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A note on an isometric imbedding of upper

half-space into the anti de Sitter space

By Hiroo MaTtsupa
(Received May 2, 1983)

Introduction. K. Nomizu studied the upper half-space U,={(z;, -,
Z); £, >0, xy, -+, x,_; R} with the Lorentz metric

( 1 ) ds(z) = (dx12+ te +dxn—12—dxn2)/xn2

which has constant sectional curvature 1. U, is diffeomorphic to the matrix
group G, consisting of all n X7 matrices of the form

xn xl
g: 'xn xn_l ’ Where x’ﬂ>07 xl, Tt xn_]_ER
0 01

by
gE Gn—_>(x1’ **ty Tp-1» xn) & Un .

The group G, is of type & in the sense of and it admits a left-invariant
Lorentz metric with any prescribed constant k£ as its constant sectional cur-
vature (Theorem 1, [2]). The left translations on G,

v Ve a bl Zn ?1
. T -'rn—l . a bn—l . Tn ;rn—l
0 01 0 0 1 0O 01

correspond to the action of G, on U, by
( 2) (xb oty Tp-1y xn>—_')(ax1+bl’ tTty axn—l+bn—1) axn) .

The Lorentz metric (1) on U, is invariant by the action (2) of G, and cor-
responds to a left-invariant Lorentz metric on the group G, of constant
sectional curvature 1. |

In this note, we shall consider the upper half-space U, with the Lorentz
metric

( 3 ) ds® = (—dx12+dx22‘|‘ e +dxn2)/xn2

which corresponds to a left invariant Lorentz metric on G, of constant
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sectional curvature —1. The metric (3) is not geodesically complete (see § 1),
but there exists an isometric imbedding of U, into the anti de Sitter space
H* and this imbedding is equivariant relative to an isomorphism of the largest
connected isometry group of U, into the largest connected group SO (2, n—1)
of isometries of H? (see § 3).

The author wishes to thank Professors H. Kitahara and S. Yorozu
for their valuable advices and encouragements. The author also wishes to
thank the referees for providing kind and helpful advices.

1. Geodesics of (U,,ds?. On the upper half-space U,={(s, -+, 2a);
2,0, zp -+, Zo ERY, let X; be 6/0x; (i=1,---,n) and V the Levi-Civita
connection for the metric (3). Then we have easily

Ve, Xi= Xu/ Zn (i=2,--,n—1)
(4) VXXI:— ] Zn
Vi, Xo=Vx,Xi= — Xi/ 24 (i=1,-n
Vi, X;=0 (otherwise)
From these we can calculate the curvature tensor R as follows
R(X, X;j) X1 = — Xjlz” (= 1)
R(X;, X)) Xi = Xjl 2 ((#1, i#j,j=1-n
R(X;, X») X = — Xi/z,? (t#n
R(X;, X;) X, =0 (otherwise) .

Thus
R(X,Y) Z=~(KY, Zy X—<X, Z)Y)

for any tangent vectors X, Y, Z (where { , > denotes the inner product by
the metric (3). Hence (U,, ds?) has constant sectional curvature —1 ([1],
Lemma 2).

When n=2, a geodesic 7(t)=(x;(t), x,(t)) with affine parameter ¢ satisfies
the differential equations

f d? z,/dt? = 2(dx,/dt) (dx,/dt)] x
\@2 o/ dit = {(daxs/ )+ (d o )} 2

This equations appear in [3], and all the type of geodesics are determined.
In our case, we may interprete time-like (resp. space-like) geodesics in
as space-like (resp. time-like) geodesics. From now on we assume n=3.

Now, let y(t)=(z,(2), ---, x.(t)) be a geodesic with ¢ as affine parameter.
Then we get the differential equations for 7(z) as follows;
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dzx@- . dl'i dxn .
| ar = S R e

&'z, _((dx Y <dxn P a4y
dt2 - dt + dt - =2 dt /xn .

Since an isometry group G, acts transitively on U,, we consider only the
geodesics starting from py=(0, ---,0,1). Let 7(0)=2.",c; Xi(p,) be the initial
tangent vector of y. By an appropriate rotation of the variables x, -+, Z,_;

(which is an isometry of the metric), we may assume that c;= ---=¢,_;=0.
From the equations (5), it follows that ay(#), -+, x,_,(t) are constant in this
case. Thus it is enough to study the geodesic behaviors of U, in the case
n=3.

For n=3, we write x, ¥, 2 instead of x;, x, x;. The equations (5) are

=G ) %)
o (o))

o =G @)

We shall find the solutions of (5') with initial conditions (z(0), ¥(0), 2(0))
=(0, 0, 1) and (£ (0), ¥'(0), 2/ (0))=(a, b,c). Here and hereafter, we denotes
d/dt by prime ’. Then we get (£//2% =(¥'/2? =0 so that

(6) Z =az?, Y = b2
We get also (2/2) =(2/'2—(2)8)/22=((L)2—(y/')?/2? so that
(7) 2 =z(lax—by+o).

From (6) and the initial condition,

(8) ay =bzx.
Case I: a+#0. From (6), (7) and (8), we get
az? =(a®—b?) xx' [a+cx
so that
(9) 2= (a?— b 2}/ a®+2cx/a+1.
Subcase 1-(1) : — a2+ b*+c?=0. In the case c=0, we get 7(¢)=(at, bt, 1).
This null geodesic is complete in both directions. In the case ¢#0, we get

r(t)=(at/(1 —ct), bt/(1—ct), 1/(1—ct)). This null geodesic is complete in one
direction and incomplete in the other direction.
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Subcase 1-(i): —a?+b*+c2<0. The curve satisfying (9) and (8) is a
branch of hyperbola (2>0) in the plane P,, spanned by the position vectors
(0,0,1) and (a, b,0). We may parametrize it by

2__2\1
x(u) = “Z" <ad§~£—> sinh « — %Zf
b(a?—ct\r . bc
Y(u) = ;<7f‘> sinh « — 2

2 2\1
z2(u) = (iaf) cosh «

where a=(a2—b%)%. The tangent vector (dx/du, dy/du, dz/du) is time-like
with length 1/cosh u. The proper time parameter ¢ measured from u, is
given by
t(u) = Su du/cosh u = sin™! (tanh %) —sin™! (tanh )

where sinh w,=c/(a?— c?)?.

This time-like geodesic is incomplete in both directions, because #(u)—
+ /2 —sin"!(tanh %, as u— *oo.

Subcase 1-(iii) : 2>a?—b2>0. The curves satisfying (9) and (8) are two
half-branches of hyperbolas (z>0) in the plane P,,. We may parametrize
them by

x(u) =+ (a(cz—cﬁ)%/a"’) cosh « — ac/a?
Y(u) == <b(c‘2—a2)%/a2> cosh u —bc/a®

(c*— ag)%/a> sinh «

13
£
I
g

where a=(a®—5?% and «>0. The tangent vector (dz/du, dy/du, dz/du) has
length 1/sinh « and so the arc-length parameter ¢ measured from p,=(0, 0, 1)
is given by

tu) = Su du/sinh = log (tanh u/2) —log (tanh #,/2)

where sinh wy=a/(c2—a??. This space-like geodesic is complete as it ap-
proaches the z—¥ plane and incomplete in the other direction, since ¢(x)—
— oo as u—0 and #(u)— —log (tanh u/2) as u—oo.

Subcase I-(iv): 2>a*—b*=0. The curve satisfying (9) and (8) is a
half-branch of parabola (2>0) in the plane P,,, We may parametrize it by
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1
2

x(u) = au , Yy(u) = bu, 2(u) = (2cu+1)z.

The tangent vector (dx/du, dy/du, dz/du) has length |c/(2cu+1)| and the
arc-length parameter ¢ measured from p, is given by

tu) = %S:du//l(u%—l/Zc){ = é {log!(u+1/2c>[ —log !1/26!} .

This space-like geodesic is complete in both directions.

Subcase 1-(v): a?—b*<0. The curve satisfying (9) and (8) is an upper
half of ellipse (2>0) in the plane P,,, We may parametrize it by

x(u) = a((az—l—cz)%/a?) cos u+ ac/a®
Y(u) = b<(a2+(:2)%/a2> cos u—+ bc/a?
z(u) = <(a2+62)%/a> sin % , O<u<r

where a=(b2—a?}. The tangent vector (dx/du, dy/du, dz/du) has length
1/sin # and the arc-length parameter # measured from p, is given by

t(u) = Su du/sin u = log (tan u/2) —log (tan u,/2)
where u,=cos™!(c/(a?+c??). This space-like geodesic is complete in both

directions, since t(u#)—+ oo (as u—nx) and ¢(u)— — o (as u—0).

Case I1: a=0. When b=0, we have y(¢)=(0,0, ¢®). This space-like
geodesic is complete in both directions. When 5+#0, we have easily

224y —c/b)? = ¥ b*(2>0), z=0.
We may parametrize it by
=0, y(u) = (c¥b2+1)% cos u, 2(u) =(c¥b2+1)}, 0<u<r.
The tangent vector (dx/du, dy/du, dz/du) has length 1/sinu« and the arc-

length parameter ¢ measured from p, is given by

t(u) = Su du/sin u = log (tan u/2) —log (tan u,/2)

where g =cos™!(—c/(b*+c%3). This space-like geodesic is complete in both
directions as in the subcase I-(v).

2. Full isometry group. We determine the full isometry group I(U,)
of the space with metric (3). I(U,) acts transitively on U, because of the
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transitivity of the group G,. In the first, we find the isotropy group at
po=(0, -++,0,1). When n=2, it is verified by the same argument as that
the isotropy group at p, consists of matrices

I

From now on, we assume n=>3. Suppose that ¢ is an isometry of U,
fixing p,. The differential dg at p, is described as

dg(Xj>p0 = Zi11 Ai]'<Xi)p0 (] =1, -, 7’[)
with (Ag)€O(L, n—1).

Let 7() be the null geodesic starting at p, with the initial tangent vector
10) = 211 ay(Xj)s, (—a’+a’+ - +a,>=0).

Considering an appropriciate rotation of the variable z, --:, ,-; and the
subcase I-(i), we get

1) = (at/(l—ant), -+, anaf/(1—ant), 1/(1—ay2)).

The null geodesic 7(t)=gr(¢) has the initial vector

7(0) = LM Anad X))y,
so that we get

(1) = (2,43 4ya))/(1—(Ds2 Ansa) t, -,
(254 Anrya) t)/<1—(21=’1Anjaj) 2 1/<1—(Zj=’iAnjaj) t>>
When a;,=O, 7(z) is complete in both directions, so is #(z). Therefore
n1A,a;=0 for any ay, -+, an_y such that a?=a?+ - +a,_.%.

Then we get easily

Apn=Ap==A,,,=0.

By considering domains of y and # in the case of a,#0, we can see A,,=1.
(A;)€0(1, n—1) implies {A;;) €0(1, n—1) so that we get

All Al n-1 0

(Aij) - An-—l 1 An—l n—-1 - 0
0 0 1
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We define the map ¢, of U, which is an isometry, by
Ga: (X1 5 Tnts Tn)—l1s ***s Yn_1s Tn)
where
Y= 211 A (1=1,--,n—1).

Then g4(p)=p, and dg,=dg at p,. Therefore ¢ coincides with g,
Thus the full isometry group I(U,) consists of all matrices of the form

by
b:n—l Wlth AEO(]'! 71—2), a>0; bl; ctcy bn_IER
0 ---0 1 .

aA

acting on U, in the natural fashion. The identity component I°(U,) consists
of all such matrices with AeSO*(1, n—2).

3. Isometric imbedding of U, into H}. Let H} be the anti de Sitter
space which is the hypersurface

{u :(uo’ Uyy un) > <u: u> .= ——ug2—u12+ oo —l—u,ﬁz —-1}

in the indefinite Euclidean space Rj}*! with its induced Lorentz metric of
constant sectional curvature —1([4], p. 334).
We define f: U,—H} by
f(xl’ Y x’n) = <u0’ ] un)

where

Uy — (1 - x12+ x22+ s +xn2)/2x'n

ui:_xi/xn, i:]-’"'yn_l

Uy =1+ x2— 22— - —x,.3)/2xn .

Then f is an isometric imbedding of U, into H? and the image f(U,) is the
open submanifold

{u = (g, > un) EHY uo+un>0} .

Now, we define an isomorphism A of the group G, into the identity
component SO(2, n—1) of the full isometry group of H?. In the first, we
define an isomorphism of the Lie algebra g of G, into the Lie algebra
0(2,n—1) of SO(2,n—1). In the Lie algebra g, let
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O.
—1 0
Xi: O 1 (i:l,.--’n_l) X’n'__ :_1 6
0 0 .- 00

L Q0.0 0J

Then X, ---, X, form a basis of g such that
[X: X;]=0 for 14 j<n—-1
[ X, Xo] = X for 15:i<n-—-1.
In the Lie algebra 0(2,n—1), let

0 1 0 - 07
-1 0 0--0 -1

Y. =| —1 -1 <7 for

\V]
IA
A
S
I
—

L 1 J

Then Y, ---, Y, satisfy
[Y;, Y;]=0 for 154, j<n-—1
[Yi’ Yn]:Yz for 1§Z§n—1,

and generate a Lie subalgebra of 0(2,7n—1) which is isomorphic to g by
dh(X)=Y; (i=1,---,n). Since G, is simply connected, the isomorphism dh
gives rise to a homomorphism A of G, into SO(2, n—1) which maps

- 1—2/2, —¢t,0 0,327

-1 s
L 0 —t, 1,0 O0,—¢
exp (sX)) = into exp (sY;) = 0 0
10 0 10

0 0L L2, 2,0 - 0,142 ]
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and
rcoshs, 0, -+, 0, sinh s 7
e’ 0 0 1 0
exp (sX,) = 5 0 into exp (sY,) = .
0 0 1 0 1 0
Lsinhs, 0, .-+, 0, cosh s J
and
1 07
exp (sX,) = 8 <i
1
0 01
i
N
i 1+S2/2, Oa B 09 -, O) ) 09 32/2 )
0 1 0
0 ' 0
into exp(sYy) =| —s *. —s |<z
0 * O
0 1, 0

[ —s2%/2,0,--+,0,5,0,-+,0,1—5s%2 ]
N
)
for each 7, 1Zi<n—1.
It is verified by the same method as that the imbedding f: U,— H?
is equivariant relative to A: G,—SO(2, n—1), that is,

flgp) =hg) f(p) for all g€G, and pels,

and A is an isomorphism.

We can extend A to an isomorphism of the largest connected isometry
group I°(U,) into S(2,n—1) in such a way that f remains equivariant. To
do this, it is sufficient to define

1 0 0
A0
higg=10 A 0]|eSO(2,n—1) for g= [O 1]EI°(U,,)
0 0 1

where AeSO* (1, n—2).

Thus we have
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THOREM. There exists an isometric imbedding of the upper half-space
U, with the metric (3) into the anti de Sitter space H} which is equivariant
relative to an isomorphism of the largest connected isometry group I'(U,)
into the largest connected isometry group SO(2, n—1) of Hp.
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