x_{i}\zeta_{i}\sum_{j0}^{2}H_{a^{j}}^{2}

where H_{i}^{o}\sim j are homogeneous in both variables (x_{1}, \zeta_{1}) and (x_{2}, \cdots, x_{4}, \zeta_{2}, \cdots, \zeta_{4})

deg H_{i}^{2j}=16 , \deg_{2}H_{i}^{2j}=2j . By comparing both sides we have

X= \sum_{i\geq 2}x_{i}^{2}H_{1}^{4}+ \sum_{i\geq\cap\angle},\zeta_{i}^{2}H_{2}^{4}+\sum_{i\geq 2}x_{i}\zeta_{i}H_{3}^{4} ,

Z=x_{1}^{2}H_{1}^{4}+ \zeta_{1}^{2}H_{2}^{4}+x_{1}\zeta_{1}H_{3}^{4}+\sum_{i\geq 2}x_{i}^{2}H_{1}^{2}+\sum_{i\geq 2}\zeta_{i}^{2}H_{2}^{2}+\sum_{i\geq 2}x_{i}\zeta_{i}H_{3}^{o}b .

Since

(x_{2} \zeta_{2}-x_{3}\zeta_{2})^{2}=\frac{1}{2}(\zeta_{2}^{2}+\zeta_{3}^{2}-\zeta_{4}^{2})(x_{2}^{2}+x_{3}^{2}+x_{4}^{2})

+ \frac{1}{2}(x_{2}^{2}+x_{3}^{2}-x_{4}^{2})(\zeta_{2}^{2}+\zeta_{3}^{2}+\zeta_{4}^{2})

-(x_{2}\zeta_{2}+x_{3}\zeta_{3}-x_{4}\zeta_{4})(x_{2}\zeta_{2}+x_{3}\zeta_{3}+x_{4}\zeta_{4})j

it follows that

(H_{1}^{4}- \frac{1}{2}((\zeta_{2}^{2}+\zeta_{3}^{2}-\zeta_{4}^{2})W)\sum_{i=2}^{4}x_{i}^{2}+(H_{2}^{4}-\frac{1}{2}(x_{2}^{2}+x_{3}^{2}-x_{4}^{2})W)\sum_{i=2}^{4}\zeta_{i}^{2}

+(H_{3}^{4}+(x_{2} \zeta_{2}+x_{3}\zeta_{3}-x_{4}\zeta_{4})W)\sum_{i=2}^{4}x_{i}\zeta_{i}=0 .

This implies that the polynomials H_{1}^{4}-(\zeta_{2}^{2}+\zeta_{3}^{2})W, H_{2}^{4}-(x_{2}^{2}+x_{3}^{2})W, and
H_{3}^{4}+2(x_{2}\zeta_{2}+x_{3}\zeta_{3})W belong to the ideal ( \sum_{i=2}^{4}x_{i}^{2},\sum_{i=2}^{4}\zeta_{i}^{2},\sum_{i-2}^{4}x_{i}\zeta_{i}) . Hence we
have

Z\equiv\{x_{1}^{2}(\zeta_{2}^{2}+\zeta_{3}^{2})+\zeta_{1}^{2}(x_{2}^{2}+x_{3}^{2})-2x_{1}\zeta_{1}(x_{2}\zeta_{2}+x_{3}\zeta_{3})\}W

mod ( \sum_{i=2}^{4}x_{i}^{2},\sum_{i=2}^{4}\zeta_{i}^{2},\sum_{i=2}^{4}x_{i}\zeta_{i}) ,

which implies that
Z^{\nu}=(\nu_{2}^{2}+\nu_{3}^{2})(x_{1}\zeta_{2}-x_{2}\zeta_{1})^{2}W^{\nu}

for all \nu=(\nu_{2}, \nu_{3}, \nu_{4})\in C^{3} with \sum_{i=2}^{4}\nu_{i}^{2}=0 . We see that

W^{\nu}=-30d_{0}^{6,2}d_{1}\cross 44\lambda_{2}\lambda_{3}(\lambda_{2}\nu_{2}^{2}+\lambda_{3}\nu_{3}^{2})G(x_{1}^{10}x_{2}^{2}\zeta_{1}^{2}+2a_{1}^{6}x_{1}^{12}x_{2}^{2}) ,

Z^{\nu}=w_{9}(\nu)G(x_{1}^{10}x_{2}^{4}\zeta_{1}^{4}+12a_{1}^{6}x_{1}^{12}x_{2}^{4}\zeta_{1}^{2}+24a_{2}^{6}x_{1}^{14}x_{2}^{4})

Moreover an easy computation shows that
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\tilde{G}(x_{1}^{10}x_{2}^{2}\zeta_{1}^{2}+2a_{1}^{6}x_{1}^{12}x_{2}^{2})(x_{1}\zeta_{2}-x_{2}\zeta_{1})^{2}

= \frac{35}{2}\tilde{G}(x_{1}^{10}x_{2}^{4}\zeta_{1}^{4}+12a_{1}^{6}x_{1}^{12}x_{2}^{4}\zeta_{1}^{2}+24a_{2}x_{1}^{14}x_{2}^{4})6

Hence we have

w_{9}( \nu)=-30\cdot 44\cdot\frac{35}{2}d_{0}^{6,2}d_{1}\lambda_{2}\lambda_{3}(\lambda_{2}\nu_{2}^{2}+\lambda_{3}\nu_{3}^{2})(\nu_{2}^{2}+\nu_{3}^{2})
[

Since the degree of w_{9} in the variable x_{4} is at most one, it follows that

w_{9}(x)=-30 \cdot 44\cdot\frac{35}{2}d_{0}^{6,2}d_{1}\lambda_{2}\lambda_{3}(\lambda_{2}x_{2}^{2}+\lambda_{3}x_{3}^{2})(x_{2}^{2}+x_{3}^{2})

On the other hand we have already seen that
w_{9}=-3\cdot 25\cdot 11d_{0}^{6,2}C_{5}C_{13}+c^{\acute{\prime}}C_{13^{2}} , c’\in R .

Hence it follows that
C_{5}=28d_{1}\lambda_{2}\lambda_{3}(x_{2}^{2}+x_{3}^{2})+eC_{13} , e\in R

Next we shall consider Q_{6,4}-component. We have already seen that there
is a polynomial v_{6}\in R[x_{2}, x_{3}, x_{4}]_{4} such that

G\iota^{*}F(f,f)\equiv G\iota^{*}R_{10}+G\iota^{*}R_{8}+G\iota^{*}(x_{1}^{2}v_{6}(x)\zeta_{1}^{4}) mod G(\mathscr{F}^{2})

Then we have

(G\iota^{*}R_{10})_{Q_{6,4}}+(G\iota^{*}(x_{1}^{2}v_{6}(x)\zeta_{1}^{4}))_{Q_{6,4}}=0 .

This implies that

(G\iota^{*}F^{1}(E_{b}x_{1}, E_{6}x_{1}))_{Q_{\delta,4}}+2(G\iota^{*}F^{1}(C_{5}x_{1}^{3}, E_{b}x_{1}))_{Q_{6,4}}

+2(G\iota^{*}F^{3}(C_{7}x_{1}^{b}, E_{b}xJ)_{Q_{6,4}}+(G\iota^{*}(x_{1}^{2}w_{b}(x)\zeta_{1}^{4}))_{Q_{6.4}}=0

for some w_{b}\in R[x_{2}, x_{3}, x_{4}]_{4} , and

(G\iota^{*}F^{1}(B_{b}x_{1}^{4}, E_{5}xJ)_{Q_{6,4}}=0

Put

S=-7d_{0}^{2,2}G( \sum_{i=0}^{2}a_{i}^{2}F_{i}(E_{5}x_{1}, E_{5}xJ) ,

T=-14d_{0}^{2,2}G( \sum_{i=0}^{2}a_{i}^{2}F_{i}(C_{g}x_{1}^{3}, E_{5}x_{1}))

+10d_{0}^{2,2}G( \sum_{i=0}^{2}a_{i}^{2}(\sum_{j}x_{j}\frac{\partial}{\partial\zeta_{f}^{2}})^{2i}x_{1}^{4}C_{7}(x)E_{5}(\zeta)

:
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U=G(x_{1}^{2}w_{5}(x)\zeta_{1}^{4}+12a_{1}^{2}x_{1}^{4}w_{5}(x)\zeta_{1}^{2}+24a_{2}^{2}x_{1}^{6}w_{5}(x))

Then there are homogeneous polynomials H_{i}\in R[x, \zeta]_{8}(i=1,2,3) with
\deg_{2}H_{i}\leq 6 such that

S+T+U= \sum_{i}x_{i}^{2}H_{1}+\sum_{i}\zeta_{i}^{2}H_{2}+\sum_{i}x_{i}\zeta_{i}H_{3} .

Let H_{i}^{j} be the homogeneous part of H_{i} of degree j in the variables (x_{2}, \cdots , x_{4} ,
\zeta_{2}, \cdots , \zeta_{4}) . Then we have

S= \sum_{i=2}^{4}x_{i}^{2}H_{1}^{6}+\sum_{i=2}^{4}\zeta_{i}^{2}H_{2}^{6}+\sum_{i=2}^{4}x_{i}\zeta_{i}H_{3}^{6} ,

T=x_{1}^{2}H_{1}^{6}+ \zeta_{1}^{2}H_{2}^{6}+x_{1}\zeta_{1}H_{3}^{6}+\sum_{i=2}^{4}x_{i}^{2}H_{1}^{4}+\sum_{i=2}^{4}\zeta_{i}^{2}H_{2}^{4}+\sum_{i\simeq 2}^{4}x_{i}\zeta_{i}H_{3}^{4} .

Now consider the following polynomial ;

S_{0}=G( \sum_{i=0}^{2}a_{i}^{2}F_{i}(x_{1}\mu^{2}, x_{1}\mu^{2})) ,

where \mu=x_{2}^{2}+x_{3}^{2} . A direct computation shows that

S_{0}=- \frac{8}{35}G(x_{1}^{2}(x_{2}^{2}+x_{3}^{2})(\zeta_{2}^{2}+\zeta_{3}^{2})+9x_{1}^{2}(x_{2}\zeta_{2}+x_{3}\zeta j^{2}-2x_{1}^{2}(x_{2}^{2}+x_{3}^{2})^{2})

\cross(x_{2}\zeta_{3}-x_{3}\zeta_{2})^{2} .
Hence, by putting

V= \frac{8}{5}d_{0}^{2,2}d_{1}^{2}\lambda_{2}\lambda_{3}G(x_{1}^{2}(\lambda_{2}x_{2}^{2}+\lambda_{3}x_{3}^{2})(\lambda_{2}\zeta_{2}^{2}+\lambda_{3}\zeta_{3}^{2}))

+9x_{1}^{2}(\lambda_{2}x_{2}\zeta_{2}+\lambda_{3}x_{3}\zeta_{3})^{2}-2x_{1}^{2}(\lambda_{2}x_{2}^{2}+\lambda_{3}x_{3}^{2})^{2}) ,

we have
S=(x_{2}\zeta_{3}-x_{3}\zeta_{2})^{2}V_{:}

where d_{1}=E_{\delta}/(\lambda_{2}x_{2}^{2}+\lambda_{3}x_{3}^{2})^{2} . Then a similar argument as before shows that

T\equiv\{x_{1}^{2}(\zeta_{2}^{2}+\zeta_{3}^{2})+\zeta_{1}^{2}(x_{2}^{2}+x_{3}^{2})-2x_{1}\zeta_{1}(x_{2}\zeta_{2}+x_{3}\zeta_{3})\}V

mod ( \sum_{i=2}^{4}x_{i}^{2},\sum_{i=2}^{4}\zeta_{i}^{2},\sum_{i=2}^{4}x_{i}\zeta_{i}) :

and T^{\nu}=(\nu_{2}^{2}+\nu_{3}^{2})(x_{1}\zeta_{2}-x_{2}\zeta J^{2}V^{\nu} for all \nu=(\nu_{2}, \nu_{3}, \nu_{4})\in C^{3} with \sum_{i=2}^{4}\nu_{i}^{2}=0 . We
have

V^{\nu}= \frac{8}{5}d_{0}^{2,2}d_{1}^{2}\lambda_{2}\lambda_{3}(\lambda_{2}\nu_{2}^{2}+\lambda_{3}\nu_{3}^{2})^{2}G(10x_{1}^{2}x_{2}^{2}\zeta_{2}^{2}-2x_{1}^{2}x_{2}^{4}) ,
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T^{\nu}=-14d_{0}^{2,2}C_{b}( \nu)E_{b}(\nu)G(\sum_{i=0}^{2}a_{i}^{2}F_{i}(x_{1}^{3}x_{2}^{2}, x_{1}x_{2}^{4}))

+10d_{0}^{2,2}C_{7}(\nu)E_{b}(\nu)G(x_{1}^{4}x_{2}^{2}\zeta_{2}^{4}+12a_{1}^{2}x_{1}^{4}x_{2}^{4}\zeta_{2}^{2}+24a_{2}^{2}x_{1}^{4}x_{2}^{6})\iota

By Lemma 5. 10 stated later we see that

(G\iota^{*}F_{0}(x_{1}^{3}x_{2}^{2}, x_{1}x_{2}^{4}))_{Q_{*,4}}=-2(G\iota^{*}(x_{1}^{4}x_{2}^{2}\zeta_{2}^{4}))_{Q}., .
From this it follows that

G( \sum_{t=0}^{2}a_{i}^{2}F_{i}(x_{1}^{3}x_{2}^{2}, x_{1}x_{2}^{4}))

=-2G(x_{1}^{4}x_{2}^{2}\zeta_{2}^{4}+12a_{1}^{2}x_{1}^{4}x_{2}^{4}\zeta_{2}^{2}+24a_{2}^{2}x_{1}^{4}x_{2}^{6})

Hence

T^{\nu}=(28C_{b}(\nu)+10C_{7}(\nu))d_{0}^{2,2}E_{f}(\nu)G(x_{1}^{4}x_{2}^{2}\zeta_{2}^{4}+12a_{2}^{2}x_{1}^{4}x_{2}^{4}\zeta_{2}^{2}+24a_{2}^{2}x_{1}^{4}x_{2}^{0})1

Moreover a direct a direct computation shows that
G(10x_{1}^{2}x_{2}^{2}\zeta_{2}^{2}-2x_{1}^{2}x_{2}^{4})(x_{1}\zeta_{2}-x_{2}\zeta_{1})^{2}

=35G(x_{1}^{4}x_{2}^{2}\zeta_{2}^{4}+12a_{1}^{2}x_{1}^{4}x_{2}^{4}\zeta_{2}^{2}+24a_{2}^{2}x_{1}^{4}x_{2}^{6}) .
Since

(\iota^{*}G(x_{1}^{4}x_{2}^{2}\zeta_{2}^{4}+12a_{1}^{2}x_{1}^{4}x_{2}^{4}\zeta_{2}^{2}+24a_{2}^{2}x_{1}^{4}x_{2}^{6}))_{G(Q_{10})}=(G\iota^{*}(x_{1}^{4}x_{2}^{2}\zeta_{2}^{4}))_{Q}\cdot,4 ,

it does not vanish by Lemma 3. 9. Thus we have

(28C_{b}(\nu)+10C_{7}(\nu))(\lambda_{2}\nu_{2}^{2}+\lambda_{3}\nu_{3}^{2})^{2}=56d_{1}\lambda_{2}\lambda_{3}(\nu_{2}^{2}+\nu_{3}^{2})(\lambda_{2}\nu_{2}^{2}+\lambda_{3}\nu_{3}^{2})^{2}

for all \nu=(\nu_{2}, \nu_{3}, \nu_{4})\in C^{3} with \sum_{i=2}^{4}\nu_{i}^{2}=0 . Since the ideal ( \sum_{i=2}^{4}x_{i}^{2}) is prime, it
follows that

C_{b}=2d_{1} \lambda_{2}\lambda_{S}(x_{2}^{2}+x_{3}^{2})-\frac{5}{14}C_{7} .

But we have already seen that C_{5}=28d_{1}\lambda_{2}\lambda_{3}(x_{2}^{2}+x_{3}^{2})+eC_{13}, e\in R . Since C_{7}

is a constant multiple of C_{13} , and since x_{2}^{2}+x_{3}^{2} and C_{13} are mutually prime,
it is a contradiction.

This concludes the proof of Proposition 5. 2.
Now we shall prove the following proposition, which will complete the

proof of Theorem 4. 1.

PROPOSITION 5. 7. Let f be a polynomial of the form
f= \sum_{i=2}^{10}\alpha_{2i+1}x_{1}^{2i+1}.+\sum_{i=2}^{6}\beta_{2i+1}x_{1}^{2i}x_{2}+\sum_{i=2}^{6}\gamma_{2i+1}x_{1}^{2i-1}x_{2}^{2}+\delta_{f}x_{1}^{2}x_{2}^{3}+\epsilon_{6}x_{1}x_{2}^{4} ,
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where the coefficients are real numbers, \alpha_{21}=1 , \gamma_{13}\neq 0 , \epsilon_{5}\neq 0 . Then G\iota^{*}F

(f,f)\in G(\mathscr{A}^{c2}) if and only if the coefficients satisfy the relations described
in Theorem 4. 1 (ii).

To prove this proposition we need some lemmas. Let R_{2i}(4\leq i\leq 21)

be the homogeneous part of degree 2i of F(f,f) .

Lemma 5. 8. G\iota^{*}F(f,f)\in G(\mathscr{A}^{2}) if and only if (G\iota^{*}R_{2i})_{Q_{2}}i-4,4=0(4\leq

i\leq 13) .

PROOF. Since \deg_{2}R_{2i}\leq 2(14\leq i\leq 21) , it follows that G\iota^{*}R_{2i}\in G(\mathscr{F}^{2})

(14\leq i\leq 21) in view of Corollary 5. 5 (i). Hence the condition G\iota^{*}F(f,f)\in

G(\mathscr{F}^{2}) is equivalent to the condition

\sum_{i=4}^{13}G\iota^{*}R_{2i}\in G(\mathscr{F}^{2}) ,

Let f_{2i+1}(2\leq i\leq 10) be the homogeneous part of degree 2i+1 of f. If i,
j\geq 3 , then \deg_{2}F^{1}(f_{2i+1},f_{2j+1}) and \deg_{2}F^{2}(f_{2i+1}, f_{2j+1}) are at most 4. Thus
for such i, j we have

(G\iota^{*}F^{1}(f_{2i+1},f_{2j+1}))_{Q_{zi+2j+k,2k}}2-2=0 (3\leq k\leq[(i+j+1)/2])

and

(G\iota^{*}F^{2}(f_{2i+1},f_{2j+}J)_{Q_{2}}i+2j-2k,2k=0 (3\leq k\leq[(i+j)/2])

by Corollary 5. 5 (ii). Moreover, since the degrees of F^{1}(f_{2i+1},f_{b}) and F^{2}(f_{2i+1} ,
f_{5})(2\leq i\leq 10) in the variables \zeta are at most 4, we also have

(G\iota^{*}F^{1}(f_{2i+1},f_{5}))_{Q_{2}}i+\epsilon-2k,2k=0 (3\leq k\leq[(i+3)/2])

and

(G\iota^{*}F^{2}(f_{2i+1},f_{5}))_{Q_{ai+-2k,2k}}4=0 (3\leq k\leq[(i+2)/2])

Therefore we see that

(G\iota^{*}R_{2i})_{Q_{2}}i-2k,2k=0 (3\leq k\leq[i/2], 6\leq i\leq 13) .

Now fix an index i(4\leq i\leq 13) and assume that (G\iota^{*}R_{2i})_{Q_{2i-4,4}}=0 . Then
by the above fact we have

(G\iota^{*}R_{2i})_{G(Q_{zi})}=(G\iota^{*}R_{2i})_{Q_{2i-2,2}}+(G\iota^{*}R_{2i})_{Q_{2i,0}}1

In view of Corollary 2. 8 (ii) there is a polynomial h\in R[x_{1}, x_{2}, \zeta_{1}, \zeta_{2}]_{2i-2,2}+

R[x_{1}, x_{2}, \zeta_{1}, \zeta_{2}]_{2i,0} such that

(G\iota^{*}R_{2i})_{Q_{2i-2,2}}+(G\iota^{*}R_{2i})_{Q_{2}}i,0=(G\iota^{*}h)_{G(Q_{2i})t}
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Then (G\iota^{*}(f1i-h))_{G(Q_{2i})}=0 , and it follows that the polynomial \tilde{G}(R_{2i}-h)

belongs to the ideal ( \sum_{i}x_{i}^{2}, \sum_{i}\zeta_{i}^{2}, \sum_{i}x_{i}\zeta_{i}) . But, since G(R_{2i}-h) is a poly-

nomial only in four variables (x_{1}, x_{2}, \zeta_{1}, \zeta_{2}) , and since n\geq 3 , it follows that
G(R_{2i}-h)=0 . Hence G\iota^{*}R_{2i}=G\iota^{*}h\in G(\mathscr{F}^{2}) .

On the other hand, if \sum_{j=4}^{i}G\iota^{*}R_{2j}\in G(\mathscr{F}^{2}) for some i, then

0=( \sum_{j=4}^{i}G\iota^{*}R_{2j})_{Q_{2i-4,4}}=(G\iota^{*}R_{2i})_{Q_{2i-4,4}}

Therefore we see that \sum_{j=4}^{i}G\iota^{*}R_{2j}\in G(\mathscr{A}^{2}) if and only if \sum_{j=4}^{i-1}G\iota^{*}R_{2j}\in G(\mathscr{F}^{2})

and (G\iota^{*}R_{2i})_{Q_{2}}i-4,4=0 . The lemma now follows by induction.
We have defined positive constants d_{l}^{i,j} for integers i, j, l satisfying 0\leq l\leq

j\leq i in \S 3. Here we further define d_{l}^{i,i+1} for integers i, l with 0\leq l\leq i+1

by the same formula, i . e. , d_{0}^{i,i+1}=I_{0}^{i+1} and

d_{l}^{i,i+1}= \frac{I_{l}^{i+1}}{(2l)!}-\sum_{p=0}^{l-1}d_{p}^{i,i+1}a_{l-p}^{2p+1} (l\geq 1) .

The proof of Lemma 3. 4 (ii) is also valid in this ca_{\backslash }\circ,e , and we have
d_{l}^{i,i+1}>0 (0\leq l\leq i+\cdot 1)\tau

LEMMA 5. 9. For u\in R[x]_{2i+1} and v\in R[x]_{2f+1}(2\leq j\leq i) ,

(G \iota^{*}F^{3}(u, v))_{Q_{2}}i+zf-\cdot,4=d_{j-2}^{i-1,f}(G\iota^{*}(\sum_{k}x_{k}\frac{\partial}{\partial\zeta_{k}})^{2j-4}\frac{\partial u(x)}{\partial x_{1}}\frac{\partial v(\zeta)}{\partial\zeta_{1}})_{Q_{2}}i+2j-4,4 ,

(G\iota^{*}F^{4}(u, v))_{Q_{2}}i+zf-4,4

=d_{f-2}^{i\sim 1.j}(G \iota^{*}(\sum_{k}x_{k}\frac{\partial}{\partial\zeta_{k}})^{2f-4}\sum_{l=2}^{n+1}\frac{\partial u(x)}{\partial x_{l}}\frac{\partial v(\zeta)}{\partial\zeta_{l}})_{Q_{2}}i+2j-\cdot, .
PROOF. Since

\int_{0}^{\pi}\frac{\partial v}{\partial x_{l}} (x cos t+\zeta sin t) sin tdt= \sum_{p=1}^{j}\frac{I_{p}^{j}}{(2p)!}(\sum_{k}x_{k}\frac{\partial}{\partial\zeta_{k}})^{2p}\frac{\partial v(\zeta)}{\partial\zeta_{l}} ,

it follows that

F^{3}(u, v)= \sum_{p\simeq 0}^{j}\frac{I_{p}^{j}}{(2p)!}(\sum_{k}x_{k}\frac{\partial}{\partial\zeta_{k}})^{2p}\frac{\partial u(x)}{\partial x_{1}}\frac{\partial v(\zeta)}{\partial\zeta_{1}} ,

F^{4}(u, v)= \sum_{p=0}^{j}\frac{I_{p}^{j}}{(2p)!}(\sum_{k}x_{k}\frac{\partial}{\partial\zeta_{k}})^{2p}\sum_{l=2}^{n+1}\frac{\partial u(x)}{\partial x_{l}}\frac{\partial v(\zeta)}{\partial\zeta_{l}}

Then from the definition of d_{p}^{t,f} we have

F^{3}(u, v)= \sum_{p=0}^{f}d_{p}^{i-1,j}\sum_{q=p}^{j}a_{q-p}^{i-j+1+2p}(\sum_{k}x_{k}\frac{\partial}{\partial\zeta_{k}})^{2q}\frac{\partial u(x)}{\partial x_{1}}\frac{\partial v(\zeta)}{\partial\zeta_{1}}
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Hence

(G\iota^{*}F^{3}(u, v))_{Q_{2}}i+2j-4,4

=d_{j-2}^{i^{-1j(G\iota^{*}\sum_{q=j-2}^{j}a_{q-j+2}^{i+j-3(\sum_{k}x_{k}\frac{\partial}{\partial\zeta_{k}})^{2q}\frac{\partial u(x)}{\partial x_{1}}\frac{\partial v(\zeta)}{\partial\zeta_{1}}))_{G(Q_{zi+2j})}}}}
,

=d_{j-2}^{i^{-}1,j}(G \iota^{*}(\sum_{k}x_{k}\frac{\partial}{\partial\zeta_{k}})^{2j-4}\frac{\partial u(x)}{\partial x_{1}}\frac{\partial v(\zeta)}{\partial\zeta_{1}})_{Q_{2i+zj-,4}}

‘

The formula for F^{4} is obtained in the same way.

Lemma 5. 10.
(I) (2\leq i\leq 10)

(G \iota^{*}F^{1}(x_{1}^{2i+1}, x_{1}x_{2}^{4}))_{Q_{2i+2,4}}=-\frac{(2i+3)(i-1)}{i+1}d_{0}^{i,2}(G\iota^{*}(x_{1}^{2i+2}\zeta_{2}^{4}))_{Q_{ai+2}}..
’

(G\iota^{*}F^{2}(x_{1}^{2i+1}, x_{1}x_{2}^{4}))_{Q_{2}}i,4=(2i+1)d_{0}^{i-1,2}(G\iota^{*}(x_{1}^{u}\zeta_{2}^{4}))_{Q_{zi,4}}

(II) (2\leq j\leq i\leq 6)

(G\iota^{*}F^{1}(x^{2i-1}x_{2}^{2}, x_{1}^{2j-1}x_{2}^{2}))_{Q_{2}}i+2j-2, .
=- \frac{(2j-1)!(2i+3)(2i-1)(2i-2)}{(2i+2j-2)\cdots\cdots(2i+2j-5)}d_{j-2}^{i,j}(G\iota^{*}(x_{1}^{2i+2f-2}\zeta_{2}^{4}))_{Q_{2}}i+2j-z,‘ ,

(G\iota^{*}F^{2}(x_{1}^{2i-1}x_{2}^{2}, x_{1}^{2j-1}x_{2}^{2}))_{Q_{2}}i+2j-2,4

= \frac{(2j-1)!(2i-1)(2i-2)(2i-3)}{(2i+2j-4)\cdots\cdots(2i+2j-7)}d_{j-2}^{i-1,j}(G\iota^{*}(x_{1}^{2i+2f-4}\zeta_{2}^{4}))_{Q_{2i+2j-4,4}}

(III) (2\leq i\leq 6)

(G \iota^{*}F^{1}(x_{1}^{2i}x_{2}, x_{1}^{2}x_{2}^{3}))_{Q_{2}}i+2,4=\frac{2(2i+3)(2i-2)}{(2i+1)(2i+2)}d_{0}^{i,2}(G\iota^{*}(x_{1}^{2i+2}\zeta_{2}^{4}))_{Q_{zi+*}},‘
’

(G\iota^{*}F^{2}(x_{1}^{2i}x_{2}, x_{1}^{2}x_{2}^{3}))_{Q_{2i,4}}=-2d_{0}^{i-1,2}(G\iota^{*}(x_{1}^{2i}\zeta_{2}^{4}))_{Q_{2i.4}}

(IV) (2\leq i\leq 6)

(G \iota^{*}F^{1}(x_{1}^{2i-1}x_{2}^{2}, x_{1}x_{2}^{4}))_{Q_{zi+2,4}}=-\frac{(2i+3)(i-6)}{i}d_{0}^{i,2}(G\iota^{*}(x_{1}^{2i}x_{2}^{2}\zeta_{2}^{4}))_{Q_{2i+z}},

‘
,\cdot

(G\iota^{*}F^{3}(x_{1}^{2i-1}x_{2}^{2}, x_{1}x_{2}^{4}))_{Q_{2}}i,‘=(2i-1)d_{0}^{i-1,2}(G\iota^{*}(x_{1}^{2i-2}x_{2}^{2}\zeta_{2}^{4}))_{Q_{2}}i, . ’

(G \iota^{*}F^{4}(x_{1}^{2i-1}x_{2}^{2}, x_{1}x_{2}^{4}))_{Q_{2}}i,4=-\frac{4}{i}d_{0}^{i-1,2}(G\iota^{*}(x_{1}^{2i}\zeta_{2}^{4}))_{Q_{2}}i,4

(V) (2\leq i\leq 6)
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(G \iota^{*}F^{1}(x_{1}^{2i}x_{2}, x_{1}x_{2}^{4}))_{Q_{zi+2,4}}=-\frac{(2i+3)(2i-7)}{2i+1}d_{0}^{i,2}(G\iota^{*}(x_{1}^{2i+1}x_{2}\zeta_{2}^{4}))_{Q_{zi+2,4}}’.

(G\iota^{*}F^{2}(x_{1}^{2i}x_{2}, x_{1}x_{2}^{4}))_{Q_{2}}i,4=2id_{0}^{i-1,2}(G\iota^{*}(x_{1}^{2i-1}x_{2}\zeta_{2}^{4}))_{Q_{2}}i,4

(VI) (2\leq i\leq 6)

(G \iota^{*}F^{1}(x_{1}^{2i^{-}1}x_{2}^{2}, x_{1}^{2}x_{2}^{3}))_{Q_{2i+2,4}}=\frac{(2i+3)(4i-9)}{(2i+1)i}d_{0}^{i,2}(G\iota^{*}(x_{1}^{2i+1}x_{2}\zeta_{2}^{4}))_{Q_{zi+2,4}} ,

(G\iota^{*}F^{2}(x_{1}^{2i-1}x_{2}^{2}, x_{1}^{2}x_{2}^{3}))_{Q_{zi,4}}=-4d_{0}^{i-1,2}(_{\backslash }G\iota^{*}(x_{1}^{2i-1}x_{2}\zeta_{2}^{4}))_{Q_{zi}}, .
(VII)

(G \iota^{*}F^{1}(x_{1}^{2}x_{2}^{3}, x_{1}^{2}x_{2}^{3}))_{Q_{6,4}}=-\frac{21}{2}d_{0}^{2,2}(G\iota^{*}(x_{1}^{4}x_{2}^{2}\zeta_{2}^{4}))_{Q_{6,4}} ,

(G \iota^{*}F^{2}(x_{1}^{2}x_{2}^{3}, x_{1}^{2}x_{2}^{3}))_{Q}‘,4=\frac{3}{2}d_{0}^{12},(G\iota^{*}(x_{1}^{4}\zeta_{2}^{4}))_{Q_{4}}

, ‘

PROOF. We shall only prove (I). The other cases will be verified in the
same way. By the proof of Proposition 3. 5 we have

(G\iota^{*}F^{1}(x_{1}^{2i+1}, x_{1}x_{2}^{4}))_{Q_{2}}i+2,4

=-(2i+3)d_{0}^{i,2}(G\iota^{*}F_{0}(x_{1}^{u+1}, x_{1}x_{2}^{4}))_{Q_{zi+2,4}}

=-(2i+3)d_{0}^{i,2}(G\iota^{*}(x_{1}^{2i+2}\zeta_{2}^{4}+4x_{1}^{2i+1}x_{2}\zeta_{1}\zeta_{2}^{3}))_{Q_{zi+2,4}}

Since

X_{E_{0}}(x_{1}^{2i+2}x_{2}\zeta_{2}^{3})=(2i+2)x_{1}^{2i+1}x_{2}\zeta_{1}\zeta_{2}^{3}+x_{1}^{2i+2}\zeta_{2}^{4}-3x_{1}^{2i+2}x_{2}^{2}\zeta_{2}^{2} ,

it follows that

(G \iota^{*}(x_{1}^{2i+1}x_{2}\zeta_{1}\zeta_{2}^{3}))_{Q_{2}}i+2,‘=-\frac{1}{2i+2}(G\iota^{*}(x_{1}^{2i+2}\zeta_{2}^{4}))_{Q_{zi+2.4}}

Hence the first formula is obtained. The second formula immediately follows
from Lemma 5. 9.

LEMMA 5. 11.

d_{j-2}^{i,j}= \frac{(2i+2j-1)(2i+2j-3)(2i+2j-5)}{(2i+3)(2i+1)(2i-1)}\frac{16}{(2j+1)!!(2j-4)!!} .

PROOF. We have

d_{j-2}^{i,j}= \sum_{q\approx 0}^{j-2}\frac{I_{q}^{j}}{(2q)!}J_{f-2-q}^{i-2+q}
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= \sum_{q=0}^{j-2}\frac{2(2q-1)!!(2j-2q)!!}{(2q)!(2j+1)!!}\frac{(2i+2q-3)!!}{2q-4)!!(2i+2j-7)!!}\overline{(2j-}

Thus we must show the following formula :

\sum_{q=0}^{j-2}(j-q)(j-q-1)\frac{(2i+2q-3)!!}{(2q)!!(2i-3)!!}=\overline{(2i}^{\frac{(2i+2j-1)!!}{+3)!!(2j-4)!!}\cross 2} .

Put

h(z)= \sum_{q0}^{j-2}(j-q)(j-q-1)\frac{z(z+1)\cdots(z+q-1)}{q!}

h(z) is a polynomial of degree j-2 in the variable z . Let k be an integer

such that 0\leq k\leq j-2 . Then we have

h(-k)= \sum_{q=0}^{k}(j-q) (j-q-1) (-1)^{q}(\begin{array}{l}kq\end{array})

=j^{2} \sum_{q=0}^{k}(-1)^{q}(\begin{array}{l}\prime kq\end{array})-j\sum_{q=0}^{k}(-1)^{q}(2q+1) (\begin{array}{l}kq\end{array})+\sum_{q=0}^{k}(-1)^{q}(q+1)q(\begin{array}{l}kq\end{array}) .

and hence h(O)=j(j-1) , h (-1)=2(j-1), h(-k)=0 (3\leq k\leq\dot{J}-2) . This
implies that

h(z)= \frac{2}{(j-2)!}(z+3)(z+4)\cdots(z+j) .

Then by considerding h(i- \frac{1}{2}) we have the lemma.

PROOF 0F PROPOSITION 5. 7. In view of Lemmas 5. 8, 5. 10, and 5. 11,

the condition G\iota^{*}F(f,f)\in G(\mathscr{F}^{2}) turns out to be a system of algebraic equa-
tions in the indeterminates \alpha_{2i+1}(2\leq i\leq 9) , \beta_{2i+1} , \gamma_{2i+1}(2\leq i\leq 6) , \delta_{f}, \epsilon_{b}, which
is as follows :

\epsilon_{b}+\frac{25}{13^{2}\cdot 12}\gamma_{13^{2}}=0 .

\alpha_{19}\epsilon_{5}+\frac{25}{13\cdot 11\cdot 6}\gamma_{11}\gamma_{13}-\frac{5}{4}(\epsilon_{5}+\frac{25}{13^{2}\cdot 12}\gamma_{13^{2}})=0’.

\alpha_{17}\epsilon_{b}+\frac{25}{13\cdot 56}\gamma_{9}\gamma_{13}+\frac{15}{11^{2}\cdot 7}\gamma_{11^{2}}-\frac{9}{7}(\alpha_{19}\epsilon_{b}+\frac{25}{13\cdot 11\cdot 6}\gamma_{11}\gamma_{13})=0 ,

\alpha_{15}\epsilon_{5}+\frac{25}{13\cdot 49}r_{7}r_{13}+\frac{10}{11\cdot 21}\gamma_{9}\gamma_{11}-\frac{4}{3}(\alpha_{17}\epsilon_{5}+\frac{25}{13\cdot 56}\gamma_{9}\gamma_{13}+\frac{15}{11^{2}\cdot 7}\gamma u^{2})=0 ,

\alpha_{13}\epsilon_{5}-\frac{2}{13}\beta_{13}\delta_{5}+\frac{1}{26}\gamma_{5}\gamma_{13}+\frac{4}{11\cdot 7}\gamma_{7}\gamma_{11}+\frac{1}{36}\gamma_{9}^{2}
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- \frac{7}{5}(\alpha_{15}\epsilon_{5}+\frac{25}{13\cdot 49}\gamma_{7}\gamma_{13}+\frac{10}{11\cdot 21}\gamma_{9}\gamma_{11})=0i

\alpha_{11}\epsilon_{5}-\frac{2}{11}\beta_{11}\delta_{5}+11\cdot 53\gamma_{5}\gamma_{11}+141\gamma_{7}\gamma_{9}+1\overline{3}1\gamma_{13}\epsilon_{5}

- \frac{3}{2}(\alpha_{13}\epsilon_{5}-\frac{2}{13}\beta_{13}\epsilon_{5}+\frac{1}{26}\gamma_{5}\gamma_{13}+\frac{4}{11\cdot 7}\gamma_{7}\gamma_{11}+\frac{1}{36}\gamma_{9^{2}})=0\sim\backslash

\alpha_{9}\epsilon_{5}-\frac{2}{9}\beta_{9}\delta_{5}+\frac{1}{12}\gamma_{5}\gamma_{9}+\frac{5}{49\cdot 2}\gamma_{7}^{2}+\frac{4}{11\cdot 3}\gamma_{11}\epsilon_{5}

- \frac{5}{3}(\alpha_{11}\epsilon_{5^{-}}\frac{2}{11}\beta_{11}\delta_{5}+\frac{3}{11\cdot 5}\gamma_{5}\delta_{5}+\frac{1}{14}\gamma_{7}\gamma_{9})=0 .

\alpha_{7}\epsilon_{5}-\frac{2}{7}\beta_{7}\delta_{5}+\frac{1}{7}\gamma_{5}\gamma_{7}+\frac{2}{9}\gamma_{9}\epsilon_{5}

-2( \alpha_{9}\epsilon_{5}-\frac{2}{9}\beta_{9}\delta_{5}+\frac{1}{12}\gamma_{5}\gamma_{9}+\frac{5}{49\cdot 2}\gamma_{7}^{2})=0i

\alpha_{5}\epsilon_{5}-\frac{2}{5}\beta_{5}\delta_{5}+\frac{3}{20}\gamma_{5}^{2}+\frac{4}{7}\gamma_{7}\epsilon_{5}-3(\alpha_{7}\epsilon_{5}-\frac{2}{7}\beta_{7}\delta_{5}+\frac{1}{7}\gamma_{5}\gamma_{7})=0r.

\alpha_{6}\epsilon_{b}-\frac{2}{5}\beta_{\iota^{\delta_{6}+\frac{3}{20}\gamma_{5^{2}}-}}\frac{2}{5}\gamma_{5}\epsilon_{5}+\frac{3}{20}\delta_{5}^{2}=0 ,

- \beta_{13}\epsilon_{b}+\frac{1}{2}\gamma_{13}\delta_{5}=0 ,

- \frac{3}{11}\beta_{11}\epsilon_{5}+\frac{1}{5}\gamma_{11}\delta_{f}+\frac{12}{13}\beta_{13}\epsilon_{5}-\frac{4}{13}\gamma_{13}\delta_{5}=0j

- \frac{1}{9}\beta_{0}\epsilon_{f}+\frac{7}{36}\gamma_{9}\delta_{b}+\frac{10}{11}\beta_{11b}\epsilon-\frac{4}{11}\gamma_{11}\delta_{f}=0 ,

\frac{1}{7}\beta_{7}\epsilon_{b}+\frac{1}{7}\gamma_{7}\delta_{b}+\frac{8}{9}\beta_{9}\epsilon_{b}-\frac{4}{9}\gamma_{9}\delta_{b}=0 ,

\frac{3}{5}\beta_{5}\epsilon_{5}-\frac{1}{10}\gamma_{5}\delta_{5}+\frac{6}{7}\beta_{7}\epsilon_{5}-\frac{4}{7}\gamma_{7}\delta_{5}=0 ,

\gamma_{11}=-\frac{55}{13}\gamma_{13}, \gamma_{9}=-\frac{18}{11}\gamma_{11} , \gamma_{7}=-\frac{7}{9}\gamma_{9} ,

\gamma_{\epsilon^{\epsilon_{f}-}}\frac{3}{8}\delta_{b}^{2}+\frac{5}{14}\gamma_{7}\epsilon_{b}=0 .

Then it is easy to see that the indeterminates satisfy these equations if and
only if they satisfy the relations described in Theorem 4. 1 (ii) under the
condition \gamma_{13}\neq 0 . This fifinishes the proof of the proposition.
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