On infinitesimal $C_{2 \pi}$-deformations of standard metrics on spheres

By Kazuyoshi Kiyohara
(Received June 27, 1983)

Introduction

Let M be a riemannian manifold and g its riemannian metric. Then we call M a C_{l}-manifold and g a C_{l}-metric if all of its geodesics are closed and have the common length l. As is well-known, the unit sphere S^{n} in the euclidian space \boldsymbol{R}^{n+1} equipeed with the induced metric (the standard metric) g_{0} is a $C_{2 \pi}$-manifold.

Let us consider a one-parameter family $\left\{g_{t}\right\}$ of $C_{2 \pi}$-metrics on S^{n} such that $g_{0}=\left.g_{t}\right|_{t=0}$ is the standard one. Put

$$
h=\left.\frac{d}{d t} g_{t}\right|_{t=0}
$$

We shall call such a family $\left\{g_{t}\right\}$ a $C_{2 \pi}$-deformation of the standard metric g_{0}, and h an infinitesimal $C_{2 \pi}$-deformation of g_{0}. It is known that each infinitesimal $C_{2 \pi}$-deformation h satisfies the so-called zero-energy condition, i. e.,

$$
\int_{0}^{2 \pi} h(\dot{\gamma}(s), \dot{\gamma}(s)) d s=0
$$

for any geodesic $\gamma(s)$ of $\left(S^{n}, g_{0}\right)$ parametrized by arc-length (cf. [1] p. 151). We denote by \mathscr{K}^{2} the vector space of symmetric 2 -forms on S^{n} which satisfy the zero-energy condition.

In his paper [3] Guillemin proved that in the case of S^{2} any symmetric 2 -form $h \in \mathscr{K}^{2}$ is necessarily an infinitesimal $C_{2 \pi}$-deformation of g_{0}. On the other hand, for $C_{2 \pi}$-deformations on $S^{n}(n \geq 3)$, the examples constructed by Weinstein ([1] p. 119) are all that we know up to now, and the corresponding infinitesimal $C_{2 \pi}$-deformations form a rather small subset of \mathscr{K}^{2}.

The main purpose of this paper is to introduce and study a necessary condition for a symmetric 2 -form $h \in \mathscr{K}^{2}$ to be an infinitesimal $C_{2 \pi}$-deformation of the standard metric g_{0} on the n-dimensional sphere $S^{n}(n \geq 3)$. This condition is called the second order condition, and is naturally obtained through the interpretation of the $C_{2 \pi}$-property in terms of the symplectic geometry on the cotangent bundle $T^{*} S^{n}$ Proposition 1.4).

Let $\iota_{0}: S^{n} \rightarrow \boldsymbol{R}^{n+1}$ be the natural embedding, and let $\left(x_{1}, \cdots, x_{n+1}\right)$ be the canonical coordinate system of \boldsymbol{R}^{n+1}. In this paper we restrict our attention to the symmetric 2 -forms of the form $h=\left(e_{0} * f\right) g_{0}$, where f is a polynomial function on R^{n+1} (or a polynomial in the variables x_{1}, \cdots, x_{n+1}) and $h \in \mathscr{K}^{2}$. In general it is known for a function v on S^{n} that the symmetric 2 -form $v g_{0}$ satisfies the zero-energy condition if and only if v is odd with respect to the antipodal map of S^{n}. Hence we may assume that f is an odd polynomial, i. e., polynomial whose terms of even degrees vanish.

The main result in this paper (Theorem 4. 1) may be stated as follows;
Theorem. Assume that the dimension n of the sphere under consideration is equal to or greater than 3. Let f be an odd polynomial in the variables x_{1}, \cdots, x_{n+1}. Then the symmetric 2 -form ($\left.\varepsilon_{0} * f\right) g_{0} \in \mathscr{K}^{2}$ satisfies the second order condition if and only if f has one of the following forms :

$$
\begin{equation*}
f \equiv h_{1}+h_{3}+\sum_{i=2}^{m}\left(\sum_{k} a_{k} x_{k}\right)^{2 i}\left(\sum_{j} b_{i j} x_{j}\right) \quad \bmod \left(1-\sum_{i=1}^{n+1} x_{i}^{2}\right), \tag{i}
\end{equation*}
$$

where h_{1} and h_{3} are homogeneous polynomials of degrees 1 and 3 respectively, and a_{k} and $b_{i j}$ are real numbers;

$$
\text { (ii) } f \equiv h_{1}+h_{3}+c A^{*} h \quad \bmod \left(1-\sum_{i=1}^{n+1} x_{i}{ }^{2}\right) \text {, }
$$

where h_{1} and h_{3} are as in (i), $c \in \boldsymbol{R}, A \in O(n+1, \boldsymbol{R})$, and h is a polynomial of degree 21 in the variables (x_{1}, x_{2}) whose coefficients satisfy certain relations (for a strict form, see $\S 4$).

As an immediate consequence of this theorem, we see that the zeroenergy condition is no more sufficient for a symmetric 2 -form to be an infinitesimal $C_{2 \pi}$-deformation of g_{0} in the case of $S^{n}(n \geqq 3)$.

The infinitesimal $C_{2 \pi}$-deformations given by Weinstein are essentially of the form $\left(\varepsilon_{0} * u\left(\sum_{k} a_{k} x_{k}\right)\right) g_{0}$, where $u=u(t)$ is any function in one variable t satisfying $u(-t)=-u(t)$. Hence we have a subclass of (i) consisting of odd polynomials f of the form
(i) $)^{\prime} \quad f \equiv h_{1}+\sum_{i=1}^{m} c_{i}\left(\sum_{k} a_{k} x_{k}\right)^{2 i+1} \quad \bmod \left(1-\sum_{i=1}^{n+1} x_{i}{ }^{2}\right), \quad c_{i} \in \boldsymbol{R}$,
and for these polynomials the symmetric 2 -forms $\left(\epsilon_{0} * f\right) g_{0}$ are really infinitesi$\mathrm{mal} C_{2 \pi}$-deformations of g_{0}. For the other polynomials f satisfying (i) or (ii) we do not know whether $\left(\epsilon_{0}{ }^{*} f\right) g_{0}$ is an infinitesimal $C_{2 \pi}$-deformation or not.

Recently Tsukamoto [6] proved that the second order condition is not satisfied for a certain subclass of \mathscr{K}^{2}. It should be noted that this subclass is in some sense a complement of the subspace of \mathscr{K}^{2} spanned by the Lie
derivatives $\mathscr{L}_{X} g_{0}, X$ being vector fields on S^{n}, and the symmetric 2 -forms \in \mathscr{K}^{2} which are conformal to g_{0} (see also [5]).

This paper consists of five sections. In $\S 1$ we introduce the second order condition. In $\S 2$ we deal with the laplacian acting on the functions on the unit cotangent bundle $S^{*} S^{n}$. We restrict this operator to the subspace consisting of functions which are constant along each orbit of the geodesic flow, and decompose it into a sum of eigenspaces. The second order condition for a symmetric 2 -form $\left(\epsilon_{0}^{*} f\right) g_{0}$ is then interpretted as the vanishing of some eigenspace components of a function $G \iota^{*} F(f, f)$ which is suitably defined by f. In $\S 3$ we prove Proposition 3. 1, which is the first step to Theorem 4.1. The proof consists of two steps; the explicit calculations for polynomials in two variables $\left(x_{1}, x_{2}\right)$ and the reduction of the general case to two variables case. For this reduction we use some algebraic geometric properties of complex quadrics Proposition 3. 11). This trick is also used extensively in subsequent sections. $\S 4$ and $\S 5$ are devoted to the proof of Theorem 4. 1. There appear a kind of polynomials of degree 21 as an exceptional case. This case is considered in detail in $\S 5$.

The author expresses his sincere thanks to Prof. N. Tanaka for his constant encouragement and valuable advices during the preparation of this paper.

The contents of this paper were partially anounced in [4].

$\S 1$. The second order condition

Throughout the paper we assume the differentiability of class C^{∞}.
We first introduce some terminologies.
Set

$$
\stackrel{\circ}{T} * S^{n}=T^{*} S^{n}-\{0-\text { section }\}
$$

Let $\boldsymbol{R}^{*}\left(\right.$ resp. $\left.\boldsymbol{R}_{+}\right)$be the multiplicative group of non-zero real numbers (resp. of positive real numbers). We say that a function f on $\stackrel{\circ}{T}^{*} S^{n}$ is homogeneous (resp. positively homogeneous) of degree d if

$$
f(s \lambda)=s^{d} f(\lambda)
$$

for any $\lambda \in \stackrel{T}{T}^{*} S^{n}$ and any $s \in \boldsymbol{R}^{*}$ (resp. $s \in \boldsymbol{R}_{+}$). A vector field X on $\stackrel{\circ}{T}^{*} S^{n}$ is called homogeneous (resp. positively homogeneous) if it is invariant under the \boldsymbol{R}^{*}-action (resp. the \boldsymbol{R}_{+}-action).

Let α be the canonical 1 -form on $T^{*} S^{n}$, which is defined by

$$
\alpha(X)=\lambda\left(\pi_{*} X\right), \quad \lambda \in T^{*} S^{n}, \quad X \in T_{\lambda} T^{*} S^{n}
$$

π being the projection $T^{*} S^{n} \rightarrow S^{n}$. As is well-known, the 2 -form $d \alpha$ defines a symplectic structure on $T^{*} S^{n}$.

To each function f on an open subset U of $T^{*} S^{n}$ we assign a symplectic vector field X_{f} on U in the usual way;

$$
i_{X_{f}} d \alpha=-d f
$$

It is easy to see that if a function f on $\stackrel{\circ}{T}^{*} S^{n}$ is (positively) homogeneous of degree one, then the vector field X_{f} is (positively) homogeneous, and $\alpha\left(X_{f}\right)=f$.

A riemannian metric g on S^{n} induces a bundle isomorphism $\#_{g}$ from the cotangent bundle $T^{*} S^{n}$ to the tangent bundle $T S^{n}$ such that

$$
g\left(\#_{g}(\lambda), v\right)=\lambda(v), \quad \lambda \in T_{x}^{*} S^{n}, \quad v \in T_{x} S^{n}, \quad x \in S^{n}
$$

Let $\widetilde{\mathscr{M}}^{2}$ be the vector space of functions on $T^{*} S^{n}$ which are homogeneous polynomials of degree 2 on each fibre $T_{x}^{*} S^{n}\left(x \in S^{n}\right)$. To each symmetric 2 -form h we assign an element $h^{\sharp g}$ of $\widetilde{\mathscr{M}}^{2}$ by

$$
h^{\#_{g}}(\lambda)=h\left(\#_{g}(\lambda), \#_{g}(\lambda)\right), \quad \lambda \in T^{*} S^{n}
$$

In particular we call $E=\frac{1}{2} g^{\sharp g}$ the energy function and X_{E} (or the oneparameter group of transformations generated by it) the geodesic flow associated with the riemannian metric g.

Now let $\left\{g_{t}\right\}$ be a $C_{2 \pi}$-deformation of the standard metric g_{0} on S^{n}. Put $h_{t}=\frac{d}{d t} g_{t}$.

Lemma 1.1. For any geodesic $\gamma(s)$ of $\left(S^{n}, g_{t}\right)$ parametrized by arclength, we have

$$
\int_{0}^{2 \pi} h_{t}(\dot{\gamma}(s), \dot{\gamma}(s)) d s=0
$$

For the proof we refer to [1] Proposition 5. 86.
For simplicity's sake we shall write \#t instead of \# $\#_{t}$. Put

$$
E_{t}=\frac{1}{2} g_{t}^{\#_{t}} .
$$

The following proposition is another representation of Lemma 1.1, which is essentially due to Weinstein [7] (see also [1] Proposition 4. 46).

Proposition 1.2. There is a one-parameter family of homogeneous symplectic vector fields $\left\{X_{t}\right\}$ on $\stackrel{\circ}{T}^{*} S^{n}$ such that

$$
X_{t} E_{t}=\dot{E}_{t}
$$

where the dot denotes the derivative in the parameter t.
Proof. Let $\left\{\xi_{s}^{t}\right\}_{s \in \boldsymbol{R}}$ be the geodesic flow associated with the the riemannian metric g_{t}. Then $\left\{\xi_{s}^{t}\right\}_{s \in R}$ induces a free S^{1}-action of period 2π on the unit cotangent bundle $S_{(t)}^{*} S^{n}=E_{t}^{-1}\left(\frac{1}{2}\right)$. It is easy to see that

$$
\dot{E}_{t}=-\frac{1}{2} h_{t}^{\#_{t}}
$$

and $\#_{t}\left(\xi_{s}^{t}(\lambda)\right)=\dot{\gamma}(s)$, where $\lambda \in S_{(t)}^{*} S^{n}$ and $\gamma(s)$ denotes the geodesic $\pi\left(\xi_{s}^{t}(\lambda)\right)$ of $\left(S^{n}, g_{t}\right)$. Hence it follows from Lemma 1.1 that

$$
\int_{0}^{2 \pi} \dot{E}_{t}\left(\xi_{s}^{t}(\lambda)\right) d s=0, \quad \lambda \in S_{(t)}^{*} S^{n}
$$

Define a function H_{t} on $\stackrel{\circ}{T}^{*} S^{n}$ by the conditions
(i) $\quad H_{t}(\lambda)=\frac{1}{2 \pi} \int_{0}^{2 n} \int_{0}^{s} \dot{E}_{t}\left(\xi_{r}^{t}(\lambda)\right) d r d s, \quad \lambda \in S_{(t)}^{*} S^{n}$,
(ii) H_{t} is positively homogeneous of degree one.

From the condition (ii) it follows that $X_{E_{t}} H_{t}$ is positively homogeneous of degree two. For $\lambda \in S_{(t)}^{*} S^{n}$ we have

$$
\left(X_{E_{t}} H_{t}\right)(\lambda)=\left.\frac{d}{d s} H_{t}\left(\xi_{s}^{t}(\lambda)\right)\right|_{s=0}=-\dot{E}_{t}(\lambda) .
$$

Since \dot{E}_{t} is also positively homogeneous of degree two, we see that

$$
X_{E_{t}} H_{t}=-\dot{E}_{t}
$$

on $\stackrel{\circ}{T}^{*} S^{n}$. Clearly we have

$$
H_{t}(-\lambda)=-H_{t}(\lambda), \quad \lambda \in S_{(t)}^{*} S^{n}
$$

Hence H_{t} is homogeneous of degree one. Set

$$
X_{t}=X_{H_{t}}
$$

Then X_{t} is homogeneous and we have

$$
X_{t} E_{t}=\dot{E}_{t}
$$

by the anti-commutativity of the Poisson bracket.
For simplicity's sake we shall write \#, $\left\{\xi_{s}\right\}$, and $S^{*} S^{n}$ instead of \#0, $\left\{\xi_{s}^{0}\right\}$, and $S_{(0)}^{*} S^{n}$ respectively.

Define a linear operator G on the vector space $C^{\infty}\left(S^{*} S^{n}\right)$ of C^{∞}-functions on $S^{*} S^{n}$ by

$$
G(f)(\lambda)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(\xi_{s} \lambda\right) d s, \quad f \in C^{\infty}\left(S^{*} S^{n}\right), \quad \lambda \in S^{*} S^{n}
$$

We assign a homogeneous symplective vector field $X(h)$ to each $h \in \mathscr{K}^{2}$ as follows: Let H be the function on $\dot{T} * S^{n}$ which is positively homogeneous of degree one and satisfies

$$
H(\lambda)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{s} h^{\sharp}\left(\xi_{r} \lambda\right) d r d s, \quad \lambda \in S^{*} S^{n} ;
$$

We set $X(h)=X_{H}$. By the proof of Proposition 1.2 we see that $X(h)$ is homogeneous and satisfies

$$
X(h) E_{0}=h^{\ddagger} .
$$

It should be noticed that $X(h)$ is uniquely determined by the conditions $X(h) E_{0}=h^{*}$ and $G(\alpha(X(h)))=0$.

We then define a bilinear map $K: \mathscr{K}^{2} \times \mathscr{K}^{2} \rightarrow C^{\infty}\left(S^{*} S^{n}\right)$ by

$$
K(f, h)=G\left(X(f) h^{\sharp}\right), \quad f, h \in \mathscr{K}^{2},
$$

where $X(f) h^{*}$ should be considered as a function on $S^{*} S^{n}$ by restriction.
Lemma 1.3. K is symmetric.
Proof. Let f and h be elements of \mathscr{K}^{2}, and let F and H be the functions defined as above by f and h respectively. Then we have

$$
X(f) h^{\sharp}=X_{F} h^{\sharp}=X_{F} X_{H} E_{0} .
$$

Thus

$$
\begin{array}{r}
X(f) h^{\sharp}-X(h) f^{z}=\left[X_{F}, X_{H}\right] E_{0} \\
\quad=X_{X_{F} H} E_{0}=-X_{E_{0}}\left(X_{F} H\right) .
\end{array}
$$

Since $G \circ X_{E_{0}}=0$, it follows that

$$
G\left(X(f) h^{*}\right)=G\left(X(h) f^{*}\right) .
$$

Let \mathscr{H}^{2} be the vector space of functions on $S^{*} S^{n}$ which are the restrictions of elements of $\widetilde{\mathscr{K}}^{2}$. We shall say that an element h of \mathscr{K}^{2} satisfies the second order condition if

$$
K(h, h) \in G\left(\mathscr{H}^{2}\right) .
$$

Proposition 1.4. Every infinitesimal $C_{2 \pi}$-deformation of g_{0} satisfy the second order condition.

Proof. Let $\left\{g_{t}\right\}$ be a $C_{2 \pi}$-deformation of g_{0} and put $\left.\frac{d}{d t} g_{t}\right|_{t=0}=h$. Let
$\left\{E_{t}\right\}$ be the corresponding energy functions. Following the proof of Proposition 1.2 we construct the one-parameter family of homogeneous symplectic vector fields $\left\{X_{t}\right\}$ on $\dot{T}^{*} S^{n}$. By differentiating the formula $X_{t} E_{t}=\dot{E}_{t}$ in the parameter t and putting $t=0$, we have

$$
\dot{X}_{0} E_{0}+X_{0} \dot{E}_{0}=\ddot{E}_{0}
$$

Since \dot{X}_{0} is homogeneous, it follows that $\dot{X}_{0}=X_{f}, f$ being $\alpha\left(\dot{X}_{0}\right)$. Thus

$$
\dot{X}_{0} E_{0}=-X_{E_{0}} f,
$$

which implies $G\left(\dot{X}_{0} E_{0}\right)=0$. Since $\dot{E}_{0}=-\frac{1}{2} h^{\sharp}$ and $X_{0}=-\frac{1}{2} X(h)$ by the construction, we have

$$
G\left(X(h) h^{\sharp}\right)=4 G\left(\ddot{E}_{0}\right) \in G\left(\mathscr{A}^{2}\right) .
$$

Remark. In the case of S^{2} it is known that

$$
G\left(\mathscr{S}^{2}\right)=G\left(C^{\infty}\left(S^{2}\right) E_{0}\right)=\text { the image of } G
$$

(cf. [3] Appendix). Therefore Proposition 1.4 turns out to be trivial in this case.

Next we shall give more explicit expression of the second order condition in the case where symmetric 2 -forms are conformal to g_{0}. Let f be a function on S^{n}. Then it is known that $f g_{0}$ belongs to \mathscr{K}^{2} if and only if f is an odd function, i. e., $\tau^{*} f=-f, \tau$ being the antipodal map of S^{n} (cf. [1] p. 123).

Let $\iota_{0}: S^{n} \rightarrow \boldsymbol{R}^{n+1}$ be the canonical embedding. Then we can embed $T^{*} S^{n}$ into $\boldsymbol{R}^{2 n+2}=T \boldsymbol{R}^{n+1}$ by the map $\iota_{1}=\ell_{0 *}{ }^{\circ} \#$.

Let $x=\left(x_{1}, \cdots, x_{n+1}\right)$ be the canonical coordinate system of \boldsymbol{R}^{n+1} and $(x, \zeta)=\left(x_{1}, \cdots, x_{n+1}, \zeta_{1}, \cdots, \zeta_{n+1}\right)$ be that of $\boldsymbol{R}^{2 n+2}=T \boldsymbol{R}^{n+1}$. It is easy to see that

$$
\begin{aligned}
& \iota_{1}\left(T^{*} S^{n}\right)=\left\{(x, \zeta) \in \boldsymbol{R}^{2 n+2} \mid \sum_{i} x_{i}{ }^{2}=1, \sum_{i} x_{i} \zeta_{i}=0\right\}, \\
& \iota_{1}\left(S^{*} S^{n}\right)=\left\{(x, \zeta) \in \boldsymbol{R}^{2 n+2} \mid \sum_{i} x_{i}{ }^{2}=\sum_{i} \zeta_{i}{ }^{2}=1, \quad \sum_{i} x_{i} \zeta_{i}=0\right\} .
\end{aligned}
$$

We shall denote by c the restriction of c_{1} onto $S^{*} S^{n}$.
Define a one-parameter group of transformations $\left\{\tilde{\xi}_{t}\right\}$ of $\boldsymbol{R}^{2 n+2}$ by

$$
\tilde{\xi}_{t}(x, \zeta)=(x \cos t+\zeta \sin t,-x \sin t+\zeta \cos t)
$$

Let $\tilde{X}_{E_{0}}$ be its infinitesimal generator. Then

$$
\tilde{X}_{E_{0}}=\sum_{i}\left(\zeta_{i} \frac{\partial}{\partial x_{i}}-x_{i} \frac{\partial}{\partial \zeta_{i}}\right)
$$

Define a linear operator $\tilde{G}: C^{\infty}\left(\boldsymbol{R}^{2 n+2}\right) \rightarrow C^{\infty}\left(\boldsymbol{R}^{2 n+2}\right)$ by

$$
\tilde{G}(f)(x, \zeta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(\tilde{\xi}_{t}(x, \zeta)\right) d t
$$

It is easy to see that $\tilde{\xi}_{t}(\ell(\lambda))=\imath\left(\xi_{t}(\lambda)\right)$ for $\lambda \in S^{*} S^{n}$. Hence it follows that $\tilde{X}_{E_{0}}=\iota_{*} X_{E_{0}}$ on $\iota\left(S^{*} S^{n}\right)$, and $\iota^{*} \tilde{G}(f)=G\left(\iota^{*} f\right)$ for any function f defined on a neighborhood of $\iota\left(S^{*} S^{n}\right)$.

Let α_{0} be the 1 -form on $\boldsymbol{R}^{2 n+2}$ defined by $\alpha_{0}=\sum_{i} \zeta_{i} d x_{i}$. Then $d \alpha_{0}$ defines a symplectic structure on $\boldsymbol{R}^{2 n+2}$. It is easy to see that $\iota_{1} * \alpha_{0}=\alpha$. To each function u on an open subset U of $\boldsymbol{R}^{2 n+2}$ we assign a symplectic vector field Y_{u} on U by

$$
i_{Y_{u}} d \alpha_{0}=-d u
$$

Let f be a function defined on a neighborhood U of ${ }_{c_{0}}\left(S^{n}\right)$ in \boldsymbol{R}^{n+1}. Put $\tilde{f}(x, \zeta)=f\left(\frac{x}{|x|}\right)$. Then \tilde{f} is a function on $\left(\boldsymbol{R}^{n+1}-\{0\}\right) \times \boldsymbol{R}^{n+1}$.

Lemma 1.5. $\quad \iota_{1} X_{\iota_{1} * \tilde{J}}=Y_{\tilde{f}}$ on $\iota_{1}\left(T^{*} S^{n}\right)$.
Proof. Since $\iota_{1} * d \alpha_{0}=d \alpha$, we only need to verify that $Y_{\tilde{f}}$ is tangent to $\iota_{1}\left(T^{*} S^{n}\right)$ at each point of $\iota_{1}\left(T^{*} S^{n}\right)$. We have

$$
\begin{aligned}
Y_{\tilde{f}} & =-\sum_{i} \frac{\partial \tilde{f}}{\partial x_{i}} \frac{\partial}{\partial \zeta_{i}} \\
& =-\sum_{i j} \frac{\partial f}{\partial x_{j}}\left(\delta_{i j}-x_{i} x_{j}\right) \frac{\partial}{\partial \zeta_{i}}
\end{aligned}
$$

at $(x, \zeta) \in \ell_{1}\left(T^{*} S^{n}\right)$. Thus we have

$$
Y_{\tilde{f}}\left(\sum_{i} x_{i}{ }^{2}\right)=Y_{\tilde{f}}\left(\sum_{i} x_{i} \zeta_{i}\right)=0
$$

on $\iota_{1}\left(T^{*} S^{n}\right)$, which implies that $Y_{\tilde{f}}$ is tangent to $\iota_{1}\left(T^{*} S^{n}\right)$.
Define a bilinear map $F: C^{\infty}\left(\boldsymbol{R}^{n+1}\right) \times C^{\infty}\left(\boldsymbol{R}^{n+1}\right) \rightarrow C^{\infty}\left(\boldsymbol{R}^{2 n+2}\right)$ by

$$
\begin{gathered}
F(f, h)(x, \zeta)=\sum_{i, j=1}^{n+1}\left(\delta_{i j}-x_{i} x_{j}-\zeta_{i} \zeta_{j}\right) \frac{\partial f}{\partial x_{i}}(x) \int_{0}^{\pi} \frac{\partial h}{\partial x_{j}} \\
(x \cos t+\zeta \sin t) \sin t d t, f, h \in C^{\infty}\left(\boldsymbol{R}^{n+1}\right)
\end{gathered}
$$

Let f and h be odd functions on \boldsymbol{R}^{n+1}, i. e., $f(-x)=-f(x), h(-x)=$ $-h(x)$. Then $\left(\varepsilon_{0} * f\right) g_{0}$ and $\left(\varepsilon_{0} * h\right) g_{0}$ belong to \mathscr{K}^{2}, and we have

Proposition 1.6. $K\left(\left(\iota_{0} * f\right) g_{0},\left(\iota_{0}^{*} h\right) g_{0}\right) \in G\left(\mathscr{L}^{2}\right)$ if and only if $G_{\iota}{ }^{*} F$ $(f, h) \in G\left(\mathscr{\mathscr { H }}^{2}\right)$.

Proof. For simplicity's sake we put $\hat{f}=\left(\iota_{0} * f\right) g_{0}$ and $\hat{h} \doteq\left(\iota_{0} * h\right) \dot{g}$. Define a function H on $\left(\boldsymbol{R}^{n+1}-\{0\}\right) \times\left(\boldsymbol{R}^{n+1}-\{0\}\right)$ by

$$
H(x, \zeta)=\frac{1}{2}|x||\zeta| \int_{0}^{\pi} h\left(\frac{x}{|x|} \cos t+\frac{\zeta}{|\zeta|} \sin t\right) d t
$$

Then the function $\iota_{1} * H$ on $\dot{T}^{*} S^{n}$ is positively homogeneous of degree one, and satisfies

$$
\left(X_{E_{0} \iota_{1}} * H\right)(\lambda)=-\left(\varepsilon_{0} * h\right)(\pi(\lambda)), \quad \lambda \in S^{*} S^{n}
$$

This shows that $X_{E_{0} \iota_{1}} * H=-\hat{h}^{\#}$ on $\stackrel{\circ}{T}^{*} S^{n}$. Moreover, since $\iota_{1} * H$ is odd with respect to τ^{*}, the differential of the antipodal map, it follows that $G\left(\iota_{1} * H\right)=0$. Thus we have

$$
X(\hat{h})=X_{\iota_{1}^{*} H}
$$

Then

$$
\begin{aligned}
X(\hat{h}) \hat{f}^{\sharp} & =X_{\iota_{1} * H}\left(2\left(\iota_{0} * f\right) E_{0}\right) \\
& =2\left(X_{\iota_{1} * H \iota_{0}} * f\right) E_{0}+4\left(\iota_{0} * f\right)\left(\iota_{0} * h\right) E_{0}
\end{aligned}
$$

Since $X_{c_{1} * H^{\ell_{0}}} * f=-X_{c_{0} * f_{1} \ell_{1}} * H=-\iota_{1} *\left(Y_{f} H\right)$ by Lemma 1.5, we see that the condition $K(\hat{f}, \hat{h}) \in G\left(\mathscr{\mathscr { A }}^{2}\right)$ is equivalent to the condition $G_{\iota} *\left(Y_{\tilde{f}} H\right) \in G\left(\mathscr{A}^{2}\right)$. An explicit claculation shows that

$$
Y_{\tilde{f}} H=-\frac{1}{2} F(f, h)-\frac{1}{2} \tilde{X}_{E_{0}}\left(f(x) \int_{0}^{\pi} h(x \cos t+\zeta \sin t) d t\right)-f h
$$

on $\iota\left(S^{*} S^{n}\right)$, which proves the proposition.
Proposition 1.7. Let f and h be odd functions on \boldsymbol{R}^{n+1}. Then

$$
\tilde{G} F(f, h)=\tilde{G} F(h, f)
$$

Proof. We have

$$
\tilde{G} F(f, h)=\sum_{i, j}\left(\delta_{i j}-x_{i} x_{j}-\zeta_{i} \zeta_{j}\right) \times u_{i j}
$$

where

$$
u_{i j}=\int_{0}^{2 \pi} \frac{\partial f}{\partial x_{i}}(x \cos r+\zeta \sin r) \int_{0}^{\pi} \frac{\partial h}{\partial x_{j}}(x \cos (t+r)+\zeta \sin (t+r)) \sin t d t d r
$$

Then it is easy to see that

$$
u_{i j}=\int_{0}^{2 \pi} \frac{\partial h}{\partial x_{j}}(x \cos r+\zeta \sin r) \int_{0}^{\pi} \frac{\partial f}{\partial x_{i}}(x \cos (t+r)+\zeta \sin (t+r)) \sin t d t d r,
$$

which proves the proposition.

§ 2. The laplacian on $\boldsymbol{C}^{\infty}\left(\boldsymbol{S}^{*} \boldsymbol{S}^{n}\right)$

We first define a riemannian metric on $S^{*} S^{n}$. The riemannian metric g_{0} on S^{n} induces the horizontal subspace H_{v} of $T_{v} T S^{n}$ at each $v \in T S^{n}$. Let V_{v}^{\prime} be the vertical subspace of $T_{v} T S^{n}$. Then we have the decomposition $T_{v} T S^{n}=V_{v}+H_{v}$ (direct sum). Let $\pi: T S^{n} \rightarrow S^{n}$ be the projection and $\pi(v)=$ x. Define a riemannian metric \tilde{g}_{1} on $T S^{n}$ by the conditions:
(i) The canonical identification $V_{v} \rightarrow T_{x} S^{n}$ is an isometry;
(ii) $\pi_{*} ; H_{v} \rightarrow T_{x} S^{n}$ is an isometry;
(iii) V_{v} and H_{v} are orthogonal to each other.

Let g_{1} be the riemannian metric on the unit tangent bundle $S S^{n}$ which is the pull back of \tilde{g}_{1} by the inclusion $S S^{n} \rightarrow T S^{n}$. Then the riemannian manifold ($S S^{n}, g_{1}$) has the following properties (cf. [1] Chapter 1, K) :
(a) Each fibre $S_{x} S^{n}$ is totally geodesic;
(b) The parallel translation of a unit vector along a geodesic of $\left(S^{n}, g_{0}\right)$ is a geodesic.

Now we define a riemannian metric on $S^{*} S^{n}$ in such a way that \#: $S^{*} S^{n} \rightarrow S S^{n}$ is an isometry. We shall also denote this metric by g_{1}.

Let Δ be the laplacian defined by the riemannian metric g_{1} which operates on $C^{\infty}\left(S^{*} S^{n}\right)$. We need the explicit expression of Δ in terms of the euclidian coordinates. Let $\iota: S^{*} S^{n} \rightarrow \boldsymbol{R}^{2 n+2}=\{(x, \zeta)\}$ be the embedding defined in $\S 1$.

Lemma 2.1. Let $f(x, \zeta)$ be a function defined on a neighborhood of $\iota\left(S^{*} S^{n}\right)$. Then

$$
\begin{aligned}
\Delta\left(\iota^{*} f\right) & =\iota^{*}\left\{(n-1)\left(\sum_{i} x_{i} \frac{\partial f}{\partial x_{i}}+\sum_{i} \zeta_{i} \frac{\partial f}{\partial \zeta_{i}}\right)+\left(\sum_{i} x_{i} \frac{\partial}{\partial x_{i}}\right)^{2} f+\left(\sum_{i} \zeta_{i} \frac{\partial}{\partial \zeta_{i}}\right)^{2} f\right. \\
& \left.+2 \sum_{j, k} x_{j} \zeta_{k} \frac{\partial^{2} f}{\partial \zeta_{j} \partial x_{k}}-\sum_{i} \frac{\partial^{2} f}{\partial x_{i}^{2}}-\sum_{i} \frac{\partial^{2} f}{\partial \zeta_{i}^{2}}\right\} .
\end{aligned}
$$

Proof. We identify $S^{*} S^{n}$ with $\iota\left(S^{*} S^{n}\right)$. Fix $(x, \zeta) \in S^{*} S^{n}$ and choose vectors e_{1}, \cdots, e_{n-1} in \boldsymbol{R}^{n+1} such that ($x, \zeta, e_{1}, \cdots, e_{n-1}$) is an orthonormal basis of \boldsymbol{R}^{n+1}. Consider the following curves on $S^{*} S^{n}$ starting at (x, ζ);

$$
\begin{array}{lc}
\gamma_{i}(t)=\left(x, \zeta \cos t+e_{i} \sin t\right) & (1 \leqq i \leqq n-1) \\
\eta_{i}(t)=\left(x \cos t+e_{i} \sin t ; \zeta\right) & (1 \leqq i \leqq n-1) \\
\xi(t)=(x \cos t+\zeta \sin t,-x \sin t+\zeta \cos t)=\xi_{t}(x, \zeta)
\end{array}
$$

It is easily seen from the properties (a) and (b) that these curves are geodesics of $\left(S^{*} S^{n}, g_{1}\right)$. Moreover, the vectors $\dot{\gamma}_{i}(0), \dot{\eta}_{i}(0)(1 \leqq i \leqq n-1)$, and $\dot{\xi}(0)$ form an orthonormal basis of $T_{(x, 5)} S^{*} S^{n}$. Thus we have

$$
\begin{aligned}
& \Delta\left(e^{*} f\right)(x, \zeta) \\
& \quad=-\left.\sum_{i=1}^{n-1} \frac{d^{2}}{d t^{2}} f\left(\gamma_{i}(t)\right)\right|_{t=0}-\left.\sum_{i=1}^{n-1} \frac{d^{2}}{d t^{2}} f\left(\eta_{i}(t)\right)\right|_{t=0}-\left.\frac{d^{2}}{d t^{2}} f(\xi(t))\right|_{t=0}
\end{aligned}
$$

from which the lemma immediately follows.
Lemma 2.2. $\quad X_{E_{0}}$ is an infinitesimal isometry of $\left(S^{*} S^{n}, g_{1}\right)$.
For the proof we refer to Besse [1] Proposition 1.104.
The following corollary is an immediate consequence of Lemma 2.2.
Corollary 2.3. The operators $\xi_{t}^{*}, X_{E_{0}}$, and G on $C^{\infty}\left(S^{*} S^{n}\right)$ commute with 4 .

The riemannian metric g_{1} naturally induces an inner product on $C^{\infty}\left(S^{*} S^{n}\right)$;

$$
(f, h)=\int_{S^{*} S^{n}} f h d \mu_{1}, \quad f, h \in C^{\infty}\left(S^{*} S^{n}\right)
$$

where $d \mu_{1}$ is the canonical measure defined by g_{1}.
Lemma 2.4. The operator G is self-adjoint with respect to the inner product (,).

Proof. Let Geod S^{n} be the quotient manifold of $S^{*} S^{n}$ by the S^{1}-action of $\left\{\xi_{t}\right\}_{t \in R}$. Since $\left\{\xi_{t}\right\}$ are isometries, we can take a riemannian metric on $G e o d S^{n}$ such that the projection $S^{*} S^{n} \rightarrow G e o d S^{n}$ is a riemannian submersion. Let $d \rho$ be the measure on $G e o d S^{n}$ defined by this riemannian structure. Then we have

$$
(f, h)=2 \pi \int_{\theta e o d S^{n}} G(f h) d \rho, \quad f, h \in C^{\infty}\left(S^{*} S^{n}\right)
$$

where the function $G(f h)$ should be considered as a function on Geod S^{n}. Since $G(G(f) h)=G(G(f) G(h))=G(f G(h))$, it follows that

$$
(G(f), h)=(G(f), G(h))=(f, G(h))
$$

Let $\boldsymbol{R}[x, \zeta]$ be the polynomial algebra in the variables $(x, \zeta)=\left(x_{1}, \cdots\right.$, $\left.x_{n+1}, \zeta_{1}, \cdots, \zeta_{n+1}\right)$ with real coefficients. We set

$$
P=\iota^{*} \boldsymbol{R}[x, \zeta] \subset C^{\infty}\left(S^{*} S^{n}\right)
$$

Let $\boldsymbol{R}[x, \zeta]_{k}$ be the subspace of $\boldsymbol{R}[x, \zeta]$ spanned by homogeneous poly-
nomials of degree k. We say that a monomial $f(x, \zeta)$ is of bidegree (i, j) if $f(x, \zeta)$ is of degree i in x and of degree j in ζ. Let $\boldsymbol{R}[x, \zeta]_{i, j}$ be the vector space spanned by monomials of bidegree (i, j). We set

$$
P_{k}=\iota^{*} \boldsymbol{R}[x, \zeta]_{k}, \quad P_{i, j}=\iota^{*} \boldsymbol{R}[x, \zeta]_{i, j},
$$

and $P^{j}=\sum_{i \geq 0} P_{i, j}$. It is easy to see that $P_{k} \subset P_{k+2}, P=\sum_{k \geq 0} P_{k}$, and $P_{k}=\sum_{i+j=k} P_{i, j}$.
Let Q_{k} be the orthogonal complement of P_{k-2} in P_{k} with respect to the inner product (,); $P_{k}=P_{k-2}+Q_{k}$ (direct sum).

Lemma 2.5. The operators Δ and G preserves the vector spaces P_{k} and Q_{k}.

Proof. By Lemma 2.1 we immediately have $\Delta\left(P_{k}\right) \subset P_{k}$. Since G oı* $=$ $\iota^{*} \circ \mathcal{G}^{*}$ and G preserves $\boldsymbol{R}[x, \zeta]_{k}$, it follows that $G\left(P_{k}\right) \subset P_{k}$. Since P_{k-2} is also preserved by these operators, so is its orthogonal complement Q_{k}.

The following corollary is an immediate consequence of Lemma 2.5 and Corollary 2.3.

Corollary 2.6.. (i) $G\left(P_{k}\right)=G\left(P_{k-2}\right)+G\left(Q_{k}\right)$ (orthogonal direct sum).
(ii) The laplacian Δ preserves the vector spaces $G\left(P_{k}\right)$ and $G\left(Q_{k}\right)$.

In general, for a function h on $S^{*} S^{n}$ we denote by $h_{G\left(Q_{k}\right)}$ the $G\left(Q_{k}\right)$ component of h. Let V be a subspace of $C^{\infty}\left(S^{*} S^{n}\right)$ which is invariant by the laplacian Δ. Then we denote by $\operatorname{Spec}(\Delta, V)$ the set of spectra of Δ on V.

Put $k!!={ }_{\sum_{p=0}^{[(k-1) / 2]}}(k-2 p)$ for a positive integer k, and put $0!!=(-1)!!=1$. Define real numbers $a_{\beta}^{\alpha}(\alpha \geqq 0, \beta \geqq 0)$ by

$$
\alpha_{\beta}^{\alpha}=(-1)^{\beta} \frac{(2 \alpha-1)!!}{(2 \beta)!!(2 \alpha+2 \beta-1)!!} .
$$

Proposition 2.7. (i) $G\left(P_{2 m+1}\right)=G\left(Q_{2 m+1}\right)=0(m \geqq 0)$.
(ii) $\operatorname{Spec}\left(4, G\left(Q_{2 m}\right)\right) \subset\left\{N_{i, j} \mid i+j=2 m, i \geqq j \geqq 0\right\}$, where $N_{i, j}=i(i+n-1)+$ $j(j+n-1)-2 j$.

Proof. (i) Since $\tilde{\xi}_{\pi}(x, \zeta)=(-x,-\zeta)$, it follows that $\tilde{\xi}_{\pi}^{*}=(-1)$. identity on $\boldsymbol{R}[x, \zeta]_{2 m+1}$. Thus $\xi_{\pi}^{*}=(-1)$. identity on $P_{2 m+1}$. Since $G \circ \xi_{\pi}^{*}=G$, we have $G\left(P_{2 m+1}\right)=0$.
(iii) Since $\tilde{\xi}_{\pi / 2}(x, \zeta)=(\zeta,-x)$, we have $\tilde{\xi}_{\pi / 2} * \boldsymbol{R}[x, \zeta]_{i, j}=\boldsymbol{R}[x, \zeta]_{j, i}$. This shows that $G\left(P_{i, j}\right)=G\left(P_{j, i}\right)$, and we have

$$
G\left(P_{2 m}\right)=\sum_{\substack{i j=2 m \\ i \geq j}} G\left(P_{i, j}\right) .
$$

Let $f \in \boldsymbol{R}[x, \zeta]_{i, j} \quad(i \geqq j, i+j=2 m)$. By Lemma 2.1 we see that

$$
\begin{aligned}
\Delta G_{\iota} * f & =G \iota^{*}\{(i(i+n-1)+j(j+n-1)) f \\
& \left.+2 \sum_{k, l} x_{k} \zeta_{l} \frac{\partial^{2} f}{\partial \zeta_{k} \partial x_{l}}-\sum_{k} \frac{\partial^{2} f}{\partial x_{k}^{2}}-\sum_{k} \frac{\partial^{2} f}{\partial \zeta_{k}^{2}}\right\} .
\end{aligned}
$$

Since

$$
\sum_{k, l} x_{k} \zeta_{l} \frac{\partial^{2} f}{\partial \zeta_{k} \partial x_{l}}=\tilde{X}_{E_{0}}\left(\sum_{k} x_{k} \frac{\partial f}{\partial \zeta_{k}}\right)-\sum_{k} \zeta_{k} \frac{\partial f}{\partial \zeta_{k}}+\sum_{k, l} x_{k} x_{l} \frac{\partial^{2} f}{\partial \zeta_{k} \partial \zeta_{l}}
$$

we can rewrite it as

$$
\Delta G \iota^{*} f=N_{i, j} G \iota^{*} f+2 G \iota^{*}\left(\left(\sum_{k} x_{k} \frac{\partial}{\partial \zeta_{k}}\right)^{2} f\right)-G \iota^{*}\left(\sum_{k} \frac{\partial^{2} f}{\partial x_{k}^{2}}+\sum_{k} \frac{\partial^{2} f}{\partial \zeta_{k}^{2}}\right) .
$$

By applying this formula to $\left(\sum_{k} x_{k} \frac{\partial}{\partial \zeta_{k}}\right)^{2 p} f \in \boldsymbol{R}[x, \zeta]_{i+2 p, j-2 p}(0 \leqq p \leqq[j / 2])$, we also have

$$
\begin{aligned}
& \Delta G_{\iota} *\left(\left(\sum_{k} x_{k} \frac{\partial}{\partial \zeta_{k}}\right)^{2 p} f\right)=N_{i+2 p, j-2 p} G_{\iota} *\left(\left(\sum_{k} x_{k} \frac{\partial}{\partial \zeta_{k}}\right)^{2 p} f\right) \\
& \quad+2 G_{\iota} *\left(\left(\sum_{k} x_{k} \frac{\partial}{\partial \zeta_{k}}\right)^{2 p+2} f\right)-G_{\iota} *\left(\sum_{l}\left(\frac{\partial^{2}}{\partial x_{l}{ }^{2}}+\frac{\partial^{2}}{\partial \zeta_{l}{ }^{2}}\right)\left(\sum_{k} x_{k} \frac{\partial}{\partial \zeta_{k}}\right)^{2 p} f\right)
\end{aligned}
$$

Put

$$
f_{p}=\sum_{q=p}^{[j / 2]} a_{q-p}^{m-j+1+2 p}\left(\sum_{k} x_{k} \frac{\partial}{\partial \zeta_{k}}\right)^{2 q} f \quad(0 \leqq p \leqq[j / 2]) .
$$

Then the above formulas imply that

$$
\Delta G_{\iota} * f_{p}=N_{i+2 p, j-2 p} G \iota^{*} f_{p}-G \iota *\left(\sum_{\iota}\left(\frac{\partial^{2}}{\partial x_{l}^{2}}+\frac{\partial^{2}}{\partial \zeta_{l}^{2}}\right) f_{p}\right) .
$$

By taking the $G\left(Q_{2 m}\right)$-components of both sides, we obtain

$$
\Delta\left(G \iota * f_{p}\right)_{G\left(Q_{2 m}\right)}=N_{i+2 p, j-2 p}\left(G \iota * f_{p}\right)_{G\left(Q_{2 m}\right)} \quad(0 \leqq p \leqq[j / 2])
$$

This shows that $\left(G_{\iota}{ }^{*} f_{p}\right)_{G\left(Q_{2 m}\right)}$ is an eigenfunction of Δ corresponding to the eigenvalue $N_{i+2 p, j-2 p}$ if it does not vanish.

Put $c_{0}^{i, j}=1$, and define real numbers $c_{q}^{i, j}(1 \leqq q \leqq[j / 2])$ inductively by

$$
c_{q}^{i, j}=-\sum_{p=0}^{q-1} c_{p}^{i, j} a_{q-p}^{m-j+1+2 p} .
$$

Then it follows that

$$
\left(G_{\iota} * f\right)_{G\left(Q_{2 m}\right)}=\sum_{p=0}^{[j / 2]} c_{p}^{i, j}\left(G \iota * f_{p}\right)_{G\left(Q_{2 m}\right)},
$$

which proves the proposition.

We set

$$
Q_{i, j}=\left\{f \in G\left(Q_{2 m}\right) \mid \Delta f=N_{i, j} f\right\}
$$

for each (i, j) such that $i \geqq j \geqq 0$ and $i+j=2 m$. Since

$$
N_{m, m}<N_{m+1, m-1}<\cdots<N_{2 m, 0},
$$

the subspaces $Q_{i, j}(i+j=2 m, i \geqq j \geqq 0)$ of $G\left(Q_{2 m}\right)$ are mutually orthogonal. We note that some $Q_{i, j}$ may be $\{0\}$.

Set

$$
I_{m}=\{(i, j) \in \boldsymbol{Z} \times \boldsymbol{Z} \mid i \geqq j \geqq 0, i+j=2 m\},
$$

and $I=\bigcup_{m \geq 0} I_{m}$. Let $c_{q}^{i, j}$ be the constants defined in the proof of Proposition 2.7. For $h \in C^{\infty}\left(S^{*} S^{n}\right)$ we denote by $h_{Q_{i, j}}$ the $Q_{i, j}$-component of h. The following corollary is immediately obtained from the proof of Proposition 2.7.

Corollary 2.8. (i) $G\left(Q_{2 m}\right)=\sum_{\left(i, j \in \epsilon_{m}\right.} Q_{i, j}, G(P)=\sum_{(i, j) \in I} Q_{i, j}$ (orthogonal direct sum).
(ii) For $f \in \boldsymbol{R}[x, \zeta]_{i, j}\left((i, j) \in I_{m}\right)$

$$
\begin{aligned}
& \left(G \epsilon^{*} f\right)_{Q_{i+2 p, j-2 p}}=c_{p}^{i, j} G c^{*}\left(\sum_{q=p}^{[j / 2]} a_{q-p}^{m-j+1+2 p}\left(\sum_{k} x_{k} \frac{\partial}{\partial \zeta_{k}}\right)^{2 q} f\right)_{G\left(Q_{2 m}\right)} \\
& \quad(0 \leqq p \leqq[j / 2]) .
\end{aligned}
$$

Remark. It possively occurs that $N_{i, j}=N_{k, l}$ with $i+j \neq k+l$. For example, $N_{2 m-2,4}=N_{2 m, 0}$ if $n=4 m-5$. Thus the decomposition $G(P)=\sum_{(i, j) \in I} Q_{i, j}$ is in general finer than the simple eigenspace decomposition.

We define a partial ordering on the set of indices I as follows: $(k, l) \leqq$ (i, j) if $k+l \leqq i+j, l \leqq j$, and $j-l$ is even.

Proposition 2.9. (i) $G\left(P_{i, j}\right) \subset \subset_{(k, l) \leqslant(i, j)} Q_{k, l},(i, j) \in I$.
(ii) $Q_{i, j} \subset_{(k, l)} \sum_{i, j)} G\left(P_{k, l}\right),(i, j) \in I$.
(iii) $G\left(P^{j}\right)=\sum Q_{k, l}$, where the sum is taken over all $(k, l) \in I$ such that $l \leqq j$ and $j-l$ is even.

Proof. We first prove (i) and (iii) at the same time by induction on the integer $i+j$. It is clear that $G\left(P_{0,0}\right)=Q_{0,0}=\{$ constant functions $\}$. Fix an integer $m>0$ and assume that (i) and (ii) hold for every $(i, j) \in I$ with $i+j<2 m$.

Take $(i, j) \in I_{m}$ and $f \in \boldsymbol{R}[x, \zeta]_{i, j}$. By the proof of Proposition 2.7 we can write

$$
f=\sum_{p=0}^{[j / 2]} c_{p}^{i, j} f_{p},
$$

where $f_{p}=\sum_{q=p}^{[j / 2]} a_{q-p}^{m-j+1+2 p}\left(\sum_{k} x_{k} \frac{\partial}{\partial \zeta_{k}}\right)^{2 q} f . \quad$ Each f_{p} satisfies

$$
\Delta G \iota^{*} f_{p}=N_{i+2 p, j-2 p} G \iota^{*} f_{p}-G \iota^{*}\left(\sum_{k}\left(\frac{\partial^{2}}{\partial x_{k}^{2}}+\frac{\partial^{2}}{\partial \zeta_{k}^{2}}\right) f_{p}\right)
$$

and

$$
G \iota^{*}\left(\sum_{k}\left(\frac{\partial^{2}}{\partial x_{k}^{2}}+\frac{\partial^{2}}{\partial \zeta_{k}^{2}}\right) f_{p}\right) \in \sum_{q=p}^{[j / 2]} G\left(P_{i+2 q-2, j,-2 q}\right) .
$$

If $i>j$, then $(i-2, j) \in I$. Since $(i+2 q-2, j-2 q) \leqq(i-2, j)$, it follows that

$$
G\left(P_{i+2 q-2, j-2 q}\right) \subset \sum_{(k, l) \leqq} \sum_{(i-2, j)} Q_{k, l} \quad(0 \leqq q \leqq[j / 2]):
$$

by the assumption. If $i=j$, then $G\left(P_{i-2, j}\right)=G\left(P_{i, i-2}\right)$ and $(i, i-2) \in I$. Since $(i+2 q-2, j-2 q) \leqq(i, i-2)(1 \leqq q \leqq[j / 2])$, we have in this case

$$
G\left(P_{i+2 q-2, j-2 q}\right) \subset \sum_{(k, l) \leqq(i, i-2)} Q_{k, l} \quad(0 \leqq q \leqq[j / 2])
$$

Hence we see that $\Delta G_{\iota}{ }^{*} f_{p}-N_{i+2 p, j-2 p} G \iota^{*} f_{p}$ lies in $\sum_{(k, l) \leq(i-2, j)} Q_{k, l}$ if $i>j$, and in $\sum_{(k, l) \leqq(i, i-2)} Q_{k, l}$ if $i=j$.

Let

$$
\Delta G \iota^{*} f_{p}-N_{i+2 p, j-2 p} G \iota^{*} f_{p}=\sum_{(k, l)} f_{p}^{k, l} \quad\left(f_{p}^{k, l} \in Q_{k, l}\right)
$$

be the corresponding decomposition. We notice here that $N_{k, l} \neq N_{i+2 p, j-2 p}$ if $f_{p}^{k, l} \neq 0$, because

$$
\begin{gathered}
N_{k, l}\left(G \iota^{*} f_{p}, f_{p}^{k, l}\right)=\left(G \iota^{*} f_{p}, \Delta f_{p}^{k, l}\right)=\left(\Delta G_{\iota} * f_{p}, f_{p}^{k, l}\right) \\
=N_{i+2 p, j-2 p}\left(G \iota * f_{p}, f_{p}^{k, l}\right)+\left(f_{p}^{k, l}, f_{p}^{k, l}\right)
\end{gathered}
$$

Then it is easily seen that the function

$$
h_{p}=G \iota^{*} f_{p}+\sum_{(k, l)}\left(N_{i+2 p, j-2 p}-N_{k, l}\right)^{-1} f_{p}^{k, l}
$$

is an eigenfunction corresponding to the eigenvalue $N_{i+2 p, j-2 p}$ if it does not vanish.

We must show that $h_{p} \in \sum_{(k, l) \leqq(i, j)} Q_{k, l}$. Since $h_{p} \in G\left(P_{2 m}\right)$, we have the decomposition

$$
h_{p}=\sum_{\substack{(r, s \in I \\ r+s \leq 2 m}} h_{p}^{r, s}, \quad h_{p}^{r, s} \in Q_{r, s}
$$

The eigenvalue condition implies that $h_{p}^{r, s}=0$ if $N_{r, s} \neq N_{i+2 p, j-2 p}$. If $r+s=2 m$ and $N_{r, s}=N_{i+2 p, j-2 p}$, then we have $(r, s)=(i+2 p, j-2 p)$. Suppose that $r+s<$
$2 m$ and $N_{r, s}=N_{i+2 p, j-2 p}$. Since $N_{i+2 p, j-2 p}=N_{r, s}<N_{2 m-s, s}$ and $N_{2 m-s, s}$ is monotonously decreasing in s, it follows that $s<j-2 p$. Let σ be the isometry of $\left(S^{*} S^{n}, g_{1}\right)$ defined by $\sigma(x, \zeta)=(x,-\zeta)$. Since $\sigma \circ \xi_{t}=\xi_{-t} \circ \sigma$, it follows that $\sigma^{*} \circ G=G \circ \sigma^{*}$. This implies $\sigma^{*}=(-1)^{s} \cdot$ identity on $G\left(P_{r, s}\right)$. Hence by the induction assumption we have $\sigma^{*}=(-1)^{s} \cdot$ identity on $Q_{r, s}$ if $r+s<2 m$. Thus we have $\sigma^{*} h_{p}=(-1)^{j} h_{p}$ by the definition of h_{p}. Since $\left(\sigma^{*} h_{p}, \sigma^{*} h_{p}^{r, s}\right)=\left(h_{p}, h_{p}^{r, s}\right)$, it follows that $h_{p}^{r, s}=0$ if $r+s<2 m$ and $j-s$ is odd. Hence we have $h_{p} \in$ $\sum_{(k, l) \leqq(i, j)} Q_{k, l}$, and therefore

$$
G \iota^{*} f_{p}=h_{p}-\sum_{(k, l)}\left(N_{i+2 p, j-2 p}-N_{k, l}\right)^{-1} f_{p}^{k, l} \in \sum_{(k, l) \leqslant(i, j)} Q_{k, l}
$$

Furthermore, considering the case $p=0$ we have

$$
\begin{aligned}
\left.\left(G_{c} * f_{0}\right)\right)_{i, j} & =h_{0}^{i, j} . \\
& =G_{c} * f_{0}-\sum_{(r, s) \neq(i, j)} h_{0}^{r, s}+\sum_{(k, l)}\left(N_{i, j}-N_{k, l}\right)^{-1} f_{0}^{k, l} .
\end{aligned}
$$

The second and the third term of the right-hand side belong to $\sum_{\substack{k, l \mid c(i, j, j \\ k+1 \\ k+2 m}} Q_{k, l}$, which is contained in $\sum_{(k, l) \leq(i, j)} G\left(P_{k, l}\right)$ by the induction assumption. Since the linear map $G\left(P_{i, j}\right) \rightarrow Q_{i, j}$ defined by $G_{\iota}{ }^{*} f \rightarrow\left(G_{\iota} * f_{0}\right)_{Q_{i, j}}$ is surjective, it follows that

$$
Q_{i, j} \subset \sum_{(k, l) \leqslant(i, j)} G\left(P_{k, l}\right) .
$$

Hence (i) and (iii) have been proved.
For (iii) we observe that $G\left(P^{j}\right)=\sum_{p \geq 0} G\left(P_{j+2 p, j}\right)$. Then (iii) immediately follows from (i) and (iii).

Let $\mathscr{H}^{k}(k \geqq 0)$ be the vector space of functions f on $S^{*} S^{n}$ such that $\left.f\right|_{S_{x}^{*} s^{n}}$ are the restrictions of homogeneous polynomials of degree k on $T_{x}^{*} S^{n}$ to $S_{x}^{*} S^{n}$ for all $x \in S^{n}$.

Proposition 2.10. $G\left(P^{k}\right)$ is C^{0}-dense, and hence L^{2}-dense, in $G\left(\mathscr{H}^{k}\right)$.
Proof. First remark that \mathscr{H}^{k} is generated by

$$
\left\{\iota^{*}\left(\zeta_{i_{1}} \cdots \zeta_{i_{k}}\right) \mid 1 \leqq i_{1} \leqq \cdots \leqq i_{k} \leqq n+1\right\}
$$

as a $C^{\infty}\left(S^{n}\right)$-module. By the Stone-Weierstrass approximation theorem (cf. [2] 7.3.1) we see that $\varepsilon_{0} * \boldsymbol{R}\left[x_{1}, \cdots, x_{n+1}\right]$ is dense in $C^{\infty}\left(S^{n}\right)$ in the C^{0}-topology. Hence P^{k} is C^{0}-dense in \mathscr{H}^{k}. Since the operator G is C^{0}-continuous, the proposition follows.

Remark. By applying the Stone-Weierstrass theorem we can also see that $G(P)$ is C^{0}-dense in $G\left(C^{\infty}\left(S^{*} S^{n}\right)\right)$. But this fact is not used in this paper.

§ 3. A result for homogeneous polynomials

In the rest of the paper we shall assume that n, the dimension of the sphere under consideration, is equal to or greater than 3 . The main purpose of this section is to prove

Proposition 3.1. Let $f \in \boldsymbol{R}\left[x_{1}, \cdots, x_{n+1}\right]_{2 j+1}(j \geqq 2)$, and suppose that $G_{c^{*}}{ }^{*} F(f, f) \in G\left(\mathscr{\mathscr { L }}^{2}\right)$. Then there are constants $a_{i}, b_{i} \in \boldsymbol{R}(1 \leqq i \leqq n+1)$ such that

$$
f \equiv\left(\sum_{i} a_{i} x_{i}\right)^{2 j}\left(\sum_{i} b_{i} x_{i}\right) \quad \bmod \left(\sum_{i} x_{i}^{2}\right) \boldsymbol{R}[x]_{2 j-1 .} .
$$

We first give another representation of $\tilde{G} F(f, h)$ defined in $\S 1$. Set

$$
\boldsymbol{R}[x]_{o d}=\sum_{k \geqslant 0} \boldsymbol{R}[x]_{2 k+1} .
$$

Lemma 3.2. Let $f \in \boldsymbol{R}[x]_{2 j+1}(j \geqq 0)$ and $h \in \boldsymbol{R}[x]_{o d}$. Then

$$
\begin{aligned}
& \tilde{G} F(f, h)=\tilde{G}\left(\sum_{i} \frac{\partial f}{\partial x_{i}}(x) \int_{0}^{\pi} \frac{\partial h}{\partial x_{i}}(x \cos t+\zeta \sin t) \sin t d t\right) \\
& \quad-(2 j+3) \tilde{G}\left(f(x) \int_{0}^{\pi} \sum_{i} \frac{\partial h}{\partial x_{i}}(x \cos t+\zeta \sin t) x_{i} \sin t d t\right) \\
& \quad+2 \tilde{G}(f(x) h(x)) .
\end{aligned}
$$

Proof. By the homogeneity of f we have

$$
\begin{aligned}
& \sum_{i, j} x_{i} x_{j} \frac{\partial f}{\partial x_{i}}(x) \int_{0}^{\pi} \frac{\partial h}{\partial x_{j}}(x \cos t+\zeta \sin t) \sin t d t \\
& \quad=(2 j+1) f(x) \int_{0}^{\pi} \sum_{j}^{\pi} \frac{\partial h}{\partial x_{j}}(x \cos t+\zeta \sin t) x_{j} \sin t d t
\end{aligned}
$$

Since $\sum_{i} \zeta_{i} \frac{\partial f}{\partial x_{i}}=\tilde{X}_{E_{c}} f$ and $\tilde{G} \circ \tilde{X}_{E_{0}}=0$, it follows that

$$
\begin{aligned}
& \tilde{G}\left(\sum_{i, j} \zeta_{i} \zeta_{j} \frac{\partial f}{\partial x_{i}}(x) \int_{0}^{\pi} \frac{\partial h}{\partial x_{j}}(x \cos t+\zeta \sin t) \sin t d t\right) \\
& \quad=-\tilde{G}\left(f(x) \int_{0}^{\pi} \sum_{j}^{\pi} \frac{d}{d t}\left\{\frac{\partial h}{\partial x_{j}}(x \cos t+\zeta \sin t)\right\} \zeta_{j} \sin t d t\right) \\
& \quad+\tilde{G}\left(f(x) \int_{0}^{\pi} \sum_{j} \cdot \frac{\partial h}{\partial x_{j}}(x \cos t+\zeta \sin t) x_{j} \sin t d t\right) .
\end{aligned}
$$

The first term of the right-hand side is

$$
\tilde{G}\left(f(x) \int_{0}^{\pi} \sum_{j} \frac{\partial h}{\partial x_{j}}(x \cos t+\zeta \sin t) \zeta_{j} \cos t d t\right)
$$

$$
\begin{aligned}
& =\tilde{G}\left(f(x) \int_{0}^{\pi} \sum_{j} \frac{\partial h}{\partial x_{j}}(x \cos t+\zeta \sin t) x_{j} \sin t d t\right) \\
& +\tilde{G}\left(f(x) \int_{0}^{\pi} \frac{d}{d t} h(x \cos t+\zeta \sin t) d t\right)
\end{aligned}
$$

The lemma easily follows from these formulas.
The following corollary is an immediate consequence of Lemma 3.2.
Corollary 3.3. Let $f \in \boldsymbol{R}[x]_{o d}$ and $h \in \boldsymbol{R}[x]_{1}+\boldsymbol{R}[x]_{s}$. Then

$$
G \iota^{*} F(f, h) \in G\left(\mathscr{\mathscr { M }}^{2}\right) .
$$

In particular, if $G \iota^{*} F(f, f) \in G\left(\mathscr{H}^{2}\right)$, then

$$
G_{\iota} * F(f+h, f+h) \in G\left(\mathscr{\mathscr { A }}^{2}\right) .
$$

Define bilinear maps $F_{l}: \boldsymbol{R}[x]_{2 i+1} \times \boldsymbol{R}[x]_{2 j+1} \rightarrow \boldsymbol{R}[x, \zeta]_{2 i+2 l+2,2 j-2 l}(0 \leqq l \leqq j)$ by

$$
F_{l}(f, h)=f(x)\left(\sum_{k} x_{k} \frac{\partial}{\partial \zeta_{k}}\right)^{2 l+1} h(\zeta), f \in \boldsymbol{R}[x]_{2 i+1}, h \in \boldsymbol{R}[x]_{2 j+1} .
$$

Put

$$
I_{i}^{j}=\int_{0}^{\pi}(\cos t)^{2 l}(\sin t)^{2 j+1-2 l} d t=\frac{2(2 l-1)!!(2 j-2 l)!!}{(2 j+1)!!} \quad(0 \leqq l \leqq j)
$$

Then we have

$$
\begin{aligned}
& f(x) \int_{0}^{\pi} \sum_{k} \frac{\partial h}{\partial x_{k}}(x \cos t+\zeta \sin t) x_{k} \sin t d t \\
& \quad=\sum_{l=0}^{j} \frac{1}{(2 l)!} I_{l}^{j} F_{l}(f, h) .
\end{aligned}
$$

We now assume $i \geqq j \geqq 0$. Define real constants $d_{l}^{i, j}(0 \leqq l \leqq j)$ inductively by $d_{0}^{i, j}=I_{0}^{j}$ and

$$
d_{l}^{i, j}=\frac{1}{(2 l)!} I_{l}^{j}-\sum_{p=0}^{l-1} d_{p}^{i, j} a_{l-p}^{i-j+2+2 p} \quad(l \geqq 1)
$$

Then we have

$$
\begin{gathered}
f(x) \int_{0}^{\pi} \sum_{k} \frac{\partial h}{\partial x_{k}}(x \cos t+\zeta \sin t) x_{k} \sin t d t \\
=\sum_{p=0}^{j} d_{p}^{i, j} \sum_{q=p}^{j} a_{q-p}^{i-j+2+2 p} F_{q}(f, h) .
\end{gathered}
$$

Put

$$
J_{\beta}^{\alpha}=(-1)^{\beta} a_{\beta}^{\alpha}=\frac{(2 \alpha-1)!!}{(2 \beta)!!(2 \alpha+2 \beta-1)!!} \quad(\alpha \geqq 0, \beta \geqq 0)
$$

Lemma 3.4. (i) $\sum_{p=0}^{\beta} a_{p}^{\alpha} J_{\beta-p}^{\alpha+\beta-1+p}=\delta_{\beta, 0}(\alpha \geqq 1, \beta \geqq 0)$.
(ii) $\quad d_{l}^{i, j}>0 \quad(0 \leqq l \leqq j \leqq i)$.

Proof. (i) In case $\beta=0$ the formula is obvious. Assume $\beta \geqq 1$, and consider the identity

$$
t^{2 \alpha+2 \beta-3}\left(1+t^{2}\right)^{\beta}=\sum_{p=0}^{\beta}\binom{\beta}{p} t^{2 \alpha+2 \beta+2 p-3} .
$$

By applying $\left(t^{-1} \frac{d}{d t}\right)^{\beta-1}$ to both sides and putting $t=\sqrt{-1}$, we have

$$
\sum_{p=0}^{\beta}(-1)^{p}\binom{\beta}{p} \frac{(2 \alpha+2 \beta+2 p-3)!!}{(2 \alpha+2 p-1)!!}=0 .
$$

This proves (i).
(ii) Since $\sum_{p=0}^{q} d_{p}^{i, j} a_{q-p}^{i-j+2+2 p}=\frac{1}{(2 q)!} I_{q}^{j}$, it follows that

$$
\begin{aligned}
& \sum_{q=0}^{l} \frac{1}{(2 q)!} I_{q}^{j} J_{l-q}^{i-j+1+l+q} \\
& \quad=\sum_{p=0}^{l} d_{p}^{i, j} \sum_{q=p}^{l} a_{q-p}^{i-j+2+2 p} J_{l-q}^{i-j+1+l+q} \\
& \quad=\sum_{p=0}^{l} d_{p}^{i, j} \delta_{l, p}=d_{l}^{i, j}
\end{aligned}
$$

Hence we have the lemma.
Proposition 3.5. Let $f \in \boldsymbol{R}[x]_{2 i+1}$ and $h \in \boldsymbol{R}[x]_{2 j+1}(i \geqq j \geqq 2)$. Suppose that $G \iota^{*} F(f, h) \in G\left(\mathscr{L}^{2}\right)$. Then

$$
\left(G_{\iota} * F_{p}(f, h)\right)_{Q_{2 i+2 p+2,2 j-2 p}}=0
$$

for all p such that $0 \leqq p \leqq i-2$.
Proof. We have

$$
G\left(P^{2}\right)=\sum_{r \geqq 0} Q_{2 r, 0}+\sum_{r \geqq 1} Q_{2 r, 2}
$$

by Proposition 2.9 (iii). Since $G\left(P^{2}\right)$ is L^{2}-dense in $G\left(\mathscr{A}^{2}\right)$, it thus follows that

$$
\left(G_{\iota} * F(f, h)\right)_{\mathbf{Q}_{2 i+2 p+2,2 j-2 p}}=0 \quad(0 \leqq p \leqq j-2)
$$

Now observe the formula stated in Lemma 3.2. Since $G_{c}{ }^{*}(f(x) \boldsymbol{h}(x)) \in$ $G\left(P^{0}\right)=\sum_{r \geq 0} Q_{2 r, 0}$ and

$$
G_{\iota} *\left(\sum_{k} \frac{\partial f}{\partial x_{k}}(x) \int_{0}^{\pi} \frac{\partial h}{\partial x_{k}}(x \cos t+\zeta \sin t) \sin t d t\right) \in G\left(P_{2 i+2 j}\right),
$$

it follows that

$$
\begin{aligned}
& \left(G \iota^{*} F(f, h)\right)_{Q_{2 i+2 p+2,2 j-2 p}} \\
& \quad=-(2 i+3)\left(G \iota^{*}\left(f(x) \int_{0}^{\pi} \sum_{k} \frac{\partial h}{\partial x_{k}}(x \cos t+\zeta \sin t) x_{k} \sin t d t\right)\right)_{Q_{2 i+2 p+2,2 j-2 p}}
\end{aligned}
$$

We have seen above that

$$
\begin{gathered}
G_{\iota} *\left(f(x) \int_{0}^{\pi} \sum_{k} \frac{\partial h}{\partial x_{k}}(x \cos t+\zeta \sin t) x_{k} \sin t d t\right) \\
=\sum_{r=0}^{j} d_{r}^{i, j} G_{\iota} *\left(\sum_{q=r}^{j} a_{q-r}^{i-j+2+2 r} F_{q}(f, h)\right) .
\end{gathered}
$$

But Corollary 2.8 (ii) implies that

$$
\begin{aligned}
& G \iota^{*}\left(\sum_{q=r}^{j} a_{q-r}^{i-j+2+2 r} F_{q}(f, h)\right)_{G\left(Q_{2 i+2 j+2}\right)} \\
& \quad=\left(G \iota^{*} F_{r}(f, h)\right)_{Q_{2 i+2 r+2,2 j-2 r}} \quad(0 \leqq r \leqq j)
\end{aligned}
$$

Therefore we have

$$
\left(G c^{*} F(f, \bar{h})\right)_{Q_{2 i+2 p+2,2 j-2 p}}=-(2 i+3) d_{p}^{i, j}\left(G \iota^{*} F_{p}(f, h)\right)_{Q_{2 i+2 p+2,2 j-2 p}}
$$

Since $d_{p}^{i, j}>0$, the proposition follows.
We denote by $C_{\boldsymbol{C}}^{\infty}(M)$ the vector space of complex-valued functions on a manifold M. The operators $G, \tilde{G}, X_{E_{0}}, \tilde{X}_{E_{0}}, \iota^{*}$, and Δ can be naturally extended to C-linear operators (the complexifications) on the spaces $C_{\boldsymbol{C}}^{\infty}\left(S^{*} S^{n}\right)$, $C_{\boldsymbol{C}}^{\infty}\left(\boldsymbol{R}^{2 n+2}\right)$, etc., which will be deboted by the same symbols.

Let $\boldsymbol{C}[x]$ (resp. $\boldsymbol{C}[x, \zeta]$) be the polynomial algebra in the variables $x=$ $\left(x_{1}, \cdots, x_{n+1}\right)$ (resp. $\left.(x, \zeta)=\left(x_{1}, \cdots, x_{n+1}, \zeta_{1}, \cdots, \zeta_{n+1}\right)\right)$ with complex coefficients. We denote by $\boldsymbol{C}[x]_{k}$ and $\boldsymbol{C}[x, \zeta]_{k}$ (resp. $\boldsymbol{C}[x, \zeta]_{i, j}$) the vector spaces spanned by homogeneous polynomials of degree k (resp. bihomogeneous polynomials of bidegree (i, j)) as in the real polynomials. In general, for a commutative ring R we denote by $\left(f_{1}, \cdots, f_{r}\right)$ the ideal in R generated by $f_{1}, \cdots, f_{r} \in R$.

Considering $C[x, \zeta]$ as a subalgebra of $C_{C}^{\infty}\left(\boldsymbol{R}^{2 n+2}\right)$, we have
Lemma 3.6. The kernel of $\left.i^{*}\right|_{c\left[x,[]_{2 k}\right.}(k \geqq 1)$ is

$$
\left(\sum_{i}\left(x_{i}^{2}-\zeta_{i}^{2}\right)\right) \boldsymbol{C}[x, \zeta]_{2 k-2}+\left(\sum_{i} x_{i} \zeta_{i}\right) \boldsymbol{C}[x, \zeta]_{2 k-2}
$$

Proof. Let σ_{1} and σ_{2} be the linear transformations of $\boldsymbol{R}^{2 n+2}$ defined by

$$
\sigma_{1}(x, \zeta)=(x,-\zeta), \quad \sigma_{2}(x, \zeta)=(\zeta, x) .
$$

Then $\sigma_{1} * \sigma_{2}{ }^{*}=\sigma_{2} * \sigma_{1} *$ on $\boldsymbol{C}[x, \zeta]_{2 k}$, and we have the decomposition

$$
\boldsymbol{C}[x, \zeta]_{2 k}=V_{0,0}+V_{1,0}+V_{0,1}+V_{1,1},
$$

where $V_{i, j}=\left\{f \in \boldsymbol{C}[x, \zeta]_{2 k} \mid \sigma_{1} * f=(-1)^{i} f, \sigma_{2} * f=(-1)^{j} f\right\} \quad(i, j=0,1)$. Identify $S^{*} S^{n}$ with $\ell\left(S^{*} S^{n}\right) \subset \boldsymbol{R}^{2 n+2}$. Then we see that σ_{1} and σ_{2} preserve $S^{*} S^{n}$, and $\iota^{*} \sigma_{i}{ }^{*}=\sigma_{i}{ }^{*} \iota^{*}(i=1,2)$. Hence

$$
\text { Kernel of } \iota^{*} \mid \boldsymbol{c} c x, b_{2 k}=\sum_{i, j=0}^{1} \text { Kernel of } \iota^{*}| |_{i, j} \text {. }
$$

Take $f \in V_{0,0}$ such that $\iota^{*} f=0$. Since $\sigma_{1} * f=f$, we can write

$$
f=\sum_{p=0}^{k} f_{p}, \quad f_{p} \in \boldsymbol{C}[x, \zeta]_{2 p, 2 k-2 p}
$$

Let $W_{1}=\left\{(x, \zeta) \in \boldsymbol{R}^{2 n+2} \mid \sum_{i}\left(x_{i}{ }^{2}-\zeta_{i}{ }^{2}\right)=\sum_{i} x_{i} \zeta_{i}=0\right\}$. Since $f=0$ on $S^{*} S^{n}$ and f is homogeneous, it follows that $f=0$ on W_{1}. Let $W_{2}=\left\{(x, \zeta) \in \boldsymbol{R}^{2 n+2} \mid \sum_{i} x_{i} \zeta_{i}=0\right\}$. Define $f^{\prime} \in \boldsymbol{C}[x, \zeta]_{2 k, 2 k}$ by

$$
f^{\prime}=\sum_{p=0}^{k}\left(\sum_{i} x_{i}^{2}\right)^{k-p}\left(\sum_{i} \zeta_{i}^{2}\right)^{p} f_{p}
$$

Then $f^{\prime}=0$ on W_{1}. Since f^{\prime} is bihomogeneous, it follows that $f^{\prime}=0$ on W_{2}. It is clear that

$$
\left(\sum_{i} x_{i}^{2}\right)^{k} f-f^{\prime} \in\left(\sum_{i}\left(x_{i}^{2}-\zeta_{i}^{2}\right)\right) \boldsymbol{C}[x, \zeta]_{4 k-2}
$$

Since $\sigma_{2} * f=f$, we see that $f_{p}(x, \zeta)=f_{k-p}(\zeta, x)(0 \leqq p \leqq k)$. Hence $\sigma_{2}{ }^{*} f^{\prime}=f^{\prime}$.
Put $y_{i}=x_{i}+\zeta_{i}, \xi_{i}=x_{i}-\zeta_{i}(1 \leqq i \leqq n+1)$, and define $f_{p}^{\prime} \in C[y, \xi]_{p, 4 k-p}(0 \leqq$ $p \leqq 4 k)$ by

$$
f^{\prime}\left(\frac{y+\xi}{2}, \frac{y-\xi}{2}\right)=\sum_{p=0}^{4 k} f_{p}^{\prime}(y, \xi)
$$

Since $\sigma_{\mathbf{2}}(y, \xi)=(y,-\xi)$, it follows that $f_{p}^{\prime}=0$ if p is odd. Define $f^{\prime \prime} \in \boldsymbol{C}[y, \xi]_{4 k, 4 k}$ by

$$
f^{\prime \prime}(y, \xi)=\sum_{p=0}^{2 k}\left(\sum_{i} y_{i}^{2}\right)^{2 k-p}\left(\sum_{i} \xi_{i}^{2}\right)^{p} f_{2 p}^{\prime}(y, \xi)
$$

Since $f^{\prime \prime}(y, \xi)=\left(\sum_{i} y_{i}^{2}\right)^{2 k} f^{\prime}\left(\frac{y+\xi}{2}, \frac{y-\xi}{2}\right)=0$ on

$$
W_{2}=\left\{(y, \xi) \in R^{2 n+2} \mid \sum_{i} y_{i}^{2}=\sum_{i} \xi_{i}^{2}\right\}
$$

it follows that $f^{\prime \prime}$ is identically zero. We have

$$
\left(\sum_{i} y_{i}\right)^{2 k} f^{\prime}\left(\frac{y+\xi}{2}, \frac{y-\xi}{2}\right)-f^{\prime \prime}(y, \xi) \in\left(\sum_{i}\left(y_{i}{ }^{2}-\xi_{i}{ }^{2}\right)\right) \boldsymbol{C}[y, \xi]_{8 k-2} .
$$

This implies

$$
\left(\sum_{i}\left(x_{i}^{2}+\zeta_{i}^{2}\right)\right)^{2 k} f^{\prime}(x, \zeta) \in\left(\sum_{i} x_{i} \zeta_{i}\right) \boldsymbol{C}[x, \zeta]_{8 k-2} .
$$

Hence we have

$$
\left(\sum_{i}\left(x_{i}^{2}+\zeta_{i}^{2}\right)\right)^{3 k} f(x, \zeta) \in\left(\sum_{i}\left(x_{i}{ }^{2}-\zeta_{i}^{2}\right)\right) \boldsymbol{C}[x, \zeta]_{8 k-2}+\left(\sum_{i} x_{i} \zeta_{i}\right) \boldsymbol{C}[x, \zeta]_{8 k-2} .
$$

In general, it is known that the ring $C\left[X_{1}, \cdots, X_{m}\right] /\left(\sum_{i=1}^{m} X_{i}^{2}\right)$ is a UFD (a unique factorization domain) if $m \geqq 5$. Hence the ring $C[x, \zeta] /\left(\sum_{i}\left(x_{i}{ }^{2}-\zeta_{i}{ }^{2}\right)\right)$ is a UFD. It is easy to see that the image of $\sum_{i} x_{i} \zeta_{i}$ by the homomorphism $\boldsymbol{C}[x, \zeta] \rightarrow \boldsymbol{C}[x, \zeta] /\left(\sum_{i}\left(x_{i}^{2}-\zeta_{i}^{2}\right)\right)$ is irreducible, and hence is a prime element. Therefore the ideal $\left(\sum_{i}\left(x_{i}{ }^{2}-\zeta_{i}{ }^{2}\right), \sum_{i} x_{i} \zeta_{i}\right)$ in $\boldsymbol{C}[x, \zeta]$ is prime. Since $\sum_{i}\left(x_{i}{ }^{2}+\zeta_{i}{ }^{2}\right)$ does not belong to this ideal, it follows that

$$
f \in\left(\sum_{i}\left(x_{i}{ }^{2}-\zeta_{i}{ }^{2}\right), \sum_{i} x_{i} \zeta_{i}\right) .
$$

In case that f belongs to $V_{1,0}$ or $V_{0,1}$ or $V_{1,1}$, we define $h \in V_{0,0}$ by $h=x_{1} \zeta_{1} f$ if $f \in V_{1,0}, h=\left(x_{i}{ }^{2}-\zeta_{i}{ }^{2}\right) f$ if $f \in V_{0,1}$, and $h=x_{1} \zeta_{1}\left(x_{1}{ }^{2}-\zeta_{1}{ }^{2}\right) f$ if $f \in V_{1,1}$. If $\iota^{*} f=0$, then $\iota^{*} h=0$, and we have $h \in\left(\sum_{i}\left(x_{i}{ }^{2}-\zeta_{i}{ }^{2}\right), \sum_{i} x_{i} \zeta_{i}\right)$. Since $x_{1} \zeta_{1}$ and $x_{1}{ }^{2}-\zeta_{1}{ }^{2}$ do not belong to this prime ideal, we also have $f \in\left(\sum_{i}\left(x_{i}{ }^{2}-\zeta_{i}{ }^{2}\right)\right.$, $\left.\sum_{i} x_{i} \zeta_{i}\right)$ in these cases. By considering the homogeneity we have the lemma.

We complexify the vector spaces $G\left(P_{k}\right), G\left(P_{i, j}\right), G\left(P^{j}\right), G\left(Q_{k}\right)$, and $Q_{i, j}$, and denote them by the same symbols.

Corollary 3.7. Let $f \in C[x, \zeta]_{2 k}(k \geqq 1)$.
(i) $\left(G l^{*} f\right)_{G\left(Q_{2 k}\right)}=0$ if and only if Gf belong to the ideal $\left(\sum_{i} x_{i}{ }^{2}, \sum_{i} \zeta_{i}{ }^{2}\right.$, $\left.\sum_{i} x_{i} \zeta_{i}\right)$.
(ii) Suppose that f is a polynomial in only 4 variables $\left(x_{1}, x_{2}, \zeta_{1}, \zeta_{2}\right)$. Then $\left(G t^{*} f\right)_{G\left(Q_{2 k}\right)}=0$ if and only if $G f=0$.

Proof. (i) First assume that $G f \in\left(\sum_{i} x_{i}^{2}, \sum_{i} \zeta_{i}{ }^{2}, \sum_{i} x_{i} \zeta_{i}\right)$. Then there are homogeneous polynomials $R_{i} \in \boldsymbol{C}[x, \zeta]_{2 k-2}(i=1,2,3)$ such that

$$
\mathcal{G} f=\sum_{i} x_{i}{ }^{2} R_{1}+\sum_{i} \zeta_{i}{ }^{2} R_{2}+\sum_{i} x_{i} \zeta_{i} R_{s} .
$$

By applying ι^{*} to this formula, we have

$$
G \iota^{*} f=\iota^{*}\left(R_{1}+R_{2}\right)=G \iota^{*}\left(R_{1}+R_{2}\right) \in G\left(P_{2 k-2}\right) .
$$

Hence $\left(G_{\imath}{ }^{*} f\right)_{G\left(Q_{2 k}\right)}=0$.
Next assume that $\left(G_{c} * f\right)_{G\left(Q_{2 k}\right)}=0$. Then there is $h_{0} \in \boldsymbol{C}[x, \zeta]_{2 k-2}$ such that $G \iota^{*} f=G \iota * h_{0}$. This shows that

$$
\iota^{*}\left(\tilde{G} f-\frac{1}{2} \sum_{i}\left(x_{i}{ }^{2}+\zeta_{i}{ }^{2}\right) \widetilde{G} h_{0}\right)=0 .
$$

Thus by Lemma 3.6 there are polynomials $h_{1}, h_{2} \in \boldsymbol{C}[x, \zeta]_{2 k-2}$ such that

$$
\tilde{G} f=\frac{1}{2} \sum_{i}\left(x_{i}{ }^{2}+\zeta_{i}^{2}\right) \tilde{G} h_{0}+\sum_{i}\left(x_{i}{ }^{2}-\zeta_{i}^{2}\right) h_{1}+\sum_{i} x_{i} \zeta_{i} h_{2} .
$$

(ii) Since f is a polynomial in the variables $\left(x_{1}, x_{2}, \zeta_{1}, \zeta_{2}\right)$, so is σf. Assume that $\tilde{G} f$ is in the ideal $\left(\sum_{i} x_{i}{ }^{2}, \sum_{i}{ }^{2}, \sum_{i} x_{i} \zeta_{i}\right)$. Fix $\left(x_{1}, x_{2}, \zeta_{1}, \zeta_{2}\right) \in \boldsymbol{R}^{4}$ and put

$$
\begin{array}{ll}
x_{3}=\sqrt{-1} \sqrt{x_{1}^{2}+x_{2}^{2}} \cos \theta, & \zeta_{3}=\sqrt{-1} \sqrt{\zeta_{1}^{2}+\zeta_{2}^{2}} \cos \eta, \\
x_{4}=\sqrt{-1} \sqrt{x_{1}^{2}+x_{2}^{2}} \sin \theta, & \zeta_{4}=\sqrt{-1} \sqrt{\zeta_{1}^{2}+\zeta_{2}^{2}} \sin \eta,
\end{array}
$$

and $x_{i}=\zeta_{i}=0(5 \leqq i \leqq n+1)$, where θ and η are real numbers such that

$$
\sqrt{\left(x_{1}^{2}+x_{2}^{2}\right)\left(\zeta_{1}^{2}+\zeta_{2}^{2}\right)} \cos (\theta-\eta)=x_{1} \zeta_{1}+x_{2} \zeta_{2} .
$$

Then we have $\sum_{i} x_{i}{ }^{2}=\sum_{i} \zeta_{i}{ }^{2}=\sum_{i} x_{i} \zeta_{i}=0$, and hence

$$
(G f)\left(x_{1}, x_{2}, \zeta_{1}, \zeta_{2}\right)=0 .
$$

Since $\left(x_{1}, x_{2}, \zeta_{1}, \zeta_{2}\right) \in \boldsymbol{R}^{4}$ is arbitrary, it follows that $\sigma f=0$. This completes the proof.

Proposition 3. 8. Let $f \in \boldsymbol{C}[x]_{2 i+1}$ and $h \in \boldsymbol{C}[x]_{2 j+1}(i \geqq j \geqq 2)$. Suppose that f and h are polynomials in two variables (x_{1}, x_{2}). Then
(i) $\left(G_{c}{ }^{*} F_{p}(f, h)\right)_{Q_{2 i+2 p+2,2 j-2 p}}=0$ if and only if

$$
\tilde{G}\left(\sum_{q=p}^{j} a_{q}^{i-j+p}+2+2 p F_{q}(f, h)\right)=0 \quad(0 \leqq p \leqq j) .
$$

(ii) If $\left(G_{c} * F_{i-2}(f, f)\right)_{Q_{i i}-2_{2}, 4}=0$, then f must be of the form

$$
f=\left(a_{1} x_{1}+a_{2} x_{2}\right)^{2 i}\left(b_{1} x_{1}+b_{2} x_{2}\right),
$$

where a_{1}, a_{2} and b_{1}, b_{2} are complex constants.
Proof. (i) Since

$$
\left(G l^{*} F_{p}(f, h)\right)_{Q_{2 i+2 p+2,2 j-2 p}}=\left(G l * \sum_{q=p}^{j} a_{q-p}^{i-j+2+2 p} F_{q}(f, h)\right)_{G\left(Q_{2 i+2 j+2}\right)},
$$

(i) follows from Corollary 3.7 (ii).
(ii) The general linear group $G L(2, C)$ naturally acts on the polynomial algebras $\boldsymbol{C}\left[x_{1}, x_{2}\right]$ and $\boldsymbol{C}\left[x_{1}, x_{2}, \zeta_{1}, \zeta_{2}\right]$. It is easy to see that these actions commute with the operators \tilde{G} and F_{p}. Hence we see from (i) that $\left(G_{\iota} * F_{i-2}\right.$ $(f, f))_{\boldsymbol{Q}_{\Delta i-2,4}}=0$ if and only if

$$
\left(G_{\ell} * F_{i-2}\left(A^{*} f, A^{*} f\right)\right)_{Q_{\bullet i-2,4}}=0 \text { for } f \in \boldsymbol{C}\left[x_{1}, x_{2}\right]_{2 i+1} \text { and } A \in G L(2, C)
$$

Put

$$
f=\sum_{k=0}^{2 i+1} c_{k} x_{1}^{k} x_{2}^{2 i+1-k}
$$

By considering $A^{*} f$ instead of f for a suitable $A \in G L(2, C)$ if necessary, we may assume that $c_{0}=0$. A direct computation shows that

$$
\begin{aligned}
F_{i-2} & \left(x_{1}^{k} x_{2}^{2 i+1-k}, x_{1}^{l} x_{2}^{2 i+1-l}\right) \\
& =\frac{(2 i-3)!}{4!}\left\{l(l-1)(l-2)(l-3) x_{1}^{k+l-4} x_{2}^{4 i+2-(k+l)} \zeta_{1}^{4}\right. \\
& +4 l(l-1)(l-2)(2 i+1-l) x_{1}^{k+l-3} x_{2}^{4 i+1-(k+l)} \zeta_{1}^{3} \zeta_{2} \\
& +6 l(l-1)(2 i+1-l)(2 i-l) x_{1}^{k+l-2} x_{2}^{4 i-(k+l)} \zeta_{1}^{2} \zeta_{2}^{2} \\
& +4 l(2 i+1-l)(2 i-l)(2 i-1-l) x_{1}^{k+l-1} x_{2}^{4 i-1-(k+l)} \zeta_{1} \zeta_{2}^{3} \\
& \left.+(2 i+1-l)(2 i-l)(2 i-1-l)(2 i-2-l) x_{1}^{k+l} x_{2}^{4 i-2-(k+l)} \zeta_{2}^{4}\right\}
\end{aligned}
$$

$(0 \leqq k, l \leqq 2 i+1)$. For each p, q such that $0 \leqq p-q \leqq 4 i-1,0 \leqq q \leqq 3$, we have

$$
\begin{aligned}
& \tilde{X}_{E_{0}}\left(x_{1}{ }^{p-q} x_{2}^{4 i-1-p+q} \zeta_{1}^{q} \zeta_{2}{ }^{3-q}\right)=(p-q) x_{1}^{p-q-1} x_{2}^{4 i-1-p+q} \zeta_{1}^{q+1} \zeta_{2}{ }^{3-q} \\
& \quad+(4 i-1-p+q) x_{1}{ }^{p-q} x_{2}^{4 i-2-p+q} \zeta_{1}^{q} \zeta_{2}^{4-q}+h,
\end{aligned}
$$

where $h \in C[x, \zeta]_{4 i, 2}$. Since $\left(G_{\iota}{ }^{*} h\right)_{\boldsymbol{q}_{i-2,4}}=0$ by Proposition 2.9 (i), it follows that

$$
\begin{aligned}
& (p-q)\left(G \iota^{*}\left(x_{1}^{p-q-1} x_{2}^{4 i-1-p+q} \zeta_{1}^{q+1} \zeta_{2}^{3-q}\right)\right)_{Q_{4 i-2,4}} \\
& \quad=-(4 i-1-p+q)\left(G_{\iota} *\left(x_{1}^{p-q} x_{2}^{4 i-2-p+q} \zeta_{1}^{q} \zeta_{2}^{4-q}\right)\right)_{Q_{4 i-2,4}}
\end{aligned}
$$

for p, q with $0 \leqq p-q \leqq 4 i-1,0 \leqq q \leqq 3$. Using this formula successively, we have

$$
\begin{aligned}
\left(G_{\iota} *\right. & \left.F_{i-2}\left(x_{1}^{k} x_{2}^{2 i+1-k}, x_{1}^{l} x_{2}^{2 i+1-l}\right)\right)_{Q_{4 i-2,4}} \\
& =A_{k, l}^{i}\left(G_{\iota} *\left(x_{1}^{k+l} x_{2}^{4 i-2-(k+l)} \zeta_{2}^{4}\right)\right)_{Q_{4 i-2,4}} \quad(0 \leqq k, l \leqq 2 i+1),
\end{aligned}
$$

where $A_{k, l}^{i}=0$ if $0 \leqq k+l \leqq 3$ or $4 i-1 \leqq k+l \leqq 4 i+2$, and

$$
\begin{aligned}
A_{k, l}^{i} & =\frac{(2 i-1)!}{4!} \frac{1}{(k+l)(k+l-1)(k+l-2)(k+l-3)} \\
& \times[2 i(2 i+1)\{k(k-1)(k-2)(k-3)+l(l-1)(l-2)(l-3)\} \\
& \left.-4(i-1) l k\left\{i\left(4 k^{2}+4 l^{2}-6 l k-6 k-6 l+10\right)+3 k l-3 k-3 l+3\right\}\right]
\end{aligned}
$$

if $4 \leqq k+l \leqq 4 i-2$. Especially we have

$$
A_{k, 1}^{i}=A_{1, k}^{i}=\frac{(2 i)!}{4!} \frac{(2 i+1)(k-7)+12}{k+1} \quad(3 \leqq k \leqq 2 i+1)
$$

and

$$
A_{k, k}^{i}=\frac{3 \cdot(2 i-1)!}{4!} \frac{(2 i+1-k)(2 i-k)}{(2 k-1)(2 k-3)} \quad(2 \leqq k \leqq 2 i-1),
$$

which are not zero.
Now we can write

$$
\begin{aligned}
& \left(G_{\iota} *\right. \\
& \left.F_{i-2}(f, f)\right)_{Q_{4 i-2,4}} \\
& \quad=\sum_{p=4}^{4 i-2} \sum_{k+l=p} c_{k} c_{l} A_{k, l}^{i}\left(G_{l}^{*}\left(x_{1}^{p} x_{2}^{4 i-2-p} \zeta_{2}^{4}\right)\right)_{Q_{4 i-2,4}}
\end{aligned}
$$

In Lemma 3. 9 stated later we shall prove that

$$
\left(G_{l}^{*}\left(x_{1}^{p} x_{2}^{4 i-2-p} \zeta_{2}^{4}\right)\right)_{Q_{4 i-2,4}} \quad(4 \leqq p \leqq 4 i-2)
$$

are linearly independent. By using this fact we have

$$
(\#)_{p} \quad \sum_{k+l=p} c_{k} c_{l} A_{k, l}^{i}=0 \quad(4 \leqq p \leqq 4 i-2) .
$$

If $c_{1}=0$, then by the formulas $(\#)_{2 p}(2 \leqq p \leqq 2 i-1)$ and the fact $A_{p, p}^{i} \neq 0$ $(2 \leqq p \leqq 2 i-1)$ we have $c_{k}=0(1 \leqq k \leqq 2 i-1)$. In this case

$$
f=x_{1}^{2 i}\left(c_{2 i} x_{2}+c_{2 i+1} x_{1}\right)
$$

If $c_{1} \neq 0$, then by the formulas $(\#)_{p}(4 \leqq p \leqq 2 i+2)$ and the fact $A_{p, 1}^{i} \neq 0(3 \leqq p \leqq$ $2 i+1)$ we see that $c_{k}(3 \leqq k \leqq 2 i+1)$ are uniquely determined by c_{1} and c_{2}. In this case we consider the following polynomial;

$$
g(x)=c_{1} x_{1}\left(x_{2}+\frac{c_{2}}{2 i c_{1}} x_{1}\right)^{2 i}
$$

Put $g(x)=\sum_{k=0}^{2 i+1} b_{k} x_{1}^{k} x_{2}^{2 i+1-k}$. Then $b_{0}=0, b_{1}=c_{1}$, and $b_{2}=c_{2}$. Moreover, for a suitable $A \in G L(2, C), A * g$ becomes

$$
\alpha x_{1}^{2 i} x_{2}+\beta x_{1}^{2 i+1} \quad(\alpha, \beta \in \boldsymbol{C}) .
$$

Then it follows from the above formula that

$$
\left(G_{c} * F_{i-2}\left(A^{*} g, A^{*} g\right)\right)_{Q_{i i-2, v}}=0,
$$

and hence

$$
\left(G_{l} * F_{i-2}(g, g)\right)_{e_{i-2,4}}=0 .
$$

Thus we have

$$
\sum_{k+l=p} b_{k} b_{l} A_{k, l}^{i}=0 \quad(4 \leqq p \leqq 4 i-2) .
$$

Since $b_{1}=c_{1}$ and $b_{2}=c_{2}$, we can conclude that $b_{k}=c_{k}(0 \leqq k \leqq 2 i+1)$. Therefore $f=g$, and the proposition has been proved.

Lemma 3.9. $2 k-3$ elements $\left(G_{\varepsilon^{*}}{ }^{*}\left(x_{1}{ }^{p} x_{2}^{2 k-p} \zeta_{2}^{4}\right)\right)_{Q_{2 k, 4}}(4 \leqq p \leqq 2 k)$ of $Q_{2 k, 4}$ are linearly independent, where $k \geqq 2$.

Proof. By Corollary 2.8 (ii) we see that

$$
\begin{aligned}
& \left(G_{\iota} *\left(x_{1}^{p} x_{2}^{2 k-p} \zeta_{2}{ }^{4}\right)\right)_{Q_{2 k, 4}} \\
& \quad=\left(G _ { \iota } * \left(x_{1}^{p} x_{2}^{2 k-p} \zeta_{2}{ }^{4}-\frac{6}{2 k-1} x_{1}^{p} x_{2}^{2 k-p+2} \zeta_{2}{ }^{2}\right.\right. \\
& \left.\left.\quad+\frac{3}{(2 k+1)(2 k-1)} x_{1}^{p} x_{2}^{2 k-p+4}\right)\right)_{q\left(Q_{2 k+4}\right)}
\end{aligned}
$$

Thus in view of Corollary 3.7 (ii) it is enough to show that $2 k-3$ polynomials

$$
h_{p}=G\left(x_{1}^{p} x_{2}^{2 k-p} \zeta_{2}^{4}-\frac{6}{2 k-1} x_{1}^{p} x_{2}^{2 k-p+2} \zeta_{2}^{2}+\frac{3}{(2 k+1)(2 k-1)} x_{1}^{p} x_{2}^{2 k-p+4}\right)
$$

$(4 \leqq p \leqq 2 k)$ are linearly independent. An explicit computation shows that the coefficient of $x_{1}{ }^{p} \zeta_{2}^{2 k-p+4}$ in h_{p} is

$$
\frac{(p-1)!!(2 k-p-1)!!}{(2 k)!!} \frac{p(p-2)}{(2 k+1)(2 k-1)}
$$

if p is even, and the coefficient of $x_{1}{ }^{p-1} \zeta_{1} \zeta_{2}^{2 k-p+4}$ in h_{p} is

$$
\frac{(p-2)!!(2 k-2 p)!!}{(2 k)!!} \frac{(p-1)^{2}(p-3)}{(2 k+1)(2 k-1)}
$$

if p is odd. Thus we have $h_{p} \neq 0(4 \leqq p \leqq 2 k)$. Since $h_{p}(4 \leqq p \leqq 2 k)$ have mutually different degrees in the variables $\left(x_{1}, \zeta_{1}\right)$, it follows that they are linearly independent.

We set

$$
\begin{aligned}
& \tilde{S}=\left\{x \in \boldsymbol{C}^{n+1} \mid \sum_{i} x_{i}{ }^{2}=0\right\} \\
& \tilde{S}_{1}=\left\{(x, \zeta) \in \boldsymbol{C}^{2 n+2} \mid \sum_{i} x_{i}{ }^{2}=\sum_{i} \zeta_{i}^{2}=\sum_{i} x_{i} \zeta_{i}=0\right\}
\end{aligned}
$$

Let V be a 2-dimensional subspace of C^{n+1} which is contained in \tilde{S}, and let $\kappa: C^{2}=\left\{\left(x_{1}, x_{2}\right)\right\} \rightarrow V$ be a linear isomorphism. Then the isomorphism κ induces the isomorphism

$$
\kappa \times \kappa: \boldsymbol{C}^{4}=\left\{\left(x_{1}, x_{2}, \zeta_{1}, \zeta_{2}\right)\right\} \longrightarrow V \times V \subset \boldsymbol{C}^{2 n+2}=\{(x, \zeta)\},
$$

which will also be denoted by κ. In this case it is easy to see that $V \times V$ is contained in \tilde{S}_{1}.

By identifying $\boldsymbol{C}\left[x_{1}, x_{2}\right]$ (resp. $\boldsymbol{C}\left[x_{1}, x_{2}, \zeta_{1}, \zeta_{2}\right]$) with a subalgebra of $\boldsymbol{C}[x]$ (resp. $\boldsymbol{C}[x, \zeta])$ naturally, the operators \tilde{G} and F_{p} are defined on $\boldsymbol{C}\left[x_{1}, x_{2}, \zeta_{1}, \zeta_{2}\right]$ and on $\boldsymbol{C}\left[x_{1}, x_{2}\right] \times \boldsymbol{C}\left[x_{1}, x_{2}\right]$ respectively. Then we have $\tilde{G} \circ \kappa^{*}=\kappa^{*} \circ \mathcal{G}$ and $F_{p}\left(\kappa^{*} f, \kappa^{*} h\right)=\kappa^{*} F_{p}(f, h), f, h \in \boldsymbol{C}[x]$.

Proposition 3.10. Let V and $\kappa: C^{2}=\left\{\left(x_{1}, x_{2}\right)\right\} \rightarrow V$ be as above. Suppose that $f \in C[x]_{2 j+1}(j \geqq 2)$ satisfies $G_{l} * F(f, f) \in G\left(\mathscr{H}^{2}\right)$. Then

$$
\left(\kappa^{*} f\right)\left(x_{1}, x_{2}\right)=\left(a_{1} x_{1}+a_{2} x_{2}\right)^{2 j}\left(b_{1} x_{1}+b_{2} x_{2}\right)
$$

for some constants $a_{k}, b_{k} \in \boldsymbol{C}(k=1,2)$.
Proof. By Proposition 3.5 we have

$$
\left(G_{\iota} F_{j-2}(f, f)\right)_{Q_{, j-2, t}}=0 .
$$

By Corollary 2.8 (ii) this implies

$$
\left(G_{\imath} * \sum_{q=j-2}^{j} a_{q-(j-2)}^{2+2(j-2)} F_{q}(f, f)\right)_{G\left(Q_{t j+2}\right)}=0 .
$$

Hence we have

$$
\tilde{G}\left(\sum_{q=j-2}^{j} a_{q-(j-2)}^{2+2(j-2)} F_{q}(f, f)\right) \in\left(\sum_{i} x_{i}^{2}, \sum_{i} \zeta_{i}^{2}, \sum x_{i} \zeta_{i}\right)
$$

by Corollary 3.7 (i). By applying κ^{*} we have

$$
\tilde{G}\left(\sum_{q=j-2}^{j} a_{q-(j-2)}^{2+2(j-2)} F_{q}\left(\kappa^{*} f, \kappa^{*} f\right)\right)=0 .
$$

The proposition now follows from Proposition 3.8 (i) (ii).
In view of Proposition 3.10, it is enough to prove the following proposition in order to show Proposition 3.1.

Proposition 3.11. Let $f \in \boldsymbol{R}\left[x_{1}, \cdots, x_{n+1}\right]_{2 j+1}(j \geqq 2)$. Suppose that for
each 2-dimensional subspace V of $C^{n+1}=\{(x)\}$ contained in $\tilde{S},\left.f\right|_{V}$ has the form $\left(\alpha_{1} z_{1}+\alpha_{2} z_{2}\right)^{2 j}\left(\beta_{1} z_{1}+\beta_{2} z_{2}\right), \alpha_{i}, \quad \beta_{i} \in C(i=1,2)$, where $\left(z_{1}, z_{2}\right)$ is a linear coordinate system of V. Then there are constants $a_{i}, b_{i} \in \boldsymbol{R}(1 \leqq i \leqq n+1)$ such that

$$
f \equiv\left(\sum_{i} a_{i} x_{i}\right)^{2 j}\left(\sum_{i} b_{i} x_{i}\right) \quad \bmod \left(\sum_{i} x_{i}^{2}\right) \boldsymbol{R}[x]_{2 j-1}
$$

Proof. We need different considerations according as $n=3$ or $n \geqq 4$.
I. The case $n=3$. Define a bilinear map $\psi: \boldsymbol{C}^{2} \times \boldsymbol{C}^{2} \rightarrow \boldsymbol{C}^{4}$ by

$$
\begin{aligned}
& \phi(y, z)= \\
& \quad\left(\frac{1}{2}\left(y_{1} z_{1}+y_{2} z_{2}\right), \frac{1}{2 \sqrt{-1}}\left(y_{1} z_{1}-y_{2} z_{2}\right), \frac{1}{2}\left(y_{2} z_{1}-y_{1} z_{2}\right), \frac{1}{2 \sqrt{-1}}\left(y_{2} z_{1}+y_{1} z_{2}\right)\right),
\end{aligned}
$$

where $(y, z)=\left(\left(y_{1}, y_{2}\right), \quad\left(z_{1}, z_{2}\right)\right) \in \boldsymbol{C}^{2} \times C^{2}$. (The induced map $P^{1} \times P^{1} \rightarrow P^{3}$ is known as Segre embedding, where P^{k} denotes the k-dimensional complex projective space.) It is easy to see that the image of ψ is \tilde{S}. Moreover any 2 -dimensional subspace V of C^{4} which is contained in \tilde{S} is of the form $\phi\left(\boldsymbol{C}^{2} \times\{a\}\right)$ or $\phi\left(\{a\} \times \boldsymbol{C}^{2}\right), a \in \boldsymbol{C}^{2}-\{0\}$. Thus $\psi^{*} f \in \boldsymbol{C}[y, z]$ is homogeneous of degree $2 j+1$ in both variables y and z, and for each $a \in C^{2}-\{0\}$ there are constants $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in C$ (resp. $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \beta_{1}^{\prime}, \beta_{2}^{\prime} \in \boldsymbol{C}$) such that $\psi^{*} f(y, a)=\left(\alpha_{1} y_{1}+\right.$ $\left.\alpha_{2} y_{2}\right)^{2 j}\left(\beta_{1} y_{1}+\beta_{2} y_{2}\right)\left(\right.$ resp. $\left.\phi^{*} f(a, z)=\left(\alpha_{1}^{\prime} z_{1}+\alpha_{2}^{\prime} z_{2}\right)^{2 j}\left(\beta_{1}^{\prime} z_{1}+\beta_{2}^{\prime} z_{2}\right)\right)$.

We denote by $\boldsymbol{C}[y, z]_{k, l}$ the vector space of polynomials which are homogeneous of degree k in the variables y and homogeneous of degree l in the variables z.

Lemma 3.12. Let $h \in C[y, z]_{k, l}(l \geqq 3)$. Assume that h satisfies the following condition: For each $a \in C^{2}-\{0\}$ there are constants $\alpha_{1}, \alpha_{2}, \beta_{1}$, $\beta_{2} \in C$ such that

$$
h(a, z)=\left(\alpha_{1} z_{1}+\alpha_{2} z_{2}\right)^{l-1}\left(\beta_{1} z_{1}+\beta_{2} z_{2}\right) .
$$

Then there are homogeneous polynomials $h_{0}, \gamma_{1}, \gamma_{2}, \delta_{1}, \delta_{2} \in C[y]$ with $\operatorname{deg} \gamma_{1}=$ $\operatorname{deg} \gamma_{2}, \operatorname{deg} \delta_{1}=\operatorname{deg} \delta_{2}$ such that

$$
h(y, z)=h_{0}\left(\gamma_{1} z_{1}+\gamma_{2} z_{2}\right)^{l-1}\left(\delta_{1} z_{1}+\delta_{2} z_{2}\right)
$$

and $\gamma_{1} z_{1}+\gamma_{2} z_{2}$ and $\delta_{1} z_{1}+\delta_{2} z_{2}$ are irreducible in $C[y, z]$.
Proof of Lemma 3.12. Let P_{y}^{1} be the complex projective line with homogeneous coordinates $\left[y_{1}, y_{2}\right]$, and let $\boldsymbol{C}\left(\boldsymbol{P}_{y}^{1}\right)$ its function field, i. e.,

$$
\boldsymbol{C}\left(P_{y}^{1}\right)=\left\{\left.\frac{v}{u} \right\rvert\, v, u \in \boldsymbol{C}\left[y_{1}, y_{2}\right], \text { homogeneous of the same degree, } u \neq 0\right\}
$$

For a homogeneous polynomial $u \in C[y]$ we set

$$
V(u)=\left\{\left[a_{1}, a_{2}\right] \in P_{y}^{1} \mid u\left(a_{1}, a_{2}\right)=0\right\},
$$

and for $v \in \boldsymbol{C}\left(P_{y}^{1}\right)$

$$
W(v)=\left\{p \in P_{y}^{1} \mid v(p)=0 \quad \text { or } \quad v(p)=\infty\right\} .
$$

Moreover for a polynomial $v=\sum_{i} v_{i} t^{i} \in \boldsymbol{C}\left(P_{y}^{1}\right)[t]\left(v_{i} \in \boldsymbol{C}\left(P_{y}^{1}\right)\right)$ we set $W(v)=U$ $W\left(v_{i}\right)$, where the union is taken over all i such that $v_{i} \neq 0$.

We assume that h is not identically zero. By changing the coordinates $\left(z_{1}, z_{2}\right)$ linearly if necessary, we may also assume that the coefficient $h_{1}(y) \in$ $\boldsymbol{C}[y]_{k}$ of $z_{1}{ }^{l}$ in $h(y, z)$ is not zero. Define the monic polynomial $g=g\left(y_{1}, y_{2}, t\right)$ $\in C\left(P_{y}^{\mathrm{l}}\right)[t]$ of degree l by the formula

$$
h(y, z)=h_{1}(y) z_{2}^{l} g\left(y_{1}, y_{2}, \frac{z_{1}}{z_{2}}\right)
$$

Let

$$
g=g_{1}{ }^{r_{1}} \cdots g_{m}{ }^{r_{m}}, g_{i}=g_{i}\left(y_{1}, y_{2}, t\right) \in \boldsymbol{C}\left(P_{y}^{1}\right)[t] \quad(1 \leqq i \leqq m)
$$

be its irreducible decomposition in $\boldsymbol{C}\left(P_{y}^{1}\right)[t]$. We assume that each g_{i} is monic and $\operatorname{deg} g_{1} \leqq \cdots \leqq \operatorname{deg} g_{m}$. Let $D\left(g_{i}\right) \in \boldsymbol{C}\left(P_{y}^{1}\right)$ be the discriminant of g_{i} and $D\left(g_{i}, g_{j}\right) \in \boldsymbol{C}\left(P_{y}^{1}\right)$ the resultant of g_{i} and $g_{j}(i \neq j)$. Since $g_{i}(1 \leqq i \leqq m)$ are irreducible and mutually prime, they do not vanish. Set

$$
W=V\left(h_{1}\right) \cup \bigcup_{i} W\left(g_{i}\right) \cup \bigcup_{i} W\left(D\left(g_{i}\right)\right) \cup \bigcup_{i \neq j} W\left(D\left(g_{i}, g_{j}\right)\right)
$$

Then W is a finite subset of P_{y}^{1}.
Take $\left[a_{1}, a_{2}\right] \in P_{y}^{1}-W$. Then $g_{i}\left(a_{1}, a_{2}, t\right) \in \boldsymbol{C}[t](1 \leqq i \leqq m)$. Moreover we see that the polynomials $g_{i}\left(a_{1}, a_{2}, t\right)$ are mutually prime and each algebraic equiation $g_{i}\left(a_{1}, a_{2}, t\right)=0$ has only simple roots. Hence by the assumption we easily have $\operatorname{deg} g_{i}=1(1 \leqq i \leqq m), m=1$ or 2 , and $r_{1}=1$ or $r_{2}=1$ in case $m=2$. In any case we can write

$$
\begin{aligned}
h(y, z) & =h_{1}\left(z_{1}+\frac{\gamma_{2}}{\gamma_{1}} z_{2}\right)^{l-1}\left(z_{1}+\frac{\delta_{2}}{\delta_{1}} z_{2}\right) \\
& =\frac{h_{1}}{\gamma_{1}^{l-1} \delta_{1}}\left(\gamma_{1} z_{1}+\gamma_{2} z_{2}\right)^{l-1}\left(\delta_{1} z_{1}+\delta_{2} z_{2}\right),
\end{aligned}
$$

where γ_{1} and γ_{2} (resp. δ_{1} and δ_{2}) are homogeneous polynomials in the variables y of the same degree and mutually prime. Since $\gamma_{1} z_{1}+\gamma_{2} z_{2}$ and $\delta_{1} z_{1}+\delta_{2} z_{2}$ are irreducible in $\boldsymbol{C}[y, z]$, it follows that $\frac{h_{1}}{\gamma_{1}^{l-1} \delta_{1}} \in \boldsymbol{C}\left[y_{1}, y_{2}\right]$. This finishes the proof of the lemma.

We now continue the proof of the case $n=3$. By applying Lemma 3.12 to $\psi^{*} f(y, z)$ in both variables y and z, we see that the irreducible decomposition of $\psi^{*} f$ in $C[y, z]$ must be one of the following:
(i) $f_{1}(y, z)^{2 j} f_{2}(y, z), f_{1}, f_{2} \in \boldsymbol{C}[y, z]_{1,1}$,
(ii) $f_{1}(y, z)^{2 j} f_{2}(y) f_{3}(z), f_{1} \in C[y, z]_{1,1}, f_{2} \in C[y]_{1}, f_{3} \in C[z]_{1}$,
(iii) $f_{1}(y)^{2 j} f_{2}(z)^{2 j} f_{3}(y, z), f_{1} \in \boldsymbol{C}[y]_{1}, f_{2} \in \boldsymbol{C}[z]_{1}, f_{3} \in \boldsymbol{C}[y, z]_{1,1}$,
(iv) $f_{1}(y)^{2 j} f_{2}(z)^{2 j} f_{3}(y) f_{4}(z), f_{1}, f_{3} \in \boldsymbol{C}[y]_{1}, f_{2}, f_{4} \in \boldsymbol{C}[z]_{1}$.

Here it is not assumed that f_{1} and f_{2} are mutually prime in the case (i), and so are not the pairs $\left(f_{1}, f_{3}\right)$ and $\left(f_{2}, f_{4}\right)$ in the case (iv). In any case $\psi^{*} f$ is of the form

$$
\left(\sum_{i, k=1}^{2} \alpha_{i, k} y_{i} z_{k}\right)^{2 j}\left(\sum_{i, k=1}^{2} \beta_{i, k} y_{i} z_{k}\right), \quad \alpha_{i, k}, \beta_{i, k} \in \boldsymbol{C} .
$$

Thus there are constants $a_{i}, b_{i} \in \boldsymbol{C}(1 \leqq i \leqq 4)$ such that

$$
f(x)=\left(\sum_{i} a_{i} x_{i}\right)^{2 j}\left(\sum_{i} b_{i} x_{i}\right) \quad \text { on } \tilde{S} .
$$

Since the ideal $\left(\sum_{i=1}^{4} x_{i}{ }^{2}\right) C[x]$ is prime, it follows that

$$
f \equiv\left(\sum_{i} a_{i} x_{i}\right)^{2 j}\left(\sum_{i} b_{i} x_{i}\right) \quad \bmod \left(\sum_{i} x_{i}^{2}\right) \boldsymbol{C}[x]_{2 j-1} .
$$

Next we must show that the coefficients $a_{i}, b_{i}(1 \leqq i \leqq 4)$ can be taken from the real numbers. We may assume that the vectors $a=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ and $b=\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$ are not zero. Since f is real, we have

$$
\left(\sum_{i} \bar{a}_{i} x_{i}\right)^{2 j}\left(\sum_{i} \bar{b}_{i} x_{i}\right) \equiv\left(\sum_{i} a_{i} x_{i}\right)^{2 j}\left(\sum_{i} b_{i} x_{i}\right) \quad \bmod \left(\sum_{i} x_{i}{ }^{2}\right) \boldsymbol{C}[x]_{2 j-1},
$$

where the bars denote the complex conjugates. Then there are two cases; the ideal $J=\left(\sum_{i} a_{i} x_{i}, \sum_{i} x_{i}{ }^{2}\right)$ in $\boldsymbol{C}[x]$ is prime or not.

Case 1. J is prime. In this case

$$
\left(\sum_{i} \bar{a}_{i} x_{i}\right)^{2 j}\left(\sum_{i} \bar{b}_{i} x_{i}\right) \equiv 0 \quad \bmod J .
$$

If $\sum_{i} \bar{b}_{i} x_{i} \notin J$, then $\sum_{i} \bar{a}_{i} x_{i} \in J$. If $\sum_{i} \bar{b}_{i} x_{i} \in J$, then we have $\sum_{i} \bar{b}_{i} x_{i}=c \sum_{i} a_{i} x_{i}$ ($c \in \boldsymbol{C}-\{0\}$) by comparing the degrees. Then

$$
c\left(\sum_{i} \bar{a}_{i} x_{i}\right)^{2 j} \equiv\left(\sum_{i} a_{i} x_{i}\right)^{2 j-1}\left(\sum_{i} b_{i} x_{i}\right) \quad \bmod \left(\sum_{i} x_{i}{ }^{2}\right),
$$

and we also have $\sum_{i} \bar{a}_{i} x_{i} \in J$. By comparing the degrees we see that

$$
\sum_{i} \bar{a}_{i} x_{i}=d \sum_{i} a_{i} x_{i}, \quad d \in \boldsymbol{C},|d|=1
$$

Take $e \in \boldsymbol{C}$ such that $e^{2}=d$. Then $e \sum_{i} a_{i} x_{i} \in \boldsymbol{R}[x]$. Moreover, since

$$
e^{2 j} \sum_{i} \bar{b}_{i} x_{i} \equiv \bar{e}^{2 j} \sum_{i} b_{i} x_{i} \quad \bmod \left(\sum_{i} x_{i}^{2}\right),
$$

it follows that $e^{2 j} \sum_{i} \bar{b}_{i} x_{i}=\bar{e}^{2 j} \sum_{i} b_{i} x_{i}$. Thus $\vec{e}^{2 j} \sum_{i} b_{i} x_{i} \in \boldsymbol{R}[x]$, and

$$
f \equiv\left(e \sum a_{i} x_{i}\right)^{2 j}\left(\bar{e}^{2 j} \sum b_{i} x_{i}\right) \quad \bmod \left(\sum x_{i}^{2}\right) \boldsymbol{R}[x]_{2 j-1} .
$$

Case 2. J is not prime. In this case the image of $\sum_{i} x_{i}{ }^{2}$ by the homomorphism $\boldsymbol{C}[x] \rightarrow \boldsymbol{C}[x] /\left(\sum_{i} a_{i} x_{i}\right)$ is not irreducible, because the ring $\boldsymbol{C}[x] /$ $\left(\sum_{i} a_{i} x_{i}\right)$ is a UFD. Thus we can write

$$
\sum_{i} x_{i}^{2} \equiv\left(\sum_{i} c_{i} x_{i}\right)\left(\sum_{i} d_{i} x_{i}\right) \quad \bmod \left(\sum_{i} a_{i} x_{i}\right)
$$

Then the 2 -dimensional subspace V defined by $\sum_{i} a_{i} x_{i}=\sum_{i} c_{i} x_{i}=0$ is contained in \tilde{S}. On the other hand, it is easy to see that the real orthogonal group $O(4, \boldsymbol{R})$ acts transitively on the set of 2 -dimensional subspaces contained in \tilde{S}. Since the 2 -dimensional subspace defined by $x_{1}+\sqrt{-1} x_{2}=x_{3}+\sqrt{-1} x_{4}$ $=0$ is contained in \tilde{S}, it follows that

$$
\sum_{i} a_{i} x_{i}=A^{*}\left(\alpha\left(x_{1}+\sqrt{-1} x_{2}\right)+\beta\left(x_{3}+\sqrt{-1} x_{4}\right)\right)
$$

for a suitable $A \in O(4, \boldsymbol{R})$ and $\alpha, \beta \in \boldsymbol{C}$. This implies that $a=\left(a_{1}, \cdots, a_{4}\right)$ is in \tilde{S}. Moreover, we see that $O(4, \boldsymbol{R})$ acts transitively on $\tilde{S}-\{0\}$ up to positive constant factors. Hence there is $B \in O(4, \boldsymbol{R})$ such that

$$
B^{*} \sum_{i} a_{i} x_{i}=e\left(x_{1}+\sqrt{-1} x_{2}\right), \quad e>0
$$

By applying B^{*} to the congruence

$$
\left(\sum_{i} \bar{a}_{i} x_{i}\right)^{2 j}\left(\sum_{i} \bar{b}_{i} x_{i}\right) \equiv\left(\sum_{i} a_{i} x_{i}\right)^{2 j}\left(\sum_{i} b_{i} x_{i}\right) \quad \bmod \left(\sum_{i} x_{i}{ }^{2}\right),
$$

we have

$$
\left(x_{1}-\sqrt{-1} x_{2}\right)^{2 j}\left(\sum_{i} \bar{b}_{i}^{\prime} x_{i}\right) \equiv\left(x_{1}+\sqrt{-1} x_{2}\right)^{2 j}\left(\sum_{i} b_{i}^{\prime} x_{i}\right) \quad \bmod \left(\sum_{i} x_{i}^{2}\right)
$$

where $\sum_{i} b_{i}^{\prime} x_{i}=B^{*} \sum_{i} b_{i} x_{i}$. Since $x_{1}-\sqrt{-1} x_{2}$ does not belong to the prime ideals $\left(x_{1}+\sqrt{-1} x_{2}, x_{3}+\sqrt{-1} x_{4}\right)$ and $\left(x_{1}+\sqrt{-1} x_{2}, x_{3}-\sqrt{-1} x_{4}\right)$, and since $\left(x_{1}+\sqrt{-1} x_{2}, x_{3}+\sqrt{-1} x_{4}\right) \cap\left(x_{1}+\sqrt{-1} x_{2}, x_{3}-\sqrt{-1} x_{4}\right)=\left(x_{1}+\sqrt{-1} x_{2}, \sum_{i} x_{i}{ }^{2}\right)$, it follows that $\sum_{i} \bar{b}_{i}^{\prime} x_{i} \in\left(x_{1}+\sqrt{-1} x_{2}, \sum_{i} x_{i}{ }^{2}\right)$. Thus

$$
\sum_{i} \bar{b}_{i}^{\prime} x_{i}=d\left(x_{1}+\sqrt{-1} x_{2}\right), \quad d \in C-\{0\}
$$

Then the above congruence shows that

$$
x_{1}-\sqrt{-1} x_{2} \in\left(x_{1}+\sqrt{-1} x_{2}, \sum_{i} x_{i}^{2}\right)
$$

which is a contradiction. Therefore we see that the ideal J must be prime.
This completes the proof of the case $n=3$.
II. The case $n \geqq 4$. We may assume that $f \neq 0 \bmod \left(\sum_{i} x_{i}{ }^{2}\right)$. We first decompose f into irreducible components in the ring $C[x] /\left(\sum_{i} x_{i}{ }^{2}\right)$;

$$
f \equiv f_{1}^{r_{1}} \cdots f_{m}{ }^{r_{m}} \quad \bmod \left(\sum_{i} x_{i}{ }^{2}\right),
$$

where $f_{i} \in \boldsymbol{C}[x]$ are homogeneous polynomials, $\operatorname{deg} f_{1} \leqq \cdots \leqq \operatorname{deg} f_{m}^{\prime}$, and the images of f_{i} by the homomorphism $\boldsymbol{C}[x] \rightarrow \boldsymbol{C}[x] /\left(\sum x_{i}{ }^{2}\right)$ are irreducible and mutually prime.

Let P^{n} be the complex projective space of dimension n with the homogeneous coordinates $[x]=\left[x_{1}, \cdots, x_{n+1}\right]$. In general, for homogeneous polynomials $h_{1}, \cdots, h_{k} \in \boldsymbol{C}[x]$ we denote by $V\left(h_{1}, \cdots, h_{k}\right)$ the algebraic subset of P^{n} defined by $h_{1}=\cdots=h_{k}=0$. We set

$$
S=V\left(\sum_{i} x_{i}^{2}\right) .
$$

Let $h \in \boldsymbol{C}[x]$ be a homogeneous polynomial whose image by the homomorphism $\boldsymbol{C}[x] \rightarrow \boldsymbol{C}[x] /\left(\sum_{i} x_{i}{ }^{2}\right)$ is not zero, and is irreducible. Since the ring $C[x] /\left(\sum_{i} x_{i}^{2}\right)$ is a UFD, it follows that the ideal $\left(h, \sum_{i} x_{i}^{2}\right)$ in $C[x]$ is prime. Set

$$
\text { Sing } V(h)=\left\{[x] \in V(h) \left\lvert\, \frac{\partial h}{\partial x_{1}}(x)=\cdots=\frac{\partial h}{\partial x_{n+1}}(x)=0\right.\right\}
$$

and Reg $V(h)=V(h)-$ Sing $V(h)$. We denote by $V(h)_{p}\left(\right.$ resp. $\left.S_{p}\right)$ the tangent hyperplane to $V(h)$ (resp. S) at $p \in \operatorname{Reg} V(h)$ (resp. $p \in S$). Set

$$
U=\left\{p \in \operatorname{Reg} V(h) \cap S \mid V(h)_{p} \neq S_{p}\right\}
$$

and $U(p)=S_{p} \cap S-S_{p} \cap S \cap V(h)_{p}$ for $p \in U$. Then we set

$$
\begin{aligned}
& T=\left\{(p, q) \in P^{n} \times P^{n} \mid p \in S \cap V(h), q \in S_{p} \cap S\right\}, \\
& U_{1}=\left\{(p, q) \in P^{n} \times P^{n} \mid p \in U, q \in U(p)\right\} .
\end{aligned}
$$

Lemma 3.13. The subset U_{1} is open and dense in the set T
Proof of Lemma 3.13. We shall first show that U is open and dense in $S \cap V(h)$. Since $\left[a_{1}, \cdots, a_{n+1}\right] \in S \cap V(h)$ is in U if and only if $a=\left(a_{1}, \cdots, a_{n+1}\right)$ and $\left(\frac{\partial h}{\partial x_{1}}(a), \cdots, \frac{\partial h}{\partial x_{n+1}}(a)\right)$ are linearly independent, it follows that U is open
in $S \cap V(h)$ in the Zariski topology. If $\left(a_{1}, \cdots, a_{n+1}\right)$ and $\left(\frac{\partial h}{\partial x_{1}}(a), \cdots, \frac{\partial h}{\partial x_{n+1}}(a)\right)$ are linearly dependent for all $[a] \in S \cap V(h)$, then there are polynomials $\alpha_{i, j}$, $\beta_{i, j}(1 \leqq i, j \leqq n+1)$ such that

$$
x_{i} \frac{\partial h}{\partial x_{j}}-x_{j} \frac{\partial h}{\partial x_{i}}=\alpha_{i, j} \sum_{k} x_{k}^{2}+\beta_{i, j} h
$$

$\alpha_{j, i}=-\alpha_{i, j}, \beta_{j, i}=-\beta_{i, j} . \quad$ By the homogeneity we may assume that $\beta_{i, j} \in \boldsymbol{C}$. Then we have

$$
(\operatorname{deg} h) x_{i} h-\sum_{j} x_{j}^{2} \frac{\partial h}{\partial x_{i}}=\sum_{j} \alpha_{i, j} x_{j} \sum_{k} x_{k}^{2}+\sum_{j} \beta_{i, j} x_{j} h \quad(1 \leqq i \leqq n+1),
$$

and hence

$$
(\operatorname{deg} h) x_{i} \equiv \sum_{j} \beta_{i, j} x_{j} \quad \bmod \left(\sum_{i} x_{i}^{2}\right)
$$

Since $\beta_{i, i}=0$, this is a contradiction. Therefore we see that $U \neq \phi$. Since $S \cap V(h)$ is an algebraic variety, it follows that U is open and dense in $S \cap V(h)$ in the classical topology.

Next we shall show that $U(p)$ is open and dense in $S_{p} \cap S$ for each $p \in U$. As is easily seen, $S_{p} \cap S$ is a variety and $U(p)$ is its Zariski-open subset. If $U([a])=\phi$ for an $[a] \in U$, then $V(h)_{[a]} \supset S_{[a]} \cap S$. This implies that

$$
\sum_{i} x_{i} \frac{\partial h}{\partial x_{i}}(a) \in\left(\sum_{i} x_{i}^{2}, \sum_{i} a_{i} x_{i}\right)
$$

Then we have by the homogeneity $\sum_{i} x_{i} \frac{\partial h}{\partial x_{i}}(a) \in\left(\sum_{i} a_{i} x_{i}\right)$, which is impossible when $[a] \in U$. Hence $U(p) \neq \phi$ for each $p \in U$, and we see that $U(p)$ is open and dense in $S_{p} \cap S$ for each $p \in U$.

Let

$$
\mathrm{pr}_{1}: T \longrightarrow S \cap V(h)
$$

be the projection to the first term. Then we see that $\mathrm{pr}_{1}: T \rightarrow S \cap V(h)$ is locally trivial, i. e., for each $p \in S \cap V(h)$ there is a neighborhood W of p in $S \cap V(h)$ and a fibre-preserving homeomorphism

$$
\operatorname{pr}_{1}^{-1}(W) \rightarrow W \times\left(S_{p} \cap S\right)
$$

This, together with the above facts, implies that U_{1} is dense in T. Since $U(p)$ depends continuously on $p \in U$, we also see that U_{1} is open in T.

Corollary 3.14. Let K be a Zariski-closed subset of S such that $V(h) \cap S \not \subset K$. Then there is a projective line L contained in S such that
$V(h) \cap L \cap K=\phi$ and $V(h) \cap L$ consists of k distinct points, where $k=\operatorname{deg} h$.
Proof of Corollary 3.14. First take $(p, q) \in U_{1}$ such that $p \notin K$. Then the projective line L_{0} through p and q lies in S, and L_{0} and $V(h) \cap S$ intersect transversally at p. Assume that there is a projective line L in S such that L and $U-K$ intersect transversally at least at l distinct points, say $p_{1}, \cdots, p_{l}(1 \leqq l<k)$. Since $l<k$, there is another point p_{l+1} in $V(h) \cap L$. Take any point $r \in L-\left\{p_{l+1}\right\}$. Then ($\left.p_{l+1}, r\right) \in T$. If $p_{l+1} \in K$ or L and $S \cap V(h)$ does not intersect transversally at p_{l+1}, then we can take $\left(p_{l+1}^{\prime}, r^{\prime}\right) \in$ U_{1} near (p_{l+1}, r) such that $p_{l+1}^{\prime} \notin K$. Let L^{\prime} be the projective line through p_{l+1}^{\prime} and r^{\prime}. If we take ($p_{l+1}^{\prime}, r^{\prime}$) sufficiently close to (p_{l+1}, r), then L^{\prime} and $V(h) \cap S$ intersect transversally at points $p_{i}^{\prime} \oplus K$ near $p_{i}(1 \leqq i \leqq l)$. Therefore we have found a line L^{\prime} such that L^{\prime} and $V(h) \cap S-K$ intersect transversally at least at $l+1$ distinct points. The corollary now follows by industion.

We now continue the proof of the case $n \geqq 4$. As usual \#(K) will denote the number of elements in a set K. Corollary 3. 14 shows that there is a projective line L_{1} in S such that $L_{1} \not \subset V(f)$ and $\#\left(V\left(f_{m}\right) \cap L_{1}\right)=\operatorname{deg} f_{m}$. Then we have

$$
\operatorname{deg} f_{m} \leqq \sharp\left(V(f) \cap L_{1}\right)<\infty .
$$

Since $\#\left(V(f) \cap L_{1}\right)=1$ or 2 or ∞ by the assumption on f, it follows that $\operatorname{deg} f_{m} \leqq 2$. Assume that $\operatorname{deg} f_{m}=2$. In this case we have $\operatorname{deg} f_{1}=1$, since $\operatorname{deg} f$ is odd. Since $V\left(f_{m}\right) \cap S \not \subset V\left(f_{1}\right) \cap S$, we see by Corollary 3. 14 that there is a projective line L_{2} in S such that $L_{2} \not \subset V(f)$ and $\left(V\left(f_{1}\right) \cup V\left(f_{m}\right)\right) \cap L_{2}$ consists of three points. This being a contradiction, we have $\operatorname{deg} f_{m}=1$.

Now we may assume that $r_{1} \geqq \cdots \geqq r_{m}$. Since $V\left(f_{i}\right) \cap S \not \subset V\left(f_{j}\right) \cap S(i \neq j)$, an induction argument as in the proof of Corollary 3.14 implies that there is a projective line L_{3} in S such that $\#\left(V(f) \cap L_{3}\right)=m$. Hence $m=1$ or 2 . Let V be the 2 -dimensional subspace of C^{n+1} whose image by the quotient map $C^{n+1}-\{0\} \rightarrow P^{n}$ is L_{3}. Then by considering $\left.f\right|_{V}$ we see that $r_{1}=2 j$ and $r_{2}=1$ if $m=2$. Thus we have

$$
f \equiv\left(\sum_{i} a_{i} x_{i}^{2 j}\right)\left(\sum_{i} b_{i} x_{i}\right) \quad \bmod \left(\sum_{i} x_{i}^{2}\right), a_{i}, b_{i} \in \boldsymbol{C} \quad(1 \leqq i \leqq n+1) .
$$

Since f is real and $C[x] /\left(\sum_{i} x_{i}{ }^{2}\right)$ is a UFD, it easily follows that the coefficients a_{i} and $b_{i}(1 \leqq i \leqq n+1)$ can be taken from the real numbers.

This completes the proof of Proposition 3.11.

§ 4. The main result

Let $O(n+1, \boldsymbol{R})$ be the orthogonal group of degree $n+1$, which naturally
acts on $\boldsymbol{R}^{n+1}=\{(x)\}$ and hence on $\boldsymbol{R}[x]$. In this and the next sections we shall prove the following

Theorem 4.1. Let $f \in \boldsymbol{R}\left[x_{1}, \cdots, x_{n+1}\right]_{o d}$. Then f satisfies the condition $G \iota^{*} F(f, f) \in G\left(\mathscr{H}^{2}\right)$ if and only if f has one of the following forms (i) and (ii) :
(i) $f \equiv h_{1}+h_{3}+\sum_{i=2}^{m}\left(\sum_{k} a_{k} x_{k}\right)^{2 i}\left(\sum_{j} b_{i, j} x_{j}\right) \quad \bmod \left(1-\sum_{i} x_{i}{ }^{2}\right)$,
where $a_{k}, b_{i, j} \in \boldsymbol{R}, h_{1} \in \boldsymbol{R}[x]_{1}$, and $h_{3} \in \boldsymbol{R}[x]_{3}$;
(ii) $f \equiv h_{1}+h_{3}+c A^{*} h \quad \bmod \left(1-\sum_{i} x_{i}{ }^{2}\right)$,
where $h_{1} \in \boldsymbol{R}\left[x_{1}\right], h_{3} \in \boldsymbol{R}[x]_{3}, c \in \boldsymbol{R}, A \in O(n+1, \boldsymbol{R})$, and h is a polynomial of degree 21 in the variables $\left(x_{1}, x_{2}\right)$ of the following form

$$
\begin{aligned}
h= & \sum_{i=2}^{10} \alpha_{2 i+1} x_{1}^{2 i+1}+\sum_{i=2}^{6} \beta_{2 i+1} x_{1}^{2 i} x_{2}+\sum_{i=2}^{6} \gamma_{2 i+1} x_{1}^{2 i-1} x_{2}{ }^{2} \\
& +\delta_{5} x_{1}{ }^{2} x_{2}{ }^{3}+\varepsilon_{5} x_{1} x_{2}^{4}
\end{aligned}
$$

with $\beta_{13} \in \boldsymbol{R}, \gamma_{13} \in \boldsymbol{R}-\{0\}$, and

$$
\begin{aligned}
& \alpha_{5}=\frac{10}{13} \gamma_{13}-\frac{25}{13^{2} \cdot 192} \frac{\beta_{13}{ }^{4}}{\gamma_{13}{ }^{2}}+\frac{15}{4} \frac{\beta_{13}{ }^{2}}{\gamma_{13}}+45, \\
& \alpha_{7}=-\frac{10}{13} \gamma_{13}-5 \frac{\beta_{13}{ }^{2}}{\gamma_{13}}-120, \quad \alpha_{9}=\frac{5}{13} \gamma_{13}+\frac{15}{4} \frac{\beta_{13}{ }^{2}}{\gamma_{13}}+210, \\
& \alpha_{11}=-\frac{1}{13} \gamma_{13}-\frac{3}{2} \frac{\beta_{13}{ }^{2}}{\gamma_{13}}-252, \quad \alpha_{13}=\frac{1}{4} \frac{\beta_{13}{ }^{2}}{\gamma_{13}}+210, \\
& \alpha_{15}=-120, \quad \alpha_{17}=45, \quad \alpha_{19}=-10, \quad \alpha_{21}=1, \\
& \beta_{5}=\frac{75}{13} \beta_{13}-\frac{25}{13^{2} \cdot 24} \frac{\beta_{13}^{3}}{\gamma_{13}}, \quad \beta_{7}=-\frac{140}{13} \beta_{13}, \quad \beta_{9}=\frac{135}{13} \beta_{13}, \\
& \beta_{11}=-\frac{66}{13} \beta_{13}, \quad \gamma_{5}=\frac{25}{13} \gamma_{13}-\frac{25}{13^{2} \cdot 8} \beta_{13}^{2}, \\
& \gamma_{7}=-\frac{70}{13} \gamma_{13}, \quad \gamma_{9}=\frac{90}{13} \gamma_{13}, \quad \gamma_{11}=-\frac{55}{13} \gamma_{13}, \\
& \delta_{5}=-\frac{25}{13^{2} \cdot 6} \beta_{13} \gamma_{13}, \quad \varepsilon_{5}=-\frac{25}{13^{2} \cdot 12} \gamma_{13}^{2} .
\end{aligned}
$$

We first remark various actions of the orthogonal group. The orthogonal group $O(n+1, \boldsymbol{R})$ acts on $\boldsymbol{R}^{2 n+2}$ by the map $(x, \zeta) \rightarrow(A x, A \zeta)(A \in O(n+1, \boldsymbol{R}))$, and via the inclusions $\iota_{0}: S^{n} \rightarrow \boldsymbol{R}^{n+1}$ and $\iota: S^{*} S^{n} \rightarrow \boldsymbol{R}^{2 n+2}$, it also acts on $\left(S^{n}, g_{0}\right)$ and $\left(S^{*} S^{n}, g_{1}\right)$ as isometries. Clearly the induced actions of $O(n+1, \boldsymbol{R})$ on $C^{\infty}\left(\boldsymbol{R}^{n+1}\right), C^{\infty}\left(\boldsymbol{R}^{2 n+2}\right), C^{\infty}\left(S^{n}\right)$, and $C^{\infty}\left(S^{*} S^{n}\right)$ commute with the operators \tilde{G}, G,
ι^{*}, Δ, F_{p}, and F. It follows that the subspaces $G\left(P_{k}\right), G\left(Q_{k}\right)$, and $Q_{i, j}$ of $C^{\infty}\left(S^{*} S^{n}\right)$ are preserved by this action. In particular we see that $G \iota^{*} F(f, f)$ $\in G\left(\mathscr{H}^{2}\right)$ if and only if $G \iota^{*} F\left(A^{*} f, A^{*} f\right) \in G\left(\mathscr{\mathscr { }}^{2}\right)$, where $f \in \boldsymbol{R}[x]_{o d}$ and $A \in O(n+1, \boldsymbol{R})$.

Proposition 4. 2. Let $f \in \boldsymbol{R}[x]_{\text {od }}$. Suppose that f is of the form (i) in Theorem 4.1. Then f satisfies the condition $G \iota^{*} F(f, f) \in G\left(\mathscr{H}^{2}\right)$.

Proof. Let $u, v \in \boldsymbol{R}[x]_{o d}$. Proposition 1.6 shows that if u or v belongs to the ideal $\left(1-\sum x_{i}{ }^{2}\right)$, then $G_{c}{ }^{*} F(u, v) \in G\left(\mathscr{H}^{2}\right)$. Thus we may assume that

$$
f=h_{1}+h_{3}+\sum_{i=2}^{m}\left(\sum_{k} a_{k} x_{k}\right)^{2 i}\left(\sum_{j} b_{i, j} x_{j}\right) .
$$

In view of Corollary 3.3 we may further assume that

$$
f=\sum_{i=2}^{m}\left(\sum_{k} a_{k} x_{k}\right)^{2 i}\left(\sum_{j} b_{i, j} x_{j}\right) .
$$

By considering the action of the orthogonal group, we may consequently assume that f is of the form

$$
\sum_{i=2}^{m} x_{1}^{2 i}\left(\sum_{j} b_{i, j} x_{j}\right), \quad b_{i, j} \in \boldsymbol{R} .
$$

Then the proposition follows from the next lemma.
Lemma 4.3. $\quad G_{c}{ }^{*} F\left(x_{1}^{2 i} x_{k}, x_{1}^{2 j} x_{l}\right) \in G\left(\mathscr{H}^{2}\right) \quad(1 \leq k, l \leqq n+1)$.
Proof. Let $U_{m}(m \geq 3)$ be the real vector space spanned by

$$
\begin{aligned}
& \left\{G_{l}{ }^{*}\left(x_{1}^{2 p} x_{k} x_{l} \zeta_{1}^{2 q}\right), G l^{*}\left(x_{1}^{2 p+1} x_{k} \zeta_{1}^{2 q-1} \zeta_{l}\right), G_{l}{ }^{*}\left(x_{1}^{2 p+1} x_{l} \zeta_{1}^{2 q-1} \zeta_{k}\right),\right. \\
& \left.\quad G_{l}{ }^{*}\left(x_{1}^{2 p+2} \zeta_{1}^{2 q-2} \zeta_{k} \zeta_{l}\right) \mid p+q=m\right\} .
\end{aligned}
$$

Then from the definition of F we have

$$
G_{l} * F\left(x_{1}{ }^{2 i} x_{k}, x_{1}{ }^{2 j} x_{l}\right) \in U_{i+j}+U_{i+j-1} .
$$

Consider the following identities:

$$
\begin{aligned}
& \tilde{X}_{E_{0}}\left(x_{1}^{2 p+1} x_{k} x_{l} \zeta_{1}^{2 q-1}\right)=(2 p+1) x_{1}{ }^{2 p} x_{k} x_{l} \zeta_{1}^{2 q}+x_{1}^{2 p+1} x_{l} \zeta_{1}^{2 q-1} \zeta_{k} \\
& \quad+x_{1}^{2 p+1} x_{k} \zeta_{1}^{2 q-1} \zeta_{l}-(2 q-1) x_{1}^{2 p+2} x_{k} x_{l} \zeta_{1}^{2 q-2}, \\
& \tilde{X}_{E_{0}}\left(x_{1}^{2 p+2} x_{l} \zeta_{1}^{2 q-2} \zeta_{k}\right)=(2 p+2) x_{1}^{2 p+1} x_{l} \zeta_{1}^{2 q-1} \zeta_{k}+x_{1}^{2 p+2} \zeta_{1}^{2 q-2} \zeta_{k} \zeta_{l} \\
& \quad-(2 q-2) x_{1}^{2 p+3} x_{l} \zeta_{1}^{2 q-3} \zeta_{k}-x_{1}^{2 p+2} x_{k} x_{l} \zeta_{1}^{2 q-2}, \\
& \tilde{X}_{E_{0}}\left(x_{1}^{2 p+2} x_{k} \zeta_{1}^{2 q-2} \zeta_{l}\right)=(2 p+2) x_{1}^{2 p+1} x_{k} \zeta_{1}^{2 q-1} \zeta_{l}+x_{1}^{2 p+2} \zeta_{1}^{2 q-2} \zeta_{k} \zeta_{l} \\
& \quad-(2 q-2) x_{1}^{2 p+3} x_{k} \zeta_{1}{ }^{2 q-3} \zeta_{l}-x_{1}{ }^{2 p+2} x_{k} x_{l} \zeta_{1}^{2 q-2},
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{X}_{E_{0}}\left(x_{1}{ }^{2 p+3} \zeta_{1}^{2 q-3} \zeta_{k} \zeta_{l}\right)=(2 p+3) x_{1}{ }^{2 p+2} \zeta_{1}{ }^{2 q-2} \zeta_{k} \zeta_{l}-(2 q-3) x_{1}{ }^{2 p+4} \zeta_{1}{ }^{2 q-4} \zeta_{k} \zeta_{l} \\
& \quad-x_{1}{ }^{2 p+3} x_{k} \zeta_{1}{ }^{2 q-3} \zeta_{l}-x_{1}{ }^{2 p+3} x_{l} \zeta_{1}{ }^{2 q-3} \zeta_{k} .
\end{aligned}
$$

These identities imply that $G_{\iota}{ }^{*}\left(x_{1}{ }^{2 p} x_{k} x_{l} \zeta_{1}{ }^{2 q}\right), G_{\iota}{ }^{*}\left(x_{1}{ }^{2 p+1} x_{k} \zeta_{1}^{2 q-1}\right), G_{l}{ }^{*}\left(x_{1}{ }^{2 p+1} x_{l}\right.$ $\left.\zeta_{1}{ }^{2 q-1} \zeta_{k}\right)$, and $G_{\ell}{ }^{*}\left(x_{1}{ }^{2 p+2} \zeta_{1}{ }^{2 q-2} \zeta_{k} \zeta_{l}\right)$ are linear combinations of $G_{\ell}{ }^{*}\left(x_{1}{ }^{2 p+2} x_{k} x_{l} \zeta_{1}{ }^{2 q-2}\right)$, $G_{\iota}{ }^{*}\left(x_{1}{ }^{2 p+3} x_{k} \zeta_{1}^{2 q-3} \zeta_{l}\right), G \iota^{*}\left(x_{1}{ }^{2 p+3} x_{l} \zeta_{1}{ }^{2 q-3} \zeta_{k}\right)$, and $G_{\iota}{ }^{*}\left(x_{1}{ }^{2 p+4} \zeta_{1}{ }^{2 q-4} \zeta_{k} \zeta_{l}\right)$, provided $q \geq 2$ By using this fact successively, we have $U_{m} \subset G\left(\mathscr{A}^{2}\right)$. This proves the lemma.

Hereafter we make the convention that the degree of the polynomial 0 is $-\infty$. Let $f \in \boldsymbol{R}[x]_{o d}$ with $\operatorname{deg} f=2 m+1(m \geq 2)$. Consider the following conditions for f :
(i) The homogeneous part of f of degree $2 m+1$ is of the form $x_{1}{ }^{2 m}$ $\left(a x_{1}+b x_{2}\right),(a, b) \in \boldsymbol{R}^{2}-\{0\} ;$
(ii) The homogeneous parts of f of degrees 1 and 3 are zero;
(iii) The degree of f in the variable x_{n+1} is at most 1 .

Lemma 4.4. Let $h \in \boldsymbol{R}[x]_{\text {od }}$ with $\operatorname{deg} h=2 m+1$ ($m \geq 2$). Suppose that $G_{\iota}{ }^{*} F(h, h) \in G\left(\mathscr{A}^{2}\right)$. Then there are $A \in O(n+1, \boldsymbol{R}), h_{1} \in \boldsymbol{R}[x]_{1}, h_{3} \in \boldsymbol{R}[x]_{3}$, and $f \in \boldsymbol{R}[x]_{\text {od }}$ such that (a) either $f=0$ or $5 \leq \operatorname{deg} f \leq 2 m+1$ and f satisfies the above conditions (i) (ii) (iii), and
(b) $\quad A * h \equiv h_{1}+h_{3}+f \quad \bmod \left(1-\sum_{i} x_{i}{ }^{2}\right)$.

Proof. We may assume that $h \not \equiv 0 \bmod \left(1-\sum_{i} x_{i}{ }^{2}\right)$. Then there are $m^{\prime}\left(0 \leq m^{\prime} \leq m\right)$ and $h^{\prime} \in \boldsymbol{R}[x]_{2 m^{\prime}+1}$ such that

$$
h \equiv h^{\prime} \quad \bmod \left(1-\sum_{i} x_{i}{ }^{2}\right)
$$

and $h^{\prime} \not \equiv 0 \bmod \sum_{i} x_{i}{ }^{2}$. If $m^{\prime} \leq 1$, then there is nothing to prove. We now assume $m^{\prime} \geq 2$. Since

$$
G \iota^{*} F\left(h^{\prime}, h^{\prime}\right) \in G\left(\mathscr{\mathscr { S }}^{2}\right),
$$

it follows from Proposition 3. 1 that there are constants $a_{i}, b_{i} \in \boldsymbol{R}(1 \leq i \leq$ $n+1)$ such that

$$
h^{\prime} \equiv\left(\sum_{i} a_{i} x_{i}\right)^{2 m^{\prime}}\left(\sum_{i} b_{i} x_{i}\right) \quad \bmod \left(\sum_{i} x_{i}{ }^{2}\right) \boldsymbol{R}[x]_{2 m^{\prime}-1}
$$

Hence there are $A \in O(n+1, \boldsymbol{R}),(a, b) \in \boldsymbol{R}^{2}-\{0\}$, and $h^{\prime \prime} \in \boldsymbol{R}[x]_{2 m^{\prime}-1}$ such that

$$
A^{*} h^{\prime} \equiv x_{1}^{2 m^{\prime}}\left(a x_{1}+b x_{2}\right)+h^{\prime \prime} \quad \bmod \left(1-\sum_{i} x_{i}{ }^{2}\right)
$$

It is easy to see that there are homogeneous polynomials $h_{2 k+1} \in \boldsymbol{R}[x]_{2 k+1}$ $\left(0 \leq k \leq m^{\prime}-1\right)$ such that the degrees of $h_{2 k+1}$ in the variable x_{n+1} are at most 1 and

$$
h^{\prime \prime} \equiv \sum_{k=0}^{m^{\prime}-1} h_{2 k+1} \quad \bmod \left(1-\sum_{i} x_{i}^{2}\right) .
$$

By putting $f=x_{1}^{2 m^{\prime}}\left(a x_{1}+b x_{2}\right)+\sum_{k=2}^{m^{\prime}-1} h_{2 k+1}$, we have the lemma.
In view of this lemma we may restrict our attention to the polynomials satisfying the above conditions (i) (ii) (iii). Now we fix $f \in \boldsymbol{R}[x]_{o d}$ with $\operatorname{deg} f=$ $2 m+1(m \geq 2)$ which satisfies the above conditions (i) (iii) (iii) and the condition

$$
G \iota^{*} F(f, f) \in G\left(\mathscr{\mathscr { H }}^{2}\right) .
$$

Let $f_{2 i+1}(2 \leq i \leq m)$ be the homogeneous part of f of degree $2 i+1, f=\sum_{i=2}^{m} f_{2 i+1}$, and let $f_{2 m+1}=x_{1}^{2 m}\left(a x_{1}+b x_{2}\right),(a, b) \in \boldsymbol{R}^{2}-\{0\}$.

For a polynomial $h \in \boldsymbol{C}[x, \zeta]$ we denote by $\operatorname{deg}_{1} h\left(\right.$ resp. $\left.\operatorname{deg}_{2} h\right)$ the degree of h in the variables (x_{1}, ζ_{1}) (resp. in the variables ($x_{2}, \cdots, x_{n+1}, \zeta_{2}, \cdots, \zeta_{n+1}$). For elements of $C[x]$ we shall also apply this notation by considering $C[x]$ as a subalgebra of $\boldsymbol{C}[x, \zeta]$. Put

$$
d_{i}=\operatorname{deg}_{2} f_{2 i+1} \quad(2 \leq i \leq m) .
$$

Let i_{0} be the index such that $d_{i} \leq d_{i_{0}}$ if $2 \leq i \leq i_{0}$ and $d_{i}<d_{i_{0}}$ if $i_{0}<i \leq m$. In particular $d_{m}=0$ or 1 , and $d_{i_{0}}=\max _{i} d_{i}$. Consider $f_{2 i+1}(2 \leq i \leq m)$ as a polynomial in the variables (x_{2}, \cdots, x_{n+1}) with coefficients in $\boldsymbol{R}\left[x_{1}\right]$, and let $h_{2 i+1}$ be its homogeneous part of degree d_{i}. Then $f_{2 i+1}=h_{2 i+1}$ if $d_{i} \leq 0$, and deg_{2} $\left(f_{2 i+1}-h_{2 i+1}\right) \leq d_{i}-1$ if $d_{i} \geq 1$.

If $d_{i_{0}} \leq 1$, then it is clear that f is of the form (i) in Theorem 4. 1. Now we assume that $d_{i_{0}} \geq 2$. In this case we have $i_{0}<m$. Let $i_{1}\left(>i_{0}\right)$ be the index such that $d_{i} \leq d_{i_{1}}$ if $i_{0}<i \leq i_{1}$ and $d_{i}<d_{i_{1}}$ if $i_{1}<i \leq m$. In the rest of this section we shall prove the following

Proposition 4.5. Under the assumption $d_{i_{0}} \geq 2$, we have $m=10$ (deg $f=21), i_{0}=2, i_{1}=6, d_{i_{0}}=4, d_{i_{1}}=2$, and $d_{i} \leq 0(7 \leq i \leq 10)$.

We shall prepare some lemmas. For any positive integer N, let V_{N} be the direct sum of vector spaces $Q_{2 p, 2 q}$ in $G\left(P_{4 m+2}\right)$ such that $N_{2 p, 2 q}=N$.

Lemma 4.6. Let $u \in \boldsymbol{R}[x, \zeta]_{2 k, 2 l}(k \geq l, k+l \leq 2 m+1)$ with $\operatorname{deg}_{2} u=d$. Then there is a polynomial $v=\sum_{j=0}^{k+l} v_{2 j}\left(v_{2 j} \in \boldsymbol{R}[x, \zeta]_{2 j}\right)$ such that $\operatorname{deg}_{2} v \leq d$ and

$$
\left(G c^{*} u\right)_{v_{N}}=G c^{*} v,
$$

where $\left(G_{c}{ }^{*} u\right)_{V_{N}}$ stands for the V_{N}-component of $G c^{*} u$.
Proof. We shall prove this by induction on the integer $2 k+2 l=\operatorname{deg} u$. If $\operatorname{deg} u \leq 0$, then it is obvious. Assume that for each $u^{\prime} \in \boldsymbol{R}[x, \zeta]_{2 k^{\prime}, 2 v^{\prime}}$ with
$k^{\prime}+l^{\prime}<k+l$ and for each N there is a polynomial $\boldsymbol{v}^{\prime}=\sum_{j=0}^{k^{\prime}+l^{\prime}} \boldsymbol{v}_{2 j}^{\prime}\left(\boldsymbol{v}_{2 j}^{\prime} \in \boldsymbol{R}[x, \zeta]_{2 j}\right)$ such that $\operatorname{deg}_{2} v^{\prime} \leq \operatorname{deg}_{2} u^{\prime}$ and $\left(G_{\iota}{ }^{*} u^{\prime}\right)_{V_{N}}=G_{\iota}{ }^{*} v^{\prime}$. By the proof of Proposition 2.7 we can write

$$
u=\sum_{p=0}^{l} u_{p}, \quad u_{p} \in \sum_{q=p}^{l} \boldsymbol{R}[x, \zeta]_{2 k+2 q, 2 l-2 q}
$$

such that

$$
\Delta G \iota * u_{p}=N_{2 k+2 p, 2 l-2 p} G \iota^{*} u_{p}+G \iota^{*} w_{p}, \quad w_{p}=-\sum_{i}\left(\frac{\partial^{2} u_{p}}{\partial x_{i}{ }^{2}}+\frac{\partial^{2} u_{p}}{\partial \zeta_{i}{ }^{2}}\right)
$$

and $\operatorname{deg}_{2} u_{p} \leq d$. Let $\left.G_{\iota}{ }^{*} w_{p}=\sum_{N}\left(G_{\iota} * w_{p}\right)\right)_{V_{N}}$ be the eigenspace decomposition. As was seen in the proof of Proposition 2. 9, $\left(G_{\iota} * w_{p}\right)_{V_{N}}=0$ if $N=N_{2 k+2 p, 2 l-2 p .}$. Therefore if we put $N_{p}=N_{2 k+2 p, 2 l-2 p}$, we see that

$$
G \iota^{*} u_{p}+\sum_{N \neq N}\left(N_{p}-N\right)^{-1}\left(G \iota^{*} w_{p}\right)_{V_{N}}
$$

is an eigenfunction corresponding to the eigenvalue N_{p}, and we have the decomposition of $G_{\ell} * u_{p}$ into eigenfunctions;

$$
G_{\iota} * u_{p}=\left(G_{\iota} * u_{p}+\sum_{N \neq N_{p}}\left(N_{p}-N\right)^{-1}\left(G_{\iota} * w_{p}\right) v_{N}\right)-\sum_{N \neq N_{p}}\left(N_{p}-N\right)^{-1}\left(G_{\iota} * w_{p}\right) v_{N}
$$

Since $\operatorname{deg}_{2} w_{p} \leq d$, the assumption implies that for each N there is a polynomial $v=\sum_{j=0}^{k+l} v_{2 j}$ such that $\operatorname{deg}_{2} v \leq d$ and $\left(G_{\iota} * u_{p}\right)_{V_{N}}=G_{\iota} * v$. This proves the lemma.

Fix an index $(2 p, 2 q)$ such that $q \leq p$ and $p+q \leq 2 m+1$. Let V (resp. $\left.V^{\prime}\right)$ be the direct sum of vector spaces $Q_{2 p^{\prime}, 2 q^{\prime}}$ in $G\left(P_{4 m+2}\right)$ such that $N_{2 p^{\prime}, 2 q^{\prime}}=$ $N_{2 p, 2 q}$ (resp. $N_{2 p^{\prime}, 2 q^{\prime}}=N_{2 p, 2 q}$ and $p^{\prime}+q^{\prime} \geq p+q$).

Corollary 4. 7. Let $u_{1} \in \boldsymbol{R}[x]_{2 k+1}$ and $u_{2} \in \boldsymbol{R}[x]_{2 l+1}(k, l \leq m)$ with $\operatorname{deg}_{2} u_{1}+\operatorname{deg}_{2} u_{2}=d$. Then there are polynomials $v=\sum_{j=0}^{k+l+1} v_{2 j}\left(v_{2 j} \in \boldsymbol{R}[x, \zeta]_{2 j}\right)$ and $w \in \boldsymbol{R}[x, \zeta]_{2 p+2 q-2}$ such that $\operatorname{deg}_{2} v \leq d$ and

$$
\left(G_{\iota} * F\left(u_{1}, u_{2}\right)\right)_{V^{\prime}}=G \iota^{*} v+G \iota^{*} w
$$

Proof. By the definition of V and V^{\prime} we have

$$
\left(G \iota^{*} F\left(u_{1}, u_{2}\right)\right)_{V}-\left(G \iota^{*} F\left(u_{1}, u_{2}\right)\right)_{V^{\prime}} \in G\left(P_{2 p+2 q-2}\right) .
$$

Moreover we see from the definition of F that $\operatorname{deg}_{2} F\left(u_{1}, u_{2}\right) \leq d$. Hence the corollary follows from Lemma 4. 6.

Lemma 4. 8. Let $w \in \boldsymbol{R}[x, \zeta]_{2 k}(k \geq 2)$. Suppose that w belongs to the
ideal $\left(\sum_{i} x_{i}{ }^{2}, \sum_{i} \zeta_{i}{ }^{2}, \sum_{i} x_{i} \zeta_{i}\right)$ in $\boldsymbol{R}[x, \zeta]$. Then there are polynomials $w_{i} \in$ $\boldsymbol{R}[x, \zeta]_{2 k-2}(i=1,2,3)$ with $\operatorname{deg}_{2} w_{i} \leq \operatorname{deg}_{2} w-2$ such that

$$
w=\sum_{i}\left(x_{i}{ }^{2}+\zeta_{i}{ }^{2}\right) w_{1}+\sum_{i}\left(x_{i}{ }^{2}-\zeta_{i}{ }^{2}\right) w_{2}+\sum_{i} x_{i} \zeta_{i} w_{3}
$$

Proof. We first put

$$
w=\sum_{i}\left(x_{i}{ }^{2}+\zeta_{i}^{2}\right) w_{1}+\sum_{i}\left(x_{i}{ }^{2}+\zeta_{i}{ }^{2}\right) w_{2}+\sum_{i} x_{i} \zeta_{i} w_{3}
$$

for some $w_{i} \in \boldsymbol{R}[x, \zeta]_{2 k-2}(i=1,2,3)$. Let $w_{i}=\sum_{j=0}^{2 k-2} w_{i, j}(i=1,2,3)$ be the decomposition of w_{i} into its homogeneous parts in the variables $\left(x_{2}, \cdots, x_{n+1}\right.$, $\left.\zeta_{2}, \cdots, \zeta_{n+1}\right), \operatorname{deg}_{2} w_{i, j}=j$ if $w_{i, j} \neq 0$. Assume that $\operatorname{deg}_{2} w=d<2 k$, and that there is d_{1} with $d-2<d_{1} \leq 2 k-2$ such that $w_{i, j}=0$ for all $j>d_{1}$ and i. By comparing the homogeneous parts of degree $d_{1}+2$ in the variables $\left(x_{2}, \cdots\right.$, $\left.x_{n+1}, \zeta_{2}, \cdots, \zeta_{n+1}\right)$, we have

$$
0=\sum_{i \geq 2}\left(x_{i}{ }^{2}+\zeta_{i}{ }^{2}\right) w_{1, d_{1}}+\sum_{i \geq 2}\left(x_{i}{ }^{2}-\zeta_{i}{ }^{2}\right) w_{2, d_{1}}+\sum_{i \geq 2} x_{i} \zeta_{i} w_{3, d_{1}} .
$$

Since the ideal $\left(\sum_{i \geq 2}\left(x_{i}{ }^{2}-\zeta_{i}{ }^{2}\right), \sum_{i \geq 2} x_{i} \zeta_{i}\right)$ is prime (cf. the proof of Lemma 3.6), we can find polynomials $v_{i} \in \boldsymbol{R}[x, \zeta]_{2 k-4}(i=1,2,3)$ such that they are homogeneous of degree $d_{1}-2$ in the variables $\left(x_{2}, \cdots, x_{n+1}, \zeta_{2}, \cdots, \zeta_{n+1}\right)$ and

$$
\begin{aligned}
& w_{1, d_{1}}=\sum_{i \geq 1}\left(x_{i}{ }^{2}-\zeta_{i}{ }^{2}\right) v_{2}+\sum_{i \geq 2} x_{i} \zeta_{i} v_{3} \\
& w_{2, d_{1}}=-\sum_{i \geq 2}\left(x_{i}{ }^{2}+\zeta_{i}{ }^{2}\right) v_{2}+\sum_{i \geq 2} x_{i} \zeta_{i} v_{1} \\
& w_{3, d_{1}}=-\sum_{i \geq 2}\left(x_{i}{ }^{2}+\zeta_{i}{ }^{2}\right) v_{3}-\sum_{i \geq 2}\left(x_{i}{ }^{2}-\zeta_{i}{ }^{2}\right) v_{1}
\end{aligned}
$$

Define $w_{i}^{\prime} \in \boldsymbol{R}[x, \zeta]_{2 k-2}(i=1,2,3)$ by the conditions;

$$
\begin{gathered}
w_{i}^{\prime}=\sum_{j=0}^{2 k-2} w_{i, j}^{\prime}, \quad w_{i, j}^{\prime}=w_{i, j}\left(j \neq d_{1}, d_{1}-2\right), \quad w_{i, d_{1}}^{\prime}=0 \\
w_{1, d_{1}-2}^{\prime}=w_{1, d_{1}-2}-\left(x_{1}^{2}-\zeta_{1}^{2}\right) v_{2}-x_{1} \zeta_{1} v_{3} \\
w_{2, d_{1}-2}^{\prime}=w_{2, d_{1}-2}-x_{1} \zeta_{1} v_{1}+\left(x_{1}^{2}+\zeta_{1}^{2}\right) v_{2} \\
w_{3, d_{1}-2}^{\prime}=w_{3, d_{1}-2}+\left(x_{1}^{2}-\zeta_{1}^{2}\right) v_{1}+\left(x_{1}^{2}+\zeta_{1}^{2}\right) v_{3}
\end{gathered}
$$

Then we have

$$
w=\sum_{i}\left(x_{i}{ }^{2}+\zeta_{i}{ }^{2}\right) w_{i}^{\prime}+\sum_{i}\left(x_{i}{ }^{2}-\zeta_{i}{ }^{2}\right) w_{2}^{\prime}+\sum_{i} x_{i} \zeta_{i} w_{3}^{\prime}
$$

and $\operatorname{deg}_{2} w_{i}^{\prime} \leq d_{1}-1 \quad(i=1,2,3)$. Therefore the lemma can be proved by induction on the integer d_{1}.

Corollary 4.9. Let $w \in \boldsymbol{R}[x, \zeta]_{2 k}-\{0\}(k \geq 2)$ be also homogeneous in
the variables $\left(x_{2}, \cdots, x_{n+1}, \zeta_{2}, \cdots, \zeta_{n+1}\right)$. Suppose that there are polynomials $v_{2 i} \in \boldsymbol{R}[x, \zeta]_{2 i}(0 \leq i \leq l, k \leq l)$ and $w^{\prime} \in \boldsymbol{R}[x, \zeta]_{2 k-2}$ such that $\operatorname{deg}_{2} v_{2 i}<\operatorname{deg}_{2} w$ ($k \leq i \leq l$) and

$$
\iota^{*} w=\iota^{*} \sum_{i=0}^{l} v_{2 i}+\iota^{*} w^{\prime}
$$

Then welongs to the ideal $\left(\sum_{i \geq 2} x_{i}{ }^{2}, \sum_{i \geq 2} \zeta_{i}{ }^{2}, \sum_{i \geq 2} x_{i} \zeta_{i}\right)$.
Proof. We can easily deduce from Lemma 3.6 that there are polynomials $u_{i} \in \boldsymbol{R}[x, \zeta]$ with $\operatorname{deg} u_{i} \leq 2 l-2(i=1,2,3)$ such that

$$
w-\sum_{i=0}^{l} v_{2 i}-w^{\prime}=\left(\sum_{i}\left(x_{i}^{2}+\zeta_{i}^{2}\right)-2\right) u_{1}+\sum_{i}\left(x_{i}^{2}-\zeta_{i}^{2}\right) u_{2}+\sum_{i} x_{i} \zeta_{i} u_{3} .
$$

Put

$$
u_{i}=\sum_{j=0}^{l-1} u_{i, 2 j}, \quad u_{i, 2 j} \in \boldsymbol{R}[x, \zeta]_{2 j}(i=1,2,3)
$$

Assume that $k<l$, and there is $j_{0}\left(k-1<j_{0} \leq l-1\right)$ such that

$$
\operatorname{deg}_{2} u_{i, 2 j}<\operatorname{deg}_{2} w-2
$$

for all $j>j_{0}$ and i. Take the homogeneous parts of degree $2 j_{0}+2$ in the above formula;

$$
\begin{aligned}
& -v_{2 j_{0}+2}+2 u_{1,2 j_{0}+2}=\sum_{i}\left(x_{i}^{2}+\zeta_{i}^{2}\right) u_{1,2 j_{0}}+\sum_{i}\left(x_{i}^{2}-\zeta_{i}^{2}\right) u_{2,2 j_{0}} \\
& \quad+\sum_{i} x_{i} \zeta_{i} u_{3,2 j_{0}}
\end{aligned}
$$

Since $\operatorname{deg}_{2}\left(-v_{2 j_{0}+2}+2 u_{1,2 j_{0}+2}\right)<\operatorname{deg}_{2} w$, we see by Lemma 4. 8 that there are polynomials $u_{i, 2 j_{0}}^{\prime} \in \boldsymbol{R}[x, \zeta]_{2 j_{0}}(i=1,2,3)$ such that $\operatorname{deg}_{2} u_{i, 2 j_{0}}^{\prime}<\operatorname{deg}_{2} w-2$ and

$$
\begin{aligned}
& -v_{2 j_{0}+2}+2 u_{1,2 j_{0}+2}=\sum_{i}\left(x_{i}{ }^{2}+\zeta_{i}{ }^{2}\right) u_{1,2 j_{0}}^{\prime}+\sum_{i}\left(x_{i}{ }^{2}-\zeta_{i}{ }^{2}\right) u_{2,2 j_{0}}^{\prime} \\
& \quad+\sum_{i} x_{i} \zeta_{i} u_{3,2 j_{0}}^{\prime}
\end{aligned}
$$

Since

$$
\begin{aligned}
& \sum_{i}\left(x_{i}^{2}+\zeta_{i}^{2}\right)\left(u_{1,2 j_{0}}^{\prime}-u_{1,2 j_{0}}\right)+\sum_{i}\left(x_{i}^{2}-\zeta_{i}^{2}\right)\left(u_{2,2 j_{0}}^{\prime}-u_{2,2 j_{0}}\right) \\
& \quad+\sum_{i} x_{i} \zeta_{i}\left(u_{3,2 j_{0}}^{\prime}-u_{3,2 j_{0}}\right)=0
\end{aligned}
$$

there are polynomials $\alpha_{i} \in \boldsymbol{R}[x, \zeta]_{2 j_{0}-2}(i=1,2,3)$ such that

$$
\begin{aligned}
& u_{1,2 j_{0}}^{\prime}=u_{1,2 j_{0}}+\sum_{i}\left(x_{i}^{2}-\zeta_{i}^{2}\right) \alpha_{2}+\sum_{i} x_{i} \zeta_{i} \alpha_{3} \\
& u_{2,2 j_{0}}^{\prime}=u_{2,2 j_{0}}-\sum_{i}\left(x_{i}^{2}+\zeta_{i}^{2}\right) \alpha_{2}+\sum_{i} x_{i} \zeta_{i} \alpha_{1}
\end{aligned}
$$

$$
u_{3,2 j_{0}}^{\prime}=u_{3,2 j_{0}}-\sum_{i}\left(x_{i}^{2}+\zeta_{i}{ }^{2}\right) \alpha_{3}-\sum_{i}\left(x_{i}^{2}-\zeta_{i}^{2}\right) \alpha_{1}
$$

Set $u_{1,2 j_{0}-2}^{\prime}=u_{1,2 j_{0}-2}, u_{2,2 j_{0}-2}^{\prime}=u_{2,2 j_{0}-2}+2 \alpha_{2}, u_{3,2 j_{0}-2}^{\prime}=u_{3,2 j_{0}-2}+2 \alpha_{3}$, and $u_{i, 2 j}^{\prime}=u_{i, 2 j}$ if $j \neq j_{0}, j_{0}-1 \quad(i=1,2,3)$. Then setting $u_{i}^{\prime}=\sum_{j=0}^{i-1} u_{i, 2 j}^{\prime}$ we have

$$
w-\sum_{j=0}^{l} v_{2 j}-w^{\prime}=\left(\sum_{i}\left(x_{i}{ }^{2}+\zeta_{i}{ }^{2}\right)-2\right) u_{1}^{\prime}+\sum_{i}\left(x_{i}{ }^{2}-\zeta_{i}{ }^{2}\right) u_{2}^{\prime}+\sum_{i} x_{i} \zeta_{i} u_{3}^{\prime}
$$

and $\operatorname{deg}_{2} u_{i, 2 j}^{\prime}<\operatorname{deg}_{2} w-2$ for all $j \geq j_{0}$ and i. Thus by induction on j_{0} we see that there are polynomials $u_{i}^{\prime \prime}=\sum_{j=0}^{l-1} u_{i, 2 j}^{\prime \prime}, u_{i, 2 j}^{\prime \prime} \in \boldsymbol{R}[x, \zeta]_{2 j}(i=1,2,3)$ such that

$$
w-\sum_{j=0}^{l} v_{2 j}-w^{\prime}=\left(\sum_{i}\left(x_{i}{ }^{2}+\zeta_{i}^{2}\right)-2\right) u_{i}^{\prime \prime}+\sum_{i}\left(x_{i}{ }^{2}-\zeta_{i}{ }^{2}\right) u_{2}^{\prime \prime}+\sum_{i} x_{i} \zeta_{i} u_{3}^{\prime \prime}
$$

and

$$
\operatorname{deg}_{2} u_{i, 2 j}^{\prime \prime}<\operatorname{deg}_{2} w-2
$$

for all $j \geq k$ and i.
In case $k=l$ we put $u_{i}^{\prime \prime}=u_{i}(i=1,2,3)$. Consider the homogeneous parts of degree $2 k$;

$$
\begin{aligned}
& w-v_{2 k}+2 u_{1,2 k}^{\prime \prime}=\sum_{i}\left(x_{i}{ }^{2}+\zeta_{i}{ }^{2}\right) u_{1,2 k-2}^{\prime \prime}+\sum_{i}\left(x_{i}{ }^{2}-\zeta_{i}^{2}\right) u_{2,2 k-2}^{\prime \prime} \\
& \quad+\sum_{i} x_{i} \zeta_{i} u_{3,2 k-2}^{\prime \prime}
\end{aligned}
$$

$\left(u_{1,2 k}^{\prime \prime}=0\right.$ if $\left.k=l\right)$. Since $\operatorname{deg}_{2}\left(w-v_{2 k}+2 u_{1,2 k}^{\prime \prime}\right) \leq \operatorname{deg}_{2} w$, we may assume that $\operatorname{deg}_{2} u_{i, 2 k-2}^{\prime \prime} \leq \operatorname{deg}_{2} w-2(i=1,2,3)$ by Lemma 4.8. Then, by taking the homogeneous parts of degree $\operatorname{deg}_{2} w$ in the variables $\left(x_{2}, \cdots, x_{n+1}, \zeta_{2}, \cdots, \zeta_{n+1}\right)$ in the above formula, we have

$$
w \in\left(\sum_{i \geq 2}\left(x_{i}{ }^{2}+\zeta_{i}{ }^{2}\right), \sum_{i \geq 2}\left(x_{i}^{2}-\zeta_{i}{ }^{2}\right), \sum_{i \geq 2} x_{i} \zeta_{i}\right) .
$$

Let V and V^{\prime} be as before Corollary 4.7. We remark that V^{\prime} is also defined as the direct sum of vector spaces $Q_{2 p^{\prime}, 2 q^{\prime}}$ in $G\left(P_{4 m+2}\right)$ such that $N_{2 p^{\prime}, 2 q^{\prime}}=N_{2 p, 2 q}$ and $q^{\prime} \geq q$. This can be easily seen from the fact that $k \rightarrow$ $N_{2 k, 2 l}, l \rightarrow N_{2 k, 2 l}$, and $l \rightarrow N_{2 k+2 l 2 k-2 l}$ are monotonously increasing.

Corollary 4. 10. Take $u_{1} \in \boldsymbol{R}[x]_{2 k+1}$ and $u_{2} \in \boldsymbol{R}[x]_{2 l+1}$ such that $l \leq k \leq$ $m, q \leq l$, and $k+l+1=p+q$. Suppose that u_{1} and u_{2} are also homogeneous in the variables $\left(x_{2}, \cdots, x_{n+1}\right)$ and $\operatorname{deg}_{2} u_{1}+\operatorname{deg}_{2} u_{2}=d$. Furthermore suppose that there are polynomials $v_{i}, w_{i} \in \boldsymbol{R}[x]_{\text {od }}(i=1, \cdots, r)$ such that $\operatorname{deg} v_{i} \leq$ $2 m+1$, $\operatorname{deg} w_{i} \leq 2 m+1, \operatorname{deg}_{2} v_{i}+\operatorname{deg}_{2} w_{i}<d(i=1, \cdots, r)$, and

$$
\left(G_{\iota} * F\left(u_{1}, u_{2}\right)\right)_{V^{\prime}}=\sum_{i=1}^{r}\left(G_{\iota} * F\left(v_{i}, w_{i}\right)\right)_{V^{\prime}}
$$

Then the polynomial

$$
\sum_{j=l-q}^{l} a_{j-(l-q)}^{k-l+2+2(l-q)} \widetilde{G} F_{j}\left(u_{1}, u_{2}\right)
$$

belongs to the ideal $\left(\sum_{i \geq 2} x_{i}{ }^{2}, \sum_{i \geq 2} \zeta_{i}{ }^{2}, \sum_{i \geq 2} x_{i} \zeta_{i}\right)$
Proof. Since $\operatorname{deg} \tilde{G F}\left(u_{1}, u_{2}\right) \leq 2 p+2 q$, and since $V^{\prime} \cap G\left(P_{2 p+2 q}\right)=Q_{2 p, 2 q}$, it follows that

$$
\left(G_{\iota} * F\left(u_{1}, u_{2}\right)\right)_{V^{\prime}}=\left(G_{\iota} * F\left(u_{1}, u_{2}\right)\right)_{Q_{2 p, 2 q}}
$$

As we have seen in the proof of Lemma 3.5,

$$
\begin{aligned}
& \left(G_{\ell} *\right. \\
& \left.\quad F\left(u_{1}, u_{2}\right)\right)_{Q_{2 p, 2 q}} \\
& \quad=-(2 k+3) d_{l-q}^{k, l}\left(G_{\iota} * \sum_{j=l-q}^{l} a_{j-(l-q)}^{k-l+2+2(l-q)} F_{j}\left(u_{1}, u_{2}\right)\right)_{G\left(Q_{2 p+2 q}\right)}
\end{aligned}
$$

Hence there is $\alpha_{1} \in \boldsymbol{R}[x, \zeta]_{2 p+2 q-2}$ such that

$$
\begin{aligned}
& \left(G \iota^{*} F\left(u_{1}, u_{2}\right)\right)_{V^{\prime}} \\
& \quad=\iota^{*}\left\{-(2 k+3) d_{l-q}^{k, l} \sum_{j=l-q}^{l} a_{j-(l-q)}^{k-l+2+2(l-q)} \widetilde{G} F_{j}\left(u_{1}, u_{2}\right)+\alpha_{1}\right\} .
\end{aligned}
$$

On the other hand, it follows from Corollary 4.7 that there are polynomials $\beta \in \boldsymbol{R}[x, \zeta]$ and $\alpha_{2} \in \boldsymbol{R}[x, \zeta]_{2 p+2 q-2}$ such that $\operatorname{deg} \beta \leq 4 m+2$, $\operatorname{deg}_{2} \beta<d$, and

$$
\sum_{i=1}^{r}\left(G_{\iota} * F\left(v_{i}, w_{i}\right)\right)_{V^{\prime}}=\iota^{*}\left(\beta+\alpha_{2}\right)
$$

Therefore the corollary follows from Corollary 4.9.
Let $\nu=\left(\nu_{2}, \cdots, \nu_{n+1}\right) \in C^{n}-\{0\}$ satisfy $\sum_{i=2}^{n+1} \nu_{i}{ }^{2}=0$. Define a homomorphism $\boldsymbol{C}[x, \zeta] \rightarrow \boldsymbol{C}\left[x_{1}, x_{2}, \zeta_{1}, \zeta_{2}\right] \quad\left(u \rightarrow u^{\nu}\right)$ by

$$
u^{\nu}\left(x_{1}, x_{2}, \zeta_{1}, \zeta_{2}\right)=u\left(x_{1}, \nu_{2} x_{2}, \cdots, \nu_{n+1} x_{2}, \zeta_{1}, \nu_{2} \zeta_{2}, \cdots, \nu_{n+1} \zeta_{2}\right)
$$

The following formulas are easily verified:

$$
\begin{aligned}
& \sum_{i=1}^{2} x_{i} \frac{\partial u^{\nu}}{\partial \zeta_{i}}=\left(\sum_{i=1}^{n+1} x_{i} \frac{\partial u}{\partial \zeta_{i}}\right)^{\nu}, \quad F_{j}\left(u_{1}^{\nu}, u_{2}^{\nu}\right)=F_{j}\left(u_{1}, u_{2}\right)^{\nu}, \\
& \tilde{G}\left(u^{\nu}\right)=(\tilde{G} u)^{\nu}, \quad u \in C[x, \zeta], \quad u_{1}, u_{2} \in \boldsymbol{C}[x]
\end{aligned}
$$

Lemma 4.11. Under the same assumptions and terminologies as in Corollary 4. 10, we have

$$
\left(G_{\iota}^{*} F_{l-q}\left(u_{1}^{\nu}, u_{2}^{\nu}\right)\right)_{\boldsymbol{Q}_{2 p, 2 q}}=0
$$

Proof. Since the ideal $\left(\sum_{i \geq 2} x_{i}^{2}, \sum_{i \geq 2} \zeta_{i}^{2}, \sum_{i \geq 2} x_{i} \zeta_{i}\right)$ in $\boldsymbol{C}[x, \zeta]$ is contained in the kernel of the homomorphism

$$
\boldsymbol{C}[x, \zeta] \longrightarrow \boldsymbol{C}\left[x_{1}, x_{2}, \zeta_{1}, \zeta_{2}\right] \quad\left(u \rightarrow u^{\nu}\right),
$$

we have

$$
\sum_{j=l-q}^{l} a_{j-(l-q)}^{k-l+2+2 l-q)} \tilde{G} F_{j}\left(u_{1}^{\nu}, u_{2}{ }^{\nu}\right)=0
$$

by Corollary 4. 10. Since

$$
\begin{aligned}
& \left.\left(G_{l} * F_{l-q}\left(u_{1}^{\nu}, u_{2}^{\nu}\right)\right)\right)_{Q_{2 p, 2 q}} \\
& \quad=\left(G_{l} * \sum_{j=l-q}^{l} a_{j-(l-q)}^{k-l+2+2 l-q)} F_{j}\left(u_{1}^{\nu}, u_{2}^{\nu}\right)\right)_{G\left(Q_{2 p+2 q}\right)},
\end{aligned}
$$

the lemma follows.
Proof of Proposition 4.5, Let V_{1} (resp. V_{1}^{\prime}) be the direct sum of vector spaces $Q_{2 p, 2 q} \cap G\left(P_{4 m+2}\right)$ such that $N_{2 p, 2 q}=N_{4 i_{0}-2,4}$ (resp. $N_{2 p, 2 q}=N_{4 i_{0}-2,4}$ and $q \geq 2$). Since V_{1}^{\prime} is orthogonal to $G\left(P^{2}\right)$ and $G\left(P_{4 i_{0}}\right)$, we have

$$
\begin{aligned}
0 & =\left(G \iota^{*} F(f, f)\right)_{V_{1}^{\prime}} \\
& =\left(G \iota * F\left(h_{2 i_{0}+1}, h_{2 i_{0}+1}\right)\right)_{V_{1}^{\prime}}+2\left(G \iota * F\left(h_{2 i_{0}+1}, f_{2 i_{0}+1}-h_{2 i_{0}+1}\right)\right)_{V_{1}^{\prime}} \\
& +\left(G \imath^{*} F\left(f_{2 i_{0}+1}-h_{2 i_{0}+1}, f_{2 i_{0}+1}-h_{2 i_{0}+1}\right)\right)_{V_{1}^{\prime}} \\
& +\sum\left(G \imath * F\left(f_{2 i+1}, f_{2 j+1}\right)\right)_{V_{1}^{\prime}}
\end{aligned}
$$

where the sum in the last term is taken over all 2 -tuples of integers ($i . j$) such that $2 \leq i, j \leq m, i+j \geq 2 i_{0},(i, j) \neq\left(i_{0}, i_{0}\right)$. For such (i, j) we have $\operatorname{deg}_{2} f_{2 i+1}$ $+\operatorname{deg}_{2} f_{2 j+1}<2 d_{i_{0}}$ by the definition of i_{0}. Hence it follows from Lemma 4. 11 that

$$
\left(G l^{*} F_{i_{0}-2}\left(h_{2 i_{0}+1}^{\nu}, h_{2 i_{0}+1}^{\nu}\right)\right)_{Q_{4 i_{0}-2,4}}=0 .
$$

Since $h_{2 i_{0}+1} \neq 0$ and the degree of $h_{2 i_{0}+1}$ in the variable x_{n+1} is at most 1 , it follows that $h_{2 i_{0}+1}$ does not belong to the ideal $\left(\sum_{i \geq 2} x_{i}^{2}\right)$ in $C[x]$. This ideal being prime, we can choose $\nu=\left(\nu_{2}, \cdots, \nu_{n+1}\right) \in \boldsymbol{C}^{n}-\{0\}$ with $\sum_{i \geq 2} \nu_{i}{ }^{2}=0$ such that $h_{2 i_{0}+1}^{\nu} \neq 0$. Then by Proposition 3.8 (ii)
$\therefore \quad \therefore:: \omega_{2} \ldots \cdot: \cdot h_{2 i_{0}+1}^{\nu}=\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}\right)^{2 i_{0}}\left(\beta_{1} x_{1}+\beta_{2} x_{2}\right)$
for some $\alpha_{1}, \alpha_{2} . \beta_{1} . \beta_{2} \in C$. On the other hand, $h_{2 i_{0}+1}^{\nu}$ must be of the form
by the definition of $h_{2 i_{0}+1}$. Since $i_{0} \geq 2$ and $d_{i_{0}} \geq 2$, we can conclude that

$$
d_{i_{0}}=2 i_{0} \text { or } 2 i_{0}+1
$$

Let V_{2} (resp. V_{2}^{\prime}) be the direct sum of vector spaces $Q_{2 p, 2 q}$ in $G\left(P_{4 m+2}\right)$ such that $N_{2 p, 2 q}=N_{2 i_{0}+2 i_{1}-2,4}$ (resp. $N_{2 p, 2 q}=N_{2 i_{0}+2 i_{1}-2,4}$ and $q \geq 2$). Then we have

$$
\begin{aligned}
0 & =\left(G \iota^{*} F(f, f)\right)_{V_{2}^{\prime}} \\
& =2\left(G \iota^{*} F\left(h_{2 i_{1}+1}, h_{2 i_{0}+1}\right)\right)_{V_{2}^{\prime}}+2\left(G_{\iota} * F\left(h_{2 i_{1}+1}, f_{2 i_{0}+1}-h_{2 i_{0}+1}\right)\right)_{V_{2}^{\prime}} \\
& +2\left(G \iota^{*} F\left(f_{2 i_{1}+1}-h_{2 i_{1}+1}, h_{2 i_{0}+1}\right)\right)_{V_{2}^{\prime}}+2\left(G_{\iota} * F\left(f_{2 i_{1}+1}-h_{2 i_{1}+1}, f_{2 i_{0}+1}-h_{2 i_{0}+1}\right)\right)_{V_{2}^{\prime}} \\
& +\sum\left(G^{*} F\left(f_{2 i+1}, f_{2 j+1}\right)\right)_{V_{2}^{\prime}}
\end{aligned}
$$

where the sum in the last term is taken over all 2 -tuples of integers: (i, j) such that $2 \leq i, j \leq m, i_{0}+i_{1} \leq i+j,\{i, j\} \neq\left\{i_{0}, i_{1}\right\}$. For such (i, j) we easily see that

$$
\operatorname{deg}_{2} f_{2 i+1}+\operatorname{deg}_{2} f_{2 j+1}<d_{i_{0}}+d_{i_{1}}
$$

Hence it follows from Lemma 4. 11 that

$$
\left(G \iota^{*} F_{i_{0}-2}\left(h_{2 i_{1}+1}^{\nu}, h_{2 i_{0}+1}^{\nu}\right)\right)_{Q_{2 i_{0}+2 i_{1}-2,4}}=0
$$

for each $\nu=\left(\nu_{2}, \cdots, \nu_{n+1}\right) \in C^{n+1}-\{0\}$ with $\sum_{i \geq 2} \nu_{i}^{2}=0$. We can choose ν such that $h_{2 i_{0}+1}^{\nu}$ and $h_{2 i_{1}+1}^{\nu}$ do not vanish. We shall consider the two cases separately ; I) $d_{i_{0}}=2 i_{0}+1$, II) $d_{i_{0}}=2 i_{0}$.
I. $d_{i_{0}}=2 i_{0}+1$. In this case, $h_{2 i_{0}+1}^{\nu}=c_{0} x_{2}^{2 i_{0}+1}$ and $h_{2 i_{1}+1}^{\nu}=c_{1} x_{1}^{2 i_{1}+1-d_{i_{1}}} x_{2}^{d_{i_{1}}}$ $\left(c_{0}, c_{1} \in \boldsymbol{C}-\{0\}\right)$. Then we have

$$
\begin{aligned}
0 & =\left(G_{c}^{*} F_{i_{0}-2}\left(x_{1}^{\left.2 i_{1}+1-d_{i_{1}} x_{2}^{d} i_{1}, x_{2}^{2 i_{0}+1}\right)}\right)_{Q_{2 i_{0}+2 i_{1}-2,4}}\right. \\
& =\frac{\left(2 i_{0}+1\right)!}{4!}\left(G_{c} *\left(x_{1}^{2 i_{1}+1-d_{i_{1}}} x_{2}^{\left.2 i_{0}-3+d_{i_{1}} \zeta_{2}{ }^{4}\right)}\right)_{Q_{2 i_{0}+2 i_{1}-2,4}}\right.
\end{aligned}
$$

In view of Lemma 3.9 the last term does not vanish if $2 i_{1}+1-d_{i_{1}} \geq 4$. Thus we have $d_{i_{1}} \geq 2 i_{1}-2$. On the other hand, the definition of $d_{i_{1}}$ implies that $d_{i_{1}} \leq d_{i_{0}}-1=2 i_{0} \leq 2 i_{1}-2$. Therefore it follows that

$$
d_{i_{1}}=2 i_{1}-2, \quad i_{1}=i_{0}+1
$$

Since $d_{i_{1}} \geq 4$ in this case, it follows that $i_{1} \neq m$. Let $i_{2}\left(i_{1}<i_{2} \leq m\right)$ be the index such that $d_{i} \leq d_{i_{2}}$ if $i_{1}<i \leq i_{2}$ and $d_{i}<d_{i_{2}}$ if $i_{2}<i \leq m$. Then there are three cases; I-1) $\quad d_{i_{2}} \leq d_{i_{1}}-2$, I-2) $\quad d_{i_{2}}=d_{i_{1}}-1, \quad i_{2} \geq i_{1}+2$, I-3) $\quad d_{i_{2}}=d_{i_{1}}-1$; $i_{2}=i_{1}+1$.

I-1. $\quad d_{i_{2}} \leq d_{i_{1}}-2$. Let V_{3} (resp. V_{3}^{\prime}) be the direct sum of vector sapces
$Q_{2 p, 2 q}$ in $G\left(P_{4 m+2}\right)$ such that $N_{2 p, 2 q}=N_{4 i_{1}-2,4}$ (resp. $N_{2 p, 2 q}=N_{4 i_{1}-2,4}$ and $q \geq 2$).
Then we have

$$
\begin{aligned}
0 & =\left(G \iota^{*} F(f, f)\right)_{V_{3}^{\prime}} \\
& =\left(G \iota * F\left(h_{2 i_{1}+1}, h_{2 i_{1}+1}\right)\right)_{V_{3}^{\prime}}+2\left(G \iota * F\left(f_{2 i_{1}+1}-h_{2 i_{1}+1}, h_{2 i_{1}+1}\right)\right)_{V_{3}^{\prime}} \\
& +\left(G \iota * F\left(f_{2 i_{1}+1}-h_{2 i_{1}+1}, f_{2 i_{1}+1}-h_{2 i_{1}+1}\right)\right)_{V_{3}^{\prime}}+\sum\left(G \iota * F\left(f_{2 i+1}, f_{2 j+1}\right)\right)_{V_{3}^{\prime}}
\end{aligned}
$$

where the sum in the last term is taken over all 2 -tuples of integers (i, j) such that $2 \leq i, j \leq m, i+j \geq 2 i_{1},(i, j) \neq\left(i_{1}, i_{1}\right)$. If $(i, j)(i \geq j)$ satisfies these conditions, then $i>i_{1}$, and hence

$$
\operatorname{deg}_{2} f_{2 i+1} \leq d_{i_{2}} \leq d_{i_{1}}-2
$$

Thus it follows that

$$
\operatorname{deg}_{2} f_{2 i+1}+\operatorname{deg}_{2} f_{2 j+1} \leq d_{i_{1}}-2+d_{i_{0}}=2 d_{i_{1}}-1
$$

Then we have by Lemma 4. 11

$$
\left(G_{\ell^{*}}^{*} F_{i_{1}-2}\left(h_{2 i_{1}+1}^{\nu}, h_{2 i_{1}+1}^{\nu}\right)\right)_{Q_{4 i_{1}-2,4}}=0 .
$$

We can choose ν such that $h_{2 i_{1}+1}^{\nu} \neq 0$. Since $2 i_{1}-2 \geq 4$ and

$$
h_{2 i_{1}+1}^{\nu}=c x_{1}^{2 i_{1}+1-d_{i_{1}} x_{2} d_{i_{1}}=c x_{1}^{3} x_{2}^{2 i_{1}-2} \quad(c \in C-\{0\}), ~, ~, ~}
$$

the above formula contradicts Proposition 3.8 (iii).
I-2. $\quad d_{i_{2}}=d_{i_{1}}-1, i_{2} \geq i_{1}+2$. Let V_{4} (resp. V_{4}^{\prime}) be the direct sum of $Q_{2 p, 2 q}$ in $G\left(P_{4 m+2}\right)$ such that $N_{2 p, 2 q}=N_{2 i_{0}+2 i_{2}-2,4}$ (resp. $N_{2 p, 2 q}=N_{2 i_{0}+2 i_{2}-2,4}$ and $q \geq 2$). Then we have

$$
\begin{aligned}
0 & =\left(G \iota^{*} F(f, f)\right)_{V_{4}^{\prime}} \\
& =2\left(G \iota^{*} F\left(h_{2 i_{2}+1}, h_{2 i_{0}+1}\right)\right)_{V_{4}^{\prime}}+2\left(G \iota^{*} F\left(f_{2 i_{2}+1}-h_{2 i_{2}+1}, h_{2 i_{0}+1}\right)\right)_{V_{4}^{\prime}} \\
& +2\left(G \iota^{*} F\left(h_{2 i_{2}+1}, f_{2 i_{0}+1}-h_{2 i_{0}+1}\right)\right)_{V_{4}^{\prime}} \\
& +2\left(G \iota^{*} F\left(f_{2 i_{2}+1}-h_{2 i_{2}+1}, f_{2 i_{0}+1}-h_{2 i_{0}+1}\right)\right)_{V_{4}^{\prime}} \\
& +\sum\left(G \iota^{*} F\left(f_{2 i+1}, f_{2 j+1}\right)\right)_{V_{4}^{\prime}}
\end{aligned}
$$

where the sum in the last term is taken over all 2 -tuples of integers (i, j) such that $2 \leq i, j \leq m, i+j \geq i_{0}+i_{2}, \quad\{i, j\} \neq\left\{i_{0}, i_{2}\right\}$. Let (i, j) be such 2 -tuple and assume that $i \geq j$. Since $i_{2} \geq i_{1}+2$, it follows that $i>i_{1}$. Hence we have either $i_{1}<i \leq i_{2}$ and $i_{0}<j$ or $i_{2}<i$. In any case we have

$$
\operatorname{deg}_{2} f_{2 i+1}+\operatorname{deg}_{2} f_{2 j+1} \leq d_{i_{0}}+d_{i_{2}}-1
$$

Thus by applying Lemma 4, 11 we have

$$
\left(G l * F_{i_{0}-2}\left(h_{2 i_{2}+1}^{\nu}, h_{2 i_{0}+1}^{\nu}\right)\right)_{Q_{2 i_{0}+2 i_{2}-2,4}}=0 .
$$

We can choose ν such that $h_{2 i_{0}+1}^{\nu} \neq 0$ and $h_{2 i_{2}+1}^{\nu} \neq 0$. Since $h_{2 i_{0}+1}^{\nu}=c_{0} x_{2}^{2 i_{0}+1}$

$$
\left(G_{l}^{*}\left(x_{1}^{2 i_{2}+1-d_{i_{2}}} x_{2}^{2 i_{0}-3+d_{i_{2}} \zeta_{2}^{4}}\right)\right)_{2 i_{0}+2 i_{2}-2,4}=0
$$

But, since $2 i_{2}+1-d_{i_{2}} \geq 2 i_{1}+5-\left(d_{i_{1}}-1\right)=8$, this contradicts Lemma 3.9.
I-3. $d_{i_{2}}=d_{i_{1}}-1, i_{2}=i_{1}+1$. Let V_{3} and V_{3}^{\prime} be as before. In this case we have

$$
\begin{aligned}
0 & =\left(G \iota^{*} F(f, f)\right)_{V_{3}^{\prime}} \\
& =\left(G_{\iota} * F\left(h_{i_{1}+1}, h_{2 i_{1}+1}\right)\right)_{V_{3}^{\prime}}+2\left(G \iota^{*} F\left(h_{2 i_{2}+1}, h_{2 i_{0}+1}\right)\right)_{V_{3}^{\prime}} \\
& +2\left(G_{\iota} * F\left(f_{2 i_{1}+1}-h_{2 i_{1}+1}, h_{2 i_{1}+1}\right)\right)_{V_{3}^{\prime}}+\left(G \iota^{*} F\left(f_{2 i_{1}+1}-h_{2 i_{1}+1}, f_{2 i_{1}+1}-h_{2 i_{1}+1}\right)\right)_{V_{3}^{\prime}} \\
& +2\left(G \iota^{*} F\left(f_{2 i_{2}+1}-h_{2 i_{2}+1}, h_{2 i_{0}+1}\right)\right)_{V_{3}^{\prime}}+2\left(G_{\iota} * F\left(h_{2 i_{2}+1}, f_{2 i_{0}+1}-h_{2 i_{0}+1}\right)\right)_{V_{3}^{\prime}} \\
& +2\left(G \iota^{*} F\left(f_{2 i_{2}+1}-h_{2 i_{2}+1}, f_{2 i_{0}+1}-h_{2 i_{0}+1}\right)\right)_{V_{3}^{\prime}}+\sum\left(G \iota^{*} F\left(f_{2 i+1}, f_{2 j+1}\right)\right)_{V_{3}^{\prime}}
\end{aligned}
$$

where the sum in the last term is taken over all 2 -tuples of integers (i, j) such that $2 \leq i, j \leq m, i+j \geq 2 i_{1},(i, j) \neq\left(i_{1}, i_{1}\right),\left(i_{0}, i_{2}\right),\left(i_{2}, i_{0}\right)$. For such (i, j) we have

$$
\operatorname{deg}_{2} f_{2 i+1}+\operatorname{deg}_{2} f_{2 j+1} \leq 2 d_{i_{1}}-1
$$

Since

$$
\begin{aligned}
& \left(G_{l}^{*} F\left(h_{2 i_{1}+1}, h_{i_{1}+1}\right)\right)_{V_{3}^{\prime}} \\
& =-\left(2 i_{1}+3\right) d_{i_{1}-2}^{i_{1}, i_{1}}\left(G_{c}^{*} F_{i_{1}-2}\left(h_{2 i_{1}+1}, h_{2 i_{1}+1}\right)\right)_{\mathcal{Q i}_{i_{1}-2,4}}, \\
& \left(G l^{*} F\left(h_{2 i_{2}+1}, h_{2 i_{0}+1}\right)\right)_{V_{3}^{\prime}} \\
& =-\left(2 i_{2}+3\right) d_{i_{0}-2}^{i_{2}, i_{0}}\left(G_{l}^{*} F_{i_{0}-2}\left(h_{2 i_{2}+1}, h_{2 i_{0}+1}\right)\right)_{Q_{4 i_{1}-2,4}},
\end{aligned}
$$

it is easily seen from the proof of Lemma 4. 11 that

$$
\begin{aligned}
& \left(2 i_{1}+3\right) d_{i_{1}-2}^{i_{1}, i_{1}}\left(G_{l} * F_{i_{1}-2}\left(h_{2 i_{1}+1}^{\nu}, h_{2 i_{1}+1}^{\nu}\right)\right)_{Q i_{i_{1}-2,4}} \\
& \quad+2\left(2 i_{2}+3\right) d_{i_{0}-2}^{i_{0}, i_{0}}\left(G \iota^{*} F_{i_{0}-2}\left(h_{2 i_{2}+1}^{\nu}, h_{2 i_{0}+1}^{\nu}\right)\right)_{Q 4 i_{1}-2,4}=0 .
\end{aligned}
$$

Fix $\nu=\left(\nu_{2}, \cdots, \nu_{n+1}\right) \in C^{n}-\{0\}$ with $\sum_{i \geq 2} \nu_{i}{ }^{2}=0$ such that $h_{2 i_{0}+1}^{\nu}, h_{2 i_{1}+1}^{\nu}, h_{2 i_{2}+1}^{\nu}$ do not vanish. Then

$$
\begin{array}{ll}
h_{2 i_{0}+1}^{\nu}=c_{0} x_{2}^{2 i_{0}+1}, & h_{2 i_{1}+1}^{\nu}=c_{1} x_{1}^{3} x_{2}^{2 i_{1}-2} \\
h_{2 i_{2}+1}^{\nu}=c_{2} x_{1}^{6} x_{2}^{2 i_{2}-5} & \left(c_{0}, c_{1}, c_{2} \in C-\{0\}\right)
\end{array}
$$

We have

$$
\begin{aligned}
& \left(G \iota^{*} F_{i_{0}-2}\left(h_{2 i_{2}+1}^{\nu}, h_{2 i_{0}+1}^{\nu}\right)\right)_{Q_{4 i_{1}-2,4}}=\frac{\left(2 i_{0}+1\right)!}{4!} c_{0} c_{2}\left(G_{\iota} *\left(x_{1}^{6} x_{2}^{4 i_{1}-8} \zeta_{2}^{4}\right)\right)_{Q_{4 i_{1}-2,4}} \\
& \left(G \iota^{*} F_{i_{1}-2}\left(h_{2 i_{1}-1}^{\nu}, h_{2 i_{1}+1}^{\nu}\right)\right)_{Q_{4 i_{1}-2,4}}=A_{3,3}^{i_{1}} c_{1}{ }^{2}\left(\epsilon^{*}\left(x_{1}^{6} x_{2}^{4 i_{1}-8} \zeta_{2}^{4}\right)\right)_{Q_{4 i_{1}-2,4}}
\end{aligned}
$$

by the proof of Proposition 3. 8, where $A_{3,3}^{i_{1}}=\frac{\left(2 i_{1}-1\right)!}{5!}\left(2 i_{1}-2\right)\left(2 i_{1}-3\right)$. Since $\left(G_{\iota}{ }^{*}\left(x_{1}{ }^{6} x_{2}^{4 i_{1}-8} \zeta_{2}{ }^{4}\right)\right)_{Q_{4 i_{1}-2,4}} \neq 0$ by Lemma 3.9, it follows that

$$
\frac{1}{5}\left(2 i_{1}+3\right)\left(2 i_{1}-2\right)\left(2 i_{1}-3\right) d_{i_{1}-2}^{i_{1}, i_{1}} c_{1}^{2}+2\left(2 i_{2}+3\right) d_{i_{0}-2}^{i_{2}, i_{0}} c_{0} c_{2}=0
$$

In particular we have $c_{0} c_{2} c_{1}^{-2}<0$.
Let V_{5} (resp. V_{5}^{\prime}) be the direct sum of vector spaces $Q_{2 p, 2 q}$ in $G\left(P_{4 m+2}\right)$ such that $N_{2 p, 2 q}=N_{4 i_{1}-4,6}\left(\right.$ resp. $N_{2 p, 2 q}=N_{4 i_{1}-4,6}$ and $q \geq 3$). Since V_{5}^{\prime} is orthogonal to $G\left(P^{2}\right)$ and $G\left(P_{4 i_{1}}\right)$, we have

$$
\begin{aligned}
0 & =\left(G \iota^{*} F(f, f)\right)_{V_{5}^{\prime}} \\
& =\left(G \iota^{*} F\left(h_{2 i_{1}+1}, h_{2 i_{1}+1}\right)\right)_{V_{5}^{\prime}}+2\left(G_{\iota} * F\left(h_{2 i_{2}+1}, h_{2 i_{0}+1}\right)\right)_{V_{5}^{\prime}} \\
& +2\left(G_{\iota} * F\left(f_{2 i_{1}+1}-h_{2 i_{1}+1}, h_{2 i_{1}+1}\right)\right)_{V_{5}^{\prime}}+2\left(G_{\iota} * F\left(f_{2 i_{1}+1}-h_{2 i_{1}+1}, f_{2 i_{1}+1}-h_{2 i_{1}+1}\right)\right)_{V_{5}^{\prime}} \\
& +2\left(G_{\iota} * F\left(f_{2 i_{2}+1}-h_{2 i_{2}+1}, h_{2 i_{0}+1}\right)\right)_{V_{5}^{\prime}}+2\left(G_{\iota} * F\left(h_{2 i_{2}+1}, f_{2 i_{0}+1}-h_{2 i_{0}+1}\right)\right)_{V_{5}^{\prime}} \\
& +2\left(G_{\iota} * F\left(f_{2 i_{2}+1}-h_{2 i_{2}+1}, f_{2 i_{0}+1}-h_{2 i_{0}+1}\right)\right)_{V_{5}^{\prime}}+\sum\left(G_{\iota} * F\left(f_{2 i+1}, f_{2 j+1}\right)\right)_{V_{5}^{\prime}}
\end{aligned}
$$

where the sum in the last term is taken over all 2 -tuples of integers (i, j) such that $2 \leq i, j \leq m, i+j \geq 2 i_{1},(i, j) \neq\left(i_{1}, i_{1}\right),\left(i_{0}, i_{2}\right),\left(i_{2}, i_{0}\right)$. For such (i, j) we have

$$
\operatorname{deg}_{2} f_{2 i+1}+\operatorname{deg}_{2} f_{2 j+1} \leq 2 d_{i_{1}}-1
$$

Since

$$
\begin{aligned}
& \left(G \iota^{*} F\left(h_{2 i_{1}+1}, h_{2 i_{1}+1}\right)\right)_{V_{5}^{\prime}}=-\left(2 i_{1}+3\right) d_{i_{1}-3}^{i_{1}, i_{1}}\left(G_{\iota} * F_{i_{1}-3}\left(h_{2 i_{1}+1}, h_{2 i_{1}+1}\right)\right)_{Q_{4 i_{1}-4,6}} \\
& \left(G \iota^{*} F\left(h_{2 i_{2}+1}, h_{2 i_{0}+1}\right)\right)_{V_{5}^{\prime}}=-\left(2 i_{2}+3\right) d_{i_{0}-3}^{i_{2}, i_{0}}\left(G_{\iota} * F_{i_{0}-3}\left(h_{2 i_{2}+1}, h_{2 i_{0}+1}\right)\right)_{Q_{4 i_{1}-4,6}}
\end{aligned}
$$

it follows from the proof of Lemma 4. 11 that

$$
\begin{aligned}
& \left(2 i_{1}+3\right) d_{i_{1}-3}^{i_{1}, i_{1}}\left(G \iota^{*} F_{i_{1}-3}\left(h_{2 i_{1}+1}^{\nu}, h_{2 i_{1}+1}^{\nu}\right)\right)_{Q_{4 i_{1}-4,6}} \\
& \quad+2\left(2 i_{2}+3\right) d_{i_{0}-3}^{i_{2}, i_{0}}\left(G \iota^{*} F_{i_{0}-3}\left(h_{2 i_{2}+1}^{\nu}, h_{2 i_{0}+1}^{\nu}\right)\right)_{Q_{4 i_{1}-4,6}}=0,
\end{aligned}
$$

where ν is the same one as above, and $d_{i_{0}-3}^{i_{2}, i_{0}}$ is considered to be zero in case $i_{0}=2$. We have

$$
\begin{array}{r}
\left(G \iota^{*} F_{i_{0}-3}\left(h_{2 i_{2}+1}^{\nu}, h_{2 i_{0}+1}^{\nu}\right)\right)_{Q_{4 i_{1}-4,6}}=\frac{\left(2 i_{0}+1\right)!}{6!} c_{0} c_{2}\left(G_{\iota}^{*}\left(x_{1}^{6} x_{2}^{4 i_{1}-10} \zeta_{2}^{6}\right)\right)_{Q_{4 i_{1}-4,6}} \\
\left(i_{0} \neq 2\right), \\
\left(G \iota^{*} F_{i_{1}-3}\left(h_{2 i_{1}+1}^{\nu}, h_{2 i_{1}+1}^{\nu}\right)\right)_{Q_{4 i_{1}-4,6}}=c_{1}{ }^{2}\left(\epsilon_{\iota} * F_{i_{1}-3}\left(x_{1}^{3} x_{2}^{2 i_{1}-2}, x_{1}^{3} x_{2}^{2 i_{1}-2}\right)\right)_{Q_{4 i_{1}-4,6}} .
\end{array}
$$

Lemma 4.12. (i)

$$
\begin{aligned}
& \left(G_{\iota} * F_{i_{1}-3}\left(x_{1}^{3} x_{2}^{2 i_{1}-2}, x_{1}^{3} x_{2}^{2 i-2}\right)\right)_{Q_{4 i_{1}-4,6}} \\
& \quad=-\frac{\left(2 i_{1}-2\right)!}{6!}\left(2 i_{1}-2\right)\left(2 i_{1}-3\right)\left(2 i_{1}-4\right)\left(G_{\iota}^{*}\left(x_{1}^{6} x_{2}^{4 i_{1}-10} \zeta_{2}^{6}\right)\right)_{\boldsymbol{Q}_{4 i_{1}-4,6}}
\end{aligned}
$$

(ii) $\quad\left(G_{\iota} *\left(x_{1}{ }^{6} x_{2}{ }^{4 i_{1}-10} \zeta_{2}{ }^{6}\right)\right)_{Q_{4 i_{1}-4,6}} \neq 0$.

Proof. (i) We have

$$
\begin{aligned}
& F_{i_{1}-3}\left(x_{1}^{3} x_{2}^{2 i_{1}-2}, x_{1}{ }^{3} x_{2}^{2 i_{1}-2}\right) \\
& \quad=\frac{\left(2 i_{1}-2\right)!}{3!} x_{1}^{3} x_{2}^{4 i_{1}-7} \zeta_{1}{ }^{3} \zeta_{2}{ }^{3}+3\left(2 i_{1}-5\right) \frac{\left(2 i_{1}-2\right)!}{4!} x_{1}{ }^{4} x_{2}{ }^{4 i-8} \zeta_{1}{ }^{2} \zeta_{2}{ }^{4} \\
& \quad+6\binom{2 i_{1}-5}{2} \frac{\left(2 i_{1}-2\right)!}{5!} x_{1}^{5} x_{2}^{4 i_{1}-9} \zeta_{1} \zeta_{2}{ }^{5}+6\binom{2 i_{1}-5}{3} \frac{\left(2 i_{1}-2\right)!}{6!} x_{1}{ }^{6} x_{2}^{4 i_{1}-10} \zeta_{2}{ }^{6} .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \tilde{X}_{E_{0}}\left(x_{1}^{k} x_{2}^{4 i_{1}-3-k} \zeta_{1}{ }^{6-k} \zeta_{2}{ }^{k-1}\right)=k x_{1}^{k-1} x_{2}^{4 i_{1}-3-k} \zeta_{1}{ }^{7-k} \zeta_{2}{ }^{k-1} \\
& \quad+\left(4 i_{1}-3-k\right) x_{1}^{k} x_{2}^{4 i_{1}-4-k} \zeta_{1}{ }^{6-k} \zeta_{2}{ }^{k}-(6-k) x_{1}{ }^{k+1} x_{2}{ }^{4 i_{1}-3-k} \zeta_{1}{ }^{5-k} \zeta_{2}{ }^{k-1} \\
& \quad-(k-1) x_{1}^{k} x_{2}^{4 i_{1}-2-k} \zeta_{1}{ }^{6-k} \zeta_{2}^{k-2} \quad(4 \leq k \leq 6),
\end{aligned}
$$

it follows that

$$
\begin{aligned}
& \left(G_{\iota}{ }^{*}\left(x_{1}^{5} x_{2}^{4 i_{1}-9} \zeta_{1} \zeta_{2}^{5}\right)\right)_{Q_{4 i_{1}-4,6}}=-\frac{4 i_{1}-9}{6}\left(G_{\iota} *\left(x_{1}^{6} x_{2}^{4 i_{1}-10} \zeta_{2}^{6}\right)\right)_{Q_{4 i_{1}-4,6}} \\
& \left(G_{\iota} *\left(x_{1}{ }^{4} x_{2}^{4 i_{1}-8} \zeta_{1}{ }^{2} \zeta_{2}^{4}\right)\right)_{Q_{4 i_{1}-4,6}}=\frac{\left(4 i_{1}-8\right)\left(4 i_{1}-9\right)}{5 \cdot 6}\left(G \iota^{*}\left(x_{1}^{6} x_{2}^{4 i_{1}-10} \zeta_{2}^{6}\right)\right)_{Q_{4 i_{1}-4,6}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(G_{\ell} *\right. \\
& \left.\quad\left(x_{1}{ }^{3} x_{2}{ }^{4 i_{1}-7} \zeta_{1}{ }^{3} \zeta_{2}{ }^{3}\right)\right)_{Q_{4 i_{1}-4,6}} \\
& \quad=-\frac{\left(4 i_{1}-7\right)\left(4 i_{1}-8\right)\left(4 i_{1}-9\right)}{4 \cdot 5 \cdot 6}\left(G_{\iota} *\left(x_{1}^{6} x_{2}^{4 i_{1}-10} \zeta_{2}{ }^{6}\right)\right)_{Q_{4 i_{1}-4,6}}
\end{aligned}
$$

Then (i) is easily obtained from these formulas.
(ii) By Corollary 2.8 (ii) we have

$$
\begin{aligned}
& \left(G c^{*}\left(x_{1}^{6} x_{2}^{4 i_{1}-10} \zeta_{2}^{6}\right)\right)_{Q_{i_{1}-4,6}}=\left(G c ^ { * } \left(x_{1}^{6} x_{2}^{4 i_{1}-10} \zeta_{2}^{6}-\frac{15}{4 i_{1}-7} x_{1}^{6} x_{2}^{4 i_{1}-8} \zeta_{2}^{4}\right.\right. \\
& \quad+\frac{45}{\left(4 i_{1}-5\right)\left(4 i_{1}-7\right)} x_{1}^{6} x_{2}^{4 i_{1}-6} \zeta_{2}^{2} \\
& \left.\left.\quad-\frac{15}{\left(4 i_{1}-3\right)\left(4 i_{1}-5\right)\left(4 i_{1}-7\right)} x_{1}^{6} x_{2}^{4 i_{1}-4}\right)\right)_{G\left(Q_{i_{1}+2}+2\right.} .
\end{aligned}
$$

Then, in view of Corollary 3.7 it is enough to prove that

$$
\begin{aligned}
J= & \tilde{G}\left(x_{1}{ }^{6} x_{2}^{4 i_{1}-10} \zeta_{2}{ }^{6}-\frac{15}{4 i_{1}-7} x_{1}{ }^{6} x_{2}^{4 i_{1}-8} \zeta_{2}{ }^{4}+\frac{45}{\left(4 i_{1}-5\right)\left(4 i_{1}-7\right)} x_{1}{ }^{6} x_{2}^{4 i_{1}-6} \zeta_{2}{ }^{2}\right. \\
& \left.-\frac{15}{\left(4 i_{1}-3\right)\left(4 i_{1}-5\right)\left(4 i_{1}-7\right)} x_{1}^{6} x_{2}^{4 i_{1}-4}\right)
\end{aligned}
$$

does not vanish. A direct computation shows that the coefficient of $x_{1}{ }^{6} \zeta_{2}{ }^{4 i_{1}-4}$ in the polynomial J is

$$
\begin{aligned}
I_{6,2 i_{1}-5}^{\prime} & -\frac{15}{4 i_{1}-7} I_{5,2 i_{1}-4}^{\prime}+\frac{45}{\left(4 i_{1}-5\right)\left(4 i_{1}-7\right)} I_{4,2 i_{1}-3}^{\prime} \\
& -\frac{15}{\left(4 i_{1}-3\right)\left(4 i_{1}-5\right)\left(4 i_{1}-7\right)} I_{3,2 i_{1}-2}^{\prime} \\
& =\frac{1}{\left(4 i_{1}-5\right)\left(4 i_{1}-7\right)}\left\{\frac{11 \cdot 9 \cdot 7}{4 i_{1}-9}-\frac{15 \cdot 9 \cdot 7}{4 i_{1}-7}+\frac{45 \cdot 7}{4 i_{1}-5}-\frac{15}{4 i_{1}-3}\right\} I_{3,2 i_{1}-2}^{\prime}>0
\end{aligned}
$$

where $I_{a, b}^{\prime}=\frac{1}{2 \pi} \int_{0}^{2 \pi}(\cos t)^{2 a}(\sin t)^{2 b} d t$. Thus we have $J \neq 0$, proving the lemma.
As a consequence of this lemma, we have

$$
\begin{aligned}
& -\left(2 i_{1}+3\right)\left(2 i_{1}-2\right)\left(2 i_{1}-3\right)\left(2 i_{1}-4\right) d_{i_{1}-3}^{i_{1}, i_{1}} c_{1}{ }^{2} \\
& \quad+2\left(2 i_{2}+3\right)\left(2 i_{0}+1\right) d_{i_{0}-3}^{i_{2}, i_{0}} c_{0} c_{2}=0
\end{aligned}
$$

If $i_{0}=2$, then we have a contradiction, because $c_{1} \neq 0$. If $i_{0} \geq 3$, then we have $c_{0} c_{2} c_{1}{ }^{-2}>0$, which also contradicts the previous result. Hence we have contradictions in any case under the assumption $d_{i_{0}}=2 i_{0}+1$.
II. $d_{i_{0}}=2 i_{0}$. In this case, $h_{2 i_{0}+1}^{\nu}=c_{0} x_{1} x_{2}^{2 i_{0}}$ and $h_{2 i_{1}+1}^{\nu}=c_{1} x_{1}^{2 i_{1}+1-d_{i_{1}} x_{2}{ }^{{ }^{d} i_{1}} \text {, }}$ where $\nu=\left(\nu_{2}, \cdots, \nu_{n+1}\right)$ is chosen such that $c_{0} \neq 0, c_{1} \neq 0$. Then it follows that

$$
\left(G l^{*} F_{i_{0}-2}\left(x_{1}^{\left.2 i_{1}+1-d_{i_{1}} x_{2}^{d_{i_{1}}}, x_{1} x_{2}^{2 i_{0}}\right)}\right)_{Q_{2 i_{0}+2 i_{1}-2,4}}=0 .\right.
$$

We have

$$
\begin{aligned}
& F_{i_{0}-2}\left(x_{1}^{2 i_{1}+1-d_{i_{1}}} x_{2}^{d_{i}}, x_{1} x_{2}^{2 i_{0}}\right) \\
& =\frac{\left(2 i_{0}\right)!}{3!} x_{1}^{2 i_{1}+1-d_{i_{1}}} x_{2}^{2 i_{0}-3+d_{i_{1}} \zeta_{1} \zeta_{2}{ }^{3}+\left(2 i_{0}-3\right) \frac{\left(2 i_{0}\right)!}{4!} x_{1}^{2 i_{1}+2-d_{i_{1}}} x_{2}{ }^{2 i_{0}-4+d_{i_{1}} \zeta_{2}{ }^{4}} ~ . ~ . ~}
\end{aligned}
$$

By using the formula

$$
\begin{aligned}
& +\left(2 i_{0}-3+d_{i_{1}}\right) x_{1}^{2 i_{1}+2-d_{i_{1}}} x_{2}^{2 i_{0}-4+d_{i_{1}} \zeta_{2}^{4}-3 x_{1}{ }^{2 i_{1}+2-d_{i_{1}}} x_{2} 2^{2 i_{0}-2+d} d_{i_{1}} \zeta_{2}{ }^{2},}
\end{aligned}
$$

we have

$$
\begin{aligned}
& \left(G \epsilon^{*} F_{i_{0}-2}\left(x_{1}^{2 i_{1}+1-d_{i_{1}}} x_{2}^{d_{i_{1}}}, x_{1} x_{2}^{2 i_{0}}\right)\right)_{Q_{2 i_{0}+2 i_{1}-2,4}} \\
& =\frac{\left(2 i_{0}\right)!}{3!}\left(-\frac{2 i_{0}-3+d_{i_{1}}}{2 i_{1}+2-d_{i_{1}}}+\frac{2 i_{0}-3}{4}\right)\left(G l ^ { * } \left(x_{1}^{\left.\left.2 i_{1}+2-d_{i_{1}} x_{2}^{2 i_{0}-\Psi+d_{i_{1}} \zeta_{2}^{4}}\right)\right)_{)_{2 i_{0}+2 i_{1}-2,4}} ~ . ~ . ~}\right.\right.
\end{aligned}
$$

Since $2 i_{1}+2-d_{i_{1}} \geq 2\left(i_{0}+1\right)+2-\left(d_{i_{0}}-1\right)=5$, we see by lemma 3.9 that

$$
\left(G_{c}^{*}\left(x_{1}^{2 i_{1}+2-d_{i_{1}}} x_{2}^{2 i_{0}-4+d_{i_{1}} \zeta_{2}^{4}}\right)\right)_{Q_{2 i_{0}+2 i_{1}-2,4}} \neq 0 .
$$

Hence it follows that

$$
-\frac{2 i_{0}-3+d_{i_{1}}}{2 i_{1}+2-d_{i_{1}}}+\frac{2 i_{0}-3}{4}=0 .
$$

Remarking the conditions $2 \leq i_{0}<i_{1}$ and $d_{i_{1}} \leq d_{i_{0}}-1=2 i_{0}-1$, we then obtain

$$
i_{0}=2, \quad i_{1}=6, \quad d_{i_{0}}=4, \quad d_{i_{1}}=2 .
$$

Let i_{2} be as in Case I. We shall prove that $i_{2}=10$ and $d_{i_{2}}=0$. First assume that either $d_{i_{2}}=1$ or $d_{i_{2}}=0$ and $i_{2}>10$ are satisfied. Let V_{4} and V_{4}^{\prime} be as in I-2. Then we have

$$
\begin{aligned}
0 & =\left(G \iota^{*} F(f, f)\right)_{V_{4}^{\prime}} \\
& =2\left(G \iota^{*} F\left(h_{2 i_{2}+1}, h_{5}\right)\right)_{V_{4}^{\prime}}+2\left(G_{\iota} * F\left(f_{2 i_{2}+1}-h_{2 i_{2}+1}, h_{5}\right)\right)_{V_{4}^{\prime}} \\
& +2\left(G \iota^{*} F\left(h_{2 i_{2}+1}, f_{5}-h_{5}\right)\right)_{V_{4}^{\prime}}+2\left(G_{\iota} * F\left(f_{2 i_{2}+1}-h_{2 i_{2}+1}, f_{5}-h_{5}\right)\right)_{V_{4}^{\prime}} \\
& +\left(G \iota^{*} F\left(f_{2 i+1}, f_{2 j+1}\right)\right)_{V_{4}^{\prime}},
\end{aligned}
$$

where the sum in the last term is taken over all 2 -tuples of integers (i, j) such that $2 \leq i, j \leq m, i+j \geq i_{2}+2,\{i, j\} \neq\left\{i_{2}, 2\right\}$. Such (i, j) with $i \geq j$ satisfies $i \geq j>2$ or $i>i_{2}, j=2$. Thus we have

$$
\operatorname{deg}_{2} f_{2 i+1}+\operatorname{deg}_{2} f_{2 j+1} \leq 4
$$

Moreover we have

$$
\operatorname{deg}_{2} f_{2 i+1}+\operatorname{deg}_{2} f_{2 j+1} \leq 2
$$

in the case where $i_{2}>10$ and $d_{i_{2}}=0$, because $\operatorname{deg}_{2} f_{2 i+1}$ or $\operatorname{deg}_{2} f_{2 j+1}$ must be zero (or $-\infty$) in this case. Thus we can apply Lemma 4. 11 to each case and obtain

$$
\left(G_{c}^{*} F_{2}\left(h_{2 i_{2}+1}^{\nu}, h_{5}^{\nu}\right)\right)_{\boldsymbol{Q}_{2 i_{2}+2,4}}=0
$$

 so that $c_{0} \neq 0, c_{2} \neq 0$, it follows that

$$
\left(G_{\imath} * F_{2}\left(x_{1}^{2 i_{2}+1-d_{i_{2}}} x_{2}^{d_{i} i_{2}}, x_{1} x_{2}^{4}\right)_{Q_{2 i_{2}+2,4}}=0 .\right.
$$

But, as we have already seen, this equality holds if and only if $i_{2}=6$ and $d_{i_{2}}=2$. This is a contradiction. Thus we have $i_{2} \leq 10$ and $d_{i_{2}}=0$.

Next assume that $i_{2}<10$. Let V_{3} and V_{3}^{\prime} be as in $I-1$. Then we have

$$
\begin{aligned}
0 & =\left(G \iota^{*} F(f, f)\right)_{V_{3}^{\prime}} \\
& =\left(G_{l} * F\left(h_{13}, h_{13}\right)\right)_{V_{3}^{\prime}}+2\left(G \iota^{*} F\left(f_{13}-h_{13}, h_{13}\right)\right)_{V_{3}^{\prime}} \\
& +\left(G_{\imath} * F\left(f_{13}-h_{13}, f_{13}-h_{13}\right)\right)_{V_{3}^{\prime}}+\sum\left(G_{l}^{*} F\left(f_{2 i+1}, f_{2 i+1}\right)\right)_{V_{3}^{\prime}},
\end{aligned}
$$

where the sum in the last term is taken over all 2 -tuples of integers (i, j) such that $2 \leq i, j \leq m, i+j \geq 12,(i, j) \neq(6,6)$. Since such (i, j) must satisfy either $2<i, 6<j$ or $2<j, 6<i$, it follows that

$$
\operatorname{deg}_{2} f_{2 i+1}+\operatorname{deg}_{2} f_{2 j+1} \leq 2
$$

Hence by Lemma 4. 11 we have

$$
\left(G c^{*} F_{4}\left(h_{13}^{\longmapsto}, h_{13}^{\nu}\right)\right)_{22,4}=0 .
$$

But since $h_{13}^{\nu}=c x_{1}{ }^{11} x_{2}{ }^{2}(c \in \boldsymbol{C})$ and ν can be chosen so that $c \neq 0$, this contradicts to Proposition 3.8 (iii). Consequently we have

$$
i_{2}=10, \quad d_{i_{2}}=0 .
$$

Since $d_{i_{2}}=0, i_{2}$ must be equal to m. Hence it follows that

$$
m=10, \quad d_{i} \leq 0 \quad(7 \leq i \leq 10) .
$$

This completes the proof of Proposition 4.5.

$\S 5$. The case where $\operatorname{deg} f=21$

In this section we shall prove the rest part of Theorem 4. 1. Let $f \in \boldsymbol{R}[x]_{o d}$ satisfy the conditions (i) (ii) (iii) stated before Lemma 4.4. Suppose that f satisfies the condition $G c^{*} F(f, f) \in G\left(\mathscr{\mathscr { L }}^{2}\right)$. Then we have seen in Proposition 4.5 that either f is of the form (1) in Theorem 4. 1, or
(a) $\operatorname{deg} f=21, i_{0}=2, i_{1}=6, d_{i_{0}}=4, d_{i_{1}}=2, d_{i} \leq 0 \quad(7 \leq i \leq 10)$. Let $f=$ $\sum_{i} f_{2 i+1}\left(f_{2 i+1} \in \boldsymbol{R}[x]_{2 i+1}\right)$ be the decomposition of f into its homogeneous parts, and $h_{2 i+1}$ the homogeneous part of degree d_{i} of $f_{2 i+1}$ in the variables $\left(x_{2}, \cdots\right.$, x_{n+1}). In case f satisfies the above condition (a), we further consider the following conditions on f :
(b) $f_{21}=x_{1}^{21}$;
(c) $h_{13}=\left(\sum_{i=2}^{k} \lambda_{i} x_{i}{ }^{2}\right) x_{1}{ }^{11}$, where $\lambda_{i} \in \boldsymbol{R}-\{0\}(2 \leq i \leq k), 2 \leq k \leq n$, and $\left\{\lambda_{i}\right\}$ do not satisfy $\lambda_{2}=\cdots=\lambda_{n}$ if $k=n$.

Lemma 5.1. Let $f^{\prime} \in \boldsymbol{R}[x]_{o d}$ satisfy the conditions (i) (ii) (iii) stated before Lemma 4.4 and (a) above. Then there are $A \in O(n+1, \boldsymbol{R}), c \in \boldsymbol{R}-\{0\}$, $u_{1} \in \boldsymbol{R}[x]_{1}, \quad u_{3} \in \boldsymbol{R}[x]_{3}$, and $f \in \boldsymbol{R}[x]_{o d}$ such that f satisfies the conditions (i) (ii) (iii) before Lemma 4.4 and (a) (b) (c) above, and

$$
A * f^{\prime} \equiv u_{1}+u_{3}+c f \quad \bmod \left(1-\sum_{i=1}^{n+1} x_{i}\right)
$$

Proof. Let $f_{2 i+1}^{\prime}(2 \leq i \leq 10)$ be the homogeneous part of degree $2 i+1$ of f^{\prime}, and $h_{2 i+1}^{\prime}$ the homogeneous part of degree $\operatorname{deg}_{2} f_{2 i+1}^{\prime}$ of $f_{2 i+1}^{\prime}$ in the variables $\left(x_{2}, \cdots, x_{n+1}\right)$. Since $h_{13}^{\prime} / x_{1}{ }^{11}$ is a real quadratic form, there is an orthogonal transformation A in the variables $\left(x_{2}, \cdots, x_{n+1}\right)$ such that $A^{*} h_{13}^{\prime}$ is of the form

$$
\left(\sum_{i=1}^{k} \lambda_{i} x_{i}{ }^{2}\right) x_{1}{ }^{11}
$$

where $\lambda_{2} \geq \lambda_{3} \geq \cdots \geq \lambda_{k}, \lambda_{i} \neq 0(2 \leq i \leq k), 2 \leq k \leq n+1$. Since h_{13}^{\prime} and h_{5}^{\prime} do not belong to the ideal $\left(\sum_{i=1}^{n+2} x_{i}{ }^{2}\right)$, so do not $A^{*} h_{13}^{\prime}$ and $A^{*} h_{5}^{\prime}$. Let $c \in \boldsymbol{R}-\{0\}$ be the constant such that $f_{21}^{\prime}=c x_{1}{ }^{21}$. By substituting $1-\sum_{i=1}^{n} x_{i}{ }^{2}$ for $x_{n+1}{ }^{2}$ in $A^{*} f^{\prime}$, we can find $f^{\prime \prime}=\sum_{i=2}^{10} f_{2 i+1}^{\prime \prime}\left(f_{2 i+1}^{\prime \prime} \in \boldsymbol{R}[x]_{2 i+1}\right), u_{1} \in \boldsymbol{R}[x]_{1}, u_{3} \in \boldsymbol{R}[x]_{3}$ such that $f^{\prime \prime}$ satisfies the conditions (i) (ii) (iii) and (a) (b), and

$$
A^{*} f^{\prime} \equiv u_{1}+u_{3}+c f^{\prime \prime} \quad \bmod \left(1-\sum_{i} x_{i}{ }^{2}\right)
$$

Moreover $h_{13}^{\prime \prime}$, the homogeneous part of degree 2 of $f_{13}^{\prime \prime}$ in the variables $\left(x_{2}, \cdots, x_{n+1}\right)$, is equal to $c^{-1} A^{*} h_{13}^{\prime}$ if $k \leq n$, and equal to $c^{-1} \sum_{i=2}^{n}\left(\lambda_{i}-\lambda_{n+1}\right) x_{i}{ }^{2} x_{1}^{11}$ if $k=n+1$. Hence if $k<n$, or if $k \geq n$ and $\left\{\lambda_{i}\right\}$ do not satisfy $\lambda_{2}=\cdots=\lambda_{n}$, then $f^{\prime \prime}$ also satisfies the condition (c). If $k \geq n$ and $\lambda_{2}=\cdots=\lambda_{n}$, then $h_{13}^{\prime \prime}$ is of the form

$$
c^{\prime}\left(\sum_{i=2}^{n} x_{i}^{2}\right) x_{1}^{11}, \quad c^{\prime} \in \boldsymbol{R}-\{0\} .
$$

Let B be the orthogonal transformation such that $B^{*} x_{2}=-x_{n+1}, B^{*} x_{n+1}=x_{2}$, and the other variables are fixed by B. By substituting $1-\sum_{i=1}^{n} x_{i}{ }^{2}$ for $x_{n+1}{ }^{2}$ in $B^{*} f^{\prime \prime}$, we can find $f=\sum_{i=2}^{10} f_{2 i+1}\left(f_{2 i+1} \in \boldsymbol{R}[x]_{2 i+1}\right), \quad u_{1}^{\prime} \in \boldsymbol{R}[x]_{1}$, and $u_{3}^{\prime} \in \boldsymbol{R}[x]_{3}$ such that f satisfies the conditions (i) (ii) (iii) and (a) (b), and

$$
B^{*} f^{\prime \prime} \equiv u_{1}^{\prime}+u_{3}^{\prime}+f \quad \bmod \left(1-\sum x_{i}^{2}\right)
$$

Since h_{13}, the homogeneous part of degree 2 of f_{13} in the variables $\left(x_{2}, \cdots\right.$, x_{n+1}), is of the form

$$
d x_{1}^{11} x_{2}^{2} \quad(d \in \boldsymbol{R}-\{0\}),
$$

f also satisfies the condition (c). This completes the proof of the lemma.
Now we fix $f \in \boldsymbol{R}[x]_{o d}$ which satisfies the conditions (i) (ii) (iii) stated before Lemma 4.4 and (a) (b) (c) above, and satisfies

$$
G \iota^{*} F(f, f) \in G\left(\mathscr{A}^{2}\right) .
$$

Then f is of the form

$$
\begin{aligned}
f= & \left(A_{5} x_{1}^{5}+B_{5} x_{1}^{4}+C_{5} x_{1}^{3}+D_{5} x_{1}^{2}+E_{5} x_{1}\right) \\
& +\sum_{i=3}^{6}\left(A_{2 i+1} x_{1}^{2 i+1}+B_{2 i+1} x_{1}^{2 i}+C_{2 i+1} x_{1}^{2 i-1}\right)+\sum_{i=7}^{10} A_{2 i+1} x_{1}^{2 i+1}
\end{aligned}
$$

where $A_{2 i+1} \in \boldsymbol{R}(2 \leq i \leq 10), \quad B_{2 i+1} \in \boldsymbol{R}\left[x_{2}, \cdots, x_{n+1}\right]_{1}, C_{2 i+1} \in \boldsymbol{R}\left[x_{2}, \cdots, x_{n+1}\right]_{2}(2 \leq$ $\boldsymbol{i} \leq 6), \quad D_{5} \in \boldsymbol{R}\left[x_{2}, \cdots, x_{n+1}\right]_{3}, \quad E_{5} \in \boldsymbol{R}\left[x_{2}, \cdots, x_{n+1}\right]_{4}, \quad A_{21}=1, \quad E_{5} \neq 0, C_{13}=\sum_{i=2}^{k} \lambda_{i} x_{i}{ }^{2}$, $\lambda_{i} \in \boldsymbol{R}-0(2 \leq i \leq k), 2 \leq k \leq n$, and $\left\{\lambda_{i}\right\}$ do not satisfy $\lambda_{2}=\cdots=\lambda_{n}$ if $k=n$.

We shall prove the following
PROPOSITION 5. 2. $\quad B_{2 i+1} \in \boldsymbol{R}\left[x_{2}\right]_{1}, C_{2 i+1} \in \boldsymbol{R}\left[x_{2}\right]_{2}(2 \leq i \leq 6), D_{5} \in \boldsymbol{R}\left[x_{2}\right]_{3}$, $E_{5} \in \boldsymbol{R}\left[x_{2}\right]_{4}$.

We need some lemmas to prove this proposition.
Lemma 5. 3. Let J be the ideal $\left(\sum_{i=1}^{n+1} x_{1}{ }^{2}, \sum_{i=1}^{n+1} \zeta_{i}{ }^{2}, \sum_{i=1}^{n+1} x_{i} \zeta_{i}\right)$ in $\boldsymbol{C}[x, \zeta]$, and put $J_{0}=J \cap C\left[x_{1}, \cdots, x_{n}, \zeta_{1}, \cdots, \zeta_{n}\right]$. Then

$$
J_{0}=\left(\sum_{i=1}^{n} x_{i}{ }^{2} \sum_{i=1}^{n} \zeta_{i}{ }^{2}-\left(\sum_{i=1}^{n} x_{i} \zeta_{i}\right)^{2}\right) \boldsymbol{C}\left[x_{1}, \cdots, x_{n}, \zeta_{1}, \cdots, \zeta_{n}\right] .
$$

Proof. First remark that the polynomial $\sum_{i=1}^{n} x_{i}{ }^{2} \sum_{i=1}^{n} \zeta_{i}{ }^{2}-\left(\sum_{i=1}^{n} x_{i} \zeta_{i}\right)^{2}$ is irreducible, provided $n \geq 3$. Let u be a polynomial in the ideal J_{0}. Fix a point $\left(p_{1}, \cdots, p_{n}, q_{1}, \cdots, q_{n}\right) \in C^{2 n}$ such that

$$
\sum_{i=1}^{n} p_{i}{ }^{2} \sum_{i=1}^{n} q_{i}{ }^{2}-\left(\sum_{i=1}^{n} p_{i} q_{i}\right)^{2}=0
$$

Let $p_{n+1}\left(\right.$ resp. $\left.q_{n+1}\right)$ be one of the square roots of $-\sum_{i=1}^{n} p_{i}{ }^{2}\left(\left(\right.\right.$ resp. $\left.-\sum_{i=1}^{n} q_{i}{ }^{2}\right)$. Since

$$
p_{n+1}^{2} q_{n+1}^{2}=\left(\sum_{i=1}^{n} p_{i} q_{i}\right)^{2}
$$

we can take p_{n+1} and q_{n+1} such that $\sum_{i=1}^{n+1} p_{i} q_{i}=0$. Since $u \in J_{0}$, there are polynomials v_{1}, v_{2}, v_{3} such that

$$
u=\sum_{i=1}^{n+1} x_{i}{ }^{2} v_{1}+\sum_{i=1}^{n+1} \zeta_{i}{ }^{2} v_{2}+\sum_{i=1}^{n+1} x_{i} \zeta_{i} v_{3}
$$

By substituting ($p_{1}, \cdots, p_{n+1}, q_{1}, \cdots, q_{n+1}$) into both sides, we have

$$
u\left(p_{1}, \cdots, p_{n}, q_{1}, \cdots, q_{n}\right)=0
$$

This implies that $u \in\left(\sum_{i=1}^{n} x_{i}{ }^{2} \sum_{i=1}^{n} \zeta_{i}{ }^{2}-\left(\sum_{i=1}^{n} x_{i} \zeta_{i}\right)^{2}\right)$. Hence

$$
J_{0} \subset\left(\sum_{i=1}^{n} x_{i}{ }^{2} \sum_{i=1}^{n} \zeta_{i}{ }^{2}-\left(\sum_{i=1}^{n} x_{i} \zeta_{i}\right)^{2}\right)
$$

On the other hand, since

$$
\begin{aligned}
& \sum_{i=1}^{n} x_{i}{ }^{2} \sum_{i=1}^{n} \zeta_{i}^{2}-\left(\sum_{i=1}^{n} x_{i} \zeta_{i}\right)^{2} \\
& \quad \equiv x_{n+1}^{2} \zeta_{n+1}^{2}-\left(x_{n+1} \zeta_{n+1}\right)^{2} \equiv 0 \quad \bmod J
\end{aligned}
$$

we also have

$$
\left(\sum_{i=1}^{n} x_{i}{ }^{2} \sum_{i=1}^{n} \zeta_{i}{ }^{2}-\left(\sum_{i=1}^{n} x_{i} \zeta_{i}\right)^{2}\right) \subset J_{0}
$$

Therefore the lemma follows.
Let $v, w \in \boldsymbol{R}\left[x_{2}, \cdots, x_{n+1}\right]$ be homogeneous polynomials with $\operatorname{deg} v=a_{1}$ and deg $w=a_{2}$. Put $a=a_{1}+a_{2}$ and let b and k be integers such that $a \leq b$, $a+b=2 k, k \geq 4$. Let p be an integer such that $0 \leq p \leq b$ and $p+a_{2}$ is even, and put

$$
u=x_{1}{ }^{b-p} \zeta_{1}{ }^{p} v(x) w(\zeta) .
$$

Then $\operatorname{deg}_{1} u=b, \operatorname{deg}_{2} u=a$, and

$$
u \in \boldsymbol{R}[x, \zeta]_{b-p+a_{1}, p+a_{2}} \subset \boldsymbol{R}[x, \zeta]_{2 k}
$$

In this case we have
Lemma 5.4. If a is even, then

$$
G_{\iota} * u \equiv c G_{\iota} *\left(x_{1}^{b-a} v(x) w(x) \zeta_{1}^{a}\right) \quad \bmod G\left(P^{a-2}\right)
$$

for some $c \in \boldsymbol{R}$. If a is odd, then

$$
G \iota^{*} u \equiv 0 \quad \bmod G\left(P^{a-1}\right)
$$

Proof. Put $Y=\sum_{i=1}^{n+1} x_{i} \frac{\partial}{\partial \zeta_{i}}$. Then $u=\frac{1}{a_{1}!} x_{1}^{b-p} \zeta_{1}{ }^{p}\left(Y^{a_{1}} v(\zeta)\right) w(\zeta)$.
For integers t, r, s satisfying $1 \leq t \leq b+1,0 \leq r \leq a_{1}, 0 \leq s \leq a_{2}$, we have

$$
\begin{aligned}
& \tilde{X}_{E_{0}}\left(x_{1}^{b-t+1} \zeta_{1}^{t-1} Y^{r} v(\zeta) Y^{s} w(\zeta)\right) \\
& \quad=-(b-t+1) x_{1}^{b-t} \zeta_{1}^{t} Y^{r} v(\zeta) Y^{s} w(\zeta)-(t-1) x_{1}^{b-t+2} \zeta_{1}^{t-2} Y^{r} v(\zeta) Y^{s} w(\zeta) \\
& \quad+r\left(a_{1}-r+1\right) x_{1}^{b-t+1} \zeta_{1}^{t-1} Y^{r-1} v(\zeta) Y^{s} w(\zeta)-x_{1}^{b-t+1} \zeta_{1}^{t-1} Y^{r+1} v(\zeta) Y^{s} w(\zeta) . \\
& \quad+s\left(a_{2}-s+1\right) x_{1}^{b-t+1} \zeta_{1}^{t-1} Y^{r} v(\zeta) Y^{s-1} w(\zeta)-x_{1}^{b-t+1} \zeta_{1}^{t-1} Y^{r} v(\zeta) Y^{s+1} w(\zeta) .
\end{aligned}
$$

Let $W_{2 q, t}\left(0 \leq q \leq \frac{p+a_{2}}{2}, \max \{0,2 q-a\} \leq t \leq \min \{2 q, b\}\right)$ be the subspace of $C^{\infty}\left(S^{*} S^{n}\right)$ spanned by the functions

$$
G \iota^{*}\left(x_{1}{ }^{b-t} \zeta_{1}^{t} Y^{r} v(\zeta) Y^{s} w(\zeta)\right) \quad\left(0 \leq r \leq a_{1}, 0 \leq s \leq a_{2}, t+a-(r+s)=2 q\right)
$$

Put $W_{2 q}=\sum_{t} W_{2 q, t}$, where the sum is taken over all possible t. Then

$$
W_{2 q} \subset G\left(P^{2 q}\right)
$$

In the case where $p+a_{2}<a$, we have $p+a_{2} \leq a-2$ if a is even, and $p+a_{2} \leq$ $a-1$ if a is odd. Hence the lemma follows in this case by putting $c=0$. If $p+a_{2} \geq a+1$, then the above formula shows that

$$
W_{2 q, t} \subset W_{2 q, t-1}+W_{2 q-2}, \quad W_{2 q, 2 q-a} \subset W_{2 q-2}
$$

for each q and t with $[a / 2]+1 \leq q \leq\left(p+a_{2}\right) / 2,2 q-a+1 \leq t \leq \min \{2 q, b\}$. Hence in this case we have $W_{2 q} \subset W_{2 q-2}$, and consequently

$$
W_{2 q} \subset W_{2[a / 2]}
$$

for each q with $[a / 2]+1 \leq q \leq\left(p+a_{2}\right) / 2$.

Assume that a is odd and $p+a_{2} \geq a$. Then we have $p+a_{2} \geq a+1$. Hence it follows that

$$
W_{p+a_{2}} \subset W_{2[a / 2]}=W_{a-1},
$$

which implies

$$
G_{\iota}{ }^{*} u \equiv 0 \quad \bmod G\left(P^{a-1}\right) .
$$

Next assume that a is even and $p+a_{2} \geq a$. In this case we see from the above consideration that

$$
W_{p+a_{2}} \subset W_{a}
$$

Therefore, in order to show the lemma it is enough to prove that

$$
W_{a} \subset W_{a, a}+W_{a-2}
$$

By considering the above formula in the case where $1 \leq t \leq a, 0 \leq r \leq a_{1}$, $0 \leq s \leq a_{2}$, and $t=r+s$, we have

$$
W_{a, t} \subset W_{a, t-1}+W_{a-2}
$$

and hence

$$
W_{a} \subset W_{a, 0}+W_{a-2}
$$

Remark that $W_{a, 0}$ is generated by $G_{\iota}{ }^{*}\left(x_{1}^{b} v(\zeta) w(\zeta)\right)$ and $W_{a, a}$ is generated by $G_{c}{ }^{*}\left(x_{1}{ }^{b-a} \zeta_{1}{ }^{a} v(x) w(x)\right)$. We then consider the following formula;

$$
\begin{aligned}
\tilde{X}_{E_{0}} & \left(x_{1}^{b-s+1} \zeta_{1}^{s-1} Y^{s}(v(\zeta) w(\zeta))\right. \\
& =(b-s+1) x_{1}^{b-s} \zeta_{1}^{s} Y^{s}(v(\zeta) w(\zeta))-(s-1) x_{1}^{b-s+2} \zeta_{1}^{s-2} Y^{s}(v(\zeta) w(\zeta)) \\
& +s(a-s+1) x_{1}^{b-s+1} \zeta_{1}^{s-1} Y^{s-1}(v(\zeta) w(\zeta))-x_{1}^{b-s+1} \zeta_{1}^{s+1} Y^{s+1}(v(\zeta) w(\zeta)), \\
& (1 \leq s \leq a) .
\end{aligned}
$$

This formula shows that there is a non-zero constant $c^{\prime} \in \boldsymbol{R}$ such that

$$
x_{1}{ }^{b} v(\zeta) w(\zeta) \equiv c^{\prime} x_{1}^{b-a} \zeta_{1} a v(x) w(x) \quad \bmod W_{a-2} .
$$

Hence we have

$$
W_{a} \subset W_{a, a}+W_{a-2},
$$

which proves the lemma.
Corollary 5.5. Let $u \in \boldsymbol{R}[x, \zeta]_{2 k}(k \geq 4)$.
(i) If $\operatorname{deg}_{2} u \leq 3$, then $G_{c}{ }^{*} u \in G\left(\mathscr{A}^{2}\right)$.
(ii) If $\operatorname{deg}_{2} u=4$, then there is a homogeneous polynomial $v \in \boldsymbol{R}\left[x_{2}, \cdots\right.$, $\left.x_{n+1}\right]_{4}$ such that

$$
G \iota^{*} u \equiv G \iota^{*}\left(x_{1}^{2 k-8} v(x) \zeta_{1}^{4}\right) \quad \bmod G\left(\mathscr{K}^{2}\right),
$$

and such that the degree of v in the variable x_{n+1} is not greater than that of u. Especially $\left(G_{l}^{*} u\right)_{Q_{2 k-4,4}}=0$ if and only if $G_{l}{ }^{*} u \in G\left(\mathscr{H}^{2}\right)$.

Proof. (i) and the former part of (iii) are immediate consequences of the previous lemma. For the latter part of (iii) we put

$$
w=x_{1}^{2 k-8} v(x) \zeta_{1}^{4}+12 a_{1}^{k-3} x_{1}^{2 k-8} v(x) \zeta_{1}^{2}+24 a_{2}^{k-3} x_{1}^{2 k-4} v(x) .
$$

Then we have

$$
\begin{aligned}
\left(G l_{l}^{*} u\right)_{Q_{2 k-\iota, 4}} & =\left(G_{l}{ }^{*}\left(x_{1}^{2 k-8} v(x) \zeta_{1}^{4}\right)\right)_{Q_{2 k-\iota, 4}} \\
& =\left(G_{l}^{*} v\right)_{G\left(Q_{2 k}\right)}
\end{aligned}
$$

by Corollary 2.8 (iii). Hence we see by Corollary 3.7 that $\left(G_{\imath} * u\right)_{Q_{2 k-4,4}}=0$ if and only if $\tilde{G} w \in\left(\sum_{i} x_{i}{ }^{2}, \sum_{i} \zeta_{i}{ }^{2}, \sum_{i} x_{i} \zeta_{i}\right)$. Now assume that $\tilde{G} w$ belongs to the ideal $\left(\sum_{i} x_{i}{ }^{2}, \sum_{i} \zeta_{i}{ }^{2}, \sum_{i} x_{i} \zeta_{i}\right)$. Since $\tilde{G} w$ is homogeneous in the variables $\left(x_{2}, \cdots, x_{n+1}, \zeta_{2}, \cdots, \zeta_{n+1}\right)$, it is easily seen by Lemma 4. 8 that

$$
\left.\tilde{G}_{w \in(} \sum_{i \geq 2} x_{i}^{2}, \sum_{i \geq 2} \zeta_{i}^{2}, \sum_{i \geq 2} x_{i} \zeta_{i}\right) .
$$

Hence for any $\nu=\left(\nu_{2}, \cdots, \nu_{n+1}\right) \in \boldsymbol{C}^{n}$ satisfying $\sum_{i=2}^{n+1} \nu_{i}{ }^{2}=0$ we have

$$
\tilde{G} w^{v}=0 .
$$

Since $w^{v}=v(\nu)\left(x_{1}^{2 k-8} x_{2}{ }^{4} \zeta_{1}{ }^{4}+12 a_{2}^{k-3} x_{1}{ }^{2 k-6} x_{2}{ }^{4} \zeta_{1}{ }^{2}+24 a_{2}^{k-3} x_{1}^{2 k-4} x_{2}{ }^{4}\right)$, it thus follows that

$$
0=\left(G l^{*} * w^{\nu}\right)_{G\left(Q_{2 k}\right)}=v(\nu)\left(G \iota^{*}\left(x_{1}^{2 k-8} x_{2}^{4} \zeta_{1}^{4}\right)\right)_{Q_{2 k-\iota, 4}} .
$$

Since $\left(G_{l}{ }^{*}\left(x_{1}^{2 k-8} x_{2}{ }^{4} \zeta_{1}^{4}\right)\right)_{Q_{2 k-4,4}} \neq 0$ by Lemma 3.9, we have $v(\nu)=0$. This implies that $v(x)$ belongs to the ideal $\left(\sum_{i \geq 2} x_{i}^{2}\right)$. Put

$$
v=\sum_{i \geq 2} x_{i}^{2} v^{\prime}, \quad v^{\prime} \in \boldsymbol{R}\left[x_{2}, \cdots, x_{n+1}\right]_{2} .
$$

Then $G_{l}{ }^{*}\left(x_{1}^{2 k-8} v(x) \zeta_{1}{ }^{4}\right)=G c^{*}\left(x_{1}^{2 k-8} v^{\prime}(x) \zeta_{1}^{4}\right)-G c^{*}\left(x_{1}^{2 k-6} v^{\prime}(x) \zeta_{1}^{4}\right)$. Since deg v^{\prime} $=2$ unless $v^{\prime}=0$, we see from (i) that the right-hand side of this formula is in $G\left(\mathscr{H}^{2}\right)$. This proves the corollary.

Lemma 5.6. Let $w \in \boldsymbol{R}[x, \zeta]_{2 k-2 p, 2 p}(0 \leq p \leq[k / 2])$. Suppose that w is also homogeneous in the variables ($x_{2}, \cdots, x_{n+1}, \zeta_{2}, \cdots, \zeta_{n+1}$) with $\operatorname{deg}_{2} w=2 q$ $(p \leq q \leq[k / 2])$ and that $\left(G_{l} *^{*} w\right)_{Q_{2 k-2 p, 2 p}}=0$. Then

$$
\left(G \iota * w^{\prime}\right) e_{2 k-2 p, 2 p}=0
$$

for all $\nu=\left(\nu_{2}, \cdots, \nu_{n+1}\right) \in \boldsymbol{C}^{n}$ such that $\sum_{i=2}^{n+1} \nu_{i}{ }^{2}=0$.
Proof. Corollary 2.8 (ii) shows that

$$
\left(G \iota^{*} w\right)_{Q_{2 k-2 p, 2 p}}=\left(G \iota^{*} \sum_{l=0}^{p} a_{l}^{k-2 p+1}\left(\sum_{j} x_{j} \frac{\partial}{\partial \zeta_{j}}\right)^{2 l} w\right)_{G\left(Q_{2 k}\right)}
$$

Then the assumption implies that the polynomial

$$
\tilde{G} \sum_{l=0}^{p} a_{l}^{k-2 p+1}\left(\sum_{j} x_{j} \frac{\partial}{\partial \zeta_{j}}\right)^{2 l} w
$$

belongs to the ideal $\left(\sum_{i} x_{i}{ }^{2}, \sum_{i} \zeta_{i}{ }^{2}, \sum_{i} x_{i} \zeta_{i}\right)$. Since w is homogeneous in the variables $\left(x_{2}, \cdots, x_{n+1}, \zeta_{2}, \cdots, \zeta_{n+1}\right)$, we see by Lemma 4.8 that this polynomial also belongs to the ideal $\left(\sum_{i \geq 2} x_{i}{ }^{2}, \sum_{i \geq 2} \zeta_{i}{ }^{2}, \sum_{i \geq 2} x_{i} \zeta_{i}\right)$. Hence it follows that

$$
G \sum_{l=0}^{p} a_{l}^{k-2 p+1}\left(\sum_{j=1}^{2} x_{j} \frac{\partial}{\partial \zeta_{j}}\right)^{2 l} w^{\nu}=0
$$

for all $\nu=\left(\nu_{2}, \cdots, \nu_{n+1}\right) \in C^{n}$ with $\sum_{i \geq 2} \nu_{i}{ }^{2}=0$. This shows that

$$
\left(G_{\iota} * w^{\nu}\right)_{Q_{2 k-2 p, 2 p}}=0
$$

which proves the lemma.
In general, for homogeneous polynomials $u_{1}, u_{2} \in \boldsymbol{R}[x]$ we set

$$
\begin{aligned}
& F^{1}\left(u_{1}, u_{2}\right)=-\sum_{i, j}\left(x_{i} x_{j}+\zeta_{i} \zeta_{j}\right) \frac{\partial u_{1}}{\partial x_{i}} \int_{0}^{\pi} \frac{\partial u_{2}}{\partial x_{j}}(x \cos t+\zeta \sin t) \sin t d t \\
& F^{2}\left(u_{1}, u_{2}\right)=\sum_{i} \frac{\partial u_{1}}{\partial x_{i}} \int_{0}^{\pi} \frac{\partial u_{2}}{\partial x_{i}}(x \cos t+\zeta \sin t) \sin t d t
\end{aligned}
$$

Then $F\left(u_{1}, u_{2}\right)=F^{1}\left(u_{1}, u_{2}\right)+F^{2}\left(u_{1}, u_{2}\right)$. Furthermore we set

$$
\begin{aligned}
& F^{3}\left(u_{1}, u_{2}\right)=\frac{\partial u_{1}}{\partial x_{1}} \int_{0}^{\pi} \frac{\partial u_{2}}{\partial x_{1}}(x \cos t+\zeta \sin t) \sin t d t \\
& F^{4}\left(u_{1}, u_{2}\right)=\sum_{i \geq 2} \frac{\partial u_{1}}{\partial x_{i}} \int_{0}^{\pi} \frac{\partial u_{2}}{\partial x_{i}}(x \cos t+\zeta \sin t) \sin t d t
\end{aligned}
$$

Then $F^{2}\left(u_{1}, u_{2}\right)=F^{3}\left(u_{1}, u_{2}\right)+F^{4}\left(u_{1}, u_{2}\right)$. It is easily seen from the proof of Proposition 1.7 that $\tilde{G} F^{i}\left(u_{2}, u_{1}\right)=\tilde{G} F^{i}\left(u_{1}, u_{2}\right)$ for each $i(1 \leq i \leq 4)$.

Proof of Proposition 5.2. Put

$$
F(f, f)=\sum_{i=4}^{21} R_{2 i}, \quad R_{2 i} \in \boldsymbol{R}[x, \zeta]_{2 i}
$$

Then

$$
R_{2 i}=\sum_{l+m=i-1} F^{1}\left(f_{2 l+1}, f_{2 m+1}\right)+\sum_{l+m=i} F^{2}\left(f_{2 l+1}, f_{2 m+1}\right)
$$

We first see that $\operatorname{deg}_{2} R_{2 i} \leq 2$ when $14 \leq i \leq 21$. Thus for such i we have

$$
G_{\iota^{*}} R_{2 i} \in G\left(\mathscr{H}^{2}\right)
$$

by Corollary 5.5 (i).
Next we shall prove that $G_{\iota} * R_{2 i} \in G\left(\mathscr{\mathscr { L }}^{2}\right)(10 \leq i \leq 13)$ and that E_{5} is a constant multiple of $C_{13}{ }^{2}$. The above fact shows that

$$
0=\left(G_{\iota} * F(f, f)\right)_{Q_{22,4}}=\sum_{i=13}^{21}\left(G_{\iota} * R_{2 i}\right)_{Q_{22,4}}=\left(G_{\iota} * R_{26}\right)_{Q_{22,4}}
$$

In view of Corollary 5.5 (i),

$$
G_{c} * R_{26} \equiv 2 G_{c} * F^{1}\left(x_{1}^{21}, E_{5} x_{1}\right)+G_{c}{ }^{*} F^{1}\left(C_{13} x_{1}^{11}, C_{13} x_{1}^{11}\right) \quad \bmod G\left(\mathscr{A}^{2}\right) .
$$

Then it follows from Corollary 5.5 (ii) that $G \iota^{*} R_{26} \in G\left(\mathscr{A}^{2}\right)$ and

$$
46 d_{0}^{10,2}\left(G \iota^{*} F_{0}\left(x_{1}^{21}, E_{5} x_{1}\right)\right)_{Q_{22,4}}+15 d_{4}^{6,6}\left(G \iota^{*} F_{4}\left(C_{13} x_{1}^{11}, C_{13} x_{11}\right)\right)_{Q_{22,4}}=0
$$

This implies that

$$
\begin{aligned}
& \left.46 d_{0}^{10,2} E_{5}(\nu) G \iota^{*} F_{0}\left(x_{1}^{11}, x_{1} x_{2}^{4}\right)\right)_{Q_{22,4}} \\
& \quad+15 d_{4}^{6,6} C_{13}(\nu)^{2}\left(G \epsilon^{*} F_{4}\left(x_{1}^{11} x_{2}^{2}, x_{1}^{11} x_{2}^{2}\right)\right)_{Q_{22,4}}=0
\end{aligned}
$$

for all $\nu=\left(\nu_{2}, \cdots, \nu_{n+1}\right) \in C^{n}$ satisfying $\sum_{i=2}^{n+1} \nu_{i}{ }^{2}=0$. We shall see later in Lemma 5. 10 that there are non-zero constants c and c^{\prime} such that

$$
\begin{aligned}
& \left(G_{\iota} * F_{0}\left(x_{1}^{21}, x_{1} x_{2}{ }^{4}\right)\right)_{Q_{22,4}}=c\left(G_{\iota} *\left(x_{1}{ }^{22} \zeta_{2}{ }^{4}\right)\right)_{Q_{22,4}} \\
& \left(G_{\iota} * F_{4}\left(x_{1}^{11} x_{2}{ }^{2}, x_{1}{ }^{11} x_{2}{ }^{2}\right)\right)_{Q_{22,4}}=c^{\prime}\left(G_{\iota} *\left(x_{1}^{22} \zeta_{2}{ }^{4}\right)\right)_{Q_{22,4}}
\end{aligned}
$$

Since $\left(G_{\iota}{ }^{*}\left(x_{1}{ }^{22} \zeta_{2}{ }^{4}\right)\right)_{Q_{22}, 4}$ does not vanish by Lemma 3.9, it follows that

$$
46 c d_{0}^{10,2} E_{5}+15 c^{\prime} d_{4}^{6,6} C_{13}^{2} \equiv 0 \quad \bmod \left(\sum_{i \geq 2} x_{i}^{2}\right)
$$

Since C_{13} does not contain the variable x_{n+1}, and the degree of E_{5} in x_{n+1} is at most 1 , we thus obtain

$$
46 c d_{0}^{10,2} E_{5}+15 c^{\prime} d_{4}^{6,6} C_{13}^{2}=0
$$

Take an integer i_{0} such that $10<i_{0}+1 \leq 13$ and fix it. Assume that $G \iota^{*} R_{2 i} \in G\left(\mathscr{A}^{2}\right)$ for all i satisfying $i_{0}+1 \leq i \leq 13$. Then

$$
\begin{aligned}
0 & =(G \iota * F(f, f))_{Q_{2 i_{0}-4,4}} \\
& =\sum_{i=i_{0}}^{21}\left(G_{\iota} * R_{2 i}\right)_{Q_{2 i_{0}-4,4}}=\left(G_{\iota} * R_{2 i_{0}}\right)_{Q_{2 i_{0}-4,4}}
\end{aligned}
$$

Remarking that $2 i_{0} \geq 20$, we see that $\operatorname{deg}_{2} R_{2 i_{0}} \leq 4$. Thus it follows that $G \iota^{*} R_{2 i_{0}} \in G\left(\mathscr{A}^{2}\right)$ from Corollary 5.5 (ii). Therefore we have

$$
G c^{*} R_{2 i} \in G\left(\mathscr{A}^{2}\right) \quad(10 \leq i \leq 13)
$$

by induction on i.
Next we shall prove the following :
(i) There are $v_{i} \in \boldsymbol{R}\left[x_{2}, \cdots, x_{n+1}\right]_{4}$ such that

$$
G \iota^{*} F(f, f) \equiv \sum_{j=4}^{i-1} G_{\iota} * R_{2 j}+G_{\iota} *\left(x_{1}^{2 i-10} v_{i}(x) \zeta_{1}^{4}\right) \quad \bmod G\left(\mathscr{H}^{2}\right)(6 \leq i \leq 9)
$$

(ii) D_{5} is a constant multiple of $B_{13} C_{13}$;
(iii) $C_{2 i-5}$ and $B_{2 i-5}$ are constant multiples of C_{13} and B_{13} respectively $(6 \leq i \leq 9)$.

In view of Corollary 5.5 we see that

$$
\begin{aligned}
G_{\iota} * & R_{18} \equiv 2 G_{\iota} * F^{1}\left(C_{13} x_{1}{ }^{11}, E_{5} x_{1}\right)+2 G_{\iota} * F^{1}\left(C_{13} x_{1}{ }^{11}, D_{5} x_{1}^{2}\right) \\
& +2 G_{\iota} * F^{1}\left(B_{13} x_{1}^{12}, E_{5} x_{1}\right)+G \iota *\left(\left(x_{1}{ }^{10} w_{9}(x) \zeta_{1}^{4}\right) \quad \bmod G\left(\mathscr{A}^{2}\right)\right.
\end{aligned}
$$

for some $w_{9} \in \boldsymbol{R}\left[x_{2}, \cdots, x_{n+1}\right]_{4}$. Thus it follows that

$$
\begin{aligned}
& G \iota * R_{18} \equiv-30 d_{0}^{6,2} G \iota^{*}\left\{F_{0}\left(C_{13} x_{1}^{11}, E_{5} x_{1}\right)+F_{0}\left(C_{13} x_{1}^{11}, D_{5} x_{1}^{2}\right)\right. \\
& \left.\quad+F_{0}\left(B_{13} x_{1}^{12}, E_{5} x_{1}\right)\right\}+G \iota *\left(x_{1}^{10} w_{9}(x) \zeta_{1}^{4}\right) \quad \bmod G\left(\mathscr{H}^{2}\right)
\end{aligned}
$$

Put

$$
\begin{aligned}
X & =-30 d_{0}^{6,2} \tilde{G}\left(\sum_{i=0}^{2} a_{i}^{6} F_{i}\left(C_{13} x_{1}^{11}, E_{5} x_{1}\right)\right), \\
Y & =-30 d_{0}^{6,2} \tilde{G}\left(\sum_{i=0}^{2} a_{i}^{6} F_{i}\left(C_{13} x_{1}{ }^{11}, D_{5} x_{1}^{2}\right)+\sum_{i=0}^{2} a_{i}^{6} F_{i}\left(B_{13} x_{1}{ }^{12}, E_{5} x_{1}\right)\right) \\
Z & =\tilde{G}\left(x_{1}{ }^{10} w_{9}(x) \zeta_{1}{ }^{4}+12 a_{1}^{6} x_{1}^{12} w_{9}(x) \zeta_{1}{ }^{2}+24 a_{2}^{6} x_{1}{ }^{14} w_{9}(x)\right) .
\end{aligned}
$$

Then

$$
G \iota^{*} R_{18} \equiv \iota^{*}(X+Y+Z) \quad \bmod G\left(\mathscr{A}^{2}\right)
$$

and

$$
\left(G_{\iota^{*}} R_{18}\right)_{Q_{14,4}}=\left(\iota^{*}(X+Y+Z)\right)_{G\left(Q_{18}\right)}
$$

Since $0=\left(G_{\iota} * F(f, f)\right)_{\boldsymbol{Q}_{14,4}}=\left(G_{\iota} * R_{18}\right)_{\boldsymbol{Q}_{14,4}}$, it follows that

$$
X+Y+Z \in\left(\sum_{i} x_{i}{ }^{2}, \sum_{i} \zeta_{i}{ }^{2}, \sum_{i} x_{i} \zeta_{i}\right)
$$

Remarking the degrees in the variables $\left(x_{2}, \cdots, x_{n+1}, \zeta_{2}, \cdots, \zeta_{n+1}\right)$, we see that
$X+Z$ and Y belong to the ideal $\left(\sum_{i} x_{i}{ }^{2}, \sum_{i} \zeta_{i}{ }^{2}, \sum_{i} x_{i} \zeta_{i}\right)$. Then by Lemma 4.8 there are polynomials $H_{i}, H_{i}^{\prime} \in \boldsymbol{R}[x, \zeta]_{16}(i=1,2,3)$ such that $\operatorname{deg}_{2} H_{i} \leq 4$, $\operatorname{deg}_{2} H_{i}^{\prime} \leq 3$ and

$$
\begin{aligned}
& X+Z=\sum_{i} x_{i}{ }^{2} H_{1}+\sum_{i} \zeta_{i}{ }^{2} H_{2}+\sum_{i} x_{i} \zeta_{i} H_{3}, \\
& Y=\sum_{i} x_{i}{ }^{2} H_{i}^{\prime}+\sum_{i} \zeta_{i}{ }^{2} H_{i}^{\prime}+\sum_{i} x_{i} \zeta_{i} H_{3}^{\prime} .
\end{aligned}
$$

Then $\iota^{*}(X+Z)=\iota^{*}\left(H_{1}+H_{2}\right)$ and $\iota^{*} Y=\iota^{*}\left(H_{1}^{\prime}+H_{2}^{\prime}\right)$. Thus we see by Corollary 5.5 that $\iota^{*} Y \in G\left(\mathscr{\mathscr { M }}^{2}\right)$ and

$$
\iota^{*}(X+Z) \equiv G_{c^{*}}\left(x_{1}^{8} v_{9}(x) \zeta_{4}^{1}\right) \quad \bmod G\left(\mathscr{H}^{2}\right)
$$

for some $v_{9} \in \boldsymbol{R}\left[x_{2}, \cdots, x_{n+1}\right]_{4}$. Hence it follows that

$$
G^{*} R_{18} \equiv G c^{*}\left(x_{1}{ }^{8} v_{9}(x) \zeta_{1}{ }^{4}\right) \quad \bmod G\left(\mathscr{H}^{2}\right)
$$

and that

$$
\begin{aligned}
& G c^{*} F(f, f) \equiv \sum_{i=4}^{9} G_{c}^{*} R_{2 i} \\
& \quad \equiv \sum_{i=4}^{8} G l^{*} R_{2 i}+G_{l} *\left(x_{1}^{8} v_{9}(x) \zeta_{1}^{4}\right) \quad \bmod G\left(\mathscr{Z}^{2}\right)
\end{aligned}
$$

Now consider the formula

$$
Y=\sum_{i} x_{i}{ }^{2} H_{1}^{\prime}+\sum_{i} \zeta_{i}{ }^{2} H_{2}^{\prime}+\sum_{i} x_{i} \zeta_{i} H_{3}^{\prime} .
$$

By taking the homogeneous part of degree 5 in the variables $\left(x_{2}, \cdots, x_{n+1}\right.$, $\zeta_{22}, \cdots, \zeta_{n+1}$), we see that Y belong to the ideal $\left(\sum_{i \geq 2} x_{i}{ }^{2}, \sum_{i \geq 2} \zeta_{i}{ }^{2}, \sum_{i \geq 2} x_{i} \zeta_{i}\right)$. This implies that

$$
\begin{aligned}
& C_{13}(\nu) D_{5}(\nu)\left(G c^{*} F_{0}\left(x_{1}^{11} x_{2}^{2}, x_{1}{ }^{2} x_{2}^{3}\right)\right)_{Q_{14,4}} \\
& \quad+B_{13}(\nu) E_{6}(\nu)\left(G_{l} * F_{0}\left(x_{1}^{12} x_{2}, x_{1} x_{2}^{4}\right)\right)_{Q_{1,4}}=0
\end{aligned}
$$

for all $\nu=\left(\nu_{2}, \cdots, \nu_{n+1}\right) \in \boldsymbol{C}^{n}$ satisfying $\sum_{i=2}^{n+1} \nu_{i}{ }^{2}=0$. Lemma 5.10 stated later shows that

$$
\begin{aligned}
& \left(G_{l}^{*} F_{0}\left(x_{1}^{11} x_{2}^{2}, x_{1}^{2} x_{2}^{3}\right)\right)_{Q_{1,4}}=c\left(G l^{*}\left(x_{1}{ }^{13} x_{2} \zeta_{2}^{4}\right)\right)_{Q_{1,4}, 4} \\
& \left(G l_{l}{ }^{*} F_{0}\left(x_{1}^{12} x_{2}, x_{1} x_{2}^{4}\right)\right)_{Q_{1,4}, 4}=c^{\prime}\left(G_{l} *\left(x_{1}^{13} x_{2} \zeta_{2}^{4}\right)\right)_{Q_{1,4}, 4}
\end{aligned}
$$

for some non-zero constants c and c^{\prime}. Since $\left(G_{\imath}{ }^{*}\left(x_{1}{ }^{13} x_{2} \zeta_{2}^{4}\right)\right)_{Q_{1},,}$, does not vanish by Lemma 3.9, it follows that

$$
c C_{13} D_{5}+c^{\prime} B_{13} E_{5}
$$

belongs to the ideal $\left(\sum_{i \geq 2} x_{i}{ }^{2}\right)$. But the degree of this polynomial in the variable x_{n+1} being at most 1 , it must be zero. Since E_{5} is a constant multiple of $C_{13}{ }^{2}$, it therefore follows that D_{5} is a constant multiple of $B_{13} C_{13}$.

Fix an integer $m(6 \leq m \leq 8)$ and assume that

$$
G \iota^{*} F(f, f) \equiv \sum_{i=4}^{m} G \iota^{*} R_{2 i}+G_{\iota} *\left(x_{1}^{2 m-8} v_{m+1}(x) \zeta_{1}^{4}\right) \quad \bmod G\left(\mathscr{A}^{2}\right)
$$

for some $v_{m+1} \in \boldsymbol{R}\left[x_{2}, \cdots, x_{n+1}\right]_{4}$, and that $C_{2 i-5}$ and $B_{2 i-5}$ are constant multiples of C_{13} and B_{13} respectively for all i satisfying $m+1 \leq i \leq 9$. By Corollary 5.5 we see that

$$
\begin{aligned}
& G \iota^{*} R_{2 m} \equiv 2 G \iota^{*} F^{1}\left(C_{2 m-5} x_{1}^{2 m-7}, E_{5} x_{1}\right)+2 G \iota^{*} F^{1}\left(C_{2 m-5} x_{1}^{2 m-7}, D_{5} x_{1}^{2}\right) \\
& \quad+2 G \iota^{*} F^{1}\left(B_{2 m-5} x_{1}^{2 m-6}, E_{5} x_{1}\right)+2 G \iota^{*} F^{3}\left(C_{2 m-3} x_{1}^{2 m-5}, E_{5} x_{1}\right) \\
& \quad+2 G \iota^{*} F^{3}\left(C_{2 m-3} x_{1}^{2 m-5}, D_{5} x_{1}{ }^{2}\right)+2 G \iota^{*} F^{3}\left(B_{2 m-3} x_{1}{ }^{2 m-4}, E_{5} x_{1}\right) \\
& \quad+G \iota^{*}\left(x_{1}{ }^{2 m-8} w_{m}(x) \zeta_{1}^{4}\right) \quad \bmod G\left(\mathscr{H}^{2}\right)
\end{aligned}
$$

for some $w_{m} \in \boldsymbol{R}\left[x_{2}, \cdots, x_{n+1}\right]_{4}$. We have

$$
G \iota * F^{3}\left(u_{1}, u_{2}\right) \equiv \int_{0}^{\pi}(\sin t)^{5} d t G_{\iota} *\left(\frac{\partial u_{1}}{\partial x_{1}} \frac{\partial u_{2}(\zeta)}{\partial \zeta_{1}}\right) \quad \bmod G\left(\mathscr{L}^{2}\right)
$$

for $u_{1} \in \boldsymbol{R}[x]_{2 m-3}$ and $u_{2} \in \boldsymbol{R}[x]_{5}$, and $d_{0}^{m-3,2}=\int_{0}^{\pi}(\sin t)^{5} d t$. Put

$$
\begin{aligned}
X^{\prime}= & -2(2 m-3) d_{0}^{m-3,2} \tilde{G}\left(\sum_{i=0}^{2} a_{i}^{m-3} F_{i}\left(C_{2 m-5} x_{1}^{2 m-7}, E_{5} x_{1}\right)\right) \\
& +2(2 m-5) d_{0}^{m-3,2} \tilde{G}\left(\sum_{i=0}^{2} a_{i}^{m-3}\left(\sum_{j} x_{j} \frac{\partial}{\partial \zeta_{j}}\right)^{2 i} x_{1}^{2 m-6} C_{2 m-3}(x) E_{5}(\zeta)\right), \\
Y^{\prime}= & -2(2 m-3) d_{0}^{m-3,2} \tilde{G}\left(\sum_{i=0}^{2} a_{i}^{m-3} F_{i}\left(C_{2 m-5} x_{1}^{2 m-7}, D_{5} x_{1}{ }^{2}\right)\right) \\
& -2(2 m-3) d_{0}^{m-3,2} \tilde{G}\left(\sum_{i=0}^{2} a_{i}^{m-3} F_{i}\left(B_{2 m-5} x_{1}^{2 m-6}, E_{5} x_{1}\right)\right) \\
& +4(2 m-5) d_{0}^{m-3,2} \tilde{G}\left(\sum_{i=0}^{2} a_{i}^{m-3}\left(\sum_{j} x_{j} \frac{\partial}{\partial \zeta_{j}}\right)^{2 i} x_{1}^{2 m-6} C_{2 m-3}(x) \zeta_{1} D_{5}(\zeta)\right) \\
& +2(2 m-4) d_{0}^{m-3,2} \tilde{G}\left(\sum_{i=0}^{2} a_{i}^{m-3}\left(\sum_{j} x_{j} \frac{\partial}{\partial \zeta_{j}}\right)^{2 i} x_{1}^{2 m-5} B_{2 m-3}(x) E_{5}(\zeta)\right), \\
Z^{\prime}= & \tilde{G}\left(\sum_{i=0}^{2} a_{i}^{m-3}\left(\sum_{j} x_{j} \frac{\partial}{\partial \zeta_{j}}\right)^{2 i} x_{1}^{2 m-8} w_{m}(x) \zeta_{1}^{4}\right), \\
W^{\prime}= & \tilde{G}\left(\sum_{i=0}^{2} a_{i}^{m-3}\left(\sum_{j} x_{j} \frac{\partial}{\partial \zeta_{j}}\right)^{2 i} x_{1}^{2 m-8} v_{m+1}(x) \zeta_{1}^{4}\right) .
\end{aligned}
$$

Then $G \iota^{*} R_{2 m} \equiv \iota^{*}\left(X^{\prime}+Y^{\prime}+Z^{\prime}\right) \bmod G\left(\mathscr{\mathscr { A }}^{2}\right)$. Moreover,

$$
\begin{aligned}
0 & =\left(G \iota^{*} F(f, f)\right)_{Q_{2 m-\iota, \iota}}=\left(G_{\iota} * R_{2 m}+G^{*} *\left(x_{1}^{2 m-\delta} v_{m+1}(x) \zeta_{1}^{4}\right)\right)_{Q_{2 m-4, \iota}} \\
& =\left(\iota^{*}\left(X^{\prime}+Y^{\prime}+Z+W^{\prime}\right)\right)_{G\left(Q_{2 m}\right)} .
\end{aligned}
$$

Remarking the degrees in the variables ($x_{2}, \cdots, x_{n+1}, \zeta_{2}, \cdots, \zeta_{n+1}$), we see that $X^{\prime}+Z+W^{\prime}$ and Y^{\prime} belong to the ideal $\left(\sum_{i} x_{i}{ }^{2}, \sum_{i} \zeta_{i}{ }^{2}, \sum_{i} \mathbf{x}_{i} \zeta_{i}\right)$. Hence as before, we have $\iota^{*} Y^{\prime} \in G\left(\mathscr{K}^{2}\right)$ and

$$
\iota^{*}\left(X^{\prime}+Z^{\prime}+W^{\prime}\right) \equiv G_{c^{*}}\left(x_{1}^{2 m-6} v_{m}(x) \zeta_{1}^{4}\right) \quad \bmod G\left(\mathscr{A}^{2}\right)
$$

for some $\boldsymbol{v}_{m} \in \boldsymbol{R}\left[x_{2}, \cdots, x_{n+1}\right]_{4}$. From these it follows that

$$
G_{\iota} * F(f, f) \equiv \sum_{i=4}^{m-1} G_{\iota}^{*} R_{2 i}+G \iota^{*}\left(x_{1}^{2 m-10} v_{m}(x) \zeta_{1}^{4}\right) \quad \bmod G\left(\mathscr{H}^{2}\right) .
$$

Moreover we see that X^{\prime} and Y^{\prime} belong to the ideal $\left(\sum_{i \geq 2} x_{i}{ }^{2}, \sum_{i \geq 2} \zeta_{i}{ }^{2}, \sum_{i \geq 2} x_{i} \zeta_{i}\right)$. This implies that

$$
\begin{aligned}
& -(2 m-3) C_{2 m-5}(\nu) E_{5}(\nu)\left(G l^{*} F_{0}\left(x_{1}^{2 m-7} x_{2}^{2}, x_{1} x_{2}^{4}\right)\right)_{Q_{2 m-4}} \\
& +(2 m-5) C_{2 m-3}(\nu) E_{5}(\nu)\left(G l^{*}\left(x_{1}^{2 m-6} x_{2}^{2} \zeta_{2}^{4}\right)\right)_{Q_{2 m-4,4}}=0, \\
& -(2 m-3) C_{2 m-5}(\nu) D_{5}(\nu)\left(G l^{*} F_{0}\left(x_{1}^{2 m-7} x_{2}^{2}, x_{1}^{2} x_{2}^{3}\right)\right)_{Q_{2 m-4,4}} \\
& -(2 m-3) B_{2 m-5}(\nu) E_{5}(\nu)\left(G l^{*} F_{0}\left(x_{1}^{2 m-6} x_{2}, x_{1} x_{2}^{4}\right)\right)_{Q_{2 m-4,4}} \\
& +2(2 m-5) C_{2 m-3}(\nu) D_{5}(\nu)\left(G l^{*}\left(x_{1}^{2 m-6} x_{2}^{2} \zeta_{1} \zeta_{2}^{3}\right)_{Q_{2 m-4,4}}\right. \\
& +(2 m-4) B_{2 m-8}(\nu) E_{5}(\nu)\left(G l^{*}\left(x_{1}^{2 m-5} x_{2} \zeta_{2}^{4}\right)\right)_{Q_{2 m-4,4}}=0
\end{aligned}
$$

for all $\nu=\left(\nu_{2}, \cdots, \nu_{n+1}\right) \in \boldsymbol{C}^{n}$ with $\sum_{i=1}^{n+1} \nu_{i}{ }^{2}=0$. By Lemma 5.10 stated later, ($\left.G_{c^{*}} F_{0}\left(x_{1}^{2 m-7} x_{2}^{2}, x_{1}{ }^{2} x_{2}^{3}\right)\right)_{Q_{2 m-4,4}}$ is a non-zero constant multiple of

$$
\begin{aligned}
& \left(G \iota^{*}\left(x_{1}^{2 m-6} x_{2}^{2} \zeta_{2}^{4}\right)\right)_{Q_{2 m-4,4},} \text {, and }\left(G_{l}^{*} F_{0}\left(x_{1}^{2 m-7} x_{2}^{2}, x_{1}^{2} x_{2}^{3}\right)_{Q_{2 m-4,4}},\right. \\
& \left(G l^{*} F_{0}\left(x_{1}^{2 m-6} x_{2}, x_{1} x_{2}^{4}\right)\right)_{Q_{2 m-4,4}}, \quad \text { and }\left(G \epsilon^{*}\left(x_{1}^{2 m-6} x_{2}^{2} \zeta_{1} \zeta_{2}^{3}\right)\right)_{Q_{2 m-4,4}}
\end{aligned}
$$

are non-zero constant multiples of $\left(G_{l}^{*}\left(x_{1}^{2 m-5} x_{2} \zeta_{2}^{4}\right)\right)_{Q_{2 m-6,4}}$. Hence there are constants c, c^{\prime} such that

$$
C_{2 m-5} E_{5} \equiv c C_{13} E_{5}, \quad B_{2 m-5} C_{13}{ }^{2} \equiv c^{\prime} B_{13} C_{13}^{2} \quad \bmod \left(\sum_{i \geq 2} x_{i}^{2}\right) .
$$

Since the degrees of both sides of the above congruences in the variable x_{n+1} are at most 1 , it follows that

$$
C_{2 m-5}=c C_{13}, \quad B_{2 m-5}=c^{\prime} B_{13} .
$$

Thus the assertions (i), (ii), and (iii) have been shown by induction.
Next we shall show that B_{13} and B_{5} (resp. C_{13} and C_{5}) are constant multiples of x_{2} (resp. $x_{2}{ }^{2}$), from which Proposition 5.2 will follows. We shall consider two cases according as B_{13} is zero or not.
I. $B_{13} \neq 0$. We have already seen that the polynomial

$$
\left.\tilde{G}\left(\sum_{i=0}^{2} a_{i}^{6} F_{i}\left(C_{13} x_{1}^{11}, D_{5} x_{1}^{2}\right)\right)+\tilde{G}\left(\sum_{i=0}^{2} a_{i}^{6} F_{i} B_{13} x_{1}^{12}, E_{5} x_{1}\right)\right)
$$

belongs to the ideal $\left(\sum_{i} x_{i}{ }^{2}, \sum_{i} \zeta_{i}{ }^{2}, \sum_{i} x_{i} \zeta_{i}\right)$. Let $\left(p_{2}, \cdots, p_{n+1}\right)$ and $\left(q_{2}, \cdots, q_{n+1}\right)$ be non-zero vectors in C^{n} such that

$$
\sum_{i=2}^{n+1} p_{i}{ }^{2}=\sum_{i=2}^{n+1} p_{i} q_{i}=0, \quad 1+\sum_{i=1}^{n+1} q_{i}{ }^{2}=0 .
$$

Then the subspace of C^{n+1} spanned by $\left(0, p_{2}, \cdots, p_{n+1}\right)$ and $\left(1, q_{2}, \cdots, q_{n+1}\right)$ is contained in \tilde{S}. Let

$$
\kappa: \boldsymbol{C}^{4}=\left\{\left(x_{1}, x_{2}, \zeta_{1}, \zeta_{2}\right)\right\} \longrightarrow \boldsymbol{C}^{2 n+2}=\{(x, \zeta)\}
$$

be the linear map defined by

$$
\kappa^{*} x_{1}=x_{1}, \kappa^{*} \zeta_{1}=\zeta_{1}, \kappa^{*} x_{j}=q_{j} x_{1}+p_{j} x_{2}, \kappa^{*} \zeta_{j}=q_{j} \zeta_{1}+p_{j} \zeta_{2} \quad(j \geq 2)
$$

Then as in $\S 3$ we have

$$
\tilde{G}\left(\sum_{j=0}^{2} a_{j}^{6} F_{j}\left(\kappa^{*} C_{13} x_{1}^{11}, \kappa^{*} D_{5} x_{1}^{2}\right)\right)+\tilde{G}\left(\sum_{j=0}^{2} a_{j}^{6} F_{j}\left(\kappa^{*} B_{13} x_{1}^{12}, \kappa^{*} E_{5} x_{1}\right)\right)=0
$$

which implies that

$$
\left(G_{\iota}{ }^{*} F_{0}\left(\kappa^{*} C_{13} x_{1}^{11}, \kappa^{*} D_{5} x_{1}^{2}\right)\right)_{Q_{14,4}}+\left(G_{\iota}^{*} F_{0}\left(\kappa^{*} B_{13} x_{1}^{12}, \kappa^{*} E_{5} x_{1}\right)\right)_{Q_{14,4}}=0
$$

Put

$$
B_{13}=\sum_{i=2}^{n+1} b_{i} x_{i}, \quad E_{5}=d C_{13}^{2}, \quad D_{5}=d^{\prime} B_{13} C_{13} \quad\left(b_{i}, d, d^{\prime} \in \boldsymbol{R}\right)
$$

Then

$$
\begin{aligned}
& \kappa^{*} C_{13}=\left(\sum_{j=2}^{k} \lambda_{j} q_{j}{ }^{2}\right) x_{1}{ }^{2}+2\left(\sum_{j=2}^{k} \lambda_{j} p_{j} q_{j}\right) x_{1} x_{2}+\left(\sum_{j=2}^{k} \lambda_{j} p_{j}{ }^{2}\right) x_{2}^{2}, \\
& \kappa^{*} B_{13}=\left(\sum_{j=2}^{n+1} b_{j} q_{j}\right) x_{1}+\left(\sum_{j=2}^{n+1} b_{j} p_{j}\right) x_{2},
\end{aligned}
$$

and we have

$$
\left(G_{c}^{*} F_{0}\left(\kappa^{*} C_{13} x_{1}^{11}, \kappa^{*} D_{5} x_{1}^{2}\right)\right)_{Q_{14,4}}
$$

$$
\begin{aligned}
& =d^{\prime}\left\{\left(\sum \lambda_{j} p_{j}{ }^{2}\right)^{2}\left(\sum b_{j} p_{j}\right)\left(G c^{*} F_{0}\left(x_{1}{ }^{11} x_{2}{ }^{2}, x_{1}{ }^{2} x_{2}{ }^{3}\right)\right)_{Q_{1}, 4}\right. \\
& +2\left(\sum \lambda_{j} p_{j} q_{j}\right)\left(\sum \lambda_{j} p_{j}{ }^{2}\right)\left(\sum b_{j} p_{j}\right)\left(G c^{*} F_{0}\left(x_{1}{ }^{12} x_{2}, x_{1}{ }^{2} x_{2}{ }^{3}\right)\right)_{Q_{1}, 4} \\
& +2\left(\sum \lambda_{j} p_{j} q_{j}\right)\left(\sum \lambda_{j} p_{j}^{2}\right)\left(\sum b_{j} p_{j}\right)\left(G_{c}{ }^{*} F_{0}\left(x_{1}^{11} x_{2}^{2}, x_{1}^{3} x_{2}^{2}\right)\right)_{Q_{1, ~}, 4} \\
& \left.+\left(\sum \lambda_{j} p_{j}{ }^{2}\right)^{2}\left(\sum b_{j} q_{j}\right)\left(G_{c}{ }^{*} F_{0}\left(x_{1}{ }^{11} x_{2}^{2}, x_{1}^{3} x_{2}^{2}\right)\right)_{Q_{1}, 4}\right\}, \\
& \left(G_{\imath}{ }^{*} F_{0}\left(\kappa^{*} B_{13} x_{1}{ }^{12}, \kappa^{*} E_{5} x_{1}\right)\right)_{Q_{1,4}, 4} \\
& =d\left\{\left(\sum \lambda_{j} p_{j}{ }^{2}\right)^{2}\left(\sum b_{j} p_{j}\right)\left(G_{l} * F_{0}\left(x_{1}{ }^{12} x_{2}, x_{1} x_{2}{ }^{4}\right)\right)_{Q_{1,4},}\right. \\
& +\left(\sum \lambda_{j} p_{j}^{2}\right)^{2}\left(\sum b_{j} q_{j}\right)\left(G \epsilon^{*} F_{0}\left(x_{1}^{13}, x_{1} x_{2}^{4}\right)\right)_{Q_{14}, 4} \\
& +4\left(\sum \lambda_{j} p_{j}{ }^{2}\right)\left(\sum \lambda_{j} p_{j} q_{j}\right)\left(\sum b_{j} p_{j}\right)\left(G_{l}^{*} F_{0}\left(x_{1}{ }^{12} x_{2}, x_{1}^{2} x_{2}^{3}\right)_{\left.Q_{1, ~},\right\}}\right\} .
\end{aligned}
$$

By Lemma 5. 10 stated later,

$$
\begin{aligned}
& \left(G_{l}{ }^{*} F_{0}\left(x_{1}{ }^{11} x_{2}^{2}, x_{1}{ }^{2} x_{2}^{3}\right)\right)_{Q_{1,4}}=-\frac{5}{26}\left(G_{c}{ }^{*}\left(x_{1}{ }^{13} x_{2} \zeta_{2}{ }^{4}\right)\right)_{Q_{1,4}}, \\
& \left(G_{l}^{*} F_{0}\left(x_{1}^{12} x_{2}, x_{1} x_{2}^{4}\right)_{Q_{14,4}}=\frac{5}{13}\left(G t^{*}\left(x_{1}^{13} x_{2} \zeta_{2}^{4}\right)\right)_{Q_{1,4},},\right. \\
& \left(G l_{l}^{*} F_{0}\left(x_{1}^{12} x_{2}, x_{1}^{2} x_{2}^{3}\right)\right)_{Q_{1}, 4}=-\frac{10}{13 \cdot 7}\left(G_{l}^{*}\left(x_{1}^{14} \zeta_{2}^{4}\right)\right)_{Q_{1,4}, ~}, \\
& \left(G_{c}^{*} F_{0}\left(x_{1}^{11} x_{2}^{2}, x_{1}^{3} x_{2}^{2}\right)\right)_{Q_{1,4}}=\frac{5}{13 \cdot 14}\left(G_{c}{ }^{*}\left(x_{1}^{14} \zeta_{2}^{4}\right)\right)_{Q_{1,4},}, \\
& \left(G_{c}^{*} F_{0}\left(x_{1}^{13}, x_{1} x_{2}^{4}\right)\right)_{Q_{1,4}}=\frac{5}{7}\left(G_{c}^{*}\left(x_{1}^{14} \zeta_{2}^{4}\right)\right)_{Q_{1,4}, 4} .
\end{aligned}
$$

Since $\left(G_{c}{ }^{*}\left(x_{1}^{13} x_{2} \zeta_{2}{ }^{4}\right)\right)_{Q_{1,4}}$ and $\left(G c^{*}\left(x_{1}^{14} \zeta_{2}^{4}\right)\right)_{Q_{14,4}}$ do not vanish, we have

$$
\begin{aligned}
& \left(-d^{\prime \prime}+2 d\right)\left(\sum_{j=2}^{k} \lambda_{j} p_{j^{2}}\right)\left(\sum_{j} b_{j} p_{j}\right)=0, \\
& \left(d^{\prime}+26 d\right)\left(\sum_{j=2}^{k} \lambda_{j} p_{j}{ }^{2}\right)^{2}\left(\sum_{j} b_{j} q_{j}\right) \\
& \quad-\left(6 d^{\prime}+16 d\right)\left(\sum_{j=2}^{k} \lambda_{j} p_{j}{ }^{2}\right)\left(\sum_{j=2}^{k} \lambda_{j} p_{j} q_{j}\right)\left(\sum_{i} b_{j} p_{j}\right)=0 .
\end{aligned}
$$

Since $B_{13} \neq 0, B_{13} C_{18}$ does not belong to the ideal $\left(\sum_{i \geq 2} x_{i}{ }^{2}\right)$. Then there is a vector $\left(p_{2}, \cdots, p_{n+1}\right) \in C^{n}$ such that

$$
\sum_{i=2}^{n+1} p_{i}{ }^{2}=0, \quad\left(\sum_{j=2}^{k} \lambda_{j} p_{j}{ }^{2}\right)\left(\sum_{j} b_{j} p_{j}\right) \neq 0 .
$$

It is easy to see that for $\operatorname{such}\left(p_{2}, \cdots, p_{n+1}\right)$ there is a vector $\left(q_{2}, \cdots, q_{n+1}\right) \in C^{n}$
such that $1+\sum_{i=2}^{n+1} q_{i}{ }^{2}=0$ and $\sum_{i=2}^{n+1} p_{i} q_{i}=0$. Therefore it follows that

$$
d=2 d
$$

If some $b_{i}(3 \leq i \leq n)$ does not vanish, then put $p_{2}=1, p_{n+1}=\sqrt{-1}, p_{j}=0$ $(3 \leq j \leq n)$, and $q_{i}=\sqrt{-1}, q_{j}=0(j \neq i)$ in the above formula. Then we have $d^{\prime}+26 d=0$, which is a contradiction because $d \neq 0$. Hence

$$
b_{i}=0 \quad(3 \leq i \leq n)
$$

Next assume that b_{n+1} does not vanish. Take $\left(\boldsymbol{p}_{i}\right)$ and $\left(q_{i}\right)$ as follows:

$$
\begin{aligned}
& q_{n+1}=\sqrt{-1}, q_{i}=0(2 \leq i \leq n) \\
& p_{2}=1, p_{n}=\sqrt{-1}, p_{i}=0(i \neq 2, n) \text { if } k<n \\
& p_{2}=1, p_{i_{0}}=\sqrt{-1}, p_{i}=0\left(i \neq 2, i_{0}\right) \text { if } k=n
\end{aligned}
$$

where i_{0} is chosen such that $\lambda_{2} \neq \lambda_{i_{0}}$.
By substituting these $\left(p_{i}\right)$ and $\left(q_{i}\right)$ into the above formula, we have $d^{\prime \prime}+26 d=0$, which is again a contradiction. Hence

$$
b_{n+1}=0
$$

and B_{13} is a constant multiple of x_{2}. Moreover, if $k \geq 3$, then put $p_{3}=1$, $p_{n+1}=\sqrt{-1}, p_{i}=0(i \neq 3, n+1)$, and $q_{2}=\sqrt{-1}, q_{i}=0(3 \leq i \leq n+1)$ in the above formula. Then we have $d^{\prime}+26 d=0$, which is a contradiction. Hence we also see that C_{13} is a constant multiple of $x_{2}{ }^{2}$ under the assumption $B_{13} \neq 0$.

Next we shall show that C_{5} is a constant multiple of $x_{2}{ }^{2}$. We have already seen that $X+Z$ belongs to the ideal $\left(\sum_{i} x_{i}{ }^{2}, \sum_{i} \zeta_{i}{ }^{2}, \sum_{i} x_{i} \zeta_{i}\right)$, where

$$
\begin{aligned}
X & =-30 d_{0}^{6,2} \tilde{G}\left(\sum_{i=0}^{2} a_{i}^{6} F_{i}\left(C_{13} x_{1}^{11}, E_{5} x_{1}\right)\right), \\
Z & =\tilde{G}\left(\sum_{i=0}^{2} a_{i}^{6}\left(\sum_{j} x_{j} \frac{\partial}{\partial \zeta_{j}}\right)^{2 i} x_{1}{ }^{10} w_{9}(x) \zeta_{1}{ }^{4}\right),
\end{aligned}
$$

and $w_{9} \in \boldsymbol{R}\left[x_{2}, \cdots, x_{n+1}\right]$ is defined by the condition

$$
\begin{aligned}
& 2 G \iota * F^{1}\left(A_{13} x_{1}{ }^{13}, E_{5} x_{1}\right)+2 G \iota^{*} F^{1}\left(B_{13} x_{1}{ }^{12}, D_{5} x_{1}{ }^{2}\right) \\
&+\sum_{i+j=8} G \iota^{*} F^{1}\left(C_{2 i+1} x_{1}^{2 i-1}, C_{2 j+1} x_{1}{ }^{2 j-1}\right)+2 G \iota * F^{3}\left(A_{15} x_{1}{ }^{15}, E_{5} x_{1}\right) \\
& \quad+\sum_{i+j=9} G \iota^{*} F^{3}\left(C_{2 i+1} x_{1}^{2 i-1}, C_{2 j+1} x_{1}{ }^{2 j-1}\right) \equiv G \iota *\left(x_{1}{ }^{10} w_{9}(x) \zeta_{1}{ }^{4}\right) \\
& \bmod G\left(\mathscr{\mathscr { C }}^{2}\right) .
\end{aligned}
$$

In view of Corollary 5.5 (ii) we may assume that the degree of w_{9} in the variable x_{n+1} is at mosy 1 . Remarking that

$$
\left(\tilde{G} F^{3}\left(C_{2 i+1} x_{1}^{2 i-1}, C_{2 j+1} x_{1}^{2 j-1}\right)\right)^{\nu}=C_{2 i+1}(\nu) C_{2 j+1}(\nu) \tilde{G} F^{3}\left(x_{1}^{2 i-1} x_{2}^{2}, x_{1}^{2 j-1} x_{2}^{2}\right),
$$

we have by Lemma 5.6.

$$
\begin{aligned}
& w_{9}(\nu)\left(G \iota^{*}\left(x_{1}^{10} x_{2}{ }^{4} \zeta_{1}{ }^{4}\right)\right)_{Q_{14,4}} \\
& \quad=-30 d_{0}^{6,2} C_{5}(\nu) C_{13}(\nu)\left(G \iota^{*} F_{0}\left(x_{1}^{11} x_{2}^{2}, x_{1}^{3} x_{2}^{2}\right)\right)_{\boldsymbol{Q}_{14,4}} \\
& \\
& -30 d_{0}^{6,2} B_{13}(\nu) D_{5}(\nu)\left(G \iota^{*} F_{0}\left(x_{1}^{12} x_{2}, x_{1}{ }^{2} x_{2}^{3}\right)\right)_{Q_{14,4}} \\
& \quad+c C_{13}(\nu)^{2}\left(G c^{*}\left(x_{1}{ }^{14} \zeta_{2}^{4}\right)\right)_{Q_{14,4}} \quad(c \in \boldsymbol{R})
\end{aligned}
$$

for all $\nu=\left(\nu_{2}, \cdots, \nu_{n+1}\right) \in C^{n}$ with $\sum_{i} \nu_{i}{ }^{2}=0$. We see from the last part of the proof of Lemma 5.4 that

$$
\left(G \iota^{*}\left(x_{1}^{10} x_{2}^{4} \zeta_{1}^{4}\right)\right)_{Q_{14,4}}=\frac{1}{7 \cdot 11 \cdot 13}\left(G \iota^{*}\left(x_{1}{ }^{14} \zeta_{2}{ }^{4}\right)\right)_{Q_{14,4}}
$$

and from Lemma 5.10 stated leater that

$$
-30 d_{0}^{6,2}\left(G_{\iota} * F_{0}\left(x_{1}^{11} x_{2}^{2}, x_{1}^{3} x_{2}^{2}\right)\right)_{Q_{14,4}}=-\frac{3 \cdot 25}{7 \cdot 13} d_{0}^{6,2}\left(G_{\iota} *\left(x_{1}^{14} \zeta_{2}^{4}\right)\right)_{Q_{14,4}}
$$

and $\left(G_{\iota}{ }^{*} F_{0}\left(x_{1}{ }^{12} x_{2}, x_{1}{ }^{2} x_{2}{ }^{3}\right)\right)_{\boldsymbol{Q}_{14,4}}$ is a constant multiple of $\left(G_{\iota}{ }^{*}\left(x_{1}{ }^{14} \zeta_{2}{ }^{4}\right)\right)_{\boldsymbol{Q}_{14,4}}$. Hence there are constants $c^{\prime}, c^{\prime \prime} \in \boldsymbol{R}$ such that

$$
w_{9} \equiv-3 \cdot 25 \cdot 11 d_{0}^{6,2} C_{5} C_{13}+c^{\prime} B_{13} D_{5}+c^{\prime \prime} C_{13}{ }^{2} \quad \bmod \left(\sum_{i \geq 2} x_{i}{ }^{2}\right) .
$$

On the other hand, we have already seen in the part II of the proof of Proposition 4.5 that $\left(G_{\iota}{ }^{*} F_{0}\left(x_{1}{ }^{11} x_{2}{ }^{2}, x_{1} x_{2}{ }^{4}\right)\right)_{Q_{14,4}}=0$. Since C_{13} and E_{5} are constant multiples of $x_{2}{ }^{2}$ and $x_{2}{ }^{4}$ respectively in the present case, it follows that $X=0$. Hence $z \in\left(\sum_{i} x_{i}{ }^{2}, \sum_{i} \zeta_{i}{ }^{2}, \sum_{i} x_{i} \zeta_{i}\right)$, and $\left(G c^{*}\left(x_{1}{ }^{10} w_{9}(x) \zeta_{1}{ }^{4}\right)\right)_{\boldsymbol{Q}_{14,4}}=0$. Then by Lemma 5.6 we have

$$
w_{9}(\nu)\left(G c^{*}\left(x_{1}^{10} x_{2}^{4} \zeta_{1}^{4}\right)\right)_{Q_{1,, 4}}=0
$$

for all $\left.\nu=\nu_{2}, \cdots, \nu_{n+1}\right) \in C^{n}$ with $\sum_{i} \nu_{i}{ }^{2}=0$. Since $\left(G_{c}{ }^{*}\left(x_{1}{ }^{10} x_{2}{ }^{4} \zeta_{1}{ }^{4}\right)\right)_{Q_{14,4}}$ does not vanish and the degree of w_{9} in the variable x_{n+1} is at most 1 , it follows that $w_{9}=0$. This shows that C_{5} is a constant multiple of $x_{2}{ }^{2}$.

Next we shall show that B_{5} is a constant multiple of x_{2}. We have already shown that there is $v_{6} \in \boldsymbol{R}\left[x_{2}, \cdots, x_{n+1}\right]_{4}$ such that

$$
G \iota * F(f, f) \equiv \sum_{j=4}^{5} G_{\iota} * R_{2 j}+G \iota *\left(x_{1}^{2} v_{6}(x) \zeta_{1}^{4}\right) \quad \bmod G\left(\mathscr{A}^{2}\right) .
$$

This implies that

$$
0=\left(G_{\iota}^{*} R_{10}\right)_{Q_{6,4}}+\left(G_{\ell}^{*}\left(x_{1}^{2} v_{6}(x) \zeta_{1}^{4}\right)\right)_{Q_{6,4}}
$$

Remark that in the present case $G_{c}{ }^{*}\left(E_{5} x_{1}, D_{5} x_{1}{ }^{2}\right) \in G\left(\mathscr{A}^{2}\right)$ by Corollary 5.5 (i). By taking the parts of odd degree in the variables $\left(x_{2}, \cdots, x_{n+1}, \zeta_{2}, \cdots\right.$, ζ_{n+1}), we then have

$$
\begin{aligned}
& \left.-7 d_{0}^{2,2}\left\{G_{\iota}^{*} F_{0}\left(E_{5} x_{1}, B_{5} x_{1}^{4}\right)\right)_{Q_{6,4}}+\left(G_{\ell} * F_{0}\left(D_{5} x_{1}^{2}, C_{5} x_{1}^{3}\right)\right)_{Q_{6,4}}\right\} \\
& \quad+\left(G_{\iota}^{*} F^{3}\left(B_{7} x_{1}^{6}, E_{5} x_{1}\right)\right)_{Q_{6,4}}+\left(G_{\iota} * F^{3}\left(C_{7} x_{1}^{5}, D_{5} x_{1}^{2}\right)\right)_{Q_{6,4}}=0
\end{aligned}
$$

By Lemma 5.10 stated later there are non-zero constants $b_{i}(1 \leq i \leq 4)$ such that

$$
\begin{aligned}
& \left\{b_{1} E_{5}(v) B_{5}(v)+b_{2} D_{5}(\nu) C_{5}(\nu)+b_{3} B_{7}(\nu) E_{5}(\nu)+b_{4} C_{7}(\nu) D_{5}(\nu)\right\} \\
& \quad \times\left(G_{\ell} *\left(x_{1}^{5} x_{2} \zeta_{2}^{4}\right)\right)_{Q_{6,4}}=0
\end{aligned}
$$

Since $\left(G_{c}{ }^{*}\left(x_{1}^{5} x_{2} \zeta_{2}{ }^{4}\right)\right)_{Q_{6,4}} \neq 0$ and the degree of B_{5} in the variable x_{n+1} is at most 1, it follows that B_{5} is a constant multiple of x_{2}.
II. $B_{13}=0$. In this case we have $X+Z \in\left(\sum_{i} x_{i}{ }^{2}, \sum_{i} \zeta_{i}{ }^{2}, \sum_{i} x_{i} \zeta_{i}\right), X$ and Z being as in I , and

$$
w_{9}=-3 \cdot 25 \cdot 11 d_{0}^{6,2} C_{5} C_{13}+c^{\prime \prime} C_{13}^{2}, \quad c^{\prime \prime} \in \boldsymbol{R} .
$$

By considering the homogeneity in the variables $\left(x_{2}, \cdots, x_{n+1}, \zeta_{2}, \cdots, \zeta_{n+1}\right)$, we also have $X \in\left(\sum_{i \geq 2} x_{i}{ }^{2}, \sum_{i \geq 2} \zeta_{i}{ }^{2}, \sum_{i \geq 2} x_{i} \zeta_{i}\right)$. First assume that $k \leq n-1\left(C_{13}=\sum_{i=2}^{k} \lambda_{i} x_{i}{ }^{2}\right)$. Then X does not contain the variables $\left(x_{n}, x_{n+1}, \zeta_{n}, \zeta_{n+1}\right)$. Since for each $\left(x_{2}, \cdots, x_{n-1}, \zeta_{2}, \cdots, \zeta_{n-1}\right) \in C^{2 n-4}$ we can choose $\left(x_{n}, x_{n+1}, \zeta_{n}, \zeta_{n+1}\right) \in C^{4}$ such that $\sum_{i \geq 2} x_{i}{ }^{2}=\sum_{i \geq 2} \zeta_{i}{ }^{2}=\sum_{i \geq 2} x_{i} \zeta_{i}=0$, it follows that $X=0$. Next assume that $k=n$ and $n \geq 4$. Then, since X does not contain the variables $\left(x_{n+1}, \zeta_{n+1}\right)$, we have

$$
X \in\left(\sum_{i=2}^{n} x_{i}{ }^{2} \sum_{i=2}^{n} \zeta_{i 2}-\left(\sum_{i=2}^{n} x_{i} \zeta_{i}\right)^{2}\right)
$$

by Lemma 5.3. Put $\mu=\sum_{i=2}^{n} x_{i}{ }^{2}$, and consider the following polynomial;

$$
X_{0}=\tilde{G}\left(\sum_{i=0}^{2} a_{i}^{6} F_{i}\left(\mu x_{1}^{11}, \mu^{2} x_{1}\right)\right)
$$

We have seen that $\left(G_{\iota} * F_{0}\left(x_{1}{ }^{11} x_{n+1}{ }^{2}, x_{1} x_{n+1}{ }^{4}\right)\right)_{Q_{14,4}}=0$. By substituting $1-x_{1}{ }^{2}-\mu$ for $x_{n+1}{ }^{2}$ we have

$$
\begin{aligned}
& \left(G_{\ell} * F_{0}\left(x_{1}^{11} \mu, x_{1} \mu^{2}\right)\right)_{Q_{14,4}}+\left(G_{\iota} * F_{0}\left(x_{1}^{13}, x_{1} \mu^{2}\right)\right)_{Q_{14,4}} \\
& \quad+2\left(G_{\iota} * F_{0}\left(x_{1}^{11} \mu, x_{1}^{3} \mu\right)\right)_{Q_{14,4}}=0
\end{aligned}
$$

This implies that $X_{0} \in\left(\sum_{i \geq 2} x_{i}{ }^{2}, \sum_{i \geq 2} \zeta_{i}^{2}, \sum_{i \geq 2} x_{i} \zeta_{i}\right)$, and hence

$$
X_{0} \in\left(\sum_{i=2}^{n} x_{i}{ }^{2} \sum_{i=2}^{n} \zeta_{i}{ }^{2}-\left(\sum_{i=2}^{n} x_{i} \zeta_{i}\right)^{2}\right) .
$$

Note that C_{13} is the image of μ under the transformation $x_{i} \rightarrow \sqrt{\lambda_{i}} x_{i}(2 \leq i \leq n)$, $x_{1} \rightarrow x_{1}, x_{n+1} \rightarrow x_{n+1}$. Since this transformation commutes with the operators \tilde{G} and $\sum_{i} x_{i} \frac{\partial}{\partial \zeta_{i}}$, it follows that

$$
X \in\left(\sum_{i=2}^{n} \lambda_{i} x_{i}{ }^{2} \sum_{i=2}^{n} \lambda_{i} \zeta_{i}{ }^{2}-\left(\sum_{i=2}^{n} \lambda_{i} x_{i} \zeta_{i}\right)^{2}\right) .
$$

Since $n \geq 4$, the polynomials $\sum_{i=2}^{n} x_{i}{ }^{2} \sum_{i=2}^{n} \zeta_{i}{ }^{2}-\left(\sum_{i=2}^{n} x_{i} \zeta_{i}\right)^{2}$ and $\sum_{i=2}^{n} \lambda_{i} x_{i}{ }^{2} \sum_{i=2}^{n} \lambda_{i} \zeta_{i}{ }^{2}-\left(\sum_{i=2}^{n} \lambda_{i} x_{i} \zeta_{i}\right)^{2}$ are irreducible and mutually prime. Hence X must be divided by their product. But since $\operatorname{deg}_{2} X=6$, it follows that $X=0$.

Now we assume that $X=0$ and $k \geq 3$. Then an explicit computation shows that the coefficient of $x_{1}{ }^{12} x_{2}{ }^{2} \zeta_{3}{ }^{4}$ in the polynomial X is, putting $I_{a, b}^{\prime}=$ $\frac{1}{2 \pi} \int_{0}^{2 \pi}(\cos t)^{2 a}(\sin t)^{2 b} d t$ and $E_{5}=d_{1} C_{13}{ }^{2}$,

$$
\begin{aligned}
&-30 d_{1} d_{0}^{6,2} \lambda_{2} \lambda_{3}^{2}\left\{\left(I_{9,0}^{\prime}-4 I_{8,1}^{\prime}+6 I_{7,2}^{\prime}-4 I_{6,3}^{\prime}\right)+a_{1}^{6}\left(48 I_{8,1}^{\prime}-96 I_{7,2}^{\prime}+36 I_{6,3}^{\prime}\right)\right. \\
&\left.+a_{2}^{6} \cdot 360 I_{7,2}^{\prime}\right\} \\
&=- 30 d_{1} d_{0}^{6,2} \lambda_{2} \lambda_{3}^{2} \times\left(-\frac{5979}{5 \cdot 13^{2} \cdot 17}\right) I_{9,0}^{\prime},
\end{aligned}
$$

which is not zero. This is a contradiction. Hence C_{13} is a constant multiple of $x_{2}{ }^{2}$ if $X=0$. Moreover that $X=0$ implies that $Z \in\left(\sum_{i \geq 2} x_{i}{ }^{2}, \sum_{i \geq 2} \zeta_{i}{ }^{2}, \sum_{i \geq 2} x_{i} \zeta_{i}\right)$, and we see that C_{5} is a constant multiple of $x_{2}{ }^{2}$ as in the case I. For B_{5} we can also use the argument in I, from which that $B_{5}=0$ is easily deduced.

It remains to consider the case where $n=3$ and $k=3$. We shall compute C_{5} in two ways, and show a contradiction. Let X, Z, and X_{0} be as above. A direct conputation shows that

$$
X_{0}=44 \tilde{G}\left(x_{1}^{10}\left(x_{2}^{2}+x_{3}^{2}\right) \zeta_{1}^{2}+2 a_{1}^{6} x_{1}^{12}\left(x_{2}^{2}+x_{3}^{2}\right)\right)\left(x_{2} \zeta_{3}-x_{3} \zeta_{2}\right)^{2} .
$$

Put

$$
W=-30 d_{0}^{6,2} d_{1} \times 44 \lambda_{2} \lambda_{3} \tilde{G}\left(x_{1}^{10}\left(\lambda_{2} x_{2}^{3}+\lambda_{3} x_{3}^{2}\right) \zeta_{1}^{2}+2 a_{1}^{6} x_{1}^{12}\left(\lambda_{2} x_{2}^{2}+\lambda_{3} x_{3}^{2}\right)\right),
$$

where $d_{1}=E_{5} / C_{18}{ }^{2}$ and $C_{19}=\lambda_{2} x_{2}{ }^{2}+\lambda_{3} x_{3}{ }^{2}$. Then

$$
X=W\left(x_{2} \zeta_{3}-x_{2} \zeta_{2}\right)^{2} .
$$

Since $X+Z \in\left(\sum_{i} x_{i}{ }^{2}, \sum_{i} \zeta_{i}{ }^{2}, \sum_{i} x_{i} \zeta_{i}\right)$, we can write

$$
X+Z=\sum_{i} x_{i}{ }^{2} \sum_{j=0}^{2} H_{1}^{2 j}+\sum_{i} \zeta_{i}{ }^{2} \sum_{j=0}^{2} H_{2}^{2 j}+\sum_{i} x_{i} \zeta_{i} \sum_{j=0}^{2} H_{s}^{2 j}
$$

where $H_{i}^{2 j}$ are homogeneous in both variables $\left(x_{1}, \zeta_{1}\right)$ and $\left(x_{2}, \cdots, x_{4}, \zeta_{2}, \cdots, \zeta_{4}\right)$ $\operatorname{deg} H_{i}^{2 j}=16, \operatorname{deg}_{2} H_{i}^{2 j}=2 j$. By comparing both sides we have

$$
\begin{aligned}
X & =\sum_{i \geq 2} x_{i}{ }^{2} H_{1}^{4}+\sum_{i \geq 2} \zeta_{i}^{2} H_{2}^{4}+\sum_{i \geq 2} x_{i} \zeta_{i} H_{3}^{4} \\
Z & =x_{1}^{2} H_{1}^{4}+\zeta_{1}^{2} H_{2}^{4}+x_{1} \zeta_{1} H_{3}^{4}+\sum_{i \geq 2} x_{i}{ }^{2} H_{1}^{2}+\sum_{i \geq 2} \zeta_{i}^{2} H_{2}^{2}+\sum_{i \geq 2} x_{i} \zeta_{i} H_{3}^{2}
\end{aligned}
$$

Since

$$
\begin{aligned}
\left(x_{2} \zeta_{2}\right. & \left.-x_{3} \zeta_{2}\right)^{2}=\frac{1}{2}\left(\zeta_{2}^{2}+\zeta_{3}^{2}-\zeta_{4}^{2}\right)\left(x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) \\
& +\frac{1}{2}\left(x_{2}^{2}+x_{3}^{2}-x_{4}^{2}\right)\left(\zeta_{2}^{2}+\zeta_{3}^{2}+\zeta_{4}^{2}\right) \\
& -\left(x_{2} \zeta_{2}+x_{3} \zeta_{3}-x_{4} \zeta_{4}\right)\left(x_{2} \zeta_{2}+x_{3} \zeta_{3}+x_{4} \zeta_{4}\right)
\end{aligned}
$$

it follows that

$$
\begin{aligned}
\left(H_{1}^{4}\right. & -\frac{1}{2}\left(\left(\zeta_{2}{ }^{2}+\zeta_{3}{ }^{2}-\zeta_{4}{ }^{2}\right) W\right) \sum_{i=2}^{4} x_{i}{ }^{2}+\left(H_{2}^{4}-\frac{1}{2}\left(x_{2}{ }^{2}+x_{3}{ }^{2}-x_{4}{ }^{2}\right) W\right) \sum_{i=2}^{4} \zeta_{i}{ }^{2} \\
& +\left(H_{3}^{4}+\left(x_{2} \zeta_{2}+x_{3} \zeta_{3}-x_{4} \zeta_{4}\right) W\right) \sum_{i=2}^{4} x_{i} \zeta_{i}=0
\end{aligned}
$$

This implies that the polynomials $H_{1}^{4}-\left(\zeta_{2}{ }^{2}+\zeta_{3}{ }^{2}\right) W, H_{2}^{4}-\left(x_{2}{ }^{2}+x_{3}{ }^{2}\right) W$, and $H_{3}^{4}+2\left(x_{2} \zeta_{2}+x_{3} \zeta_{3}\right) W$ belong to the ideal $\left(\sum_{i=2}^{4} x_{i}{ }^{2}, \sum_{i=2}^{4} \zeta_{i}{ }^{2}, \sum_{i=2}^{4} x_{i} \zeta_{i}\right)$. Hence we have

$$
\begin{aligned}
Z \equiv & \left\{x_{1}{ }^{2}\left(\zeta_{2}{ }^{2}+\zeta_{3}{ }^{2}\right)+\zeta_{1}{ }^{2}\left(x_{2}{ }^{2}+x_{3}{ }^{2}\right)-2 x_{1} \zeta_{1}\left(x_{2} \zeta_{2}+x_{3} \zeta_{3}\right)\right\} W \\
& \bmod \left(\sum_{i=2}^{4} x_{i}{ }^{2}, \sum_{i=2}^{4} \zeta_{i}{ }^{2}, \sum_{i=2}^{4} x_{i} \zeta_{i}\right)
\end{aligned}
$$

which implies that

$$
Z^{\nu}=\left(\nu_{2}^{2}+\nu_{3}^{2}\right)\left(x_{1} \zeta_{2}-x_{2} \zeta_{1}\right)^{2} W^{\nu}
$$

for all $\nu=\left(\nu_{2}, \nu_{3}, \nu_{4}\right) \in C^{3}$ with $\sum_{i=2}^{4} \nu_{i}{ }^{2}=0$. We see that

$$
\begin{aligned}
& W^{\nu}=-30 d_{0}^{6,2} d_{1} \times 44 \lambda_{2} \lambda_{3}\left(\lambda_{2} \nu_{2}{ }^{2}+\lambda_{3} \nu_{3}{ }^{2}\right) \tilde{G}\left(x_{1}^{10} x_{2}{ }^{2} \zeta_{1}{ }^{2}+2 a_{1}^{6} x_{1}^{12} x_{2}{ }^{2}\right), \\
& Z^{\nu}=w_{9}(\nu) \widetilde{G}\left(x_{1}^{10} x_{2}{ }^{4} \zeta_{1}{ }^{4}+12 a_{1}^{6} x_{1}{ }^{12} x_{2}{ }^{4} \zeta_{1}{ }^{2}+24 a_{2}^{6} x_{1}^{14} x_{2}^{4}\right)
\end{aligned}
$$

Moreover an easy computation shows that

$$
\begin{aligned}
& \tilde{G}\left(x_{1}{ }^{10} x_{2}{ }^{2} \zeta_{1}{ }^{2}+2 a_{1}^{6} x_{1}{ }^{12} x_{2}{ }^{2}\right)\left(x_{1} \zeta_{2}-x_{2} \zeta_{1}\right)^{2} \\
& \quad=\frac{35}{2} \tilde{G}\left(x_{1}^{10} x_{2}{ }^{4} \zeta_{1}{ }^{4}+12 a_{1}^{6} x_{1}{ }^{12} x_{2}{ }^{4} \zeta_{1}{ }^{2}+24 a_{2}^{6} x_{1}^{14} x_{2}^{4}\right) .
\end{aligned}
$$

Hence we have

$$
w_{9}(\nu)=-30 \cdot 44 \cdot \frac{35}{2} d_{0}^{6,2} d_{1} \lambda_{2} \lambda_{3}\left(\lambda_{2} \nu_{2}^{2}+\lambda_{3} \nu_{3}^{2}\right)\left(\nu_{2}{ }^{2}+\nu_{3}^{2}\right) .
$$

Since the degree of w_{9} in the variable x_{4} is at most one, it follows that

$$
w_{9}(x)=-30 \cdot 44 \cdot \frac{35}{2} d_{0}^{6,2} d_{1} \lambda_{2} \lambda_{3}\left(\lambda_{2} x_{2}^{2}+\lambda_{3} x_{3}^{2}\right)\left(x_{2}^{2}+x_{3}^{2}\right) .
$$

On the other hand we have already seen that

$$
w_{9}=-3 \cdot 25 \cdot 11 d_{0}^{6,2} C_{5} C_{13}+c^{\prime \prime} C_{13}^{2}, \quad c^{\prime \prime} \in \boldsymbol{R} .
$$

Hence it follows that

$$
C_{5}=28 d_{1} \lambda_{2} \lambda_{3}\left(x_{2}{ }^{2}+x_{3}{ }^{2}\right)+e C_{13}, \quad e \in \boldsymbol{R} .
$$

Next we shall consider $Q_{6,4}$-component. We have already seen that there is a polynomial $v_{6} \in \boldsymbol{R}\left[x_{2}, x_{3}, x_{4}\right]_{4}$ such that

$$
G \iota * F(f, f) \equiv G_{\iota}{ }^{*} R_{10}+G \iota * R_{8}+G_{\iota} *\left(x_{1}^{2} v_{6}(x) \zeta_{1}^{4}\right) \quad \bmod G\left(\mathscr{4}^{2}\right)
$$

Then we have

$$
\left(G_{\imath} * R_{10}\right)_{Q_{6,4}}+\left(G_{\iota} *\left(x_{1}^{2} v_{6}(x) \zeta_{1}^{4}\right)\right)_{Q_{6,4}}=0 .
$$

This implies that

$$
\begin{aligned}
& \left(G \iota^{*} F^{1}\left(E_{5} x_{1}, E_{5} x_{1}\right)\right)_{Q_{6,4}}+2\left(G_{\iota} * F^{1}\left(C_{5} x_{1}^{3}, E_{5} x_{1}\right)\right)_{Q_{6,4}} \\
& \quad+2\left(G_{\iota} * F^{3}\left(C_{7} x_{1}^{5}, E_{5} x_{1}\right)\right)_{Q_{6,4}}+\left(G_{\iota} *\left(x_{1}^{2} w_{5}(x) \zeta_{1}^{4}\right)\right)_{Q_{6,4}}=0
\end{aligned}
$$

for some $w_{5} \in \boldsymbol{R}\left[x_{2}, x_{3}, x_{4}\right]_{4}$, and

$$
\left(G_{c}^{*} F^{1}\left(B_{5} x_{1}^{4}, E_{5} x_{1}\right)\right)_{Q_{6,4}}=0 .
$$

Put

$$
\begin{aligned}
S= & -7 d_{0}^{2,2} \tilde{G}\left(\sum_{i=0}^{2} a_{i}^{2} F_{i}\left(E_{5} x_{1}, E_{5} x_{1}\right)\right) \\
T= & -14 d_{0}^{2,2} \tilde{G}\left(\sum_{i=0}^{2} a_{i}^{2} F_{i}\left(C_{5} x_{1}^{3}, E_{5} x_{1}\right)\right) \\
& +10 d_{0}^{2,2} \tilde{G}\left(\sum_{i=0}^{2} a_{i}^{2}\left(\sum_{j} x_{j} \frac{\partial}{\partial \zeta_{j}{ }^{2}}\right)^{2 i} x_{1}^{4} C_{7}(x) E_{5}(\zeta),\right.
\end{aligned}
$$

$$
U=G\left(x_{1}^{2} w_{5}(x) \zeta_{1}^{4}+12 a_{1}^{2} x_{1}{ }^{4} w_{5}(x) \zeta_{1}^{2}+24 a_{2}^{2} x_{1}^{6} w_{5}(x)\right) .
$$

Then there are homogeneous polynomials $H_{i} \in \boldsymbol{R}[x, \zeta]_{8}(i=1,2,3)$ with $\operatorname{deg}_{2} H_{i} \leq 6$ such that

$$
S+T+U=\sum_{i} x_{i}{ }^{2} H_{1}+\sum_{i} \zeta_{i}{ }^{2} H_{2}+\sum_{i} x_{i} \zeta_{i} H_{3} .
$$

Let H_{i}^{j} be the homogeneous part of H_{i} of degree j in the variables (x_{2}, \cdots, x_{4}, $\left.\zeta_{2}, \cdots, \zeta_{4}\right)$. Then we have

$$
\begin{aligned}
& S=\sum_{i=2}^{4} x_{i}{ }^{2} H_{1}^{6}+\sum_{i=2}^{4} \zeta_{i}{ }^{2} H_{2}^{6}+\sum_{i=2}^{4} x_{i} \zeta_{i} H_{3}^{6}, \\
& T=x_{1}{ }^{2} H_{1}^{6}+\zeta_{1}{ }^{2} H_{2}^{6}+x_{1} \zeta_{1} H_{3}^{6}+\sum_{i=2}^{4} x_{i}{ }^{2} H_{1}^{4}+\sum_{i=2}^{4} \zeta_{i}{ }^{2} H_{2}^{4}+\sum_{i=2}^{4} x_{i} \zeta_{i} H_{3}^{4} .
\end{aligned}
$$

Now consider the following polynomial;

$$
S_{0}=\tilde{G}\left(\sum_{i=0}^{2} a_{i}^{2} F_{i}\left(x_{1} \mu^{2}, x_{1} \mu^{2}\right)\right),
$$

where $\mu=x_{2}{ }^{2}+x_{3}{ }^{2}$. A direct computation shows that

$$
\begin{aligned}
S_{0}= & -\frac{8}{35} \tilde{G}\left(x_{1}{ }^{2}\left(x_{2}{ }^{2}+x_{3}^{2}\right)\left(\zeta_{2}{ }^{2}+\zeta_{3}{ }^{2}\right)+9 x_{1}{ }^{2}\left(x_{2} \zeta_{2}+x_{3} \zeta_{3}\right)^{2}-2 x_{1}{ }^{2}\left(x_{2}{ }^{2}+x_{3}{ }^{2}\right)^{2}\right) \\
& \times\left(x_{2} \zeta_{3}-x_{3} \zeta_{2}\right)^{2} .
\end{aligned}
$$

Hence, by putting

$$
\begin{aligned}
V= & \frac{8}{5} d_{0}^{2,2} d_{1}^{2} \lambda_{2} \lambda_{3} \tilde{G}\left(x_{1}{ }^{2}\left(\lambda_{2} x_{2}{ }^{2}+\lambda_{3} x_{3}{ }^{2}\right)\left(\lambda_{2} \zeta_{2}{ }^{2}+\lambda_{3} \zeta_{3}{ }^{2}\right)\right) \\
& \left.+9 x_{1}{ }^{2}\left(\lambda_{2} x_{2} \zeta_{2}+\lambda_{3} x_{3} \zeta_{3}\right)^{2}-2 x_{1}{ }^{2}\left(\lambda_{2} x_{2}{ }^{2}+\lambda_{3} x_{3}{ }^{2}\right)^{2}\right),
\end{aligned}
$$

we have

$$
S=\left(x_{2} \zeta_{3}-x_{3} \zeta_{2}\right)^{2} V,
$$

where $d_{1}=E_{5} /\left(\lambda_{2} x_{2}{ }^{2}+\lambda_{3} x_{3}{ }^{2}\right)^{2}$. Then a similar argument as before shows that

$$
\begin{aligned}
T \equiv & \left\{x_{1}^{2}\left(\zeta_{2}{ }^{2}+\zeta_{3}^{2}\right)+\zeta_{1}{ }^{2}\left(x_{2}{ }^{2}+x_{3}^{2}\right)-2 x_{1} \zeta_{1}\left(x_{2} \zeta_{2}+x_{3} \zeta_{3}\right)\right\} V \\
& \bmod \left(\sum_{i=2}^{4} x_{i}{ }^{2}, \sum_{i=2}^{4} \zeta_{i}{ }^{2}, \sum_{i=2}^{4} x_{i} \zeta_{i}\right),
\end{aligned}
$$

and $T^{\nu}=\left(\nu_{2}{ }^{2}+\nu_{3}{ }^{2}\right)\left(x_{1} \zeta_{2}-x_{2} \zeta_{1}\right)^{2} V^{\nu}$ for all $\nu=\left(\nu_{2}, \nu_{3}, \nu_{4}\right) \in \boldsymbol{C}^{s}$ with $\sum_{i=2}^{4} \nu_{i}{ }^{2}=0$. We have

$$
V^{\nu}=\frac{8}{5} d_{0}^{2,2} d_{1}^{2} \lambda_{2} \lambda_{3}\left(\lambda_{2} \nu_{2}^{2}+\lambda_{3} \nu_{3}^{2}\right)^{2} \widetilde{G}\left(10 x_{1}^{2} x_{2}^{2} \zeta_{2}{ }^{2}-2 x_{1}^{2} x_{2}^{4}\right),
$$

$$
\begin{aligned}
T^{\nu}= & -14 d_{0}^{2,2} C_{5}(\nu) E_{5}(\nu) \tilde{G}\left(\sum_{i=0}^{2} a_{i}^{2} F_{i}\left(x_{1}^{3} x_{2}^{2}, x_{1} x_{2}^{4}\right)\right) \\
& +10 d_{0}^{2,2} C_{7}(\nu) E_{5}(\nu) \tilde{G}\left(x_{1}^{4} x_{2}^{2} \zeta_{2}^{4}+12 a_{1}^{2} x_{1}^{4} x_{2}^{4} \zeta_{2}{ }^{2}+24 a_{2}^{2} x_{1}^{4} x_{2}^{6}\right) .
\end{aligned}
$$

By Lemma 5. 10 stated later we see that

$$
\left(G_{l}^{*} F_{0}\left(x_{1}^{3} x_{2}^{2}, x_{1} x_{2}^{4}\right)\right)_{Q_{6,4}}=-2\left(G^{*}\left(x_{1}^{4} x_{2}^{2} \zeta_{2}^{4}\right)\right)_{Q_{6,4}}
$$

From this it follows that

$$
\begin{aligned}
& \tilde{G}\left(\sum_{i=0}^{2} a_{i}^{2} F_{i}\left(x_{1}^{3} x_{2}^{2}, x_{1} x_{2}^{4}\right)\right) \\
& \quad=-2 \tilde{G}\left(x_{1}^{4} x_{2}{ }^{2} \zeta_{2}{ }^{4}+12 a_{1}^{2} x_{1}^{4} x_{2}^{4} \zeta_{2}{ }^{2}+24 a_{2}^{2} x_{1}^{4} x_{2}^{6}\right)
\end{aligned}
$$

Hence

$$
T^{\nu}=\left(28 C_{5}(\nu)+10 C_{7}(\nu)\right) d_{0}^{2,2} E_{5}(\nu) \widetilde{G}\left(x_{1}{ }^{4} x_{2}{ }^{2} \zeta_{2}{ }^{4}+12 a_{2}^{2} x_{1}^{4} x_{2}^{4} \zeta_{2}{ }^{2}+24 a_{2}^{2} x_{1}^{4} x_{2}{ }^{6}\right)
$$

Moreover a direct a direct computation shows that

$$
\begin{aligned}
& \tilde{G}\left(10 x_{1}^{2} x_{2}^{2} \zeta_{2}^{2}-2 x_{1}^{2} x_{2}^{4}\right)\left(x_{1} \zeta_{2}-x_{2} \zeta_{1}\right)^{2} \\
& \quad=35 \tilde{G}\left(x_{1}^{4} x_{2}^{2} \zeta_{2}^{4}+12 a_{1}^{2} x_{1}^{4} x_{2}^{4} \zeta_{2}^{2}+24 a_{2}^{2} x_{1}^{4} x_{2}^{6}\right)
\end{aligned}
$$

Since

$$
\left(c^{*} \widetilde{G}\left(x_{1}^{4} x_{2}{ }^{2} \zeta_{2}{ }^{4}+12 a_{1}^{2} x_{1}^{4} x_{2}{ }^{4} \zeta_{2}{ }^{2}+24 a_{2}^{2} x_{1}^{4} x_{2}{ }^{6}\right)\right)_{G\left(Q_{10}\right)}=\left(G_{c}{ }^{*}\left(x_{1}^{4} x_{2}{ }^{2} \zeta_{2}{ }^{4}\right)\right)_{Q_{0,4}},
$$

it does not vanish by Lemma 3.9. Thus we have

$$
\left(28 C_{5}(\nu)+10 C_{7}(\nu)\right)\left(\lambda_{2} \nu_{2}^{2}+\lambda_{3} \nu_{3}^{2}\right)^{2}=56 d_{1} \lambda_{2} \lambda_{3}\left(\nu_{2}^{2}+\nu_{3}^{2}\right)\left(\lambda_{2} \nu_{2}^{2}+\lambda_{3} \nu_{3}^{2}\right)^{2}
$$

for all $\nu=\left(\nu_{2}, \nu_{3}, \nu_{4}\right) \in C^{3}$ with $\sum_{i=2}^{4} \nu_{i}{ }^{2}=0$. Since the ideal $\left(\sum_{i=2}^{4} x_{i}{ }^{2}\right)$ is prime, it follows that

$$
C_{5}=2 d_{1} \lambda_{2} \lambda_{3}\left(x_{2}^{2}+x_{3}^{2}\right)-\frac{5}{14} C_{7} .
$$

But we have already seen that $C_{5}=28 d_{1} \lambda_{2} \lambda_{3}\left(x_{2}{ }^{2}+x_{3}{ }^{2}\right)+e C_{13}, e \in \boldsymbol{R}$. Since C_{7} is a constant multiple of C_{13}, and since $x_{2}{ }^{2}+x_{3}{ }^{2}$ and C_{13} are mutually prime, it is a contradiction.

This concludes the proof of Proposition 5. 2,
Now we shall prove the following proposition, which will complete the proof of Theorem 4.1.

Proposition 5.7. Let f be a polynomial of the form

$$
f=\sum_{i=2}^{10} \alpha_{2 i+1} x_{1}^{2 i+1}+\sum_{i=2}^{6} \beta_{2 i+1} x_{1}^{2 i} x_{2}+\sum_{i=2}^{6} \gamma_{2 i+1} x_{1}^{2 i-1} x_{2}^{2}+\delta_{5} x_{1}^{2} x_{2}^{3}+\varepsilon_{5} x_{1} x_{2}^{4}
$$

where the coefficients are real numbers, $\alpha_{21}=1, \gamma_{13} \neq 0, \varepsilon_{5} \neq 0$. Then $G_{\iota}{ }^{*} F$ $(f, f) \in G\left(\mathscr{H}^{2}\right)$ if and only if the coefficients satisfy the relations described in Theorem 4. 1 (ii).

To prove this proposition we need some lemmas. Let $R_{2 i}(4 \leq i \leq 21)$ be the homogeneous part of degree $2 i$ of $F(f, f)$.

Lemma 5. 8. $\quad G_{\iota} * F(f, f) \in G\left(\mathscr{A}^{2}\right)$ if and only if $\left(G_{\iota} * R_{2 i}\right)_{Q_{2 i-4,4}}=0(4 \leq$ $i \leq 13$).

Proof. Since $\operatorname{deg}_{2} R_{2 i} \leq 2(14 \leq i \leq 21)$, it follows that $G_{\iota} * R_{2 i} \in G\left(\mathscr{A}^{2}\right)$ $(14 \leq i \leq 21)$ in view of Corollary 5.5 (i). Hence the condition $G c^{*} F(f, f) \in$ $G\left(\mathscr{H}^{2}\right)$ is equivalent to the condition

$$
\sum_{i=4}^{13} G \iota^{*} R_{2 i} \in G\left(\mathscr{A}^{2}\right),
$$

Let $f_{2 i+1}(2 \leq i \leq 10)$ be the homogeneous part of degree $2 i+1$ of f. If i, $j \geq 3$, then $\operatorname{deg}_{2} F^{1}\left(f_{2 i+1}, f_{2 j+1}\right)$ and $\operatorname{deg}_{2} F^{2}\left(f_{2 i+1}, f_{2 j+1}\right)$ are at most 4. Thus for such i, j we have

$$
\left(G_{\iota}^{*} F^{1}\left(f_{2 i+1}, f_{2 j+1}\right)\right)_{Q_{2 i+2 j+2-2 k, 2 k}}=0 \quad(3 \leq k \leq[(i+j+1) / 2])
$$

and

$$
\left(G \iota^{*} F^{2}\left(f_{2 i+1}, f_{2 j+1}\right)\right)_{Q_{2 i+2 j-2 k, 2 k}}=0 \quad(3 \leq k \leq[(i+j) / 2])
$$

by Corollary 5.5 (ii). Moreover, since the degrees of $F^{1}\left(f_{2 i+1}, f_{5}\right)$ and $F^{2}\left(f_{2 i+1}\right.$, $\left.f_{5}\right)(2 \leq i \leq 10)$ in the variables ζ are at most 4 , we also have

$$
\left(G_{\iota}^{*} F^{1}\left(f_{2 i+1}, f_{5}\right)\right)_{Q_{2 i+6-2 k, 2 k}}=0 \quad(3 \leq k \leq[(i+3) / 2])
$$

and

$$
\left(G_{\iota} * F^{2}\left(f_{2 i+1}, f_{5}\right)\right)_{\boldsymbol{Q}_{2 i+4-2 k, 2 k}}=0 \quad(3 \leq k \leq[(i+2) / 2])
$$

Therefore we see that

$$
\left(G_{\iota} * R_{2 i}\right)_{Q_{2 i-2 k, 2 k}}=0 \quad(3 \leq k \leq[i / 2], 6 \leq i \leq 13)
$$

Now fix an index $i(4 \leq i \leq 13)$ and assume that $\left(G_{\iota} * R_{2 i}\right) Q_{2 i-4,4}=0$. Then by the above fact we have

$$
\left(G \iota^{*} R_{2 i}\right)_{G\left(Q_{2 i}\right)}=\left(G \iota^{*} R_{2 i}\right)_{Q_{2 i-2,2}}+\left(G \iota^{*} R_{2 i}\right)_{Q_{2 i, 0}}
$$

In view of Corollary 2.8 (ii) there is a polynomial $h \in \boldsymbol{R}\left[x_{1}, x_{2}, \zeta_{1}, \zeta_{2}\right]_{2 i-2,2}+$ $\boldsymbol{R}\left[x_{1}, x_{2}, \zeta_{1}, \zeta_{2}\right]_{2 i, 0}$ such that

$$
\left(G_{l} * R_{2 i}\right)_{Q_{2 i-2,2}}+\left(G_{c} * R_{2 i}\right)_{Q_{2 i, 0}}=\left(G_{c} * h\right)_{G\left(Q_{2 i}\right)}
$$

Then $\left(G_{\iota}{ }^{*}\left(R_{i}-h\right)\right)_{G\left(Q_{2 i}\right)}=0$, and it follows that the polynomial $\tilde{G}\left(R_{2 i}-h\right)$ belongs to the ideal ($\left.\sum_{i} x_{i}{ }^{2}, \sum_{i} \zeta_{i}{ }^{2}, \sum_{i} x_{i} \zeta_{i}\right)$. But, since $\tilde{G}\left(R_{2 i}-h\right)$ is a polynomial only in four variables $\left(x_{1}, x_{2}, \zeta_{1}, \zeta_{2}\right)$, and since $n \geq 3$, it follows that $\tilde{G}\left(R_{2 i}-h\right)=0$. Hence $G \iota * R_{2 i}=G \iota * h \in G\left(\mathscr{A}^{2}\right)$.

On the other hand, if $\sum_{j=4}^{i} G \iota^{*} R_{2 j} \in G\left(\mathscr{A}^{2}\right)$ for some i, then

$$
0=\left(\sum_{j=4}^{i} G \iota^{*} R_{2 j}\right)_{Q_{2 i-4,4}}=\left(G_{\iota} * R_{2 i}\right)_{Q_{2 i-4,4}}
$$

Therefore we see that $\sum_{j=4}^{i} G \iota^{*} R_{2 j} \in G\left(\mathscr{\mathscr { L }}^{2}\right)$ if and only if $\sum_{j=4}^{i-1} G_{\iota} * R_{2 j} \in G\left(\mathscr{H}^{2}\right)$ and $\left(G_{\iota} * R_{2 i}\right)_{Q_{2 i-4,4}}=0$. The lemma now follows by induction.

We have defined positive constants $d_{l}^{i, j}$ for integers i, j, l satisfying $0 \leq l \leq$ $j \leq i$ in §3. Here we further define $d_{l}^{i, i+1}$ for integers i, l with $0 \leq l \leq i+1$ by the same formula, i. e., $d_{0}^{i, i+1}=I_{0}^{i+1}$ and

$$
d_{l}^{i, i+1}=\frac{I_{l}^{i+1}}{(2 l)!}-\sum_{p=0}^{l-1} d_{p}^{i, i+1} a_{l-p}^{2 p+1} \quad(l \geq 1)
$$

The proof of Lemma 3.4 (ii) is also valid in this case, and we have

$$
d_{l}^{i, i+1}>0 \quad(0 \leq l \leq i+1)
$$

Lemma 5. 9. For $u \in \boldsymbol{R}[x]_{2 i+1}$ and $v \in \boldsymbol{R}[x]_{2 j+1}(2 \leq j \leq i)$,

$$
\begin{aligned}
& \left(G_{\iota} * F^{9}(u, v)\right)_{Q_{2 i+2 j-4,4}}=d_{j-2}^{i-1, j}\left(G_{\iota} *\left(\sum_{k} x_{k} \frac{\partial}{\partial \zeta_{k}}\right)^{2 j-4} \frac{\partial u(x)}{\partial x_{1}} \frac{\partial v(\zeta)}{\partial \zeta_{1}}\right)_{Q_{2 i+2 j-4,4}}, \\
& \left(G_{\iota} * F^{4}(u, v)\right)_{Q_{2 i+2 j-4,4}} \\
& \quad=d_{j-2}^{i-1, j}\left(G_{\iota} *\left(\sum_{k} x_{k} \frac{\partial}{\partial \zeta_{k}}\right)^{2 j-4} \sum_{l=2}^{n+1} \frac{\partial u(x)}{\partial x_{l}} \frac{\partial v(\zeta)}{\partial \zeta_{l}}\right)_{Q_{2 i+2 j-4,4}} .
\end{aligned}
$$

Proof. Since

$$
\int_{0}^{\pi} \frac{\partial v}{\partial x_{l}}(x \cos t+\zeta \sin t) \sin t d t=\sum_{p=1}^{j} \frac{I_{p}^{j}}{(2 p)!}\left(\sum_{k} x_{k} \frac{\partial}{\partial \zeta_{k}}\right)^{2 p} \frac{\partial v(\zeta)}{\partial \zeta_{l}}
$$

it follows that

$$
\begin{aligned}
& F^{3}(u, v)=\sum_{p=0}^{j} \frac{I_{p}^{j}}{(2 p)!}\left(\sum_{k} x_{k} \frac{\partial}{\partial \zeta_{k}}\right)^{2 p} \frac{\partial u(x)}{\partial x_{1}} \frac{\partial v(\zeta)}{\partial \zeta_{1}}, \\
& F^{4}(u, v)=\sum_{p=0}^{j} \frac{I_{p}^{j}}{(2 p)!}\left(\sum_{k} x_{k} \frac{\partial}{\partial \zeta_{k}}\right)^{2 p} \sum_{l=2}^{n+1} \frac{\partial u(x)}{\partial x_{l}} \frac{\partial v(\zeta)}{\partial \zeta_{l}} .
\end{aligned}
$$

Then from the definition of $d_{p}^{i, j}$ we have

$$
F^{3}(u, v)=\sum_{p=0}^{j} d_{p}^{i-1, j} \sum_{q=p}^{j} a_{q-p}^{i-j+1+2 p}\left(\sum_{k} x_{k} \frac{\partial}{\partial \zeta_{k}}\right)^{2 q} \frac{\partial u(x)}{\partial x_{1}} \frac{\partial v(\zeta)}{\partial \zeta_{1}} .
$$

Hence

$$
\begin{aligned}
(G \iota * & \left.F^{3}(u, v)\right)_{Q_{2 i+2 j-4,4}} \\
& \left.=d_{j-2}^{i-1, j}\left(G \iota^{*} \sum_{q=j-2}^{j} a_{q-j+2}^{i+j-3}\left(\sum_{k} x_{k} \frac{\partial}{\partial \zeta_{k}}\right)^{2 q} \frac{\partial u(x)}{\partial x_{1}} \frac{\partial v(\zeta)}{\partial \zeta_{1}}\right)\right)_{G\left(Q_{2 i+2 j}\right)} \\
& =d_{j-2}^{i-1, j}\left(G_{\iota} *\left(\sum_{k} x_{k} \frac{\partial}{\partial \zeta_{k}}\right)^{2 j-4} \frac{\partial u(x)}{\partial x_{1}} \frac{\partial v(\zeta)}{\partial \zeta_{1}}\right)_{Q_{2 i+2 j-4,4}} .
\end{aligned}
$$

The formula for F^{4} is obtained in the same way.
Lemma 5. 10.
(I) $(2 \leq i \leq 10)$
$\left(G^{*} * F^{1}\left(x_{1}^{2 i+1}, x_{1} x_{2}{ }^{4}\right)\right)_{\boldsymbol{Q}_{2 i+2,4}}=-\frac{(2 i+3)(i-1)}{i+1} d_{0}^{i, 2}\left(G \iota^{*}\left(x_{1}^{2 i+2} \zeta_{2}^{4}\right)\right)_{\boldsymbol{Q}_{2 i+2,4}}$,
$\left(G_{\iota} * F^{2}\left(x_{1}^{2 i+1}, x_{1} x_{2}{ }^{4}\right)\right)_{Q_{2 i, 4}}=(2 i+1) d_{0}^{i-1,2}\left(G_{\iota} *\left(x_{1}{ }^{2 i} \zeta_{2}^{4}\right)\right)_{Q_{2 i, 4}}$
(II) $\quad(2 \leq j \leq i \leq 6)$

$$
\begin{aligned}
& \left(G_{\iota^{*}} F^{1}\left(x^{2 i-1} x_{2}^{2}, x_{1}^{2 j-1} x_{2}^{2}\right)\right)_{Q_{2 i+2 j-2,4}} \\
& \quad=-\frac{(2 j-1)!(2 i+3)(2 i-1)(2 i-2)}{(2 i+2 j-2) \cdots \cdots(2 i+2 j-5)} d_{j-2}^{i, j}\left(G_{c} *\left(x_{1}^{2 i+2 j-2} \zeta_{2}^{4}\right)\right)_{Q_{2 i+2 j-2,4}}
\end{aligned}
$$

$\left(G_{\iota} * F^{2}\left(x_{1}^{2 i-1} x_{2}{ }^{2}, x_{1}^{2 j-1} x_{2}{ }^{2}\right)\right)_{Q_{2 i+2 j-2,4}}$

$$
=\frac{(2 j-1)!(2 i-1)(2 i-2)(2 i-3)}{(2 i+2 j-4) \cdots \cdots(2 i+2 j-7)} d_{j-2}^{i-1, j}\left(G \iota^{*}\left(x_{1}^{2 i+2 j-4} \zeta_{2}{ }^{4}\right)\right)_{Q_{2 i+2 j-4,4}}
$$

(III) $\quad(2 \leq i \leq 6)$

$$
\begin{aligned}
& \left(G c^{*} F^{1}\left(x_{1}^{2 i} x_{2}, x_{1}^{2} x_{2}^{3}\right)\right)_{Q_{2 i+2,4}}=\frac{2(2 i+3)(2 i-2)}{(2 i+1)(2 i+2)} d_{0}^{i, 2}\left(G c^{*}\left(x_{1}^{2 i+2} \zeta_{2}^{4}\right)\right)_{Q_{2 i+2,4}} \\
& \left(G c^{*} F^{2}\left(x_{1}^{2 i} x_{2}, x_{1}^{2} x_{2}^{3}\right)\right)_{Q_{2 i, 4}}=-2 d_{0}^{i-1,2}\left(G \iota^{*}\left(x_{1}^{2 i} \zeta_{2}^{4}\right)\right)_{Q_{2 i, 4}}
\end{aligned}
$$

(IV) $(2 \leq i \leq 6)$
$\left(G_{c^{*}} F^{1}\left(x_{1}^{2 i-1} x_{2}^{2}, x_{1} x_{2}^{4}\right)\right)_{Q_{2 i+2,4}}=-\frac{(2 i+3)(i-6)}{i} d_{0}^{i, 2}\left(G \iota^{*}\left(x_{1}^{2 i} x_{2}{ }^{2} \zeta_{2}{ }^{4}\right)\right)_{Q_{2 i+2,4}}$,
$\left(G_{\iota} * F^{3}\left(x_{1}^{2 i-1} x_{2}^{2}, x_{1} x_{2}^{4}\right)\right)_{Q_{2 i, 4}}=(2 i-1) d_{0}^{i-1,2}\left(G_{\iota} *\left(x_{1}^{2 i-2} x_{2}{ }^{2} \zeta_{2}{ }^{4}\right)\right)_{Q_{2 i, 4}}$,
$\left(G_{\iota} * F^{4}\left(x_{1}^{2 i-1} x_{2}{ }^{2}, x_{1} x_{2}{ }^{4}\right)\right)_{Q_{2 i, 4}}=-\frac{4}{i} d_{0}^{i-1,2}\left(G_{\iota} *\left(x_{1}^{2 i} \zeta_{2}{ }^{4}\right)\right)_{Q_{2 i, 4}}$.
(V) $\quad(2 \leq i \leq 6)$

$$
\begin{align*}
& \left(G \iota^{*} F^{1}\left(x_{1}^{2 i} x_{2}, x_{1} x_{2}^{4}\right)\right)_{Q_{2 i+2,4}}=-\frac{(2 i+3)(2 i-7)}{2 i+1} d_{0}^{i, 2}\left(G \iota^{*}\left(x_{1}^{2 i+1} x_{2} \zeta_{2}^{4}\right)\right)_{Q_{2 i+2,4}} \\
& \left(G \iota^{*} F^{2}\left(x_{1}^{2 i} x_{2}, x_{1} x_{2}^{4}\right)\right)_{Q_{2 i, 4}}=2 i d_{0}^{i-1,2}\left(G \iota^{*}\left(x_{1}^{2 i-1} x_{2} \zeta_{2}^{4}\right)\right)_{Q_{2 i, 4}} \\
& \text { (VI) } \quad(2 \leq i \leq 6) \\
& \left(G \iota^{*} F^{1}\left(x_{1}^{2 i-1} x_{2}^{2}, x_{1}{ }^{2} x_{2}^{3}\right)\right)_{Q_{2 i+2,4}}=\frac{(2 i+3)(4 i-9)}{(2 i+1) i} d_{0}^{i, 2}\left(G_{\iota}{ }^{*}\left(x_{1}^{2 i+1} x_{2} \zeta_{2}^{4}\right)\right)_{Q_{2 i+2,4}} \\
& \left(G \iota^{*} F^{2}\left(x_{1}^{2 i-1} x_{2}^{2}, x_{1}{ }^{2} x_{2}^{3}\right)\right)_{Q_{2 i, 4}}=-4 d_{0}^{i-1,2}\left(G^{*}\left(x_{1}^{2 i-1} x_{2} \zeta_{2}^{4}\right)\right)_{Q_{2 i, 4}} \tag{VII}
\end{align*}
$$

$$
\begin{aligned}
& \left(\epsilon^{*} F^{1}\left(x_{1}^{2} x_{2}^{3}, x_{1}^{2} x_{2}^{3}\right)\right)_{Q_{6,4}}=-\frac{21}{2} d_{0}^{2,2}\left(G_{\iota}{ }^{*}\left(x_{1}^{4} x_{2}^{2} \zeta_{2}{ }^{4}\right)\right)_{Q_{6,4}}, \\
& \left(G \iota^{*} F^{2}\left(x_{1}^{2} x_{2}^{3}, x_{1}^{2} x_{2}^{3}\right)\right)_{Q_{6,4}}=\frac{3}{2} d_{0}^{1,2}\left(G_{\iota}{ }^{*}\left(x_{1}^{4} \zeta_{2}^{4}\right)\right)_{Q_{4,4}} .
\end{aligned}
$$

Proof. We shall only prove (I). The other cases will be verified in the same way. By the proof of Proposition 3.5 we have

$$
\begin{aligned}
\left(G \iota^{*}\right. & \left.F^{1}\left(x_{1}^{2 i+1}, x_{1} x_{2}^{4}\right)\right)_{Q_{2 i+2,4}} \\
& =-(2 i+3) d_{0}^{i, 2}\left(G \iota^{*} F_{0}\left(x_{1}^{2 i+1}, x_{1} x_{2}{ }^{4}\right)\right)_{Q_{2 i+2,4}} \\
& =-(2 i+3) d_{0}^{i, 2}\left(G_{\iota} *\left(x_{1}^{2 i+2} \zeta_{2}{ }^{4}+4 x_{1}^{2 i+1} x_{2} \zeta_{1} \zeta_{2}{ }^{3}\right)\right)_{Q_{2 i+2,4}}
\end{aligned}
$$

Since

$$
\tilde{X}_{E_{0}}\left(x_{1}{ }^{2 i+2} x_{2} \zeta_{2}{ }^{3}\right)=(2 i+2) x_{1}^{2 i+1} x_{2} \zeta_{1} \zeta_{2}{ }^{3}+x_{1}^{2 i+2} \zeta_{2}{ }^{4}-3 x_{1}{ }^{2 i+2} x_{2}{ }^{2} \zeta_{2}{ }^{2}
$$

it follows that

$$
\left(G_{c^{*}}\left(x_{1}^{2 i+1} x_{2} \zeta_{1} \zeta_{2}^{3}\right)\right)_{Q_{2 i+2,4}}=-\frac{1}{2 i+2}\left(G_{\iota^{*}}\left(x_{1}^{2 i+2} \zeta_{2}^{4}\right)\right)_{Q_{2 i+2,4}}
$$

Hence the first formula is obtained. The second formula immediately follows from Lemma 5.9.

Lemma 5. 11.

$$
d_{j-2}^{i, j}=\frac{(2 i+2 j-1)(2 i+2 j-3)(2 i+2 j-5)}{(2 i+3)(2 i+1)(2 i-1)} \frac{16}{(2 j+1)!!(2 j-4)!!}
$$

Proof. We have

$$
d_{j-2}^{i, j}=\sum_{q=0}^{j-2} \frac{I_{q}^{j}}{(2 q)!} J_{j-2-q}^{i-2+q}
$$

$$
=\sum_{q=0}^{j-2} \frac{2(2 q-1)!!(2 j-2 q)!!}{(2 q)!(2 j+1)!!} \frac{(2 i+2 q-3)!!}{(2 j-2 q-4)!!(2 i+2 j-7)!!} .
$$

Thus we must show the following formula:

$$
\sum_{q=0}^{j-2}(j-q)(j-q-1) \frac{(2 i+2 q-3)!!}{(2 q)!!(2 i-3)!!}=\frac{(2 i+2 j-1)!!}{(2 i+3)!!(2 j-4)!!} \times 2 .
$$

Put

$$
h(z)=\sum_{q=0}^{j-2}(j-q)(j-q-1) \frac{z(z+1) \cdots(z+q-1)}{q!} .
$$

$h(z)$ is a polynomial of degree $j-2$ in the variable z. Let k be an integer such that $0 \leq k \leq j-2$. Then we have

$$
\begin{aligned}
h(-k) & =\sum_{q=0}^{k}(j-q)(j-q-1)(-1)^{q}\binom{k}{q} \\
& =j^{2} \sum_{q=0}^{k}(-1)^{q}\binom{k}{q}-j \sum_{q=0}^{k}(-1)^{q}(2 q+1)\binom{k}{q}+\sum_{q=0}^{k}(-1)^{q}(q+1) q\binom{k}{q},
\end{aligned}
$$

and hence $h(0)=j(j-1), h(-1)=2(j-1), h(-k)=0 \quad(3 \leq k \leq j-2)$. This implies that

$$
h(z)=\frac{2}{(j-2)!}(z+3)(z+4) \cdots(z+j) .
$$

Then by considerding $h\left(i-\frac{1}{2}\right)$ we have the lemma.
Proof of Proposition 5.7. In view of Lemmas 5.8,5.10, and 5.11, the condition $G_{c} * F(f, f) \in G\left(\mathscr{\mathscr { M }}^{2}\right)$ turns out to be a system of algebraic equations in the indeterminates $\alpha_{2 i+1}(2 \leq i \leq 9), \beta_{2 i+1}, \gamma_{2 i+1}(2 \leq i \leq 6), \delta_{5}$, ε_{5}, which is as follows:

$$
\begin{aligned}
& \varepsilon_{5}+\frac{25}{13^{2} \cdot 12} \gamma_{13}{ }^{2}=0 \\
& \alpha_{19} \varepsilon_{5}+\frac{25}{13 \cdot 11 \cdot 6} \gamma_{11} \gamma_{13}-\frac{5}{4}\left(\varepsilon_{5}+\frac{25}{13^{2} \cdot 12} \gamma_{13}{ }^{2}\right)=0 \\
& \alpha_{17} \varepsilon_{5}+\frac{25}{13 \cdot 56} \gamma_{9} \gamma_{13}+\frac{15}{11^{2} \cdot 7} \gamma_{11}{ }^{2}-\frac{9}{7}\left(\alpha_{19} \varepsilon_{5}+\frac{25}{13 \cdot 11 \cdot 6} \gamma_{11} \gamma_{13}\right)=0 \\
& \alpha_{15} \varepsilon_{5}+\frac{25}{13 \cdot 49} \gamma_{7} \gamma_{13}+\frac{10}{11 \cdot 21} \gamma_{9} \gamma_{11}-\frac{4}{3}\left(\alpha_{17} \varepsilon_{5}+\frac{25}{13 \cdot 56} \gamma_{9} \gamma_{13}+\frac{15}{11^{2} \cdot 7} \gamma_{11}{ }^{2}\right)=0, \\
& \alpha_{13} \varepsilon_{5}-\frac{2}{13} \beta_{13} \delta_{5}+\frac{1}{26} \gamma_{5} \gamma_{13}+\frac{4}{11 \cdot 7} \gamma_{7} \gamma_{11}+\frac{1}{36} \gamma_{9}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{7}{5}\left(\alpha_{15} \varepsilon_{5}+\frac{25}{13 \cdot 49} \gamma_{7} \gamma_{13}+\frac{10}{11 \cdot 21} \gamma_{9} \gamma_{11}\right)=0 \text {, } \\
& \alpha_{11} \varepsilon_{5}-\frac{2}{11} \beta_{11} \delta_{5}+\frac{3}{11 \cdot 5} \gamma_{5} \gamma_{11}+\frac{1}{14} \gamma_{7} \gamma_{9}+\frac{1}{13} \gamma_{13} \varepsilon_{5} \\
& -\frac{3}{2}\left(\alpha_{13} \varepsilon_{5}-\frac{2}{13} \beta_{13} \varepsilon_{5}+\frac{1}{26} \gamma_{5} \gamma_{13}+\frac{4}{11 \cdot 7} \gamma_{7} \gamma_{11}+\frac{1}{36} \gamma_{9}{ }^{2}\right)=0, \\
& \alpha_{9} \varepsilon_{5}-\frac{2}{9} \beta_{9} \delta_{5}+\frac{1}{12} \gamma_{5} \gamma_{9}+\frac{5}{49 \cdot 2} \gamma_{7}^{2}+\frac{4}{11 \cdot 3} \gamma_{11} \varepsilon_{5} \\
& -\frac{5}{3}\left(\alpha_{11} \varepsilon_{5}-\frac{2}{11} \beta_{11} \delta_{5}+\frac{3}{11 \cdot 5} \gamma_{5} \delta_{5}+\frac{1}{14} \gamma_{7} \gamma_{9}\right)=0, \\
& \alpha_{7} \varepsilon_{5}-\frac{2}{7} \beta_{7} \delta_{5}+\frac{1}{7} \gamma_{5} \gamma_{7}+\frac{2}{9} \gamma_{9} \varepsilon_{5} \\
& -2\left(\alpha_{9} \varepsilon_{5}-\frac{2}{9} \beta_{9} \delta_{5}+\frac{1}{12} \gamma_{5} \gamma_{9}+\frac{5}{49 \cdot 2} \gamma_{7}^{2}\right)=0, \\
& \alpha_{5} \varepsilon_{5}-\frac{2}{5} \beta_{5} \delta_{5}+\frac{3}{20} \gamma_{5}^{2}+\frac{4}{7} \gamma_{7} \varepsilon_{5}-3\left(\alpha_{7} \varepsilon_{5}-\frac{2}{7} \beta_{7} \delta_{5}+\frac{1}{7} \gamma_{5} \gamma_{7}\right)=0 \text {, } \\
& \alpha_{5} \varepsilon_{5}-\frac{2}{5} \beta_{5} \delta_{5}+\frac{3}{20} \gamma_{5}^{2}-\frac{2}{5} \gamma_{5} \varepsilon_{5}+\frac{3}{20} \delta_{5}^{2}=0, \\
& -\beta_{13} \varepsilon_{5}+\frac{1}{2} \gamma_{13} \delta_{5}=0, \\
& -\frac{3}{11} \beta_{11} \varepsilon_{5}+\frac{1}{5} \gamma_{11} \delta_{5}+\frac{12}{13} \beta_{13} \varepsilon_{5}-\frac{4}{13} \gamma_{13} \delta_{5}=0, \\
& -\frac{1}{9} \beta_{9} \varepsilon_{5}+\frac{7}{36} \gamma_{9} \delta_{5}+\frac{10}{11} \beta_{11} \varepsilon_{5}-\frac{4}{11} \gamma_{11} \delta_{5}=0, \\
& \frac{1}{7} \beta_{7} \varepsilon_{5}+\frac{1}{7} \gamma_{7} \delta_{5}+\frac{8}{9} \beta_{9} \varepsilon_{5}-\frac{4}{9} \gamma_{9} \delta_{5}=0, \\
& \frac{3}{5} \beta_{5} \varepsilon_{5}-\frac{1}{10} \gamma_{5} \delta_{5}+\frac{6}{7} \beta_{7} \varepsilon_{5}-\frac{4}{7} \gamma_{7} \delta_{5}=0, \\
& \gamma_{11}=-\frac{55}{13} \gamma_{13}, \gamma_{9}=-\frac{18}{11} \gamma_{11}, \gamma_{7}=-\frac{7}{9} \gamma_{9}, \\
& \gamma_{5} \varepsilon_{5}-\frac{3}{8} \delta_{5}^{2}+\frac{5}{14} \gamma_{7} \varepsilon_{5}=0 .
\end{aligned}
$$

Then it is easy to see that the indeterminates satisfy these equations if and only if they satisfy the relations described in Theorem 4.1 (ii) under the condition $\gamma_{13} \neq 0$. This finishes the proof of the proposition.

References

[1] A. Besse: Manifolds all of whose geodesics are closed, Springer-Verlag (1978).
[2] J. Dieudonné: Foundations of modern analysis, Academic Press (1960).
[3] V. Guillemin : The Radon transforms on Zoll surfaces, Adv. in Math. 22 (1976), 85-119.
[4] K. Kiyohara: C_{l}-metrics on spheres, Proc. Japan Acad., 58, Ser. A (1982), 76-78.
[5] C. TsUKAMOTO: Infinitesimal Zoll deformations on spheres, to appear.
[6] C. TSUKAmOTO: Integrability of infinitesimal Zoll deformations, to appear.
[7] A. WEINSTEIN: Fourier integral operators, quantization, and the spectra of riemannian manifolds, Colloque International de Géométrie Symplectique et Physique Mathématique CNRS (1976).
[8] O. ZOLL: Uber Flächen mit Scharen geschlossener geodätischer Linien, Math. Ann. 57, 108-133 (1903).

Department of Mathematics
Hokkaido University
Sapporo 060 Japan

