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Introduction

Let M be a riemannian manifold and ¢ its riemannian metric. Then
we call M a C;-manifold and g a Cj-metric if all of its geodesics are closed
and have the common length I. As is well-known, the unit sphere S* in
the euclidian space R"*! equipeed with the induced metric (the standard
metric) g, is a C,-manifold. ,

Let us consider a one-parameter family {g,} of C,-metrics on S* such
that ¢,=¢,|;—0 is the standard one. Put

d
h= d—tgzlz=o .

We shall call such a family {g,} a C,-deformation of the standard metric
geo and h an infinitesimal C,-deformation of ¢, It is known that each
infinitesimal C,,-deformation A satisfies the so-called zero-energy condition, i. e.,

jz"h(r(s), 7)) ds =

0

for any geodesic y(s) of (S* g, parametrized by arc-length (cf. p. 151).
We denote by "2 the vector space of symmetric 2-forms on S* which
satisfy the zero-energy condition.

In his paper [3] Guillemin proved that in the case of S? any symmetric
2-form heX'? is necessarily an infinitesimal C,,-deformation of ¢g,, On the
other hand, for C,.-deformations on " (n>3), the examples constructed by
Weinstein ([1] p. 119) are all that we know up to now, and the correspond-
ing infinitesimal C,,-deformations form a rather small subset of #2.

The main purpose of this paper is to introduce and study a necessary
condition for a symmetric 2-form A= 2 to be an infinitesimal C,,-deforma-
tion of the standard metric ¢, on the n-dimensional sphere S* (n>3). This
condition 'is called the second order condition, and is naturally obtained
through the interpretation of the C,-property in terms of the symplectic
geometry on the cotangent bundle T*S™ (Proposition 1. 4).
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Let ¢,: S*—R""! be the natural embedding, and let (x;, -+, 2,4, be the
canonical coordinate system of R*"!. In this paper we restrict our attention
to the symmetric 2-forms of the form A=(¢*f) gy, where f is a polynomial
function on R™! (or a polynomial in the variables zj, ---, 2,4, and hes
In general it is known for a function v on S” that the symmetric 2-form
vg, satisfies the zero-energy condition if and only if v is odd with respect
to the antipodal map of S. Hence we may assume that f is an odd poly-
nomial, i.e., polynomial whose terms of even degrees vanish.

The main result in this paper (Theorem 4. 1) may be stated as follows ;

THEOREM. Assume that the dimension 7 of the sphere under considera-
tion is equal to or greater than 3. Let f be an odd polynomial in the varia-
bles x, -+, Znyy. Then the symmetric 2-form (¢xf) g, & # 2 satisfies the second
order condition if and only if f has one of the following forms :

(i) f=htht 5(Saa®(Tbyz)  mod(1-3 =),

where h; and hs are homogeneous polynomials of degrees 1 and 3 respectively,
and a, and b;; are real numbers ;

F=hyths+cA*h mod(l_nilxiz)’
i=1

where A, and h; are as in (i), cER, A€O(n+1, R), and h is a polynomial
of degree 21 in the variables (x;, 2;) whose coefficients satisfy certain relations
(for a strict form, see §4).

As an immediate consequence of this theorem, we see that the zero-
energy condition is no more sufficient for a symmetric 2-form to be an
infinitesimal C,,-deformation of ¢, in the case of S™ (n=3).

The infinitesimal C,,-deformations given by Weinstein are essentially of
the form (ao*u(;akxk)) 0o, where u=u(t) is any function in one variable ¢

satisfying #(—t)= —u(t). Hence we have a subclass of (i) consisting of odd
polynomials f of the form

m n+1
(1Y f=ht delY aum®  mod (1— 5 x) ¢ER,
i=1 k i=1

and for these polynomials the symmetric 2-forms (¢*f) g, are really infinitesi-
mal C,,-deformations of g,. For the other polynomials f satisfying (i) or
we do not know whether (¢*f) ¢, is an infinitesimal C,,-deformation or not.

Recently Tsukamoto [6] proved that the second order condition is not
satisfied for a certain subclass of A2 It should be noted that this subclass
is in some sense a complement of the subspace of "2 spanned by the Lie
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derivatives Z£y(,, X being vector fields on 5", and the symmetric 2-formse
A% which are conformal to ¢, (see also [5]).

This paper consists of five sections. In §1 we introduce the second
order condition. In §2 we deal with the laplacian acting on the functions
on the unit cotangent bundle S*S*. We restrict this operator to the subspace
consisting of functions which are constant along each orbit of the geodesic
flow, and decompose it into a sum of eigenspaces. The second order condi-
tion for a symmetric 2-form (¢*f) g, is then interpretted as the vanishing of
some eigenspace components of a function Ge*F(f, f) which is suitably
defined by /. In §3 we prove [Proposition 3. 1, which is the first step to
Theorem 4. 1. The proof consists of two steps; the explicit calculations for
polynomials in two variables (x;, z,) and the reduction of the general case to
two variables case. For this reduction we use some algebraic geometric
properties of complex quadrics (Proposition 3. 11). This trick is also used
extensively in subsequent sections. §4 and §5 are devoted to the proof of
[Theorem 4. 1. There appear a kind of polynomials of degree 21 as an
exceptional case. This case is considered in detail in § 5.

The author expresses his sincere thanks to Prof. N. Tanaka for his
constant encouragement and valuable advices during the preparation of this
paper.

The contents of this paper were partially anounced in [4].

§ 1. The second order condition

Throughout the paper we assume the differentiability of class C*.
We first introduce some terminologies.

Set
T*Se = TS — {O-section} .

Let R* (resp. R,) be the multiplicative group of non-zero real numbers
(resp. of positive real numbers). We say that a function f on T*S8" is homo-
geneous (resp. positively homogeneous) of degree d if '

Slsd) =" f(2)

for any 1€ T*S" and any scR* (resp. s&€R,). A vector field X on T*S" is
called homogeneous (resp. positively homogeneous) if it is invariant under the
R*-action (resp. the R, -action).

Let a be the canonical 1-form on 7T*S", which is defined by

a(X)=Ane X), A€T*S", XeT,T*S,
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= being the projection T*S"—S". As is well-known, the 2-form da defines

a symplectic structure on T*.S"
To each function f on an open subset U of T*S™ we assign a symplectic
vector field X; on U in the usual way;

ix,da = —df.

It is easy to see that if a function f on T*S" is (positively) homogeneous of
degree one, then the vector field X; is (positively) homogeneous, and a(X,)=f.

A riemannian metric ¢ on .S induces a bundle isomorphism #, from the
cotangent bundle 7*S5" to the tangent bundle 7'S* such that

050, 0) =), IETES, wET.S", 28,

Let .%? be the vector space of functions on 7*S" which are homo-
geneous polynomials of degree 2 on each fibre T3S" (x&S". To each

symmetric 2-form A we assign an element A% of Z* by
Ro(2) = (D, #,(0),  AET*S".

: 1 :
In particular we call E= *2~—g*9 the energy function and X (or the one-

parameter group of transformations generated by it) the geodesic flow as-
sociated with the riemannian metric g¢.
Now let {g,} be a C,-deformation of the standard metric g, on S*. Put

d
h,= %gt-

LemMma 1.1. For any geodesic y(s) of (S" g, parametrized by arc-

length, we have
2" . .
So h, (T(s), T(s)> ds =

For the proof we refer to Proposition 5. 86.

For simplicity’s sake we shall write ¥, instead of ¥,,. Put

1
E, = ?gt#t
The following proposition is another representation of Lemma 1. 1, which
is essentially due to Weinstein (see also Proposition 4. 46).

ProprosITION 1.2. There is a one-parameter family of homogeneous
symplectic vector fields {X,} on T*S* such that

XtEt:Et’ ‘
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where the dot denotes the derivative in the parameter t.

ProOF. Let {¢4},cr be the geodesic flow associated with the the rieman-
nian metric ¢,. Then {£},cp induces a free St-action of period 2r on the

. ‘ 1 - :
unit cotangent bundle S(’i)S”:Etﬂ(?). It is easy to see that

Et: '_‘%‘ht”l

and #:(6(2))=7(s), where 25,5 and 7(s) denotes the geodesic x(£.(d)) of
(S*, g,). Hence it follows from Lemma 1.1 that

S”Et (@) ds=0, 1S5S,
0
Deﬁne a functidn H, on T*Sr by the conditions

() H@=o [ Blow)drds, 22505,

(i) H; is pos1t1ve1y homogeneous of degree one.

From the condmon it follows that Xz, H, is posmve]y homogeneous of
degree two. For 288" we have

X H) =L H(20)| = - B0,

Since E, is also positively homogeneous of degree two, we see that
XE; Ht = "‘Ez
on T*S", Clearly we have
H(-)=—H,3), 1855 .

Hence H, is homogeneous of degree one. Set

 X=Xg.
Then X, is homogeneous and we have

X.E,=E,

by the anti-commutativity of the Poisson bracket.

For simplicity’s sake we shall write ¥, {£,}, and S*S" instead of %, {&3,
and S, S" respectively.
Define a linear operator G on the vector space C®(S*.5") of C*-functions

on S$*S" by
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2%

G(f) (1)2’2178 flEAds,  feC=(S*SY, 2e5% 5.

0

We assign a homogeneous symplective vector field X(h) to each he ™
as follows : Let H be the function on 7 *8” which is positively homogeneous
of degree one and satisfies

2z ('8
H(Z):—I——S Soh*(g,z) drds,  1SS* S

271'0

We set X(h)=Xy By the proof of Proposition 1.2 we see that X(h) is
homogeneous and satisfies

X(h) Ey=h*.
It should be noticed that X(h) is uniquely determined by the conditions
X(h) Ey=h* and G(a(X(h)))=0.
We then define a bilinear map K: X#2x A ?—C>(5*.S") by
K(f)=G(X(f) k), f heA,
- where X(f) h* should be considered as a function on S$*S™ by restriction.
LemMma 1.3. K is symmetric.

Proor. Let £ and h be elements of #'2 and let F and H be the func-
tions defined as above by f and h respectively. Then we have

X(f) h* = Xph* = Xp XuE, .
Thus

X(f) h*—X(h) f* = [ X# Xul Eo
== XXFHEO - _XEO(XFH) .

Since GoXgz =0, it follows that
G(X(f) h*)=G(X(h) f¥).

Let .#? be the vector space of functions on S$*S™ which are the restric-
tions of elements of .2 We shall say that an element h of X2 satisfies
the second order condition if

K(h, G ().

PrOPOSITION 1.4. Every infinitesimal Cy.-deformation of @, satisfy the
second order condition.

Proor. Let {g;} be a C,-deformation of g, and put %gtlt=0=h. Let
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{E;} be the corresponding energy functions. Following the proof of Proposi-
tion 1.2 we construct the one-parameter family of homogeneous symplectic
vector fields {X;} on 7*S*. By differentiating the formula X,E,=F, in the

parameter ¢ and putting =0, we have
XoEt X, B, =E, .

Since X, is homogeneous, it follows that X():Xf, 7 being a(X,). Thus
XoEy=—Xzf,

which implies G(X,E;)=0. Since EOZ———;h“ and on—%X(h) by the

construction, we have
G(X(h) h?) =4G(E)eG(?) .
REMARK. In the case of 5% it is known that

G(x? = G(C‘”(SZ) E(,) =the image of G

(cf. Appendix). Therefore [Proposition 1.4 turns out to be trivial in this
case.

Next we shall give more explicit expression of the second order condition
in the case where symmetric 2-forms are conformal to ¢,. Let f be a function
on S$*. Then it is known that fg, belongs to 2 if and only if f is an
odd function, i.e., 7¥f= —f, r being the antipodal map of S” (cf. p. 123).

Let ¢,: S*—>R"*! be the canonical embedding. Then we can embed
T*S" into R*™*2=TR"! by the map ¢ =/¢,%.

T*8 ”—#—aTS n
¢ ! (Ot
R2n+ 2

Let z=(x, -+, o41) be the canonical coordinate system of R"*! and
(x, O)=(xs, ***5 Zuy1> Co» **» Cner) be that of R#*T2=TR"*! It is easy to see that

in2:1, inCi':O}’
a($%5% =@ QR Dat = SA=1, Dxli=0}.

a(T*S8Y = {(z, ) R+

We shall denote by ¢ the restriction of ¢ onto S*S
Define a one-parameter group of transformations {&;} of R?**? by

E(x,{) =(xrcost+{sint,—xsint+{cost).



158 B K. Kiyohara

Let XEO be its infinitesimal generator. Then

0 0
%e= D(0y —g)
Define a linear operator G : C®(R™%)—C*(R®™*?) by

2z

G(f) (x’ C)Z 2—171.‘80]“(&(33, C)) dt..

It is easy to see that Z,(c())=¢(&,(2) for 2&5*S". Hence it follows that
Xe,=tx Xz, on ¢(S*.S"), and *G(f)= (*f ) for any function f defined on
a neighborhood of ((S*S").

Let @, be the 1-form on R**2 defined by ay=7},{;dx;. Then da, defines

a symplectic structure on R>*2 It is easy to see that 4*ay=a. To each
function # on an open subset U of R**? we assign a symplectic vector field

Y, on U by
iy, dog = —du .
Let f be a function defined on a neighborhood U of ¢(S") in R
Put £z, 0 -——-f('—f:l—> Then f is a function on (R*"1—{0}) X R+,

LemMMa 1.5, ¢, X, =Y7 on (T*S").
PrROOF. Since ¢*day=da, we only need to verify that Y7 is tangent to
u(T*S") at each point of ¢(T*.S"). We have
_ of o
- Z ox; 0,

= Z af (04 'xzxy) aacz

Z5,
at (x, §)€e(T*S". Thus we have
Yf(; xf) = Yf"(Zi: x;8) =0
on ¢(T*.S", which implies that Y7 is tangent to el(T*Sﬁ).
Define a bilinear map F: C®(R"Y) X C*°(R"*)—C>*(R**? by
n+1

FUER @O= 5 (y—aa ) 2 (n) | o

t,J=1

(zcos t+{ sin t) sin tdt, f, heC®(R"Y).

Let f and & be odd functions on R", i.e., f(—x)= —f(a), h(—2)=
—h(z). Then (¢*f) g, and (,*h) g, belong to A% and we have

0x;



On infinitesimal Ca-deformations of standard metrics on spheres 159

ProposiTION 1.6. K((6*f) g0 (0*h) g EG(#?) if and only if GH*F
(f, heG(x?. ‘ z

Proor. For simplicity’s sake we put f=(0*f) ¢o and A=(;*h) g,. Define
a function H on (R"+1—{0})><(R"+1~—{O}) by

H(x, )— |z [C[S (, | cos t + é’ smt)dt

: {
Then the function zl*H on T*S is posmvely homogeneous of degree one,
and satisfies '

(Xn,a*H) () = —(a*h) (z(2), 2SS,

This shows that Xz ¢* H= —h* on T*Sn. Moreover, since o* H is odd with
respect to 7*, the dlfferentlal of the antlpodal map, it follows that G (!1* H)=
Thus we have

X(il) = X‘ltH., o |
Then

X(h) 1= X, on(2(a*f) Eo)
- Z(X, tH!o*f) Eo+4 ([0*'f) (lo*h) Eo .
Since X, .nto*f=—X yu* H=—*(Y; H) by Lemma 1.5, we see that the

condmon K(f, h)EG(Q,K/ ?) is equivalent to the condition Ge*(Yy H)EG(&?).
An explicit claculation shows that - ‘

T

Yy H=— R, h)— %XEo(f(@S h(zx cos 4L sin 2 dt)—fh

0

on ¢(S*.S"), which proves the proposition.

ProrositioN 1.7. Let f and h be odd functions on R Then
GF(f, h) =GF(h,f) .

Proor. We have

GF(f; h) (51:_7 Z; x] th ) X uij’

iJ
where

2z z
Uy = So ;{; (x cos r+sin7) So% (x cos (t+7)+{ sin (t+r)> sin tdtdr .

Then it is easy to see that °
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2r h x
Uy = SO aax,- (x cos r+{sin7) So Egi <x cos (t+7)+{ sin (t+r)> sin tdtdr,

which proves the proposition.

§ 2. The laplacian on C*(S*S")

We first define a riemannian metric on S*S”. The riemannian metric
go on 5" induces the horizontal subspace H, of T,TS" at each veTS
‘Let V, be the vertical subspace of T,,7.S*. Then we have the decomposition
T,TS"=V,+ H, (direct sum). Let n: T'S—S" be the projection and =(v)=
xz. Define a riemannian metric § on 7.5* by the conditions :

(i) The canonical identification V,—7T,S5" is an isometry ;

7y ; H,—T,S" is an isometry ;

(i) V, and H, are orthogonal to each other.

Let g, be the riemannian metric on the unit tangent bundle SS* which
is the pull back of §; by the inclusion SS5*—7T.S8*. Then the riemannian
manifold (SS5?, ¢,) has the following properties (cf. Chapter 1, K):

(a) Each fibre S,8" is totally geodesic;

(b) The parallel translation of a unit vector along a geodesic of (S, g,)
is a geodesic.

Now we define a riemannian metric on S$*5" in such a way that #:
S*87—S5S" is an isometry. We shall also denote this metric by g,.

~ Let 4 be the laplacian defined by the riemannian metric g, which operates

on C*(S*S7). We need the explicit expression of 4 in terms of the euclidian
coordinates. Let ¢: S*S"—>R™2=/{(x, {)} be the embedding defined in § 1.

LEmMMA 2.1. Let f(x,{) be a function defined on a neighborhood of
t(S*S". Then

s =l (gl + pef Jo(gacar Jre(paag )7

+22x1CkaC g‘x -2 af;_;aacé}

Proor. We identify S*.S* with ((S*S". Fix (z, {)&S*S" and choose
vectors ey, -+, €,_; in R"*! such that (z,{, e, -+, e,_,) is an orthonormal basis
of R**!, Consider the following curves on S*S” starting at (x,{);

7i(2) = (x, {cos t+¢; sin ¢) 1=i<n-1),
7:(t) = (x cos t+e; sin ¢, {) 1=i=n-1),

&(t) =(xcost+{sint, —xsint+{cost) =&z, ().
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It is easily seen from the properties (a) and (b) that these curves are geodesics
of (S*S",¢g,). Moreover, the vectors 7;(0), %:(0) (1<=i<n—1), and £(0) form
an orthonormal basis of T S*S*. Thus we have

A(e*f) (z, §)
21 00) W o= OF0) 452 )

i=1 i=1
from which the lemma immediately follows.
LEMMA 2.2. Xg is an infinitesimal isometry of (S*.S", ¢y).
For the proof we refer to Besse Proposition 1. 104.
The following corollary is an immediate consequence of Lemma 2. 2.

CoROLLARY 2.3. The operators &*, Xz, and G on C*(8*S*) commute
with 4.

The riemannian metric ¢, naturally induces an inner product on C*(S*S%);

(f, h) = thd,ul, £, heC=($*5v),

S8
where dyy is the canonical measure defined by ¢.

LeMMA 2.4. The operator G is self-adjoint with respect to the inner
product ( , ).

Proor. Let GeodS™ be the quotient manifold of S*.S™ by the S'-action
of {€).cr. Since {§;} are isometries, we can take a riemannian metric on
GeodS® such that the projection .S*S"—GeodS™ is a riemannian submersion.
Let dp be the measure on GeodS™ defined by this riemannian structure.
Then we have

(f, h) = 2z S G(flydo, f, heC=(S*S,

Geod 8™

where the function G(fh) should be considered as a function on GeodS".
Since G(G(f) h=G(G(f)Gh)=G(fG(h), it follows that

(G(), B)=(G(f), Gh) = (£, GB).

Let R[x,{] be the polynomial algebra in the variables (xz, {)=(z, -,
Zns1s Cis ***s Cny1) With real coefficients. We set

P=¢*R[x, ] C>(S5*.S") .
Let Rz, {]; be the subspace of R[z, {] spanned by homogeneous poly-
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nomials of degree k. We say that a monomial f(x,{) is of bidegree (i, ) if
Sz, ) is of degree ¢ in x and of degree j in £. Let R[x,{];, be the vector
space spanned by monomials of bidegree (,j). We set

Plc:‘*R[x:C]k’ Pijzz*R[x:C]ij, )
and PP=3}P;, It is easy to see that PkCPk+2, P= ZPk, and P,= Y P, ;.

120 i+j=k
Let Q; be the orthogonal complement of P,_, in Pk with respect to the

inner product ( , ); P,=P;_,+Q; (direct sum).

LemMa 2.5. The operators 4 and G preserves the vector spaces P, and

Q.

Proor,. By Lemma 2.1 we immediately have 4(P,)CP;. Since Gor*=
el and G _preserves R[x, Cle, it follows that G(P)C P, Since P_, is
also preserved by these operators, so is its orthogonal complement Q..

The fol]owmg corollary is an 1mmed1ate consequence of Lemma 2.5 and
Corollary 2.3,

CorOLLARY 2.6.. (i) G(Ry)=G(Py_)+G(Qy) (orthogonal direct sum).
(i) The laplacian 4 preserves the vector spaces G(P,) and G(Qy).

In general, for a function A on $*S5* we denote by hG(Q,;) the G(Qy)-
component of h. Let V be a ‘subspace of C*(S$*.S") which is invariant by
the laplacian 4. Then we denote by Spec (4, V) the set of spectra of 4 on V.

[(k—1)/2]
Put kl!l="[] (k—2p) for a positive integer k, and put oONl=(-1)!'=1.
. B p 0
Deﬁne real numbers af (=0, ﬁ>0) by

(2a—1) 1
@ = (=D 1!(20;+2ﬁ D

PROPOSITION 2.7. (i) G(Pupi)=G(Qoms)=0 (m=0).

(i) Spec(d, G(Qum)) C{N;;li+j=2m, i=j=0}, where N, ;=i(i+n—1)+
j(G+n—1)—-2;.

Proor. (i)' Since & (x, {)=(—x, —{), it follows that £*=(—1)-identity
on R[z, {lgn+i. Thus £*=(—1).identity on P,,,;. Since Go&*=G, we have
G(sz+1)=0‘ : :

Since Z,5(x, )=((, —z), we have En*R[x,Ci;j=R[x,{];; This
shows that G(P; ;) =G(P, ), and we have .

G(Puwm)= 2 G(Py,)).

i+j=2m
iz

Let feR[x,(l;,; (i=j, i+7=2m). By Lemma 2.1 we see that
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AGi*f = Ge+ {(z‘(i+n—1)+j<j+n—1>)f

°f *f o f
+2 L nligr oz ~ % oz, ;_ac,f}'

Since

o (e o e P
Zkal ac oz, (Z Xy ) ZCk a‘:k kakxz ac ac, ’

we can rewrite it as

AGHf = N”Gc*f+2Ge*<<Zxk azk )2f)'—Ge*<Z i +35 9. )

axk

By app]ymg thlS formula to (Z o azk> fER|x, C]z+2pj _2p (0<p<[]/2]) we

also have

s6o((g v 7)< NGBy 1)

e ) {p + )(pk))-
- i h

Ljr2 o0 \«¢ : o
=S aprn(sa g r 0spsli).
7 0C o
Then the above formulas imply that

82 a2
AG‘*fp Niiop,j-20G* fo— (Z(axz + oLz )fp> _
By taking the G(Qyn)-components of both sides, we obtain
A(G‘*fp)G(Qm) = Ni#Zp,j—zp(G‘*fﬁG(Q,m) 0 §P <[s/2]).

This shows that (Ge*f,)aw, is an eigenfunction of 4 corresponding to the
eigenvalue N, sy ; s, if it does not vanish. | :
Put ci7=1, and define real numbers ci’/ (1=<¢=[j/2]) inductively by

g-1
0 — __ iyJ m—j+1+2
Cg” = 2. Ch Adg—p P,

Then it follows that
[J/21
(G!*f )G(Qm) = o J(G!*f p)G(Qm) ’

=0

which proves the proposition.
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We set
Qs ={fEGQum|4f=N.,f}

for each (7, ) such that {=j>0 and i+j=2m. Since
Nm,m<Nm+1,m—1<"'<N2m,0:

the subspaces Q,; (i+j=2m, i=j=0) of G(Q:n) are mutually orthogonal.
We note that some Q,; may be {0}.
Set

L.={G)eZx2lizjzo, i+j=2m},

and I=U I.. Let ¢}’ be the constants defined in the proof of Proposition
mz0

2.7. For heC>(§*S") we denote by hq, ; the Q; ;-component of h. The
following corollary is immediately obtained from the proof of [Proposition 2. 7}

CoroLLARY 2.8. (i) G(ng):( 2 Qi G(P)Z( 2. Q. ; (orthogonal
.)€l py, i J)€er
direct sum). ’
(i) For feR[x, ],y ((4,5)EL)

(G!*f) . — Ci,j G‘*<[§] am_—j+1+2p<z Tk a >Mf>
Q1,+zp,j—-zp p q=p -r k aCk G@Q,p)
O=p=lj2]).

REMARK. It possively occurs that N, ;=N,, with i+j#k+I. For
example, Nyp_34=Nan,o if n=4m—5. Thus the decomposition G(P)= J_ Qi.;

(i Del
is in general finer than the simple eigenspace decomposition.

We define a partial ordering on the set of indices I as follows: (k)<
(4,j) if k+I=<i+j, I<j, and j—I is even.
ProrosiTiON 2.9. (i) GP ) X Qs (GJ)EL

(k,1)s(1,5)

(i) Quc, 3 GlPu) (hi)El |

(iii) G(Pj)z’iQ,k,z, where the sum is taken over all (k, 1)1 such that
I=<j and j—I is even. .

Proor. We first prove (i) and at the same time by induction on the
integer ¢+j. It is clear that G(P,)=Q,,={constant functions}. Fix an
integer 72 >0 and assume that (i) and [ii] hold for every (¢,j) &1 with {4+j<2m.

Take (i,j)€l, and feR][x,{];,;, By the proof of [Proposition 2.7 we
can write

L4/2]

f= 3 s,
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[j/2]

where f,= Z ar- J+1+2p<2 T ar )f Each f, satisfies

0 0*
AGe* f, = Niyap,j—2p G fp— (Z< 0x;? T 0Ci’ )fp> ’

and
02 : [4/21
G0 + g o) B GlPras-sss)
If >j, then (1—2,5) &L Slnce (1+2g—2, j—2q)<(i—2,j), it follows that

G(Pitsg2,i-0C 2 Qui  (0=q¢=[j/2])

(k,1)SG-2, )
by the assumption. If i=j, then G(P;_, ;)=G(P;;_,) and (s, i—2)€L. Since
(1+29—2,7—29)<(i,i—2) (1=¢=[j/2]), we have in this case

G (Pi4ag-2,7-2) C 2 QO 0=qg=1[s/2]).

(k,1)=(i,1—2)

Hence we see that AG*fy— Nisgp,j—epGe¥fp lies in - 3 Qg if 4>, and

(k,1)=(1-2,4)

in Z Qk,l lf Z:].
(k,0)=(1,1—2)

Let
AGe* fp— Niyop, j—2p G* fp = Z;)fg'l (fr'eQ)

be the corresponding decomposition. We notice here that N> Nitsp,j-2
if f¥'x0, because

Ni o (G fo, £ = (Ge* for AFFY) = (AG* [, f5)
irop,i—20(GE [ 2O Y.

Then it is easily seen that the function
G‘ fp+ Z ( i+2p,7-2p" Nk,l)_llelcyl

is an eigenfunction corresponding to the eigenvalue Niis, j-2p if it does not

vanish.
We must show that h,& Y. Qi Since h,&G(Psm), we have the
(&,0)=(3,4)
decomposition

hp= 2 hy*,  hpEQh,.
(r,8)€r
r+832m

The eigenvalue condition implies that Ay*=0 if N, % Niisp j2p. H 7+s=2m
and N, =N, sp j_sp, then we have (7, s)=(i+2p, j—2p). Suppose that r+s<
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2m and N, ;=Niisp jsp. Since Niysp j3p=N;;<Nom_ss and N,,_,, is mo-
notonously decreasing in s, it follows that s< j—2p. Let ¢ be the isometry
of ($*8", ¢;) defined by ¢(x, {)=(x, —{). Since o0&, =&_,00, it follows that
o*¥oG=Gog*. This implies o*=(—1)*-idéntity on G(P,,). Hence by the
induction assumption we have o*=(—1)*-identity on Q, , if 7+s<2m. Thus
we have ¢* h,=(—1)%h, by the definition of ,. Since (% h,, o* hy*)=(h,, h*),
it follows that hy*=0 if 7+s<2m and j—s is odd. Hence we have h,c

Qr.;, and therefore
(=00 5)

i 'G!*fp = hp— Z (Ni+ép,f—2p"Nk,l)_l z’rME Z Qk’l :

(k,1) (k,1)=(%,5)

Furthermore, considering the case p=0 we have

(Gl*ﬁ))Qi;'j:hg'j S
=Ge*fo— 2 h5’3+(kZz)(Ni,j‘Nk,z)_lﬁk’L-

(r,8)*(i,4)

The second and the third term of the right-hand side belong to > Q.

(k,1)s(is )
k+i<em

which is contained in = Y] G(P;,;) by the induction assumption. Since the
(k,1)<(3,4)

linear map G(P; ;)—Q; ; defined by Gt f—(Ge*fo)g, , is surjective, it follows
that o

Q.;,C X2 G(Pk,l)t

(k1S 5)
Hence (i) and {ii] have been proved. S ,
For (ii) we observe that G(P/)= Y G(P;.s, ). Then (iii) immediately
follows from (i) and (ii. P .
Let _#* (k=0) be the vector space of functions f on .S*S" such that

flsgsn are the restrictions of homogeneous' polynomials of degree & on TS~
to S;S* for all x&.5.

ProposiTION 2.10. G(P¥) is C'-dense, and hence L>-dense, in G(.&™).

ProoF. First remark that .&* is generated by
(@ G1=i s Sic<n+1)

as a C>(S"-module. By the Stone-Weierstrass approximation theorem (cf.
7.3.1) we see that ¢* Rz, -+, 2,4] is dense in C*(S") in the C’-topology.
Hence P* is C'dense in .#*. Since the operator G is C’-continuous, the
proposition follows.

-+ -REMARK. By applying the Stone-Weierstrass theorem we can. also see
that G(P)is C'-dense in G(C*(S*S"). = But this fact is not used in this paper.
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§ 3. A result for homogeneous polynomials

In the rest of the paper we shall assume that n, the dimension of the
sphere under consideration, is equal to or greater than 3. The main purpose
of this section is to prove

ProrosiTiON 3.1. Let fER[xy, -+, Xpilsjr (J=2), and suppose that

Ge*F(f,f)eG(z?. Then there are constants a;, bc R (1=i<n+1) such
that

fE (Z a; xi)” (Z bi x,-) mOd (Z xiz)‘R[x]zj_l_.
We first give another representation of GF(f, h) defined in §1. Set
R[x]o = Z R[x]s+1 -

LemMa 3.2. Let fER[xlsj41 (720) and hER[x]od Then

crim=6(z L )S

orx;

Ep (xcos t+{ sint) sin ¢ dt)

- —(2j+3) G(f( )S 2 3“—(xcos t+{sin¢) xtsmtdt>
+2G(f(x) h(a)).

Proor. By the homogeneity of f we have

5 a2 (),

0x;

oz, (x cos t+sin¢) sin t dt

=i+ s 2

aail'(xcos t+{sint) x;sint dt .
; _
Since ZCiﬁaLZXECf and GoX'Eo:O, it follows that
G(chcj af( )Soa (x cos t+{ sin t)smtdt)

X;

= —G’<f( )S 2 gt{ah (x cos t+C sin t)} stmtdt)

-I-G(f(x)go }; oz (xcost+sin t) xjsin ¢ dt) .

The first term of the right-hand side is

G<f(x)s;t§ %(x cost+{sint) {;cost dt)



- 168 . K. Kiyohara

(x cost+{sint) x;sint dt)

=G(f= 2 2
+ G(f( )S g; h(x cos t+{ sin ¢) dt) .
The lemma easily follows from these formulas.
The following corollary is an immediate consequence of Lemma 3. 2.
CorROLLARY 3.3. Let fER[x],s and h&R[z],+R[x]s. Then
G*F(f, heG(x?).
In particular, if Ge*F(f,f)EG(ves”/z), then
Ge*F(f+h, f+heG(&?).

Define bilinear maps F;: R[x]sy X Rlx)sji— R, Clatraireei—u (0SIS))
by
a 2l+1
F(f, h)= (»’C)(z? xk'éﬁ) h(C), fER[x]s41, hER[x]2j41 -
Put

_\ e 1. 2021=1) (25 =2 _
Il = So(cos £)%(sin )22 dp = @i+l 015y,

Then we have

T

Z—gﬁ—(xcos t+{sint) x; sin t dt
0k 0%

el

Jo 1 )
= ; 21 ILJFz(f’ h) .

We now assume {=j=0. Define real constants di/ (0</=<j) inductively
by di’=1I] and

1

d{:j — (21> ' Z dt i 1.—J+2+2p (l g 1) .

Then we have
= oh . .
f(x)S 3 a—(x cos t+{ sin t) Iy, sin ¢t dt
0% 00Xk

j
— Z L J Z at—j+2+2pF (f h)
=0 =
Put

2a— 1)
F=lra= (Zﬁ)!!((2a+2),8——1)!! (@0, £20).
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8

LEmMMA 3.4. (i) DasJst+v=4,, (a=1, 8=0).
P=0

(i) dp’>0 (02155 =0).

Proor. (i) In case 8=0 the formula is obvious. Assume f=1, and
consider the identity

t2u+2ﬁ—3(1 +t2)ﬂ — f: (48) t2u+2ﬁ+2p—'3 .
p=o\P

1 -
By applying (t‘l—gt—> to both sides and putting t=+—1, we have

8
Z.: =0.

p=0

L[ 8) (2a+25+2p—3)!
(=1) <£> Cat2p— D1l

This proves (i).
A 1
(i} Since godg;ﬂ aiz)t? 2P=W15, it follows that

1
29!

Ié J;Z:g+1+l+q

I’

¥ i~ j+o+2p Ji-j+1+i+
2 dp? X agZptrrr Jizitiive
p=0 = g=p

I

l
3 diig,,=dii .

p»=0

Hence we have the lemma.

ProrosiTiON 3.5. Let fER[x]yy; and hER[x)sjyy ((=5=2). Suppose
that G*F(f, heG(x?. Then

(GﬁFAﬁm%Mmmmwzo

Sor all p such that 0Zp=<j—2.

Proor. We have
G(l ) = Z er,o+ Z er,z
rz0 rzl

by [Proposition 2.9 (iii). Since G(P?) is L*-dense in G(.&?%), it thus follows
that

(Ge*F(£, b)) =0  (0=p=j-2).

ta+2p+2,zj—2p

Now observe the formula stated in Lemma 3.2. Since G*(f(x) h(z))e
G(P°)=T§OQ2U, and
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9
Ge* ( ai; )So v (xcost+{sint)sint dt)EG(me)

it follows that o
(GXF(f, b))

—(2i+3) (Ge* ( flz) So 2 g—% (z cos t+C sin £) xy sin ¢ dt>>

in+2p+z,2j—zp

in+zp+z,zj—-2p

We have seen above that

G:*(f( )S Z (xcos t+{sint) x; smtdt)

k
J

Z JGfk(Z @it F( f, h)).

But [Corollary 2. §| [ii] implies that

Gr¥( 3 izt £

a=r )G(in+zj+z)

= (G*F.(f, b))

0sr=sy).
Qritertz,2j—or ( =7 _])

Therefore we have
(G*F(f, b))

Since di’ >0, the proposition follows.

= —(2i+3) dy’ (GHF,( £, b))

in+2p+z,2j-—219 Q2i+21-7+3v2j"2p |

We denote by Cg (M) the vector space of complex-valued functions on
a manifold M. The operators G, G, Xz, XEO, ¢*, and 4 can be naturally
extended to C-linear operators (the complexifications) on the spaces Cg (S*.S"),
Cg (R2*?2), etc., which will be deboted by the same symbols.

Let C[z] (resp. C[z, ¢]) be the polynomial algebra in the variables x=
(Zy *+*y Tnsr) (resp. (x, &) =(x1, *** Tns1s L1 **» Casr) With complex coefficients.
We denote by C[x]; and Clx, {]i (resp. Clx, {];,;) the vector spaces spanned
by homogeneous polynomials of degree k (resp. bihomogeneous polynomials of
bidegree (i,7)) as in the real polynomials. In general, for a commutative
ring R we denote by (fi, -+, f;) the ideal in R generated by f,, -, f;ER.

Considering C|[z, £] as a subalgebra of Cg(R**?), we have

LEMMA 3.6. The kernel of t*|¢isn,, (k=1) is

(2 (28 —td) Cla, Uneoa (S 2:80) €l Cues

i

Proor. Let o; and ¢, be the linear transformations of R?**2? defined by
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a(x, )=z, =0, @xl=((a.
Then o*0,*=0,*a,* on C|x, {]u, and we have the decomposition
Clz, (o = Voot Vie+ Vot Vi,
where V, ;={feC]|x, Q]zklal*f—(— 1) f, a*f=(=1)f} (,j=0,1). Identify
S* 8" with ¢(S*S") C R**2. Then we see that &1 and ¢, preserve S*S", and

*gX=g*c* (1=1,2). Hence

1
Kernel of *|¢pn, = 2. Kernel of *[y, .
1,0 ’

Take f&V,, such that *f=0. Since ¢,*f=f, we can write

f: g;ofp ’ fpe C[x, C]Zp,2k-—2p .

Let Wi={(z, {) = R***?| Z(x,, —LH= ZLC, 0}. Since f=0 on S*.S* and f'is
homogeneous, it follows that f=0 on PV1 Let Wy={(z, {)eR*"*? 1 x,{;=0}.
Deﬁne f, EC[I, C]Zk,2k by

=2 (el (DL .

Then f=0 on W,. Since f’ is bihomogeneous, it follows that /=0 on W,
It is clear that

le)"f—f’ (X (2f =) Clz, Cancs.

Since a,*f=f, we see that f,(x, {)=f;_,(, x) (0=p=k). Hence a*f :f',‘
Put y,;=x;+C;, §i=2:—C (1=i=n+1), and define f3EC[Y, {lpu—p (0=
p=4k) by

r(E 55 ) =S awe.

Since a,(y, §) =(y, —§), it follows that f;=0 if p is odd. Define f” €Cly, f]gk,;k
by
2%

f @8 =2 (Lyd* (LM o, §) .

p=0 1

Since f”(y, §)= (Z )%f'(y—l_é yzé) 0 on

W.={, ) R+

Zi:yiz = ; 5@2} p)
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it follows that f” is identically zero. We have

(S )2,cf,<y+$ ygf)

This implies

—f W, 9 (S —83) Clt Elses

(2

(D) f (2 O (D 0l Cla Yaees
Hence we have

(Z(xt+28)" fla O (D (x2=L9) Cla, uaH (D 080 Cler, uica

In general, it is known that the ring C[X,, ---, Xm]/(lfjl Xf\’) is a UFD
(a unique factorization domain) if m=5. Hence the ring C[z, {J/(2(x2—(?)
is a UFD. It is easy to see that the image of } x;{; by the hom(;morphism
Clz, {]—Clx, C]/(Z(xq;z"Ciz)) is irreducible, andl hence is a prime element.
Therefore the 1dea] (Zj(:z:z —Z2), Z%Ci) in C[z, {] is prlme Since Z(:ﬁf—l—(f}
does not belong to thlS ideal, it follows that -

fE(T @=L Dxly).

In case that f belongs to V,, or Vi, or V,,, we define h&V,, by

h=x1C1f lf fE VI,O, h=(x12—C¢2)f lf fE VO,I’ and thICI(xIZ—Cf)f lf fE Vl,l-
If *f=0, then *h=0, and we have h&(), (zf—{?), 2. x;8;). Since x,§; and

22—_2 do not belong to this prime ideal, we also have f&(}(x2—{?),
i
2. x;C,) in these cases. By considering the homogeneity we have the lemma.

We complexify the vector spaces G(Py), G(P;,;), G(P?), G(Qx), and Q; ,
and denote them by the same symbols.

CorOLLARY 3.7. Let fEeClx, Lo (k=1).
(1) (Ge*f)aw,p =0 if and only if Gf belong to the ideal (L xd 2804

Zi: ;4)-

(ii) Suppose that f is a polynomial in only 4 variables (x;, x5 {3, o).
Then (Ge*f)gw,p =0 if and only if Gf=o.

Proor. (i) First assume that GfE(Z xd, ZC“ inii) Then there
are homogeneous polynomials R;&C[x, {]s_s (1—1 2, 3) such that

sz in2R1+ Z; CAR+ inCiRs .
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By applying ¢ to this formula, we have
» Gl*f: l*(Rl‘i"Rg) - Gl* (R1+R2)EG(P2;C_2) .

Hénce (G(*f)(;(qzk) =0.
Next assume that (Gr*f)aq,,,=0. Then there is hy& [z, {]s-» such that
Ge*f=Ge*hy,, This shows that

1

o <Gf— % (z2+C2) Gm) =0.

Thus by Lemma 3.6 there are polynomials A, h,&C[zx, {]s-e such that

.

Gf =5 L(at+L8) Ghot X (22 =0 bt D xilihs.

Since f is a polynomial in the variables (x;, x5 {;, {5), so is Gf
Assume that Gf is in the ideal (Zxd 284 2xb). Fix (x, 23, § () ER

and put

23 =4—~1 VYx2+x? cos b, Lo =4 —1 42+ cosp,
x4=*/—1 ~/x12+x22 sinﬁ, C4=N/—1 '\/Clz"“"czz sin7y,

and z;={;=0 (5<{<n+1), where 6 and 5 are real numbers such that

N/(xlz"i' x:?) (2+ %) cos (60— v) =281+ 228
Then we have 2 xf=2.{ =2 x,{;=0, and hence

(Gf) (z1, X2, £1, &) = 0.

Since (xy, 3 &1, ) ER* is arbitrary, it follows that Gf=0. This completes
the proof.

ProrosiTiON 3.8. Let fEC[x]giy and hECx)gyy (i25=2). Suppose
that f and h are polynomials in two variables (x;, 25). Then

(1) (GHFFp(f P))ayyapinnjsy =0 o and only if
G5 agmFifh)=0 ©0sp=)).
d=p /
(i) If (Ge*Fi_o( £,f))auizs . =0, then f must be of the form
S =(a 21+ ay )% (by 21+ by )

where a, a, and b,, b, are complex constants.

Proor. (i) Since
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' g
(GHFA £ h),,,.... . =[G S atr RS, h>)

(i) follows from [Corollary 3.7 [ii).

The general linear group GL(2, C) naturally acts on the polynomial
algebras C[z;, x,] and Clx;, x5 &1, &5). It is easy to see that these actions
commute with the operators G and F,. Hence we see from (i) that (G:*F;_,

(fsf))e;,..=0 if and only if
(Ge* Fi_o( A%, A¥f))
Put

’
G(Q2i+zj+2)

=0 for fEC[z, zi)siss and AEGL(2,C).

Qdi—z,a

2i+1 '
F= 2 coat itk
k=0

By considering A*f instead of f for a suitable A€GL(2, C) if necessary, we
may assume that ¢,=0. - A direct computation shows that ’
Fi—2(x1k x22’i+1—k’ xll x22i+l—l)

F—3) 1 . .
— (214 '3> : {l(l—-l) (1—2) (1—3) atti-tgite-t+d ¢

+4l(l_ 1) (l___ 2) (22+ 1 — l) x1k+l;3i24i+1—(k+l) C13C2
F6I(I—1) (2 +1—0) (20 =) gtri2gpi-wrogere
+41(2i+1—=10) (2i—1) (2 =1 1) xfti 1yt 1-*tD F ¢ 8
+H(2i+1-10) (2i~1) (2 —1—1) (2i—2— ) ! a0 1)
(0<k, I<2:+1). For each p, g such that 0Sp—g=<4i—1, 0<¢=3, we have
XEO (TP 92175 = (p—q) x PO gt at e
+4i—1—p+q) P PR+ R

where heC|[z, {Ju,s. Since (Gr*h)g,,_, =0 by [Proposition 2.9 (i), it follows
that

(p—q) <G5* (Pt gt iprefatt Czs—q)>

= —(4di—1—p+q) <G,* (Pt h-trrag Cz“"))

Qii—z,«

Q4i—z,4
for p, ¢ with 0<p—g=4i—1, 0=¢=3. Using this formula successively,
we have '

(G,* Fy_o(2 22415, 2 x22i+1—rl)>Q‘i—2 4

= A}, <G{* (ka2 KHD £ 9) 0=k I<2i+1),

\
)Qoi—z,«‘
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where Al ;=0 if 0<k+I=<3 or 4i—1=k+I1=<4i+2, and

(2i—1)! 1 ‘
41 (k) (k+1—1) (k+1—2) (k+1—3)

Ai,t -

x[2i(2i+1) {k(k—1) (k—2) (k—3)+1(I—1)(I—2) (1-3)}
—A4(i—1) tk{i(4k2+ 412 —61k—6k—61+10)+ 3kl — 3k —31+3}]

if 4<k+1<4:i—2. Especially we have |

(20)! (26+1) (k—T7)+12
4! E+1

Ak,l = f,k =

(3<k<2i+1)

and

342i—1)! (2i+1—Fk)(2i—Fk)
4 (2k—1) (2k—3)

Abe= 2<k=<2i-1),

which are not zero.
Now we can write

<G!* Fi-z(f’f)>qd_,,¢

= 22 ClchAfc,z<Gl*(5€1p_l’2“i—2'—?gz4)>

P=4 k+1=p Qui—2,4

In Lemma 3. 9 stated later we shall prove that

(Gex(zzt=+20) Usps4i-2)

Q«i—z,c

are linearly independent. By using this fact we have

(#)p Z CkClA;';,l:O - (4§P§4Z—2)

k+T=p

If ¢,=0, then by the formulas (#);, (2=<p=2i—1) and the fact A} ,+#0
(2=p=2i—1) we have ¢,=0 (1=k=2/—1). In this case ' .

f: xl%(C% x2+02i+1x1) .

If ¢,#0, then by the formulas (¥), (4<p=<2i+2) and the fact A} ,#0 3<p<
2i+1) we see that ¢ (3=k=2i+1) are uniquely determined by ¢; and c,.
In this case we consider the following polynomial ;

c 2i
g(x) = C1,x1<x2+ —2;'?51—x1> .

2i+1 , ' : .
Put g(x)= Zob,;xl"xgz"“"“. Then b,=0, b,=c¢,, and b,=c,. Moreover, for
= )

a suitable Ae GL(2,C), A*g becomes
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axlzi'x2+ ﬂx12i+1 (a, ‘8 - C) .

Then it follows from the above formula that

(G Fra(Axg, A*g)), =0,

4T—2,4

and hence

(Ge*Fislg,9),  =0.

Qn’—z,c
Thus we have
Z bkbzA,’;’;ZO (4§P§4i—2).

k+l=Dp

Since b,=c; and b,=c,, we can conclude that b,=c, (0<k<2{+1). Therefore
f=g, and the proposition has been proved.

LEMMA 3.9. 2k—3 elements (Ge*(x? 227 7LsY)g,, . A=<p=2k) of Qu.
are linearly independent, where k=2.

Proor. By [Corollary 2.8 [ii] we see that
(Ge¥(z Pz 2 L4Y)

Qak,n

= <G¢*<x1p TPt — 5 k6_ 1 TP PR

3 -
t (2k+1) (2k—1) ° x* p+4>)G(Qek+4) '

Thus in view of [Corollary 3. 7{ii) it is enough to show that 2k—3 polynomials

6 3
hy = G(-Tlp TP — _Q—E“:I'xlp PR+ (2k+1) (2k—1) z® x22k—p+4>
(4=p=2k) are linearly independent. An explicit computation shows that the
coefficient of x,?{* ?** in h, is

(p—1! (2k—p—]! p(p—2)
(2R 2k+1) (2k—1)

if p is even, and the coefficient of x,?7'{,(* ?** in h, is

(p—2)!' Ck—2p)! (p—1)*(p—3)
(2R)N (2k+1) (2k—1)
if p is odd. Thus we have h,#0 (4<p=<2k). Since h, (4=p=2k) have
mutually different degrees in the variables (x;, {;), it follows that they are
linearly independent. '
We set
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S = {xEC"“

Z xi2 — 0} ’
Si={= e Dar=Elt=Fal=0}.

Let V be a 2-dimensional subspace of C**! which is contained in S, énd
let £: C*={(z;, 2)}—V be a linear isomorphism. Then the isomorphism «
induces the isomorphism

eXk: Ct= {(331, Zgs L1 Cz)}——>V>< veer= {(x’ Q} ’

which will also be denoted by x. In this case it is easy to see that VXV
is contained in S,.

By identifying C[xy, 5] (resp. Clx;, xs &1, {g]) with a subalgebra of C[x]
(resp. C[z, ¢]) naturally, the operators G and F, are defined on C[xy, xy, 1, {3
and on C[x, 1,] X C[x;, x;] respectively. Then we have Gor* =x*G and

F (e*f, e h)=x*F,(f, h), f, h&C|x].

ProposITION 3.10. Let V and k: C*={(x;, xs)}—V be as above. Sup-
pose that fEC[x]zj41 (J=2) satisfies G*F(f, f)€G(#?). Then

(K%F) (21, 1) = (@21 + @22 (by i+ bozs)

for some constants a;, byeC (k=1, 2).

Proor. By [Proposition 3.5 we have

(G*Fys(£.1)),, . =0

Qtj—z,4
By (Corollary 2.8 this implies
J )
(G 3 @R FiLS),, =0
g=7-2 GQ 42

Hence we have

o2

3 @HREL)E(Tad Dl k)

q

by [Corollary 3.7 (i). By applying #* we have

6 3 @t RS, e )=o.

9=j-

The proposition now follows from [Proposition 3. 8 (i) [i).
In view of [Proposition 3. 10, it is enough to prove the following propo-
sition in order to show Proposition 3. 1.

ProOPOSITION 3.11. Let fER[xy, -+, Zosilzjsr (J=2). Suppose that for
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each 2-dimensional subspace V of C**'={(x)} contained in S, f|y has the
form (ayz+az2)¥ (B2t Be2)y @, BiEC (i=1,2), where (2, 2) is a linear
coordinate system of V. Then there are constants a;, bR (1=i<n+1)
such that

fEQaz) (Lbx)  mod( ) Rzl

1

Proor. We need different considerations according as n=3 or n=4.
I. The case n=3. Define a bilinear map ¢: C*xX C*—C* by

oW, 2) =
1 1 1 1
E(ylzl‘*"yzzz), ow—1 (Y121—Y222), E(%%_?/lzz), wW—1 Y1 +¥129) |

where ¥, 2)=(W, ¥s), (21,2:))EC?*xC%: (The induced map P'XP'—P* is
known as Segre embedding, where P* denotes the k-dimensional complex
projective space.) It is easy to see that the image of ¢ is S.  Moreover any
2-dimensjonal subspace V' of C* which is contained in S is of the form

(C’x{a} or ¢({a} X C?), acC*—{0}. Thus ¢*fC[y, 2] is homogeneous of
degree 2j+1 in both variables ¥ and z, and for each a=C*— {0} there are
constants aj, ag, B, fEC (resp. af, af, B, EC) such that ¢*fy, a)=(ey,+

azYs)¥ (ﬁl?/1+/32’!/2) (resp. ¢*fla, 2) =(ai 21+ a5 29)¥ (ﬁ121+ﬁ222>)
We denote by C[y, z]x,, the vector space of polynomlals which are
homogeneous of degree k in the variables ¥ and homogeneous of degree !

in the variables z.

LeEmMA 3.12. Let heCly, 2l ({=3). Assume that h satisfies the
following condition: For each acC*—{0} there are constants a, ay By,

BEC such that o
h(a, 2) = (a2 ap2y)t ™t (,8121+ﬁ222) .

Then there are homogeneous polynomials hy, 11, 79 01, 0:EC [y] with deg r,=
deg 7., deg 8,=deg d, such that '

h(y, 2) = ho(r121+ 722" (01211 022) »
and 7,2+722 and 0,2,+0:2, are irreducible in Cly, 2].
Proor oF LEMMA 3.12. Let P! be the complex projective line with
homogeneous coordinates [¥;, ¥s], and let C(P}) its function field, i.e.,

oy = {%l v, #€C[y,, v, homogeneous of the same degree, ’#0}'

For ‘a homogeneous polynomial u€C[y} we set
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u(ay, a) = 0} )

V(W) ={lay, a] P,
and for veC(P})

W(v)={pePi|v(p) =0 or v(p)= oo} .

Moreover for a polynomial v=}; v;#*€C(P,)[t] (v;eC(PY) we set W(v)=U

W(v,), where the union is taken over all 7 such that v;#0.

- We assume that & is not identically zero. By changing the coordinates
(21, 2,) linearly if necessary, we may also assume that the coefficient h(y)E
Clyl. of 2 in h(y, 2) is not zero. Define the monic polynomial ¢=9¥1, ¥ ?)
eC(PY)[t] of degree [ by the formula

2 = hio) 20 10 2 ).

Let
g=g7 g™ 0:= 0 Y VECP)[E] (1 sis=m)

be its irreducible decomposition in C(P})[t]. We assume that each g; is
monic and deg ¢;<---=deg gnm. Let D(g,)€C(P}) be the discriminant of g;
and D(g;, ;) €C(P.) the resultant of g; and ¢, (1#j). Since g; (1=i=m)
are irreducible and mutually prime, they do not vanish. Set = - '

W=V(h)U LLJW(gi) uu W (D(gi)) U ing(D(gi, gj)) . |

Then W is a finite subset of P.

Take [ay, a] P, —W. Then gi(a;, a,, t) €C[t] (1=1 <m). Moreover we
see that the polynomials ¢;(a;, ast) are mutually prime and each algebraic
equiation ¢;(a;, a5 £)=0 has only simple roots. Hence by the assumption
we easily have degg;=1 (1<i<m), m=1 or 2, and ;=1 or ro=1in case

m=2. In any case we can write

Ig) -1 . 0, .
hy,2) =hlzi+ - 2) (21t 5 2
I8 1

- 7’—"1‘_5‘—(7'1 21+ 722) 7 (012 +0220)
1 1 ] _ : I

where 7, and 7,(resp. 6, and §;) are homogeneous polynomials in the variables
y of the same degree and mutually prime. Since 7;21+722; and 0,2+ 0;2;

are irreducible in C[y, z], it follows that —77%-60[%, 7). This finishes
1 1 N

the proof of the lemma.
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We now continue the proof of the case n=3. By applying
3.12 to ¢*f(y,2) in both variables ¥ and z, we see that the irreducible
decomposition of ¢*f in C[y, 2] must be one of the following :

(1) AW, 2%, 2), f1, LECW, 211,

51, 27 1:y) fs(2), LECTY, 2]i1 LECWY]L /ECIEL
(i) [)" 12V 5, 2), LECWY], LEC2]l, LECIY, 2l
(V) WPl fs) fu(2), f1 ECW] for LECE

Here it is not assumed that f; and f; are mutually prime in the case (i),
and so are not the pairs (f}, f;) and (f;, fi) in the case (1v) In any case ¢*f
is of the form

2 2j / 2
(Z ai,kytzk) (i kzzzlﬁi,kyizk), @i BixEC.
Thus there are constants a;, b;C (1<:=<4) such that

Sflz) :(Zi a; x)¥ (Zi} b; x;) on 5.

4

Since the ideal ( >, xiz) C[z] is prime, it follows that
1

f=(Zazp(Tha)  mod(Iad Clahy.

Next we must show that the coefficients a;, b; (1<{<4) can be taken
from the real numbers. We may assume that the vectors a=(ay, a,, as, a,)
and b=(b,, by, by, b,) are not zero. Since f is real, we have

(ZJ a;x,)¥ (Z; byx;) = (; a; x;)% (}; b; x;) mod (Zl: xz?) Clxles_y ,
where the bars denote the complex conjugates. Then there are two cases;
the ideal J=(3; a;x;, >,z in C[x] is prime or not.
i i
Case 1. J is prime. In this case
(Z d,;xi)zj(Z szz)EO mod J .

If Zb z;&J, then Z,'a,x,EJ If Zbix,eJ then we have Zbixi—cZaix,
(cE C—{0}) by comparing the degrees Then

c Z ('I_ixi 2j = (Z aixi)"’"l (Z b,x,) mod (Z x,—") ,
i i i i
and we also have }; a;x;€J. By comparing the degrees we see that
i
Zd’ixi=dzlaixi, dEC, ldl =1.

Take e=C such that e2=d. Then e2 a;x;€R[x]. Moreover, since
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e Y byx; = ) b mod (2] ) ,
7 7 7
it follows that ¢ > b,x;=&¥ Y b;x;, Thus &/ ), byx;=R[z], and
3 7 7

f=(e X aix)¥ (% ). bix) mod (X z?) Rzl -
Case 2. J is not prime. In this case the image of };x? by the homo-
morphism C[z] — C[x]/(X a;x;) is not irreducible, becau;e the ring Clz]/
(Zi: a;x;) is a UFD. Thusi we can write

inzz(z cixi) (2 dixy) mOd(;aixi) .

Then the 2-dimensional subspace V defined by Za,;xi:-Zcix,;:O is con-

tained in 5. On the other hand, it is easy to see that the real orthogonal
group O (4, R) acts transitively on the set of 2-dimensional subspaces contained
in S, Since the 2-dimensional subspace defined by z;+4—1 Ze=x34+V—1 7,
=0 is contained in S, it follows that |

5@z = A*(a(z AV =1 2) +las+4—1 )

for a suitable AEO(4, R) and a, BC. This implies that a=(ay, -+, ay) is
in S. Moreover, we see that O(4, R) acts transitively on S—{0} up to posi-
tive constant factors. Hence there is B€O(4, R) such that

B*Zaixi:e(xl—i—«/_—Tx,), e>0.

By applying B* to the congruence
(2 @)™ (2 bix;) = (X ayx)¥ (2 by i) mod (2, z),

3

we have

(2, —A —1 z)¥ (2 bix) = (2,44 =1 2)¥ (2 bixs) mod (2 z#),

;
where > bjx;=B* 2 b;x;. Since z;—V —1 z, does not belong to the prime
ideals (;+ij2, ix3+~/——1x4) and (xd—«/jx,, z;—V—1 x,), and since
(V=1 zg 2+ —1 )N (2 +V—1 x;, :}éséJfl—x4) =(z;+4V—1 25 2z,
it follows that 3 Bz, (AN —T s 5 za) Thus o
;B;x,.zd(xlwisz), deC—{0} .

"~ Then the above congruence shows that
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xl‘_.ﬁ/:.i—xge(xl +‘\/:sz, Z xiz) ,

which is a contradiction. - Therefore we see that. the ideal J must be prime.
This completes the proof of the case n=3.

I. The case n=z4. We may assume that f20 mod(Z z?%). We first

decompose f into irreducible components in the ring C[x]/(Z xd) ;

b

FEfrfam mod (Sad),

where f;€C[z] are homogeneous polynomials, deg fis---= deg f,, and the
images of f; by the homomorphism C[xz]—C[x]/()] ) are irreducible and
mutually prime.

Let P* be the complex projective space of dimension 7 with the homo-

geneous coordinates [z]=[z,, -:-, Z,,;]. In general, for homogeneous poly-
nomials Ay, -+, h, &C[z] we denote by V(h, -, k) the algebraic subset of
P defined by hj=---=h,=0. We set

S=V(Xzd.

Let h&C[x] be a homogeneous polynomial whose image by the homo-
morphism C[z]—C [x]/(Z z#) is not zero, and is irreducible. Since the ring

C [1:]/(}_,1 z?) is a UFD, 1t follows that the ideal (A, le) in C[z] is prime.
Set

Sing V(h) ={12] V| 220 = - = 52 (@) =)

and Reg V(h)=V(h)—Sing V(h). We denote by V(h), (resp. .S,) the tangent
hyperplane to V(h) (resp. .S) at p=Reg V(h) (resp. p=S). Set

U={peReg V(1 )N S| V(k),#S,)
and U(p) S OS S,NSN V( h)p for pU. Then we set
={p. 9P x P

pESNV(h), 95,05},
U= {(p,v)eP”xPnlpeU € U(p)}.

LeEmMA 3.13. The subset U, is open and dense m the set T

ProOF oF LEMMA 3.13. We shall first show that U is open and dense in
SNV(h). Since [ay, -+, any ] ESNV(h) is in U if and only if a=(a,, --

‘s Angy)
oh oh : : . . "

and | 3—(a), -+-, 5—(a)| are linearly independent, it follows that U is open
ox, 0%y
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in SN V(h) in the Zariski topology. If (a;, -, a4, and (gi(a), ey oh (a)>
X, 0Zn4

are linearly dependent for all [a]&.SN V(h), then there are polynomials «; j,
Bi.; (1=i,j=<n+1) such that

oh oh
oy Ty s T B

a;;=—a;; Bj;=—p:; DBy the homogeneity we may assume that 8; ;&C.
Then we have

(deg ) cih— 3 o - Y@, Nadt Dhsah (1SiSn+l),
(4 J

and hence

(deg h) ;= 3 Bi ;x5 mod (2] z?) .

T

Since B;;=0, this is a contradiction. Therefore we see that U#¢. Since
SNV(h) is an algebraic variety, it follows that U is open and dense in
SN V(h) in the classical topology.

Next we shall show that U(p) is open and dense in S,N.S for each
peU. As is easily seen, S,N.S is a variety and U(p) is its Zariski-open
subset. If U([a])=¢ for an [a]€U, then V(h)y; DSNS. This implies that

oh

axi

2 (@e(X s 2ax).
) oh C e .
Then we have by the homogeneity in@;(a)e(z a; x;), which is impossible

when [a]€U. Hence U(p)+#¢ for each pe U, and we see that U(p) is open
and dense in S,N.S for each p=U.
Let

pr,: T—> SN V(h)

be the projection to the first term. Then we see that pr,: T—SNV(h) is
locally trivial, i.e., for each p&SN V(h) there is a neighborhood W of p
in SN V(h) and a fibre-preserving homeomorphism

pr; {(W)—=>WX(S5,NS) .

This, together with the above facts, implies that U, is dense in T. Since
U(p) depends continuously on p= U, we also see that U, is open in T.

COROLLARY 3.14. Let K be a Zariski-closed subset of S such that
V(WNSZE K. Then there is a projective line L contained in S such that
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VIWNLNK=¢ and V(h)N\ L consists of k distinct points, where k=deg h.

Proor ofF CoroLLARY 3.14. First take (p,q €U, such that p&ZK.
Then the projective line L, through p and ¢ lies in .S, and L, and V(h)N.S
intersect transversally at p. Assume that there is a projective line L in S
such that L and U—K intersect transversally at least at / distinct points,
say py, -+ P (1=SI<k). Since <k, there is another point p,,, in V(AN L.
Take any point r&L—{p,,}. Then (p,NET. If pyEK or L and
SN V(h) does not intersect transversally at p,,,, then we can take (p),,,7)E
U, near (p;,;, 7) such that p;,, & K. Let L' be the projective line through
P and 7. If we take (p),, ') sufficiently close to (p,,,,7), then L' and
V(h) NS intersect transversally at points p;& K near p; (1<i<!l). Therefore
we have found a line L' such that L' and V(h)N.S— K intersect transversally
at least at /+1 distinct points. The corollary now follows by industion.

We now continue the proof of the case n=4. As usual #(K) will
denote the number of elements in a set K. [Corollary 3| 14 shows that there
is a projective line L, in .S such that L,Z V(f) and & (V(fn) N L)=deg fp.

Then we have
deg fn <$(V(F)NL;)<oo.

Since § (V(f)NL)=1 or 2 or co by the assumption on f, it follows that
deg fn=2. Assume that degf,=2. In this case we have degf,=1, since
degf is odd. Since V(fn)NSZV(f)N.S, we see by [Corollary 3. 14 that
there is a projective line L, in .S such that L,& V(f) and (V(f)U V(fw) N L,
consists of three points. This being a contradiction, we have deg f,,=1.
Now we may assume that ;= --- =r,. Since V(£)NSZV(f)NS (i+)),
an induction argument as in the proof of Corollary 3.14 implies that there
is a projective line Lg in S such that # (V(f)N Ly)=m. Hence m=1 or 2.
Let V be the 2-dimensional subspace of C"*! whose image by the quotient

map C"*'—{0}—P" is Ly, Then by considering f |, we see that r,=2j and
r=1 if m=2. Thus we have

fE(;azxﬁf)(Zbixi) mod (2 3, a;, b,eC 1=5i<n+1).
7 7
Since f is real and C[z]/(X z? is a UFD, it easily follows that the

coefhicients a; and b; (1<i<n-+1) can be taken from the real numbers.
This completes the proof of [Proposition 3. 11

§ 4. The main result

Let O(n+1, R) be the orthogonal group of degree n+1, which naturally
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acts on R""'={(x)} and hence on R[z]. In this and the next sections we
shall prove the following

THEOREM 4.1. Let fER][x, -+, Zupiloaw Then f satisfies the condition
G*F(f,f)eG(&? if and only if f has one of the following forms (i) and
(i) :

(i) f= hl+h3+§(§akxk>2i(; bi,jx;) mOd(l—; x),
where g, bi’jER, hIER[x]p and hSER[xL,

fF=h+hs+cA*h mod (1— X =),
where hyeR[xz,], hy€R[x];,, ccR, AcO(n+1, R), and h is a polynomial
of degree 21 in the variables (x,, x;) of the following form

10 6 6 .
h= éa2i+1x12i+l+ gzﬁziﬂxl%xz‘*' §27'2i+1x12t_1x22
+ 051l 1P+ e 3y 35t

with ‘BlseR, TlgeR_{O}, and

_ 10 25 Bt | 15 By
G= 3T IFA9Z pf T A gy T
__1o g _ 515 g
A& T 713 —120, %~ 13 Tat 4 7 +210,
__ 1 _3h _1 B
ay = — 13 713—' 2 ——;;ls _'252 , Ay — 4 713 +210 ,
Cl’15:—120, a17:45, a19=—10, (121:1,
75 25 ¥ 140 135
185: 13 ﬁls"‘ 132.24 Xj,ll‘: ’ 467: ——1?/813’ 189:?.319”
66 25 25
Bu=— Tg"ﬁw ’ s— 13787 132.8 Bis®
70 90 95
"= —Tq3 s> o= 13 71> u= —"137s>
25 25

05 = —m“ﬁlshs, & — —Wrmz-

We first remark various actions of the orthogonal group. The orthogonal
group O(n+1, R) acts on R**2 by the map (z, {)—(Ax, AL) (A=O(n+1, R)),
and via the inclusions ¢ : S*—R"! and ¢: S* S"—R**?2, it also acts on (5%, ¢y)
and (S*.S”, ¢,) as isometries. Clearly the induced actions of O(n+1, R) on
C=(R™Y), C=(R**?), C(S"), and C(S*S*) commute with the operators G, G,
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¢*, 4, Fp,, and F. It follows that the subspaces G(P), G(Qy), and Q;; of
C=(S*S") are preserved by this action. In particular we see that Ge* F(f, f)
eG(#?) if and only if Ge*F(A*f, A*f)eG(.%?, where fER][x],q and
AeO(n+1,R).

ProrosiTiON 4. 2. Let fER[x],q. Suppose that f is of the form (i) in
Theorem 4.1. Then f satisfies the condition G*F(f, f)EG(&?).

Proor. Let u, vER[x],s. [Proposition 1.6 shows that if « or v belongs
to the ideal (1— 2 z?), then Ge* F(u, v)eG(.&?%. Thus we may assume that

F=hit et (L ana (5 b)),

In view of Corollary 3.3 we may further assume that

= LS o (Db,

By considering the action of the orthogonal group, we may consequently
assume that f is of the form

;lezi(; bi,jxj), bi’jER.

Then the proposition follows from the next lemma.
LemMma 4.3. G*F(x2x, x¥x)eG( %7 1<k I<n+1).

Proor. Let U, (m=>3) be the real vector space spanned by

{G‘*(xlszkxz C12q>’ Ge* (xlzpﬂxkclzq_lCl), Ge* (2212, (21

Gex (2020 L) |p+g = m)
Then from the definition of F we have
Ge*F(x2axy, 2% x)EUs ;4 Uiy .
Consider the following identities :
X, (@ 122, {070 = (2p+1) 2,2 2 2, G4 2274 2, L9 G
+a P 2, {7 — (29— 1) 2P, (M2
Xe, (22722, 04720) = (2p+2) 2, S e+ 2P M L
—(2¢—2) 3, {23 — 2P P 2, (1
XE,, (222*2 2, (,220,) = (2p+ 2) 2P+ 1y, 001 + 22242 2020, L

—(29—2) P35, (M3, — 2Py 2, P02,
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XEO (x I 2U8E, Cz) <2P+3> x12p+2C12q 2Cx G — (2qﬁ3> x12p+4C12q_4Ck £

— 2P 3, (M3, — 223, (23, .

These identities imply that Ge*(x 2P x,x,{2), Ge¥(x2tx, 27, Gek(x2Ptia,
£y, and Gex(x, 2212272, (,) are linear combinations of G¢*(x2P+2x,x,{2072),
GeX(x P32, {7380, GeX (a3, L% 3C,), and Ge* (a,?774¢,%#LxC,), provided g=>2
By using this fact successively, we have U,CG(.%?. This proves the
lemma.

Hereafter we make the convention that the degree of the polynomial
0is —oo. Let fER[x],; with deg f=2m+1 (m>2). Consider the following
conditions for f: »

(1) The homogeneous part of f of degree 2m+1 is of the form z*"
(az,+bay), (a, b)ER*—{0} ;

The homogeneous parts of f of degrees 1 and 3 are zero;

(iii) The degree of f in the variable x,,, is at most 1.

LEMMA 4.4. Let heR[x]os with deg h=2m-+1 (m>2). Suppose that
Ge*F(h, heG(&?. Then there are A=O(n+1, R), hheR[z],, hs&R[x]s
and fER[x]o such that (a) either f=0 or 5<deg f<2m+1 and f satisfies
the above conditions (i) [ii) (iii), and

(b) A*h=h+h+f  mod(l-} z?.
Proor. We may assume that h%0 mod(1—2>]z%. Then there are
m (0<m' <m) and K €R[z]ym ;; such that
h=H mod (1— 3, z?)
and A'#0 mod 2 x2 If m' <1, then there is nothing to prove. We now
assume 7' >2. Since
GexF(H,K)eG(x?),

it follows from [Proposition 3.1 that there are constants a;, b,eR (1<i<
n+1) such that

B =(2aix)™ (Z b;x;) mod (2 z) R[x]em -

1

Hence there are A=O(n+1, R), (a, b)) R?*— {0}, and A"’ €R[x]yn_, such that
A*N = x™ (ax,+ bxy) + H' mod (1— 2z .
It is easy to see that there are homogeneous polynomials hg, E R[x]s41

(0<k<m' —1) such that the degrees of hyx,, in the variable z,,, are at most
1 and
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m’'—1
K= ). hai mod (12 x?).
k=0

m’—1
By putting f=x2™ (ax, + bx;)+ ), herss, we have the lemma.
k=2
In view of this lemma we may restrict our attention to the polynomials
satisfying the above conditions (i) [ii) (iii). Now we fix fER [z],, with deg f=
2m+1 (m>2) which satisfies the above conditions (i) {ii) (iii) and the condition

GH*F(f,f)eG(z? .

Let f;:4, (2<i<m) be the homogeneous part of f of degree 2i+1, f= %ﬁ,iﬂ,
i=2

and let fomy =2 (ax;+ bxs), (a, b)=R*—{0}.

For a polynomial A& C[z, {] we denote by deg, h (resp. deg, k) the degree
of h in the variables (x,, {;) (resp. in the variables (x, -**, Zus1, Co» ***s Cnt1)-
For elements of C[x] we shall also apply this notation by considering C[x]
as a subalgebra of C[z,{]. Put

d; = deg; fai1 2<i<m).

Let 7, be the index such that d;<d; if 2<i<i, and d;<d;, if {4<i<m. In
particular &,,=0 or 1, and d%:mgx d;. Consider fy,, (2<i<m) as a poly-

nomial in the variables (zy, -+, Zz4;) With coefficients in R[xz,], and let Ay,
be its homogeneous part of degree d;. Then f3,,=hgy, if d;<0, and deg,
(forri—heaur) <di—1 if d;>1.

If d;, <1, then it is clear that f is of the form (i) in [Theorem 4. 1.
Now we assume that d; >2. In this case we have {,<m. Let i (>, be
the index such that d;<d; if 7,<i<1i, and d;<d; if ,<i<m. In the rest
of this section we shall prove the following

PrROPOSITION 4.5. Under the assumption d;, >2, we have m=10 (deg
f:21), i0:2, i1:6, d":o:4’ d”:1:2’ and szO (7S2£10>

We shall prepare some lemmas. For any positive integer N, let Vy be
the direct sum of vector spaces Qspz in G (Pyy,) such that N,y ,,=N.

LEmMmA 4.6. Let u€R[x, (o (k>0 k+I<2m+1) with deg,u=d.

k1

Then there is a polynomial v= Zo Vy; (Vy; ER [z, {]2;) such that deg, v<d and
j=

(Ge*u)y, = Gr* v,

where (Ge*w)y,, stands for the Vy-component of Gr*u.

VN
Proor. We shall prove this by induction on the integer 2k+2l=deg u.
If deg #<0, then it is obvious. Assume that for each & €R|[x, (] o Wwith
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k41 <k+! and for each N there is a polynomial v = Z vy; (v, €ER|x, C]gj)
such that deg, v’ <deg, «' and (Ge*«/),, ,=Ge*v'. By the proof of [Proposition]

2.7 we can write

l
U= Uy, U, qZpR[x, Clon+2,20-24

such that

* * * Pup | 0up
AGt* up = Ny iapg1-2pGt* up+Ge* w, wp:_Z ox? T &2 )’

and degyu,<d. Let Ge*w,= ) (Ge*w,)y, be the eigenspace decomposition.
' N

As was seen in the proof of Proposition 2. 9, (Gr* wp)y, =0 if N=Nu1sp2-2p-
Therefore if we put N, =Ny 9p2-20, We see that

Ge*up+ 25 (Np—N)H (G wy)y,
N#N, .

is an eigenfunction corresponding to the eigenvalue N, and we have the

decomposition of Ge*u, into eigenfunctions ;

Gerup=(Gerupt 3 (Np= N (GrFwylry) = T (Ny—N)Ge*wyly,,

N¢N
Since deg; w,<d, the assumption implies that for each N there is a poly-
k+1
nomial v= 3] vy; such that deg;v<d and (Ge*u,)y,=Gr*v. This proves
=0

the lemma.

Fix an index (2p, 2q) such that ¢<p and p+¢<2m+1. Let V(resp. V')
be the direct sum of vector spaces Qyp oy In G (Pymys) such that Npy op =
Niyp,zq (resp. Ny oy =Nap,sg and p'+¢ >p+q).

CoROLLARY 4.7. Let u,ER[x]py; and u,ER|[x]g,, (k1< m) with
k+1+1

deg; u,+deg, us=d. Then there are polynomials v= 7}, v,; (ve;ER[x, {]sy)
and wER[xz, {lopreg-2 Such that deg, v<d and f=0
(Ge* Fluy, wp)),, = G v+ Ge*w
Proor. By the definition of V and V' we have
(Ge* Flus, us)),— (G Fluy, us)), €G(Papaag-s) .

Moreover we see from the definition of F that deg, F(u,, u) <d. Hence the
corollary follows from [Lemma 4. 6.

LEmMMA 4.8, Let weR [z, {|ox (k>2). Suppose that w belongs to the
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ideal (Z zf 285 Z ;8 in Rlz,{]. Then there are polynomials w;,c
Rz, {a—e (1=1,2,3) with deg, w;<deg, w—2 such that
w = Z (x24Cd) w+ Z (=2 we+ Z Z: G ws -

Proor. We first put
w = 2 (2 + L) wi+ 2 (285 wet 2 i {iws

2k—2
for some w,ER[x, {u-s 1=1,2,3). Let w;= ) w;; (=1,2,3) be the
j=o
decomposition of w; into its homogeneous parts in the variables (zy, «**, Zn41,
Cor s Cnyr)y degsw; j=j if w; ;#0. Assume that deg, w=d<2k, and that
there is d; with d—2<d,<2k—2 such that w, ;=0 for all j>d, and 7. By
comparing the homogeneous parts of degree d;+2 in the variables (z,, -,

Zn+1s C2’ ) Cn+1>, we have

0=2 (x2+ECH) Wr,q, + ;}(x«cz— ) Wy,q, + ;xi e Ws,4, -

i=>2
Since the ideal (2] (xz2—¢(?), >, x;{;) is prime (cf. the proof of Lemma 3.6),
122 122
we can find polynomials v;ER[z, {]a_s (=1, 2, 3) such that they are homo-
geneous of degree d;—2 in the variables (x3, -+, Znty, o **+ {nyr) and

Wy,d, = 2 (=8 vat 2 xiGyvs,
i1 i=2
Wy g, = — (@l 4+LH) vt 2 2 Gy,
i>2 i=2
Ws,q, — — 2 (22488 vs— 2 (22 —LP) vy .
i>2 i2
Define w.ER|[x, {]a-2 (=1, 2, 3) by the conditions ;
= ’ . ’
Wy = jZ_:O'wi,j , wi;=wy; (j#d,di—2), Wie, =0,
wi,dl—z = 'w1,d1—2_(x12_C12) Ve— 2,8, Vs,
wé,d1—2 = Wsg,2— Ty Lotz +EP) vs,

'wé,dl—z = ws,dl—2+(x12— £B) v H(x+ 88 vs
Then we have

w= ) (z2+{F) wi+ Z (x2—CH wé+§ x; G ws

1

and deg, w,<d,—1 ({=1,2,3). Therefore the lemma can be proved by
induction on the integer d,.

CorROLLARY 4.9. Let weER|[x, {]ou— {0} (k=>2) be also homogeneous in
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the wvariables (x5, +++, Zni1, Co +*y Cuyr). Suppose that there are polynomials
v €ER[x, {Jo (0<i<l, k<) and w Rz, C]zk o Such that deg, vy <deg, w
(k<i<l) and

l
X w = * Z‘vzﬁ—z*w

Then w belongs to the ideal () x?, ZC,,, szCZ)

122

Proor. We can easily deduce from Lemma 3.6 that there are poly-
nomials #;€R[x, ] with degu;<2[—2 (i=1, 2, 3) such that

l
— ig‘vgi—w’ = <;(xi2+ciz)—2> u,+ Zi(xiz-'Ci2) uy+ ;xiCius )
Put
-1
U; — ]-Z=:0ui’2j , ui,éjER[x’ C]zj (i — 1’ 2, 3) .

Assume that £</, and there is j, (k—1<j,<I—1) such that
degs u; 5, <deg, w—2

for all j>j, and i. Take the homogeneous parts of degree 2j,+2 in the
above formula;

— Vgj 42 2Uy,9j, 42 = Z (22488 uy05,+ Z (22— G4 wa95,
+ Z 2 Citts, 2, -

Since deg, (—vzj,+2+ 2uy,25,+2) <deg, w, we see by Lemma 4. 8 that there are
polynomials #}q; ER[x, {]5;, (1=1, 2, 3) such that deg,u;,;, <deg, w—2 and

— Vgjr2t 22Uy 05,42 = Zz: (248 ul 05, + ; (22— use5,
+§%Q%m.
Since
Zi; (22 +E2) (w1 05, — Us,25,) + z; (22 —C:) (4,95, — Us,05,)
+ Zz: Z:Ci(us 05, — g 25) =0,
there are polynomials a;ER[x, {],;,— (1=1, 2, 3) such that

g, = Uy,25, T ; (2 —CF) ast+ 2 x:8ias,
(4

Us.0j, = Usz2j,— Z (x2+CP) ar+ Z xSy
% 1
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4 —
U3 25, — Us 25, — Z(xi2+ L) ag— Z (x2— £d)
i i
4 —_ 4 —_ / I / -
Set ul,gjo_g——ul'gjn_g, ug,gja_g—u2,2j°_2+2a2, u3,2j0_2—u3,2,0_2+2a3, and ui,gj—ui,gj

-1
if j#j0, Jo—1 (1=1,2,3). Then setting u}= ) u}.; we have
i=0

i
— Bow—w = (DlaH00—2) ot Xt —L it Dlad,

and deg, u},;<deg, w—2 for all ]> ]o and z. Thus by induction on j, we see
that there are polynomials «} Z ullsp ulyER[x, ]z (i=1,2, 3) such that

l
= 2 o= = (D240 ~2) wl/+ D (a8 wi + Dl
and

deg2 u;,’gj< degg w— 2

for all j >k and 1.
In case k=1I we put u/ =u; (i=1, 2,3). Consider the homogeneous parts
of degree 2k;

W— Vgt 22‘{{21: = Z (xi2+ ) ul k-2t ; (-Tzz - Ciz) u;{2k—2
+ 2 i Cothton o

(4'=0 if k=I1). Since deg,(w— vy +2ul’y) <deg, w, we may assume that
deg, u)y_,<deg, w—2 (i=1, 2, 3) by Lemma 4,8. Then, by taking the homo-
geneous parts of degree deg.w in the variables (z,, -+, Zpiy, &o *+v) Cnyy) in
the above formula, we have

we ( ?2__:2(%2 +£), i§2 (2 — L), ?_.Z_szi Ci) .

Let V and V'’ be as before Corollary 4.7. We remark that V' is also
defined as the direct sum of vector spaces Q,p 2 In G (Pymys) such that
Ny 2y =Nopo and ¢’ >q. This can be easily seen from the fact that k—
Nor.oty 1= Ny 2, and — Ny o) 212 are monotonously increasing.

CorOLLARY 4.10. Take u,ER[x]ny; and u,E R[x]y 4y such that I<k<
m, q<l, and k+1+1=p+q. Suppose that u, and u, are also homogeneous
in the variables (x,, +++, Zny,) and deg, u,+deg, uy,=d. Furthermore suppose
that there are polynomials v;,, w;ER|[x]eq (i =1, --,7) such that deg v;<
2m+1, deg w; <2m+1, deg, v;+deg; w;<d (i=1,---,7), and

(G*Flany w),, = 3 (Ge* Flos, w),




On infinitesimal Ca-deformations of standard metrics on spheres 193

Then the polynomial

. .
Z al;_:%;l-_Z;-)?(l—q) GFj(ul, U2)

Jj=1l—q
belongs to the ideal (X, x? Y, L2 X x:%)
122 122 22

Proor. Since deg GF(u,, u)) <2p+2q, and since V' NG (Piopizg) = Q2,20
it follows that
(Ge* Fluy ws)),, = (Ge* F s, us)

QZP’Z'I ’

As we have seen in the proof of Lemma 3.5,

(Ge* Fluy, uy)

@2p,2q
l

= —(2k+3) iy (Gt 3 @O F fan, )

J=l-q G(sz+zq)

Hence there is a;R[x, {]zp42,-2 such that
(Ge* F(uy, ws)),,
= o {—(2R+3) iy 3 @t OF s, ) +an)

j=1-q

On the other hand, it follows from [Corollary 4.7 that there are polynomials
BER[z,{] and a;ER[x, {2p+24-2 such that deg <4m+2, deg: p<d, and

zl (G*F(v,, wy),, = *(8+as).

Therefore the corollary follows from [Corollary 4. 9

Let v=(vy, +++, vpp) EC*— {0} satisfy %1 v2=0. Define a homomorphism
Cle, > Clw au GGl (wmsw) by
w (Xy, Zay Ciy C2) = U Xy V2o, +*+5 Vs Loy Cgp ¥28as *+*5 Va1 8a) -
The following formulas are easily verified :

2 ou’ n+l  ou VY
i-Z::lxi o, (Z i TZ,) ’ Fy(uy, u2’) = F j(uy, us)

i=1

Gw)=(Gu, uesC[x,l, u,ucClz].

LEMMA 4.11. Under the same assumptions and terminologies as in
Corollary 4.10, we have

(Ge* Fu_ylur, u)), =0.

sz,zq
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Proor. Since the ideal (Z;xf, 22Cz'2’ 2. x;C;) in C[z, {] is contained in
2 2 i22
the kernel of the homomorphism

C[.’L‘, C] _) C[xli xz, Cp C2] (u_)uy) s

we have

l
Y bzt GF(uy, u) =0

j=l-q
by 10. Since
(Ge* Fy_y(ur, uz">>

l
—_— k—1+2+2(1— v v
—<G‘* 2 aiiiye q)Fj(ul,u2)> ’
J=l-q G(Q2p+2q)

@ip,2q

the lemma follows.

Proor of 'ﬂ)r()pbsition 4.5 Let V. (resp. V7) be the direct sum of vector
spaces sz’gqn G(P4m+2) SuCh that NZP.2!1:N4¢(,—2,4 (reSp. N2p,2q:N4i°—2,4 and q22).
Since V] is orthogonal to G(P? and G(P,;), we have

0=(GrFU Sy
= (G Flhutyut ity +2(G* Flhuss ftgia— hisgod)
+ (G!* F( fai, 41— h2i0+1,ﬁio+1 — h2i°+1)>,,{
+ Z(GHF(fatrw Fornd )y

where the sum in the last term is taken over all 2-tuples of integers (i. )
such that 2<i, j<m, i+j>2i, (4, j)# (i, t). For such (i, j) we have deg, f5i4,
+deg; f3;+1< 2d;, by the definition of 4. Hence it follows from Lemma 4. 11
that

<G¢* Fi,s(hto41, h510+1>>Q4, =0

1o—2,4

Since hy 4, #0 and the degree of Ay 4, in the variable x,., is at most 1, it
follows that hy ., does not belong to the ideal (Z z?) in C[x]. This ideal

being prime, we can choose v=(vj, -+, vnﬂ)EC”—{O} with >1v2=0 such that
h3,+1#0. Then by.[Proposition 3. 8§ =

. B = (T e x0)He (B 2+ B x)
for some a;, a;. Bi. BEC. On the other hand, hj; ., must be of the form

cx 2ot =8, 2,84, ceC—{0}
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by the definition of Ay ... Since #>2 and d; >2, we can conclude that: -
dio == 210 or 210"‘1 . ‘.
Let V, (resp. V3) be the direct sum of vector spaces ng,,zq in G(Pyn42)
such that Njp 2= Ny 42i,-2,4 (resp. Nip 2g=Nai, 121,24 and ¢>2). Then we have
0=(G*F(£.f)),,
= 2(G* Flhas 11, haty10)) 2 (G Pty fusgss = haiy1) )y,
+ 2(Ge* F( futpos—hasyvss Py +2(G2* F( fatgs1— Bt fitrr— i)y
+ 2 <G‘* F(f21+1’ f2j+1)>,,é ’
where the sum in the last term is taken over all 2-tuples of integers.(z, j).such
that 2<i, j<m, t,+4,<i+j, {i,7} # {io, i}. For such (i, j) we easily see that
deg; fri+1+degs fr711<di, +ds, - o
Hence it follows from Lemma 4. 11 that

(G‘*F —z(hm +1 h2L0+1)> | =0

Q210+21,1—24
for each v={(y, -+, v, ) EC*1— {0} with sz =0. We can choose y such

that hy; 4, and hj i, do not vanish. We shall consider the two cases sepa-
rately ; 1) d;, =2ip+1, 1I) d; =2i,. :

I. d;,=2i+1. In this case, h} ,=cox?*"" and hyi 1 =¢ x”““ a4, 2,04,
(cp, ;EC—{0}). Then we have

0= (Gt* Fy _p(ar it =ds, g4, xzzz'oﬂ))

(20!
=T4r

In view of the last term does not vanish if 2i41-—d; >4.

Thus we have d; >2i;—2. On the other hand, the definition of d; implies
that d; <d; —1=2{,<2i,—2. Therefore it follows that

d —2i1—2 ll——lo‘l_l }
Since d; >4 in this case, it follows that z;#m. Let 1, (1;<2;<m) be the
index such that d,<d;, if ,<i<i, and d;<d;, if 4<i<m: Then-there-are
three cases; I-1) d; <d; —2, 1-2) d;,=d;—1, &=4+2, 1-3) di,=d;,—1,
i2:i1+ ].. : R
I-1. d; <d;—2. Let V; (resp. Vi) be the direct sum of vector sapces

@24,+2i,—-2,4

Gr* (.2 1=dy, g 2i=3+d; £ 4 ) ‘
( (#; it &Y Q2i,+2i,~2,4
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sz,gq in G(P4m+g) SUCh that N2P12q:N4’i1-—2,4 (resp. NEp,2q=N4'i,—2,4 and q22).
Then we have

0=(G*F(£.f)),
= (Gl* F(hy 41 hz¢,+1)>yé+2<G!*F(f2il+1—hzm-n h2i,+l)>yé
+ (Gl* F( foi,41— P2 11, ﬁi1+l_h2il+1)>vé+ 2 (G‘* F( fait1 f2j+1)>V§ ,

where the sum in the last term is taken over all 2-tuples of integers (%, )
such that 2<4, j<m, i4+;>2i, (4,j)+#(i, 4). I (4,7) (:>)) satisfies these
conditions, then ¢>%;,, and hence

deg; foir1 <d;, <d; —2.
Thus it follows that
deg; foii1+deg, frj41 < diyy —2+d;, =2d; —1.
Then we have by [Lemma 4. 11

(G!* Fi,_a(h3i 410 h;i,+l)) =0

Q4i1—2,4_
We can choose v such that A3 ,;#0. Since 2i,—2>4 and

hlZ)i!+1 - Cx12i1+1—di1 xzdil = Cxl"" ngil—z (C eC- {O}) ’

the above formula contradicts Proposition 3. §| {ii).

I-2. di,=d;—1, i,>4,+2. Let V, (resp. Vi) be the direct sum of Q,,,,
in G(Pgmyz) such that Nypo=Ny; 2,24 (resp. Napog=Nui 12,24 and ¢>2).
Then we have

0=(G*F(f, 1)),
= 2<GC*F(h2i2+1, h2i0+l)>V£+2<G‘*F(f:"-iz+1—h2i2+1’ h2io+l)>yi
+ 2(Gz*F(hzi,+1, ﬁio+1—h2io+l))yi
+ Z(Gl* F(,f2i3+1 - h2i2+1, ﬁio+1“h2io+1)>yi

+2 (Gl* F(fas1s f2j+1)>,,£ >

where the sum in the last term is taken over all 2-tuples of integers (3, j)
such that 2<i, j<m, i+j>i,+1ds {i,7}F#{ip 15}. Let (i,j) be such 2-tuple
and assume that 7>j. Since #,>>4,+2, it follows that i>4,. Hence we have
either 1,<i<i; and 4 <j or #,<i. In any case we have
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dengmﬁdengzm < dio +dz’2 —1.
Thus by applying [Lemma 4. 11 we have

(Gl* Fi,a(P3s, 415 h5i0+1>> =0.

Q2i,+2i,—2,4

We can choose v such that A3 ,,#0 and h3;4,#0. Since i, 1= CoZzt0*1
and Ay 4y = a2 01,0, (o, o €C—{0}), it follows that

G (1 2iat1mdy, p Bie—3+d; 4) =

( * (2 2 &) @24, +2i,-2,4 0

But, since 2i,+1—d; >2i,+5—(d;, —1)=38, this contradicts Lemma 3.9
I-3. d,=d;—1, i;=i4,+1. Let V; and V} be as before. In this case
we have

0=(G*F(£.f)),,
= (Ga* F(h; 4y, h2i1+1))vé+ 2 (G!* F(hai, 415 hzin+1)),,3r
1+ 2(Go* F(fuprr—hasao aserd) g+ (GO F( fotpn= haio Fotsr— sy
+ 2 <Gt* F( fai,+1— hai, 115 h2i°+1)),,5 +2 (Gt* F (h2i2+19 Saie1— hzi,,+1)>,,é

+ 2<G!* F (ﬁi2+1—h2i2+19 ﬁi0+1—h2in+l)>yé+ Z (G‘* F(f2i+1’ ﬁj"f'l))Vé ’

where the sum in the last term is taken over all 2-tuples of integers (3, j)
such that 2<i, j<m, i+j>2i, (4,7)# (G i), (i 82)y (iz ). For such (i.))
we have

degzﬁi+1+deg2ﬁj+l S Zdil - 1 .

Since
(G Fhas s hie)y,
= —(24,+3) d:i_ié <G€* Fi,-z(hzz',+1, h2i,+l)\

Jui,—2.4°
<G5* F(h2i2+11 h2i°+1)>yé
= —(24,43) dZ:_”g <Gc* Fi _2(hai 415 h2i0+1)>q J

4i,—2,4

it is easily seen from the proof of Lemma 4. 11 that
(24,+3) dii_’a (Gf* Fi,—Z(h5i1+19 h;i1+l)>

Qi —2,4

+2(2ir+3) div'y(GHFyo(hins Biid)g,, _,, =0

Qi —2,4
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Fix v=(v;, -+, vp ) EC*— {0} with >}v2=0 such that hsi s Psi 1o B3y do

=2

not vanish. Then
_ ot — 2i,—2
Pss 41 = oot hi 01 = c 2,2 2,2

hii 1= g xlz, M0 (cor €1, E€C—{0}).

We: have
21p+1)! .
(G{* Fi _2(h3i 41 h5i0+1)>Q4 aa u&[—)C0C2 (G‘* (0,0 2,78CY) >Q4¢l—2,4 ’
<Gt* Fil—'z(h;.il—l) k5i1+1)>94i1_2,4 = A§f3C12<G‘* (xlﬁxzu‘—SCf))Q”l_z,“
. 2411 _. . .
by the proof of [Proposition 3. 8, where A#,= (—%-!L(Zzl—Z) (24,—3). Since

(Ge*(x, 28 gyy, o4 #0 by it follows that

%—(21}{—3) (24,—2) (24, —3) a"1 o2+ 2(24,4 3) di%coc, =0,

In particular we have cyc,¢,72<0.

Let V; (resp. Vi) be the direct sum of vector spaces Qp1 in G(Pimso)
such that Ny o= Ny, 46 (resp. Npy20=Ny, o6 and ¢>3). Since V! is orthogo-
nal to G(P? and G(P,), we have

=(G*F(f, )y
= (Gz* F(hZil+1, hzi,+1))V§ +2 (G!* F(ha, 41, hzi""‘l))

v
+2(G* F(foten— bt i)+ 2(Ge* F futgis= hasyon fiton—has ),
+2(C* P furs— s i)y +2(Go* Flhtyiny Futyr— o),

+2(G! f2z,+1"‘h2z,,+1, f;no+1 h2z0+1))yl+ Z( e* F(f2i+1, fzj+1)>VE/_ ’

where the sum in the last term is taken over all 2-tuples of integers (i, j)
SUCh that ZSi, jgm, i+j22i1) (i’j)#:(il, il), (iO, iZ)) (iZ, io). For SuCh (i’j) we
have

degs fri41+degs fr741 < 2d; —1.

Since

(G!* F(hZz +1 P +1)> —(24,+3) dt‘ i <G€* Fi,—s(hzuﬂ, hzi,+1)>

Qi —4,6°

(G!*F(hu +1 P +1)> —(24,+3) d;: l”(Gl*F _s(Pai 110 h2%+1)>

Q4i,-4,6°
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it follows from the proof of 11 that

(24,+3) dirty (Ge* Fiyo(Bsi s Bar))

Qui,—4,6

+2(2i,43) div's (GHFyo(Bins Biiid), . =0,

Q4i,—4,6

where v is the same one as above, and dﬁz’_ig is considered to be zero in case
1,=2. We have

2+ 1) !
(G!* Fi_s(h3i, 41, h5¢0+1)> = % CoC2 (G!* (zf im0 C26)>

Qi —4,6 Qui,—4,6

(i() #: 2) ’

<G!* Fi _s(M3i 41, h§i1+1)> =cf (Gl* Fi _s(xdx, 72 x13xz%‘_2))

Qi —4,6 Qi 4,6

LemmMma 4.12. (i)
(Gl* Fil—s (x1s 272, xlsxzzi—2)>

—_ %!wza— 2) (24, —3) (2i,— 4) (Gr*(z x40,

Q4i,—4,6

Qhipots
(i) (Ge*(xf 2 105) ) gy, 4 670
Proor. (i) We have
F; _g(xldz 7% zdx,%7?)
I TN v TP
+6<2i12_ 5) i2i15—:!~2')“!x15x2“"9@ C25+6<2i13_ 5) (—21.16_!—2)!3:163:2“1“0@“.

Since

XEO ( T A8k 6k Czk_l) = haxfl g8k L TR R
+(4d;— 3 — k) 2f xRS — (6 — k) FH gt R SRR

—(k—1) g xRl (4<R<6),

it follows that

| 44,—9 :
<G!* (x15x24i’_9C1 C25)>Q4i,-—4,6 = - 16 (Gl* (2 2,010 C26)>Q4il—4,6 ’
. \ 47,—8) (41,—9 X
(Gl* () a8 2 C24))Q4i i 4 5)0(6 49 (Gf* (x16x24“—mC26))Q4i a6’
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¥(ar 37 4i1—T7 87 3
<G5 (Pt PG )>Q4i1—4,6

_ 44-7) (31.15— 2) (4i,—9) (Gc* (S ybin—10 C26)>

Qi —4,6
Then (i) is easily obtained from these formulas.
By [Corollary 2. 8 [ii] we have
. . 15 i
<Gz* (2,8 x4~ 10 C26)>Q4i1_4,5 — <G{* (xlexzul—m C5— 57 x0T,

45 6 di1—
+ (45, —5) (di,—7) TFTE

— _15 _ 8 4i1—4>>
(4,—3) (44,—5) (46,—7) ' ) Jaquisn

Then, in view of Corollary 3.7 it is enough to prove that

. 15 45 .
J = G<x16x24z1—1o - 47 AL TN 4.5 @57 B XA 8L 2

_ 15 o
(4i1 - 3) (4i1 - 5) (4i1 - 7) 1 z

does not vanish. A direct computation shows that the coefficient of x8Z,%*
in the polynomial J is

15 45
A I /4 ’
ooty g, 7 B (g7 =) (a7, — 7) Tornos
15 I
" (44,—3) (4¢,—5) (44, —7) "2
_ 1 . 11.-9.7 _ 15..9.7 n 4.5.7 B .15 }, o
(44,—5) (45,—7) | 44,—9  44,—7 ' 44,—5  44,—3 22U

2z
where I} ,= -Ql;g (cos t)* (sin t)®dt. Thus we have J+#0, proving the lemma.

0
As a consequence of this lemma, we have

—(24,+3) (24, — 2) (24, —3) (2i,— 4) di Y2
+2<2i2+3) (2i0+ 1) d::fgcocz =0.
If 7,=2, then we have a contradiction, because ¢, #0. If 7,>>3, then we have

coC2¢, 2 >0, which also contradicts the previous result. Hence we have con-
tradictions in any case under the assumption d; =24, 1.

. d;,=2i. In this case, A} =cox; 2% and hy; o =c 1% 2.0,
where v=(v,, -*+, vs11) is chosen such that ¢,70, ¢;0. Then it follows that
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Gex Fy (x4, 2%, x x”°> =0
< io-2(Zy PR e )Q2i0+2i,—2,4
We have
Fio~2( x B, 8, )
(24,) ! (24) !
— i +1—d 2i,—8+d; 3 ; 0/ . 2%,+2—d; o 2y—4+d; ¥ 4
= 3‘ xlml 1y ™0 11C1C2 +(2lo—'3> 41 Xt 1, ™ 'qu .

By using the formula

XEO (zpgin 2, 20344y, £8) = (24, + 2 — d; ) a2t 1y, g 23y, (3

4 (2ig— 34 dy) T2t eds, gl 4tdy L4 S pited;, g dothd; £2
we have
(Gc* F, (x4, 204, 1 x22‘°)>

(2!
=30 \ T Zt2-d, T4

Since 2i,+2—d; >2(i,+1)+2—(d;,—1)=5, we see by lemma 3.9 that

Q2i,+2i,—-2,4

Ziﬂ - 3 + dil 2i0 _i> (Gl* (x12i1+2—di1 x')2i0—‘+di1 CZ4)>

Q24,+26,-2,4

Go* (x,2h+2—d;,  Zie—4+d; F 4 ) 0.
( €2 12 G Q2io+2i,—2,4¢

Hence it follows that

2i()""3"i‘d1,x 2i0""3
— a3 +—5—=0.
211+2_d7'1 4
Remarking the conditions 2<7,<7, and d; <d; —1=2¢,—1, we then obtain
i0=2, i1:6, di0:4) di1:2-

Let 7, be as in Case I. We shall prove that 7,=10 and d;,=0. First
assume that either d;, =1 or d; =0 and #,>10 are satisfied. Let V, and V]
be as in I-2. Then we have

0=(GAF(f.f),
=2(G* Flhuayssy 1))y, +2(Ge* F( faiyir—haiyars b)),
+ 2(G* Flhas uss fo— 1))y, 4 2(GH F( fusyii—haiyus fs—hi),,
+ (G F( fosrss fossd)y,

where the sum in the last term is taken over all 2-tuples of integers (1, j)
such that 2<iz, j<m, i+j>i,+2, {i,j} #{i», 2}. Such (i, ) with i>j satisfies
1>j>2 or i>1; j=2. Thus we have
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dengzi+1+deng2]‘+1 <4.

Moreover we have

deng2i+1+dengzj+1 <2

in the case where 4,>>10 and d; =0, because deg,f.; or deg,f;;,; must be
zero (or —oo) in this case. Thus we can apply Lemma 4. 11 to each case
and obtain

(Gl* Fy(h3i,41 h?.)) =0

Q2i,+2,4

Since hy;, 41 =22 7% 2%, and hi=cyx,Z:%, and v=(y,, **+, vny4) can be chosen
so that ¢,#0, c,#0, it follows that

(G!* Fz(x12i2+ l_diz xzdiz, Xy xz‘*))in vod =0
2 )

But, as we have already seen, this equality holds if and only if #,=6 and
d;,=2. This is a contradiction. Thus we have #,<10 and d; =0.
Next assume that 7,<10. Let V; and Vj be as in I-1. Then we have

0=(G*F(f. 1),
= <Gl* F(hys, h1s)>Vé +2 (G!* F(fis—hus, h13)>V3,
+ (Gl* F(fis—hs, f1s— h13)>V5+ 2 (Gf* F(.f2i+l’f2i+l)>Vé ,

where the sum in the last term is taken over all 2-tuples of integers (3, j)
such that 2<i, j<m, i+j>12, (i, 5)#(6,6). Since such (z,j) must satisfy
either 2<4, 6<j or 2<j, 6<4, it follows that

degzﬁi+1+deg2fzj+1 <2.
Hence by [Lemma 4. 11 we have

(Ge* Fulhi, B29),,, =0

But since hi=cz,"'z;? (cEC) and v can be chosen so that ¢#0, this con-
tradicts to [Proposition 3. 8 [ii]. Consequently we have

i2=10, d,;ZZO.

Since d;,=0, 7, must be equal to m. Hence it follows that

m=10, d;<0 (7<i<10).

This completes the proof of [Proposition 4. 5,
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§ 5. The case where deg f=21

In this section we shall prove the rest part of Theorem 4.1. Let
S ER|[x],q satisfy the conditions (i) [ii] (iii) stated before Lemma 4. 4. Suppose
that f satisfies the condition Ge*F(f,f)eG(.#?%. Then we have seen in
[Proposition 4. 5| that either f is of the form (1) in [Theorem 4. 1, or

(a) degf=21, 4=2, i,=6, d;,=4, d; =2, d;<0 (7<i<10). Let f=
2 feis1( frir1 ER[Z]254,) be the decomposition of f into its homogeneous parts,

and hy;, the homogeneous part of degree d; of f,, in the variables (x,, ---,
Znyy). In case f satisfies the above condition (a), we further consider the
following conditions on f:

(b) f21:$121§
k
(c) hm:(z hxd) 21, where A& R—(0) (2<i<k), 2<k<n, and {4} do
1=2 Y,
not satisfy A=-.- =2, if k=n.

LEmMA 5.1. Let f €R[x],q satisfy the conditions (i) [ii) (iii) stated before
Lemma 4.4 and (a) above. Then there are A=O(n+1,R), cc R—{0},
u,ER[x],, us€R|x]ly, and feR[x],q such that f satisfies the conditions
(i) (1) (i) before Lemma 4.4 and (a)(b)(c) above, and

A*f' =u +us+cf mod (1—%1@).
i=1

Proor. Let f34; (2<i<10) be the homogeneous part of degree 2i41
of ', and hj;,, the homogeneous part of degree deg;f%, of f}, in the
variables (3, -+, Zn4y). Since hl/x,! is a real quadratic form, there is an
orthogonal transformation A in the variables (z,, ---, Z,,,) such that A*hl,
is of the form

where 4>2>-->&, 4,70 (2<i<k), 2<k<n+1. Since hj; and A} do not
n+2

belong to the ideal (Z xiz), so do not A*h{; and A*hl. Let c€ R—{0} be
i=1

n
the constant such that f,=cx®. By substituting 1— )] z? for x,,.% in A*f",
i=1

10

we can find f' =3} fii,, (frin ER[x]si11), uyER|[x];, usER[x]s such that f
i=2

satisfies the conditions (i)[ii) (iii) and (a) (b), and

A*f =wu 4 ug+cf”’ mod(l—Zxﬁ).
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Moreover A}, the homogeneous part of degree 2 of fi; in the variables
n

(2, -+, Tnyy), is equal to cLA*hf; if k<n, and equal to ¢!}, (A —4nyy) Ti"
1=2

if k=n+1. Hence if k<n, or if 2>n and {4} do not satisfy A=--- =2,
then f” also satisfies the condition (c). If 2>#n and 4,=---=21,, then " is
of the form

c’(ixﬁ) 2, JdER—{0).
i=2

Let B be the orthogonal transformation such that B*x,= —Zn4y, B*Zpi1 =2

n
and the other variables are fixed by B. By substituting 1— > z? for z,.
i=1

10
in B¥f"”, we can find f= Z}zfnﬂ (fr1 ER[x]2i41), wlER[x];, and wteR[x];
such that f satisfies the conditions (i)[ii) (i) and (a)(b), and
B*f" =uj4+wi+f  mod(1—-2 x?.

Since Ay, the homogeneous part of degree 2 of fi; in the variables (x, -,
Zn4y), 18 of the form

dx Mz, (deR—{0}),

f also satisfies the condition (c). This completes the proof of the lemma.
Now we fix fER[z],q which satisfies the conditions (i)([ii)(iii) stated
before Lemma 4.4 and (a) (b) (c) above, and satisfies

G*F(f,.f)eCG(&?).
Then f is of the form
f=(Asz+ Bsxt + Csx*+ Ds 2"+ Eg )

6 10
+ Z;’(A%H 25+ By 2%+ Coi 2,57+ 27 A2i+1 %,
1= 1=

where Ay €R (2<i<10), By €R[x, o, Tl Gt ER[ 22, -+, Znpy]e (25
i<6), DyeRIzs  Zudly BERI s 2ude An=1, E#0, Cy=1kzd,
LER—-0 (2<i<k), 2<k<n, and {4} do not satisfy A= --=1, if k=n.

We shall prove the following

PrROPOSITION 5.2. By, € Rlzs]y, Cyui € Rlxa]; (2 <1 <6), Ds ER[xs]s,
EseR [z,

We need some lemmas to prove this proposition.

LemMA 5.3. Let J be the ideal (%lxlz, nfCﬁ, %lxici> in Clx, {], and
put Jo)=JNClzxy, -+, Zn, L1y -+, Cal- The;;1 - -
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J0:<i=£:lxi2izn:1Ci2— (}ixzé>2) Clzxy, - xa, Lo 5 Cal -

'n n n 2
Proofr. First remark that the polynomial ) x2)] Cﬁ—(z xiCi) is ir-
i=1 i=1 i=1

reducible, provided n>3. Let « be a polynomial in the ideal J,. Fix a point
(P1 =+ Pus Qo > @) EC®™ such that

él’i“’ié%z — (él’i%)z =0.

n n
Let pn.1 (resp. gn.41) be one of the square roots of — ) p;? ((resp. ——Zq?).
i=1 i=1
Since
n 2
Pn+129n+12:(§11’i%) ’
n+1l
we can take p,,; and ¢, such that }p,q;=0. Since ucJ, there are
i=1

polynomials v,, v, v; such that

n+1 n+1

n+1
u—= lei2“01+ 1Z;Ci2v2+ iZ:lxiCi’Os .
i= 1= =
By substituting (py, -+, Pas1, Q1> ***> gu+1) into both sides, we have

u(Ph s Pns Qi "0 Qn) =0.

This implies that uE(i x? i L2— (Zn: z; C¢>2>. Hence
i=1  i=1 i=1

7

n n n 2
s (S nee—(L ).
i=1  i=1 i=1
On the other hand, since

éle:; Ci— (g:l X Ci)z

= xn+12Cn+12—‘(xn+1 Cn+l)2 = O mOd J ’

we also have

cd,.

SN———

(Lot Bet= (Gt

Therefore the lemma follows.

Let v, weR[x,, -+, 2,4,] be homogeneous polynomials with deg v=aq,
and deg w=a,;. Put a=a;+a, and let b and &k be integers such that a<b,
a+b=2k, k>4. Let p be an integer such that 0<p<b and p+a, is even,
and put
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u=x""?{Pv(x) w(l) .
Then deg, u=>b, deg, u=a, and
ueR[z, {lo-pta,,p+a, CR[z, Lo -
In this case we have
LeEMMA 5.4. If a is even, then
Ge*u = cGe* (xl”““v(x) w(x) C{‘) mod G (P2
for some ceR. If a is odd, then
Ge*u=0 mod G(P*Y) .

n+1
Proor. Put Y=, x% Then u:%xlb‘PClp(Yalv(C))'w(C).

For integers t, r, s satisfying 1<¢t<b+1, 0<r<q, 0<s<a, we have

XE, (xlb—t+1clt—1 Yro(l) Y* w(C))
= —(b—t+1) 2> Y v(0) Yw(Q)—(—1) o2 2 Y v(0) Y w(()
+r(a—r+1) 271 Y o(0) Yow(Q) — 2" Y o (0) Yew(0),
+s(ag—s+1) 2271 Y 0(0) Yt w(Q) — o 10 Y v () Yo tw(D)

Let Wy, (Oéqg P —;az , max {0, 2¢— a} <t <min {2q, b}) be the subspace

of C*(S*S") spanned by the functions

Ge* <x1”_‘ LY v(f) Y”w(C)) 0<r<a, 0<s<a, tt+a—(r+s)=2q).
Put Wy,=72, Wh,, where the sum is taken over all possible £. Then
il
Wy CG(P%).

In the case where p+a,<a, we have p+a,<a—2 if a is even, and p+a, <
a—1 if a is odd. Hence the lemma follows in this case by putting ¢=0.
If p+a,>a+1, then the above formula shows that

W2q,t - WZq,t—-l + “/241—2 s qu,2q—a - qu—2

for each ¢ and ¢ with [a/2]+1<¢<(p+as)/2, 2q—a+1<t<min {2g, b}.
Hence in this case we have W, CW,,_, and consequently

WaeC Wotam
for each g with [a/2]+1<q<(p+ay)/2.
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Assume that g is odd and p+a,>a. Then we have p+a,>a+1.
Hence it follows that

I’Vzo+a2 C Watwa = Wy,
which implies '
Ge*u=0 mod G(P*Y).

Next assume that a is even and p+a,>>a. In this case we see from
the above consideration that

Wote, CWa .
Therefore, in order to show the lemma it is enough to prove that
WaC Wa,a+ Wa—2 .

By considering the above formula in the case where 1<t<a, 0<r<a,
0<s<a, and t=r-+s, we have

Wa: CWai+Was
and hence
W,C W, o+ W,_s.
Remark that W,, is generated by Gr*(zv({) w({)) and W,, is generated
by Ge*(xp~2lv(z) w(x)). We then consider the following formula ;
R, (21001 Y (0(0) w(0))
= (b—s+1) 25 ¥*(0(0) w(0) —(s—1) 22 Y (2(0) w(Q)
+s(a—s+1) 221G Y (0(0) w() — 2 G Y (v(0) w(D)
1<s<a).
This formula shows that there is a non-zero constant ¢ €R such that
22 v(0) w(l) = 2722 v(x) w(x) mod W,_, .
"Hence we have
WeCWaatWass
which proves the lemma.

COROLLARY 5.5. Let ucR|x, {Ju (k>4).

(i) If deg,u<3, then G*uesG(&?).

(ii) If deg,u=4, then there is a homogeneous polynomial vE R [z, -+,
Zn4ile such that
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Ge*u = Ge* <x12’°‘8v(x)cl4> mod G (&),
and such that the degree of v in the variable x,., is not greater than that
of u. Especially (G*u)q,,_, ,=0 if and only if G*ucsG(&?).

Proor. (i) and the former part of [ii] are immediate consequences of
the previous lemma. For the latter part of (i) we put

w= 5% %v(x) {+12af 2% 0y (x) {2+ 24af 32, v ().
Then we have
(G*ug,,_,., = (Ge*(x*~*v(z) )
= (Gr* w)ac,p

by (Corollary 2. § | Hence we see by (Corollary 3.7 that (Gr*u)g, , =0
if and .only-if Gwe(z x?, Z:Cu ZﬂCz) Now assume that Gw belongs to

sz—4,4

the ideal (Z xs ZC,, Zx@Ci) Smce Gw is homogeneous in the variables
(g ***» Znt1r Co» ***5 Cuy1), it is easily seen by Lemma 4. 8 that

GWE(Z-’Q, ZC'&’ szC'L)'

122
n+
Hence for any v=(vy, :-+, vu4,) EC" satisfying Z v2=0 we have
i=2

Gw =0,

Since w'=v() (x* 82t +12af S 2, 8 2 {2+ 24af 2 x, % x¥), it thus follows
that

= (Ge* w)a,p = v(v) (G!*(xl2k-8x24C14)>sz—4 .

Since (Ge*(x,*8x#li%)q,, .. #0 by Lemma 3.9, we have v(v)=0. This
implies that v (x) belongs to the ideal ()] x?). Put

122

V= iZszfv' s vVER[xy, -+, Tntils -

Then Ge*(x28v(x) () =Ge* (%8 () {f) — Ge* (x,#8 (x) {;f). Since deg v/
=2 unless v =0, we see from (i) that the right-hand side of this formula is
in G(#?. This proves the corollary.

LEMMA 5.6. Let weR|[x, {lox—sp20 O<p<[k/2]). Suppose that w is
also homogeneous in the wvariables (xy, +++, Tpi1, Lo s Cner) with deg, w=2gq
(p<q<I[k/2]) and that (G*w)y,,_,,,,=0. Then

(Ge* w) =0

sz—ap,zp
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n+l

for all v=(vy, -+, Vpyy) EC" such that ), v?=0.
i=2

Proor. [Corollary 2.8 [ii] shows that

a 2l )
(G(* )sz 2p,2p ( t* Z a —2p+1<z xj 3{, ) )G(Q © )

Then the assumption implies that the polynomial

~ & k—2p+1 a YV

belongs to the ideal (Z xz?, ZC“ le ). Since w is homogeneous in the

variables (x,, ***, Zpi1 Cz, ey C,,H) we see by [Lemma 4. 8 that this polynomial
also belongs to the ideal () x? 2 (3 Zx,c’;t) Hence it. follows that

122 122
2 2l
G Zp" aic—2p+l<z xfai) w =0
=0 =1 G

for all v=(vy, -+, vu ) EC* with 2 v2=0. This shows that
22 .

(Ge* w?)

sz—zp,zp -

which proves the lemma.
In general, for homogeneous polynomials u,, u,ER[x] we set

FYuy, uy) = — Z (xiz2;+8:C5) gzl S g 2j (xcost+sint)sintdt,
3u1 r 3u2 . .
F¥uy, us) = Z oz, So oz, (x cost+{sint)sint dt .
Then F(u,, u,) = F'(uy, us) + F*(uy,, u;). Furthermore we set
F3(uy, uy) = gz S g:‘: (xcost+{sint)sint dt,
Ft(uy, ug) = 2, Ou, \* Outy (x cos t+ sin t) sin ¢ dt
b2 &b 0x; )o 0x; )

Then F2(uy, us)=F3u,, us)+F4(uy, u;). It is easily seen from the proof of
Proposition 1.7 that GFi(u,, u) =GFi(uy, u)) for each i (1<i<4).

Proor ofF ProposiTiON 5. 2. Put
21 -
F(f.f)= QRM > RyeR[x, ] .

Then
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Ry= 2 1F1<ﬁl+1’ﬁm+1>+l+z 'Fz(f;l+1,.f2m+l) .

l+m=i— m=1

We first see that deg, R;;<2 when 14<7<21. Thus for such ; we have
Gl* RZ@EG(W%

by (Corollary 5.5 (i).
Next we shall prove that Ge*R,,eG(.%?) (10<7<13) and that E; is a
constant multiple of C% The above fact shows that

0=(GAHF(f.f)),,,. = 2 (G Rado,,, = (G* Ru,..

=13

In view of Corollary 5. 5 (i),
Ge* Ry = 2Ge* FY (2, Esx) + G+ F1 (Cgzt, Cisz)  mod G(#?) .
Then it follows from [Corollary 5. 5 [ii] that Ge* RyeG(.%?) and
464y (Ge* Fo(zt, By, +15d5%(Ge* FyCumi®, Gz, =0.

sz,a
This implies that

161 B) Go* Fy(a", 1y24Y)

N

+15d3°Cis(0)}(Ge* il 2, ayttzd), =0

Q22,4

n+l
for all v=(y,, -+, vuy,) EC™ satisfying > v2=0. We shall see later in Lemma
i=2

5.10 that there are non-zero constants ¢ and ¢ such that

(Ge* Fo(xlzl, xlxz*)%"” = C<G‘* (x122524)>q >

22,4

(Gl* Fy(x, "z, -'/731111322))Q22 . =c (G‘* (x122C24))Q .

4

Since (Ge*(x,2(x))q,,, does not vanish by it follows that
46¢cdy Es+15¢ d$°Ci2 =0 mod ()] x?) .

122
Since Cj3 does not contain the variable x,,;, and the degree of Ej in z,,, is
at most 1, we thus obtain

46¢dy’? Es+15¢ di°Cye? =0 .

Take an integer 7, such that 10<#,+1<13 and fix it. Assume that
Ge* Ry eG(&?) for all 7 satisfying 4,+1<:<13. Then

0=(G*F(f,f))gv

21
= Z (Ge* RZi)Q21:°—-4,4 = (G‘*Rzio)eziu_4,4 .

i=1,
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Remarking that 24,>20, we see that deg, Ry, <4. Thus it follows that
Ge* Ry, €G(#? from [Corollary 5.5 [ii] Therefore we have

Ge* RyeG(&? (10 < <13)

by induction on i.
Next we shall prove the following :
(i) There are v;ER[x,;, -+, Tpnyq]s such that

GAF(f.f) = le Gi* Ryy+ G (z#0v,(2) ¢f)  mod G (6<i<9);

(i) Ds is a constant multiple of B;3Cis;

(i) Cy_s and Bs_s are constant multiples of Cj; and By respectively
(6<:<9).

In view of [Corollary 5.5 we see that

Gr* Ry = 2Go* FY(Cys 2,1, Eyry) + 2Ge* F(Cy 2", Dy )
1 2Ge* FY(Byg 2,2, Eyz;)+ Ge* <(x11° wy (%) C#) mod G(.#?)

for some wyER[zs +++, Znii)e. Thus it follows that
Go* Ryg = —30d3 Go* {Fo(Cis i, Esy) + Fo( Ciai™, Do)
+Fo( B2y, Bsx)}+Ge¥ (20 wy(2) £f)  mod G(#?).

Put
2
X=_ 30d8’2(?( 5, diFy(Caait, E5x1)) ,
i=
2 2
Y = —30d3°C( 5t Fi(Cai®, Do)+ Lyl Fi(Ba i Ex))
i=0 i=
Z=G (xlw wy(x) {t+12af 2, wy(x) {2+ 24a5 2 wo(x)) :
Then
GARy=*(X+Y+Z)  mod G(#?),
and

(G*Ra,, . = (H(X+Y+2)) 1 , -

Since 0=(Ge*F(f, f))a,..=(G* Ry, . it follows that
X+Y+Ze(Bxd 104, Dakl).

Remarking the degrees in the variables (z,, -+, Zny1, &2 -+, Cns1), We see that
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X+Z and Y belong to the ideal (le, ZCL, sz ¢). Then by Lemmal

4.8 there are polynomials H;, H, ER[x, C]w (1=1, 2 3) such that deg, H;<4,
deg, H,<3 and

X+Z= 2z Hi+ 2P Hy+ 2 x i Hy,
Y= X a2t Hi+ N e Hi+ Y 2,0 H

Then *(X+Z)=c*(H,+ H,) and *Y=¢*(H;+ Hj}). Thus we see by Corol-
lary 5.5 that * YeG(.&? and

H(X+2)= G (zpu(@) 04)  mod G(a?)
for some v, R|[x,, ---», Znpile Hencve it follows that
G*Ry=G*(zfny(0) (i*)  mod G(oir?)
and that
;

GexF(f, f) E;;G:*Ru

%, Ge* Rt Ge* (zfua(2) () mod G

Now consider the formula

Y= foH{-l—ZC,;zHé—l-inCiHé.

By taking the homogeneous part of degree 5 in the variables (z,, ***, Zpis
2 *+*5 Cny1)y We see that Y belong to the ideal (] 2 Z}Cz, Zxﬂ;) This
122

implies that

Cis(v) Ds() (Ge* Fy(aytia?, 22,

+By() Es() (Ge* o2, 2,28), =0
n+l

for all v=(y, -+, v, )EC* satisfying >,v2=0. Lemma 5.10 stated later
=2
shows that

(Gl* Fo(z," 7, x12x23)> =€ <G‘* (%, C';))

b
Qiipe Qa4

(Ge Fi(222 2y2), = ¢ (G* (@Bl

Q14,4

14,4

for some non-zero constants ¢ and ¢’. Since (Gr*(x,8x,0Y)q, , does not

vanish by Lemma 3.9, it follows that
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cCis D5+ Bs Ey
belongs to the ideal (3 z:?). But the degree of this polynomial in the variable

122
Zn,, being at most 1, it must be zero. Since E; is a constant multiple of

C,? it therefore follows that Dj is a constant multiple of B;;Cs.
Fix an integer m (6 <m<8) and assume that

GHF(f,.f) = fj Go* Roy+ Ge* (220, 4(2) Gf)  mod G(#Y

for some Uy  ER[Zz -+, Tnpi]s and that Cy_s and B,;_s are constant multiples
of Cz and By respectively for all i satisfying m+1<i<9. By [Corollary 5. §
we see that .
Ge* Ry = 2G1* FY(Cym_s 227, Es2y) +2Gt* FY(Coms 2,7, Dsx,?)
+ 2Ge* FY( By _s 2,28, Ey ;) + 2Ge* FY(Coms 2,2 % Esxy)
+ 2Gt* FY(Cp_g 2,2, Dy 1;?) +2Ge* F¥ By 2,24, Eyxy)

+Go* (xlz"“s W () Cl4> mod G(.%?%

for some wnER[xy, -+, Tnpi]ee We have

0u, auz(C)
ox; dg,

Ge* F3(uy, us) = S“(sin ) dt Gz*( ) mod G(.&?)
0

for u;ER|[x]sm_s and u,ER|[x]s, and d{,’“3’2=s“(sin t)*dt. Put
0

2

X = —2(2m— 3)dm32G(2 S F(Coms ™ E5x1)>

=0

2

Sars(De ) #mConn@) BAD),

i=0

+2(2m—5) dp~s 2(’?(

Y' = —2(2m—3) dp~>* <Zat +(Com_s 22" 7,D5xf))

=0

o

Z az 3F1, BZm 53:1 8, E5x1)>

i=0

—2(2m—3) dr—3:G 2
+2(2m—4) dr—2G| X ap~3 (ij 3, ) 2,28 Bym_3(7) E&(C))’

=0

(
+4(2m—5)dp- “G(Za’{‘“”(ij a@) 2,278 Com—s( )ClDu(C))
(

2 =0(Far (52,22 ) 2mrwnln 1),

i=0 J
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Then Gr*R,,=*(X'+Y' +7') mod G(.&?. Moreover,

0=(G*F(£.1),, . =(Ge*Ront G (227500 y(2) C1))
= (XX +Y+Z+W)

sz—4,4

HQyp)

Remarking the degrees in the variables (x, -+, Zpys, G2 ++vs Cnyy), We see that

X+Z+W' and Y’ belong to the ideal (Lxd 2804 2.%;{;). Hence as
before, we have *Y' =G(_%? and

#(X +Z+W) = G* (2" dvn(2) ) mod G(xY

for some v, ER [z, -+, Tny]s. From these it follows that
m—1
GH*F(f,f) = T, Gt* Ryy+ Ge* (im0, (2) &) mod G(Y).
)

Moreover we see that X' and Y’ belong to the ideal (3 z2 Y &2 X x:il).
t=22 =22 =22
This implies that

~(2m —3) Cun_s(s) Ey(s) (Ge* Fo(i"~" 22, 2,01

sz-—l,d

+(2m —5) Con-s(s) Es() (Ge*(@m=s22L), =0,

sz—4y4

—(2m—3) Cons(s) Ds() (Ge* Fy(z™ 2, 22

sz—4,4

~(2m—3) Bunsl) Ex() (Ge* Fu(tn~* 2, )

sz—4,4

+2(2m—5) Cn_s(») D) (Ge¥(z™ 02,2, 0)

sz—4,4

+(2m—4) Bin () Es() (G (z2m 2, 0), =0

sz—4,4

n+1
for all y=(v, :*-, vy )EC" with Y v2=0. By Lemma 5.10 stated later,
i=1

(Ge* Fy(x, "2, 2275%)) is a non-zero constant multiple of

sz-‘-l,4

(Gl* (x,2m 8,2 524))

, and <Gz* Fo(x2™ 7 x,2, x12x23)>

b
sz—l,l sz_l,t

(Gf* F o(xlzm—exz, I xz‘)) , and (G‘* (x12m—6x22C1 C23)>

Qam—iy4 Qim—i,a

are non-zero constant multiples of (Gr*(x*™%x,{*)) Hence there are

constants ¢, ¢ such that

Con-sEs = cCyEs, Bun_sCis* = ¢ B C¢? mod (2, x) .

22

Qim—t,a”

Since the degrees of both sides of the above congruences in the variable
Zny, are at most 1, it follows that
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Y 4
Com_s = CC13 ’ Byn_s=( By

Thus the assertions (i), [ii}, and (iii have been shown by induction.
Next we shall show that B;; and B; (resp. C;; and C;) are constant
multiples of z, (resp. x,2), from which [Proposition 5. 2 will follows. We shall

consider two cases according as B is zero or not.
I. B;#0. We have already seen that the polynomial

2 2
G( 5, Fu(Caai®, Dued) + G( S atFi Buzi® Eo))
=0 1=

belongs to the ideal (3, x2 > ¢32 2 x:il). Let (po -+, Pnts) and (g -+, Qnt1)
3 t i
be non-zero vectors in C" such that

n+1 n+1 n+l1

;PizzéPiQi-_—O, 1+§1(1z'2:0

Then the subspace of C**! spanned by (0, p, -+, pasy) and (1, @z *+*, @nyy) 1S
contained in S. Let

£ O ={(zy 20 G 0} — O ={(z, 0)]
be the linear map defined by
ey =12, %0 =0, £¥x;=q;2,+p;%s £*¥{;=q;C+P;C: (1=22).

Then as in §3 we have

P2 2
C( 3,45 Fi(e* Cast, ## Dy xlz)) +G( 5 a5 Fj(* By, o* E xl)) —0,

Jj=0

which implies that

(Ge* o Cu e, % Dy?)),  +(Ge* Fole* By, e* Eyz), =0

Qu,a Qu,t
Put
By = i;: bix;, Es=dCg, Ds=dByCs (b,d,d<R).
Then
k k
¥ Cp = (Z ) x12+2<ZI 'ZjPJ'Qj) Zy T2+ (szlef) %t
=, -, =
n+1 n+
¥ By = (ZJ j‘h) (Z:: Pj) Zz 5

and we have

(G‘* Fo(e* Cg ™, £* Dy xy?) )Q
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=@ {(% 40 (T bipy) (G* Fola s, 222)),

+2(T 4,5:0) (240 (Zb,p) (Ge* Fulaizs, 2,
+2(24;£;95) (2 ;05 (22 b;p5) (G‘* Folz "z, 2 z) )Q“,.
+(Z A (5 ;a9 (Go* Falattad, 2 zd)),

<Gl* Fo (’C* BIS x112’ IC* E5x1)>Q

= (S 42 P (S bsp) (G Pz, miad),
+(2 4077 (2 659)) (G‘* Fol®, 2, x24)>Q1.,4
FAT 427 (548190 (S bsp) (G Fol*zs, zpad)), ).

By Lemma 5. 10 stated later,

)
G‘* Fo xluxz ’ xl xg ))Qu 4 = 26 (G! (xllsxz CZ )>Qu 4 ?

Ge* Fy(x, 2 z,, x1x24)> :%(G!*( 13172C24)>Q ’

Qld 4 14,4

5
Gex ol 20, = 137 (G,

4,4

(
(
(Ge*Fo(aay, 22), = — 13 7 (G (@),
(
(

5
Ge* Fo(x,, x, x; )>Q“ . - =7 (G‘* (x5 ))Q

14,4

Since (Ge*(2,%2,(4Y))q,, , and (Ge*(x,L5*)q,,, do not vanish, we have
k
(—d'+2d) (Z Xijz> (226;p5) =
j=2 J
(@ +26d) (3 4,02 (T bya)
Jj=2 J
~ (6 +164) (3 427 ) (£ Apsas) (b, =
j=2jJ ~,% iqi 1 OiPj) =

Since B;+#0, B;sCy; does not belong to the ideal (2 z#. Then there is
a vector (ps, +*+, Pnyy) EC™ such that =

n+l

k
1§2P12:O, (]Zzlzszjz)(zj: bjpj)¢0

It is easy to see that for such (p,, :-:, pass) there is a vector (g, -+, gny) EC*
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n+l n+1
such that 14 ] ¢?=0 and ) p;q;=0. Therefore it follows that
i=2 ic2

d =2d.

If some b; (3<i<n) does not vanish, then put p,=1, Prii=V—1, p,=0
(3<j<n), and ¢;=+—1, ¢;=0 (j#1i) in the above formula. Then we have
d +26d=0, which is a contradiction because d#0. Hence

b; =0 3<in).
Next assume that b,,, does not vanish. Take (p,) and (g;) as follows:

Qn+1=~/——1, 7:=0 (2<i<n);

p=1, pa=A—1, p;=0 (i #2,n) if k<n,

p=1, pi,=V—1, p,=0 (i#£2,4) if k=n,
where i, is chosen such that Z,+#24;,.

By substituting these (p;) and (g;) into the above formula, we have d' 4-26d=0,
which is again a contradiction. Hence

bn+1 = 0 Py
and By is a constant multiple of x,. Moreover, if £>3, then put p;=1,
Poii=V—1, p;=0 (i#3,n+1), and g,=v—1, ¢;=0 (3<i<n+1) in the above
formula. Then we have d +26d=0, which is a contradiction. Hence we
also see that C;3 is a constant multiple of x> under the assumption B3#0.

Next we shall show that Cs is a constant multiple of x,2. We have

already seen that X+ Z belongs to the ideal () z/? ZCiZa inci), where

2
X— —30d8*2G( a8 Fy(Cia 2y E5x1)> ,
izo

2 a 2i
2=0(%a( 525 o) ),
i=0 J J
and wyER [x,, -+-, Z,4,] is defined by the condition

ZG(* Fl(Am xlls, E5 xl) + ZG!* F1<Bl3 x112, Dﬁ x12>
+ 21 GHFY(Copyy Y, Cojpr 7Y+ 2Ge* F3( Ay 2%, Es 1)

i+7=8

+ 2 Ge*F¥(Cop 227, Cojry 271 = Ge¥ (xlm wy () C14>

i+7=9

mod G(.z?).

In view of Corollary 5.5 [iij] we may assume that the degree of w, in the
variable x,,, is at mosy 1. Remarking that
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<GF 3<C2i+1 %7, Czj+1x12j—l)>v = C21+1(’”) C2j+1(”) GF 3(x12i—13322s xlzj—lxzz) ’
we have by Lemma 5. 6.

w,(v) (G040,

14,4

= —30d3* Cy(v) Culv) (Go* Fo(ai* 22, zp ),

__BOdg’z 13(1)) D,,(v) (Gf* Fo(xlmxb x12x23))Q“ .

+cCa? (G*(@ L), (cER)

for all y=(y,, -+-, v,,,) EC* with 2.v#=0. We see from the last part of the
proof of Lemma 5.4 that

(G‘* (x110x24C14)>Q““ = 7.11, 13 (G‘* (%“Cz“))qu,‘ ’

and from Lemma 5. 10 stated leater that

3.3
Qu,4 - 7‘13

—30d5? (Gl* Fo(x111 s, x13x22)> dy? (G‘* (33114 Cz4)>

Q14,4

and (Ge* Fo(2,2 2y, 2,22%)q,, , Is a constant multiple of (Ge* (z1*8Y)q,, . Hence
there are constants ¢, ¢’ =R such that
Wy = “3‘25'11d8'2C5C13+C, B13D5+C,, C132 mod (Z xiz) .
i>2

On the other hand, we have already seen in the part II of the proof of
[Proposition 4. 5 that (Ge* Fy(x,!'x.2, x1Z5*))q,, ,=0. Since Cy3 and Ej are con-
stant multiples of x,> and x;* respectively in the present case, it follows that
X=0. Hence ze(xd 1 CA 2. 2:G), and (Ge* (2,19 wy(x) &*)e,.,=0. Then

by Lemma 5.6 we have

wy (v) (G‘* (x,0 2t 514)>Q . =0

for all v=uyy, --+, v,,,)EC* with > y,2=0. Since (Ge*(z0x4(%)g,, , does not
i I

vanish and the degree of w, in the variable x,,, is at most 1, it follows
that w,=0. This shows that C; is a constant multiple of ..

Next we shall show that Bs is a constant multiple of z,, We have
already shown that there is &R [y, -+, Zu4]s such that

GAHF(f,f) = 3 Gé* Royt Ge*(mduy(@) &) mod G (o).

This implies that
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0 - (Gl* RIO)Q5,4 + (G‘* (1,'12 vﬁ(x) Cl‘l))Qs” )

Remark that in the present case Ge*(E;x,, Dsx?)EG(%?) by [Corollary 5.5
(). By taking the parts of odd degree in the variables (x, -+, Zpss, Co» =+
Cns1), We then have :

—7d§’2{Gt* Fo(Esx,, Bbx14)>Q ‘+<G‘* Fo(Dsx/?, C5x18)>Q5,4}

6,

+(Ger F(Crzp, Daz)), =0.

Q.4

4

+(Ge* F3(Byay, E_.,xl))Qs’

By Lemma 5. 10 stated later there are non-zero constants b; (1<7<4) such
that

{81E5(v) By(v)+ 5, Ds(v) Cy(v) + by Br(v) Ex(v) +5,Cr() Di(v)}
X (Ge*(zfxaLd) 0. =0.

Since (Gz*(xl‘iszz*))Qs"iO and the degree of By in the variable xz,,, is at
most 1, it follows that By is a constant multiple of x,.
II. By=0. In this case we have X+Ze(X x4 X¢4 X xly), X and
Z being as in I, and ' '
wy = —325.11d5°C;Cy+ ' Cii?,  'ER.
By considering the homogeneity in the variables (xs, -+, Zui1, S **» Cngr), WE
k
also have X&(}, x2 >¢2% X x;¢,). First assume that 2<n—1 (Cm:ZZixf).
122 122 =2 =2
Then X does not contain the variables (,, Zpi1, Cny Cnyq). Since for each

(@25 *+*5 Tngs C29 *++5 Cny) EC** we can choose (Tn, Zus1s Cny Cnsy) €EC* such that
2xi=202=22;£;=0, it follows that X=0. Next assume that 2=n and
122

22 122
n>4. Then, since X does not contain the variables (z,.;, {at1), We have

n n n 2
XE(Z xi), Ciz—<z szz) )
i=2 [=2 i=2
by Lemma 5.3. Put u= Zn] x;% and consider the following polynomial ;
i=2

Xo= G(i a; Fi(px,", yle)) .
i=0 /

We have seen that (Ge* Fo(x,"'z,. 2 Z1 ZnsrY)q,, ,=0. By substituting 1 —x2—p
for x,,.* we have

<G‘* Fo(x," 1, x1#2>)0“" + (G!* Fo(x,®, x1/~¢2>>

+2(Get Fy(zitip, xlsp)>qw =90.

Q1¢,4
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This implies that X,e(X x? > &% 2. x:{;), and hence
122

iz =2
n n n 2
Xoe(§2x12§Ci2—(i§xiCi) ) .

Note that Cy is the image of g under the transformation z,—,z; (2<i<n),
Ty Xy, Tnyr—Tnyr- Since this transformation commutes with the operators

G and ini, it follows that
7 oG

Xe(ifzzixf;:zicf—(izlzix,-ci)z) .

n

n 2 n n n 2
G — ( szcz) and ), 4z 2 AL7— ( 2 Z'ixiCi)
iz2 i=2 i=2 i=2 i=2
are irreducible and mutually prime. Hence X must be divided by their
product. But since deg, X=6, it follows that X=0.

Now we assume that X=0 and 2>3. Then an explicit computation

shows that the coefficient of x,x,2{s* in the polynomial X is, putting I} ,=

2r
_21;? SD (cos £ (sin /% df and Ey=d,Cy,

Since n>4, the polynomials ) x;?
i=2

—30d;d5* a2 {(Io— 4L +6 1 . — AL o)+ al(48 1, — 961, , + 3615
+a3+360L,}

= ——30dldg’2122232 X( 5979 ) :

which is not zero. This is a contradiction. Hence C is a constant multiple

of x,2 if X=0. Moreover that X=0 implies that Ze(g x?2 ZZC{", szici),
T T i

and we see that C; is a constant multiple of x,* as in the casze I 1E‘or B;

we can also use the argument in I, from which that By=0 is easily deduced.

It remains to consider the case where =3 and £=3. We shall compute

Cs; in two ways, and show a contradiction. Let X, Z, and X, be as above.

A direct conputation shows that
Xo = 44G (2,%(z2+ ) {2+ 268 2,2 (@ + 1) (2.8 — 2,80
Put
W = —30d5*d, X 4422, G (2, (hxp+ do2) {2+ 2082 (o a2+ Ao 1),
where d,=E;/Cs* and Cg=242,2+ 4x®>. Then
X=W(x,{—x,5)2.
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Since X+Z<(2, x4 285 2 xily), we can write

2 2 2
X+Z= 22> HV+ (2 Hi+ ), 2,0, ), HY
7 j0 7 j=0 i Jj=0
where H¥ are homogeneous in both variables (x,, {,) and (x5, -++, x4y Cop ++, o)

deg H% =16, deg, H¥=2j. By comparing both sides we have
X= szzHi+Z C2H3+ 2 x:Cs

122 1>2 i>2
Z=afHi+ 2 Hi+ o, L Hs+ Y 22 HA Y 02 HE+ ZZ:viCiH
1>2 i>2 12

Since

(28— 2380)% = ?(sz‘l‘Cs — L) (2 +xs* +x4d)

1
+ 9 (22 + 22 —x8) (2 EE+LH)

— (22 Cot 2385 — 24 84) (2, G+ 23 G+ 28y)
it follows that

<H‘{“ é’((c22+C32_C42) W) éx12+ (H;— %‘(x22+x32—x42) W) éciz

+< s+ (2 G+ 258 — 2,8y W> gxici =0.

This implies that the polynomials H;— (Cz‘"—i—Cs) W H"‘ (x2+x2) W, and
3+ 2(x: 8+ x58s) W belong to the ideal (sz, Zci, szCi) Hence we

have
Z= {x12(C22+ GeB) + 8% (2 4+ x4?) — 22, Gy (22 Gy + 15 Cs)} w
4 4 4
mOd (Z xiz) Z Ciz’ Z X Ci) ’
i=2 i=2 i-2
which implies that
2=l +v) (2, Lo — 2, )P W'
4
for all v=(y, v5, v) =C® with } v2=0. We see that
i=2
Wy - - 30d8'2 dl X 4412 23 (22”22"{‘23 V32) G(x110x22 C12+262$x112x22) ’
7> = wy(v) G(x 022l 4+ 12a8 2,2 22 L2+ 24as 2, xrt)

Moreover an easy computation shows that
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C<x11°x22C12+2a?x112x22) (28— 22 Cy)?
= %5 G (x0xt A+ 12ad 2 Rt L2+ 24ad M ayt)
Hence we have
35 6,2 2 2 2 2
w(_)(lJ) - —‘30'44'72‘d0’ d12223(22))2 +23U3>(U2 ‘I—)Jg ) .
Since the degree of wj in the variable x, is at most one, it follows that
35 6,2 2 2 2 2
wg(x> - — 30’44‘*’2"’d0’ dl 22 23(22 Xy +23 Xy ) (xg +x3 ) .

On the other hand we have already seen that

wy= —3+25:11d52C;Cs+"’ Cy3?, d'ER.
Hence it follows that

Cy = 28d, A A(x 2+ x?) +eCls eeR.

Next we shall consider Q“-component. We have already seen that there
is a polynomial vs&R|x,, 25, 2], such that

G*F(f,f) = G* R+ Ge* Ry+Ge* (2 vy(2) &) mod G(x).
Then we have

=0.

(Ge* Ry, ,+ <G‘* (xf ve(2) Cl*))Q,,. ~

This implies that

(G*FH(Eyzy, Bymy)), +2(Go* F{Cyzy, Eyz))

Qs,4 Qc,4

+2 (Gz* F3Crxf, E; x1)> » + (\Gt* (x{“ wy(x) Cf) )Qm =0

Q
for some w;ER[x,, 13, 24]s, and

(Ge* F(Byxt, Esx)), =0.
Put

S: —7d§’zé<i§)a§Fi(beh E5x1)> ’

2

T = —14d§’ZG(Z a; Fi(Csxyd, bel))
i=o

5 2i
+10d.§'2C7(Z‘ af(z xja—gjg_> x14C7(x) E-’:(Q ’
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U = G (2 ws(a) Gi+12ak it wile) {7+ 24ai e wn(a)

Then there are homogeneous polynomials H; eR[z,{]s (i=1,2,3) with
deg, H;<6 such that

S+T+U= inZHl‘i‘Zsz z+inCiI'Iss .

Let H! be the homogeneous part of H; of degree j in the variables (z,, --+, 4

&+, &). Then we have
4 4 4
§= Yzt Hi+ Y02 H+ G HE,
4 4 4
T =xH{+ {2 H 42, H3+ éxiz Hi+ §2C12H§+ éxiCng .
Now consider the following polynomial ;
2
S =6( R a P, np),
i=0
where p=x2+x2 A direct computation shows that
So=— 35 G <:c12(x22 + 2% (824 §s?) + 92.2(, §o + 25 ) — 22,%(x* + 132)2)

X (2285 — x5 8a)°

Hence, by putting
8
= 5 dy?di A G <x12(22 22+ A xs?) (12 L2 +4 C32)>
+92,2 (22, o+ A3 23 o) — 222 (A x+ 4 x32)2> s

we have
S= (%Cs’“%tz)z Vv,

where d,=FE;/(Ax2+4x2? Then a similar argument as before shows that

T= {xl2(c22 + &) + (22 4 x?) — 22, §y (22 8o+ 2 Cs)} V

4

mod (Z x? gciz, ézxz&) ,

=2

4
and Ty :(V32+V32) (xl CZ — X2 C1)2 Vy fOI' all Y= (”3, Vs, U4) S C‘3 With Z viz"—“o. We
i=2
have »
V" = %d%’zd% 22 23 (22 v22 + 23 V32>2G(10x12xz2 sz - 21‘12 Z‘z‘) )



224 . K. Kiyohara

2
T" = ~ 1445 Gi) Exl) G B at Pl s, 0,5
i=0
+10d5° Cy(v) Es(v) G(zfx2lA+12a 2 2t L2+ 24as ztxh) .

By Lemma 5. 10 stated later we see that

(6o Rt ), = (st

9, Q.

From this it follows that

2
G ezt 2
i=0
- - 2(’;(3714 22 Ct 4120} 2 24 0P+ 24a it o)
Hence
T" = (28C5(V> + 10C7(D)) dg'z E5 (U) G (.’L‘l‘* xgz Cz* ‘I" 12(1% :C14 x24 ng '+' 24a§ x14 xgﬂ) .
Moreover a direct a direct computation shows that |
G(10z2 22 C2 — 222 x) (. Co — 2, Cy)?
=35G (2222 LA+ 12d 2t A L2+ 24kt x ) .
Since
(‘* G (22 Lt 4 12aixyt 2 2+ 24a) 2, xzs))G(Qw) = (G‘* (zyt Cz‘))Qe W
it does not vanish by Thus we have
(28C5(U) + ].OC'[(IJ)) (22 V22 + 23 V32)2 = 56dl 22 /23 (sz + Vsz) (22 Uzz + /23 1)32)2

4 4

for all y=(v, v, v,) €C®* with > v2=0. Since the ideal (Z xiz) is prime, it
i=2 i=2

follows that

5
14
But we have already seen that Cy=28d, 4, A(x:2+x52) +eCis, e R. Since C;
is a constant multiple of Cj, and since z,°+xs® and C;s are mutually prime,
it is a contradiction.

This concludes the proof of [Proposition 5. 2
Now we shall prove the following proposition, which will complete the
proof of Theorem 4. 1.

C5 = 2d1 22 23 (x22 + x32) - C7 .

ProrosiTiON 5.7. Let f be a polynomial of the form

10 6 6
— 2 -
f— _Z:zaziﬂiﬁ Hl + iz2ﬂ2i+1x12ix2+ erzi+1x12i 122 +0p 2 2+ s 2, 54
i= = i=
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where the coefficients are real numbers, any=1, 7370, &#0. Then G*F
(f,f)eG(x? if and only if the coefficients satisfy the relations described
in Theorem 4.1 (ii).

To prove this proposition we need some lemmas. Let R, (4<:<21)
be the homogeneous part of degree 2i of F(f,f).

LemMa 5.8. Go*F(f,f)eG(#? if and only if (G* Ry)q,,_, ,=0 (4<
1<13).

ProoF. Since deg, R;; <2 (14<:<21), it follows that Gr*Ry;eG(&?

(14<7<21) in view of [Corollary 5.5 (i). Hence the condition Ge*F(f, f)&E
G(.&?) is equivalent to the condition

5" Gk Ry e G477,
i=4

Let f.; (2<i<10) be the homogeneous part of degree 2i+1 of f. If 4,
>3, then deg, F'(fuit1 f25+1) and degs F2( foity f2j+1) are at most 4. Thus
for such 7, j we have

(G*FY(futsss fors) =0 B<k<[i+j+1/2)

in+2j+2—zlc,zk

and

(G FH farsns fors) =0 (3<k<[d+j)/2])

Qz12+zj—2k,zk

by Corollary 5.5 [ii]. Moreover, since the degrees of F'( fy 1, f5) and F*( fo4,
f5) (2<i<10) in the variables { are at most 4, we also have

(Ge* FY(fossns 1) =0  (3<k<[i+3)2)

in+s—2k,zk

and

(G*FX( futrn 13) =0 (B<k<[i+2)2)

in+4—zlc,zk

Therefore we see that
(Ge* Ryi)gy;_ i =0 B<k<[i2], 6 <i<13).

Now fix an index ¢ (4<7{<13) and assume that (Ge* Ry)g,,_, ,=0. Then
by the above fact we have

(Ge* Ry)acq,p = (Ge* Rzi)Q,i_z,z +(Ge* Ry, , -

In view of [Corollary 2.8 [ii] there is a polynomial hER [z, s, {1, Colaizzt
Rz, 23, {y, &)y such that

(Ge* Ryi)g,,_, , +(G* Radlg,, , = (Ge* R)ace, -
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Then (Ge*(RBgs—h))gw,»=0, and it follows that the polynomial G(Ry—h)
belongs to the ideal (2Jx* 2.{7% 2 x:(). But, since G(Ry,—h) is a poly-

1
nomial only in four variables (x;, x;, {;, {;), and since n>3, it follows that

G(Ry;—h)=0. Hence Gi*Ry;,=G*heG(z?).
On the other hand, if i Ge*R,;€G(.%? for some i, then
=4

- (le G sz) =(Gt* Ryi)q,,_.,.. -

2—4,4

Therefore we see that ZiGz*szEG(J’/Z) if and only if EG:*RZjEG(UZ/Z)
=4 =4

and (Gr* Ry)g,,_, ,=0. 'i‘he lemma now follows by induction.

We have defined positive constants d+/ for integers 7, j, I satisfying 0 <I <
j<i in §3. Here we further define di-**! for integers 7, I with 0<I<i+1
by the same formula, e, diiti=[i*1 and

Ii+1 -1

<21) = Z diyit1g2041 I>1).
The proof of _ (ii] is also valid in this case, and we have
o d>0 (0<I<i+]).

LEMMA 5.9. For ucR[x)y,, and vER[x];4, (2<5<0),

a 2j—4
(Gz* F¥(u, v))in+zj—4 . d?‘_lz"j<G’*(§x" Gk ) ags(:) agC(lc | )Q ’
’ 2i42f—4,4

(G:* Fu, v ))Qnm_‘ ‘

B 0\t Gu(x) ov ()
__di j<G¢*<Zk: Tk aCk) ;2 ox; a, )in+zj—4,t-

Proor. Since

dzil

* 9 ) . i I 2
So 3; (xcost+{sint)sintdt = pZ:;l @p)] (Z Ty agk ) ’ a;éf) ,
it follows that
i I 0 \? ou(x) ov({
P, v) =2, (2p) ! (Z Z ack) ox, G,
J 0 \2P n+l au( ) av(C)
( ) Z=: ) (Z _re oCx ) l§ Xy o, -

Then from the definition of d%’ we have

A R o Vo 9
Pl o= S iy Gogg, [ 25,0 T
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Hence

<G¢* F3(u, v))

Q2L+2_7 4,4

. p 246u(x)»6v(C)))
=diz f(Ge*q‘szaq i+ <Zxk oCs > 0x; 08 ) /o@i4.p

.y o ¥ du(x) 9v(0)
:dj_g <Gl*<zk: T ack) axl 6C1 )QH_HJ “t ’

The formula for F* is obtained in the same way.

LEMmMma 5. 10.
(I) (2<:<10)

o (2i43) (i1
Q2it2,4 - l+1

= (2i+1) di2(Ge*(x#8) .,

Gk FY(x,2*1, z, x24)> ) d3'2<Gt*(x12i+2Cz4))

in+z.n ’

in,c

(

(G * F2(2 241, 1, x«f))
(II) (2<j<i<6)

(

Ge* F\(x2 1z, 22 1x,? ))
Qritzj—2,4

(2j—1)1(2i+3) (2i—1) (21—2) N
= — (2;-}—2]——2) ...... (2:’_*_2]_5) d_jg(G(*(xl i C2)>

(Ge* F2x2 122, 229 x22)>Q o
2942)—2,4

2= (2i-D @i—2) (23 ., s
SR i S i A (A Cl <)

M) (2<i<6)

in-{-—zj—z,c ’

<Ge*F1 12 2y, x12x23)> = 2(2.i+3)( J )d’ 2<G *(x 2i+2c24))
( A

Q2i+z,4 (Zl + 1) (21 +2)
= —2di*(Ger (@B Ld),

ta+a,4 ’

Go¥ F¥x x,, 1% x; ))

in, 4 Qn 4

(IV) (2<i<6)

1 +3) (1 —6
Go* Fi(z 1z, x1x24)>Q Wt (21+ Z(z

L a5 (Gr (i 222))

= (2i—1) (G (2L

in ‘

<
<Gz*F3 22 1k, a2 )> @i’
(

Gt *F4 % 12?2, 2 )) _'dz_l 2<G‘* (-’Q”Cz‘))

Qﬂl 4

(V) (2<i<6)

227

in+z,4 ’
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(0 Pl s, == A Gt

in+2,4 ’

<Gt* F(x2 z,, X x24)> = 2id§ 12 (G‘* (z2 1 x, C24)>

Q?id Q2,4

(V) (2<i<6)

, 2i+3) (4i— .
<G{* FY{(z2 122, x12x23>)Q2i+2 = ( z(_;i_)|_(1)zi 9) d3.2<Gz*(xl'2¢+1x2C24>>Q s
(Ge* FY(a=tag, mpas), = —4dit*(Gor(xpi-1m,0d),
(VII)
* F1{ 1248 2 2L 5o 4
G* F (x1 Xy®, Xy" Ty ))Qs . - — —é_dO’ <G‘*(x1 ‘2:‘22C24t)>Qs 2

(
(Gt Pz, a2z, = 5 dit(Gev(zot), .

Q.

Proor. We shall only prove (I). The other cases will be verified in the
same way. By the proof of [Proposition 3.5 we have

(Gz* Fi(z2*, 2, x24)>

in+2,c

= —(2+3) di*(Ge* Fo (22, z,24))

in+z,4

= — (2i+3) di* (G* (22 LA+ 4 1,0 1)

Q2i+2,£ ’
Since

0

XE ( x12i+2 z C23> — (2i + 2) x12i+1 2,6, 63+ x12i+2C24_ 3 x12i+2 22 ,
it follows that

(G‘* (z 2+ 2,8, C23)> = - 2i}l- 2 (G‘* (x12i+2524)>

in-l—z,t

Q2i+2,4

Hence the first formula is obtained. The second formula immediately follows

from Lemma 5. 9.

Lemma 5. 11.
ei _ (2i+25—1)(2i+2j—3) (2i+2j—5) 16 _
A (2643) (2i+1) (2¢—1) + -4 -
Proor. We have
-2 [J

dits = 2 g1 Ji-5
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- (2q 1)”(2] 2q)” (2i+2q—3)!!
5 (g 2+ (2j—2q—) 1 (Zi+2—D)

Thus we must show the following formula :

TS 2i+2¢—3) ! 2%i+2j—1) !
2U=ali—q=1) (<2ql> I (gi—?Z) I :<2z'(J:3) !!](2]'-)4) %2

Put

2(z+1)--(2+q—1)
q! '

M) =% (i—9)(i—g—1

h(z) is a polynomial of degree j—2 in the variable 2. Let k£ be an integer
such that 0<k<j—2. Then we have

h(—B) = 30—a) (j—g—1) (~1¢( -

7=0 q
= 5 1r(8) i Fy e a1 £)+ (- 1ela+Da(}),

and hence A(0)=j(j—1), h(—1)=2(j—1), h(—k=0 (3<k<j—2). This
implies that

h(z) = G—2) (2+3) (2+4)---(2+]) .

Then by considerding h(i —%) we have the lemma.

PrROOF OF PROPOSITION 5.7. In view of Lemmas 5.8, 5. 10, and 5. 11|,
the condition Ge* F(f,f)EG(.&? turns out to be a system of algebraic equa-
tions in the indeterminates az,, (2<i<9), Buts T2i41 (2<1<6), s, &, which
is as follows:

25
&+ 732,79 132.12 s =0,
25 5 25
&5+ 13.11.6 fuls— (55+ 132.12 7'18> 0,

25 15 9 25
apest+ 1o =a 1356 Yorist - 112.7 7’11 - 7(“19554‘ mﬁ)’nhs)zo >

25 10 4 25 15
A&t 1o 10 13.49 Tttt 3791 11.21 Tolu— 3 <a17e5+ 1356 Ta.Eg It 112.7 Tu) 0,

2 4 1
Qy3€p— T§ﬂ1355+ "2(5‘7’57‘13+ _1’1’:77’77‘11'{' 36‘7’92
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7 25 10
—“5“<“w€5+ 13.49 17t 11.21‘79711) =0,
w1y Bl 11 Tt g Tt g T
- %(“1355* 13 Buest ’216‘75713+ T14.7T77n+ BIGT*’Z) =0,
is— g Podek 1 it g 1 1 T

o 2 3 1
- ’g(a’n&ﬁ— T'fﬁu 05+ 11.5 7505+ 147’77’9) =0,

2 1 2
7€ — 7,3755"' 77‘2’57’7+ ”9‘2’955
2 1 5
_2(“955_35955+ 12 o7 % 49.2 T’2>:O’
2 3 4 2 1
‘a'5e5— “5‘{9555+ 20 7’52‘|‘ 77’755 - 3(“785 - 7,3755+ 77’5]‘7) =0 ’

2 3 2 3
&5 — 5 Bs 05+ 50 78— 5 75 +

20 % =0,
1
‘.31355+ ‘:2‘7’1355 =0,
3 1 12 4
- ”“lT,BnEzH‘ ‘5‘7’1155"" ”ﬁﬁlses— “1§T1355 =0,

1 7 10 4
- @.39854‘ %7’955‘*’ ﬁﬁusa— ﬁrllab =0,

1 1 8 4
‘7—.3765+ ’77’7554' “9“,3965 —- 37’955 =0,

3 1 6 4
3.3555— ﬁnﬁa‘l‘ 7‘3765 - _7‘7755 =0,

55 18 7
u= — 137 9= — 1 Tw 17 BUE

3 5
7565 — _8—552+ﬂr7€5 =0.

Then it is easy to see that the indeterminates satisfy these equations if and

only if they satisfy the relations described in Theorem 4.1 [ii] under the
condition 7;3#0. This finishes the proof of the proposition.
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