A note on an isometric imbedding of upper half-space into the anti de Sitter space

By Hiroo Matsuda (Received May 2, 1983)

Introduction. K. Nomizu [3] studied the upper half-space $U_n = \{(x_1, \dots, x_n); x_n > 0, x_1, \dots, x_{n-1} \in \mathbb{R}\}$ with the Lorentz metric

(1)
$$ds_0^2 = (dx_1^2 + \dots + dx_{n-1}^2 - dx_n^2)/x_n^2$$

which has constant sectional curvature 1. U_n is diffeomorphic to the matrix group G_n consisting of all $n \times n$ matrices of the form

$$g = \begin{bmatrix} x_n & x_1 \\ \ddots & \vdots \\ x_n & x_{n-1} \\ 0 & 0 & 1 \end{bmatrix}$$
, where $x_n > 0$, $x_1, \dots, x_{n-1} \in R$

by

$$g \in G_n \longrightarrow (x_1, \cdots, x_{n-1}, x_n) \in U_n$$
.

The group G_n is of type \mathfrak{S} in the sense of [2] and it admits a left-invariant Lorentz metric with any prescribed constant k as its constant sectional curvature (Theorem 1, [2]). The left translations on G_n

$$\begin{bmatrix} x_n & x_1 \\ \ddots & \vdots \\ x_n & x_{n-1} \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} a & b_1 \\ \ddots & \vdots \\ a & b_{n-1} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_n & x_1 \\ \ddots & \vdots \\ x_n & x_{n-1} \\ 0 & 0 & 1 \end{bmatrix}$$

correspond to the action of G_n on U_n by

$$(2) (x_1, \dots, x_{n-1}, x_n) \longrightarrow (ax_1 + b_1, \dots, ax_{n-1} + b_{n-1}, ax_n).$$

The Lorentz metric (1) on U_n is invariant by the action (2) of G_n and corresponds to a left-invariant Lorentz metric on the group G_n of constant sectional curvature 1.

In this note, we shall consider the upper half-space U_n with the Lorentz metric

(3)
$$ds^{2} = (-dx_{1}^{2} + dx_{2}^{2} + \dots + dx_{n}^{2})/x_{n}^{2}$$

which corresponds to a left invariant Lorentz metric on G_n of constant

124 H. Matsuda

sectional curvature -1. The metric (3) is not geodesically complete (see § 1), but there exists an isometric imbedding of U_n into the anti de Sitter space H_1^n and this imbedding is equivariant relative to an isomorphism of the largest connected isometry group of U_n into the largest connected group SO(2, n-1) of isometries of H_1^n (see § 3).

The author wishes to thank Professors H. Kitahara and S. Yorozu for their valuable advices and encouragements. The author also wishes to thank the referees for providing kind and helpful advices.

1. Geodesics of (U_n, ds^2) . On the upper half-space $U_n = \{(x_1, \dots, x_n); x_n > 0, x_1, \dots, x_{n-1} \in \mathbb{R}\}$, let X_i be $\partial/\partial x_i$ $(i=1, \dots, n)$ and \mathbb{Z} the Levi-Civita connection for the metric (3). Then we have easily

From these we can calculate the curvature tensor R as follows

$$\begin{split} R(X_{1},\,X_{j})\,\,X_{1} &= -\,X_{j}/x_{n}^{2} & (j=2,\,\cdots,\,n) \\ R(X_{i},\,X_{j})\,\,X_{i} &= X_{j}/x_{n}^{2} & (i\neq 1,\,\,i\neq j,\,\,j=1,\,\cdots,\,n) \\ R(X_{i},\,X_{n})\,\,X_{n} &= -\,X_{i}/x_{n}^{2} & (i\neq n) \\ R(X_{i},\,X_{j})\,\,X_{k} &= 0 & (\text{otherwise}) \,. \end{split}$$

Thus

$$R(X, Y) Z = -(\langle Y, Z \rangle X - \langle X, Z \rangle Y)$$

for any tangent vectors X, Y, Z (where \langle , \rangle denotes the inner product by the metric (3)). Hence (U_n, ds^2) has constant sectional curvature -1 ([1], Lemma 2).

When n=2, a geodesic $\gamma(t)=(x_1(t), x_2(t))$ with affine parameter t satisfies the differential equations

$$\left\{ \frac{d^2 x_1/dt^2}{d^2 x_2/dt^2} = 2 \left(\frac{dx_1/dt}{dt} \right) \left(\frac{dx_2/dt}{dt} \right) / x_2 \right.$$

This equations appear in [3], and all the type of geodesics are determined. In our case, we may interprete time-like (resp. space-like) geodesics in [3] as space-like (resp. time-like) geodesics. From now on we assume $n \ge 3$.

Now, let $\gamma(t) = (x_1(t), \dots, x_n(t))$ be a geodesic with t as affine parameter. Then we get the differential equations for $\gamma(t)$ as follows;

$$\left\{ \begin{array}{ll} \frac{d^2x_i}{dt^2} = 2\left(\frac{dx_i}{dt}\right)\left(\frac{dx_n}{dt}\right)\middle/x_n & (i=1,\,\cdots,\,n-1) \\ \frac{d^2x_n}{dt^2} = \left(\left(\frac{dx_1}{dt}\right)^2 + \left(\frac{dx_n}{dt}\right)^2 - \sum_{i=2}^{n-1} \left(\frac{dx_i}{dt}\right)^2\right)\middle/x_n \right.$$

Since an isometry group G_n acts transitively on U_n , we consider only the geodesics starting from $p_0=(0, \dots, 0, 1)$. Let $\dot{\tau}(0)=\sum_{i=1}^n c_i X_i(p_0)$ be the initial tangent vector of γ . By an appropriate rotation of the variables x_2, \dots, x_{n-1} (which is an isometry of the metric), we may assume that $c_3=\dots=c_{n-1}=0$. From the equations (5), it follows that $x_3(t), \dots, x_{n-1}(t)$ are constant in this case. Thus it is enough to study the geodesic behaviors of U_n in the case n=3.

For n=3, we write x, y, z instead of x_1 , x_2 , x_3 . The equations (5) are

$$\begin{cases}
\frac{d^2x}{dt^2} = 2\left(\frac{dx}{dt}\right)\left(\frac{dz}{dt}\right) \middle/ z \\
\frac{d^2y}{dt^2} = 2\left(\frac{dy}{dt}\right)\left(\frac{dz}{dt}\right) \middle/ z \\
\frac{d^2z}{dt^2} = \left\{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2 - \left(\frac{dy}{dt}\right)^2\right\} \middle/ z .
\end{cases}$$

We shall find the solutions of (5') with initial conditions (x(0), y(0), z(0)) = (0, 0, 1) and (x'(0), y'(0), z'(0)) = (a, b, c). Here and hereafter, we denotes d/dt by prime '. Then we get $(x'/z^2)' = (y'/z^2)' = 0$ so that

$$(6) x' = az^2, y' = bz^2.$$

We get also $(z'/z)' = (z''z - (z')^2)/z^2 = ((x')^2 - (y')^2)/z^2$ so that

$$(7) z' = z(ax - by + c).$$

From (6) and the initial condition,

$$(8) ay = bx.$$

Case I: $a \neq 0$. From (6), (7) and (8), we get $azz' = (a^2 - b^2) xx'/a + cx'$

so that

$$(9) \hspace{1cm} z^2 = (a^2 - b^2) \; x^2 / a^2 + 2cx/a + 1 \; .$$

Subcase I-(i): $-a^2+b^2+c^2=0$. In the case c=0, we get $\gamma(t)=(at,bt,1)$. This null geodesic is complete in both directions. In the case $c\neq 0$, we get $\gamma(t)=(at/(1-ct),\ bt/(1-ct),\ 1/(1-ct))$. This null geodesic is complete in one direction and incomplete in the other direction.

H. Matsuda

Subcase I-(ii): $-a^2+b^2+c^2<0$. The curve satisfying (9) and (8) is a branch of hyperbola (z>0) in the plane P_{ab} spanned by the position vectors (0,0,1) and (a,b,0). We may parametrize it by

$$x(u) = \frac{a}{\alpha} \left(\frac{\alpha^2 - c^2}{\alpha^2}\right)^{\frac{1}{2}} \sinh u - \frac{ac}{\alpha^2}$$
$$y(u) = \frac{b}{\alpha} \left(\frac{\alpha^2 - c^2}{\alpha^2}\right)^{\frac{1}{2}} \sinh u - \frac{bc}{\alpha^2}$$
$$z(u) = \left(\frac{\alpha^2 - c^2}{\alpha^2}\right)^{\frac{1}{2}} \cosh u$$

where $\alpha = (a^2 - b^2)^{\frac{1}{2}}$. The tangent vector (dx/du, dy/du, dz/du) is time-like with length $1/\cosh u$. The proper time parameter t measured from u_0 is given by

$$t(u) = \int_{u_0}^{u} du/\cosh u = \sin^{-1}(\tanh u) - \sin^{-1}(\tanh u_0)$$

where $\sinh u_0 = c/(\alpha^2 - c^2)^{\frac{1}{2}}$.

This time-like geodesic is incomplete in both directions, because $t(u) \rightarrow \pm \pi/2 - \sin^{-1}(\tanh u_0)$ as $u \rightarrow \pm \infty$.

Subcase I-(iii): $c^2 > a^2 - b^2 > 0$. The curves satisfying (9) and (8) are two half-branches of hyperbolas (z>0) in the plane P_{ab} . We may parametrize them by

$$x(u) = \pm \left(a(c^2 - \alpha^2)^{\frac{1}{2}}/\alpha^2\right) \cosh u - ac/\alpha^2$$
 $y(u) = \pm \left(b(c^2 - \alpha^2)^{\frac{1}{2}}/\alpha^2\right) \cosh u - bc/\alpha^2$
 $z(u) = \left((c^2 - \alpha^2)^{\frac{1}{2}}/\alpha\right) \sinh u$

where $\alpha = (a^2 - b^2)^{\frac{1}{2}}$ and u > 0. The tangent vector (dx/du, dy/du, dz/du) has length 1/sinh u and so the arc-length parameter t measured from $p_0 = (0, 0, 1)$ is given by

$$t(u) = \int_{u_0}^{u} du/\sinh u = \log (\tanh u/2) - \log (\tanh u_0/2)$$

where $\sinh u_0 = \alpha/(c^2 - \alpha^2)^{\frac{1}{2}}$. This space-like geodesic is complete as it approaches the x-y plane and incomplete in the other direction, since $t(u) \rightarrow -\infty$ as $u \rightarrow 0$ and $t(u) \rightarrow -\log (\tanh u_0/2)$ as $u \rightarrow \infty$.

Subcase I-(iv): $c^2 > a^2 - b^2 = 0$. The curve satisfying (9) and (8) is a half-branch of parabola (z > 0) in the plane P_{ab} . We may parametrize it by

$$x(u) = au$$
, $y(u) = bu$, $z(u) = (2cu + 1)^{\frac{1}{2}}$.

The tangent vector (dx/du, dy/du, dz/du) has length |c/(2cu+1)| and the arc-length parameter t measured from p_0 is given by

$$t(u) = \frac{1}{2} \int_0^u du / |(u+1/2c)| = \frac{1}{2} \left\{ \log|(u+1/2c)| - \log|1/2c| \right\}.$$

This space-like geodesic is complete in both directions.

Subcase I-(v): $a^2-b^2<0$. The curve satisfying (9) and (8) is an upper half of ellipse (z>0) in the plane P_{ab} . We may parametrize it by

$$egin{align} x(u) &= aig((lpha^2+c^2)^{rac{1}{2}}/lpha^2ig)\cos\,u + ac/lpha^2 \ y(u) &= big((lpha^2+c^2)^{rac{1}{2}}/lpha^2ig)\cos\,u + bc/lpha^2 \ z(u) &= ig((lpha^2+c^2)^{rac{1}{2}}/lphaig)\sin\,u \;, \qquad 0 < u < \pi \ \end{aligned}$$

where $\alpha = (b^2 - a^2)^{\frac{1}{2}}$. The tangent vector (dx/du, dy/du, dz/du) has length $1/\sin u$ and the arc-length parameter t measured from p_0 is given by

$$t(u) = \int_{u_0}^{u} du / \sin u = \log(\tan u/2) - \log(\tan u_0/2)$$

where $u_0 = \cos^{-1}(c/(\alpha^2 + c^2)^{\frac{1}{2}})$. This space-like geodesic is complete in both directions, since $t(u) \to +\infty$ (as $u \to \pi$) and $t(u) \to -\infty$ (as $u \to 0$).

Case II: a=0. When b=0, we have $\gamma(t)=(0, 0, e^{ct})$. This space-like geodesic is complete in both directions. When $b\neq 0$, we have easily

$$z^2 + (y - c/b)^2 = c^2/b^2(z > 0)$$
, $x = 0$.

We may parametrize it by

$$x = 0$$
, $y(u) = (c^2/b^2 + 1)^{\frac{1}{2}} \cos u$, $z(u) = (c^2/b^2 + 1)^{\frac{1}{2}}$, $0 < u < \pi$.

The tangent vector (dx/du, dy/du, dz/du) has length $1/\sin u$ and the arclength parameter t measured from p_0 is given by

$$t(u) = \int_{u_0}^{u} du / \sin u = \log(\tan u/2) - \log(\tan u_0/2)$$

where $u_0 = \cos^{-1}(-c/(b^2+c^2)^{\frac{1}{2}})$. This space-like geodesic is complete in both directions as in the subcase $I_{-}(v)$.

2. Full isometry group. We determine the full isometry group $I(U_n)$ of the space with metric (3). $I(U_n)$ acts transitively on U_n because of the

128 H. Matsuda

transitivity of the group G_n . In the first, we find the isotropy group at $p_0=(0, \dots, 0, 1)$. When n=2, it is verified by the same argument as [3] that the isotropy group at p_0 consists of matrices

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

From now on, we assume $n \ge 3$. Suppose that g is an isometry of U_n fixing p_0 . The differential dg at p_0 is described as

$$dg(X_j)_{p_0} = \sum_{i=1}^n A_{ij}(X_i)_{p_0} \quad (j = 1, \dots, n)$$

with $(A_{ij}) \in O(1, n-1)$.

Let $\gamma(t)$ be the null geodesic starting at p_0 with the initial tangent vector

$$\dot{\tau}(0) = \sum_{j=1}^{n} a_j(X_j)_{p_0} \qquad (-a_1^2 + a_2^2 + \dots + a_n^2 = 0).$$

Considering an appropriciate rotation of the variable x_2, \dots, x_{n-1} and the subcase I-(i), we get

$$\gamma(t) = (a_1 t/(1 - a_n t), \dots, a_{n-1}/(1 - a_n t), 1/(1 - a_n t)).$$

The null geodesic $\tilde{\gamma}(t) = g\gamma(t)$ has the initial vector

$$\dot{\tilde{\gamma}}(0) = \sum_{j,i=1}^{n} A_{ji} a_i (X_j)_{p_0}$$

so that we get

$$\begin{split} \tilde{\gamma}(t) &= \left(\left(\sum_{j=1}^{n} A_{1j} \, a_{j} \right) \right) / \left(1 - \left(\sum_{j=1}^{n} A_{nj} \, a_{j} \right) \, t, \, \cdots, \\ & \left(\sum_{j=1}^{n} A_{n-1j} \, a_{j} \right) \, t \right) / \left(1 - \left(\sum_{j=1}^{n} A_{nj} \, a_{j} \right) \, t, \, \, 1 / \left(1 - \left(\sum_{j=1}^{n} A_{nj} \, a_{j} \right) \, t \right) \right). \end{split}$$

When $a_n=0$, $\gamma(t)$ is complete in both directions, so is $\tilde{\gamma}(t)$. Therefore $\sum_{j=1}^{n-1} A_{nj} a_j = 0$ for any a_1, \dots, a_{n-1} such that $a_1^2 = a_2^2 + \dots + a_{n-1}^2$. Then we get easily

$$A_{n1} = A_{n2} = \cdots = A_{n-1} = 0$$
.

By considering domains of γ and $\tilde{\gamma}$ in the case of $a_n \neq 0$, we can see $A_{nn} = 1$. $(A_{ij}) \in O(1, n-1)$ implies ${}^{t}(A_{ij}) \in O(1, n-1)$ so that we get

$$(A_{ij}) = \begin{bmatrix} A_{11} & A_{1 n-1} & 0 \\ A_{n-1 1} & A_{n-1 n-1} & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

We define the map g_A of U_n which is an isometry, by

$$g_A: (x_1, \dots, x_{n-1}, x_n) \longrightarrow (y_1, \dots, y_{n-1}, x_n)$$

where

$$y_i = \sum_{j=1}^{n-1} A_{ij} x_j$$
 $(i = 1, \dots, n-1)$.

Then $g_A(p_0)=p_0$ and $dg_A=dg$ at p_0 . Therefore g coincides with g_A .

Thus the full isometry group $I(U_n)$ consists of all matrices of the form

$$\begin{bmatrix} aA & \vdots \\ b_{n-1} \\ 0 & \cdots & 0 \end{bmatrix} \text{ with } A \in O(1, n-2), a>0, b_1, \cdots, b_{n-1} \in \mathbf{R}$$

acting on U_n in the natural fashion. The identity component $I^0(U_n)$ consists of all such matrices with $A \in SO^+(1, n-2)$.

3. Isometric imbedding of U_n into H_1^n . Let H_1^n be the anti de Sitter space which is the hypersurface

$$\left\{u=(u_0,u_1,\cdots,u_n); \langle u,u\rangle: =-u_0^2-u_1^2+\cdots+u_n^2=-1\right\}$$

in the indefinite Euclidean space \mathbb{R}_2^{n+1} with its induced Lorentz metric of constant sectional curvature -1([4], p. 334).

We define $f: U_n \rightarrow H_1^n$ by

$$f(x_1, \dots, x_n) = (u_0, \dots, u_n)$$

where

$$\begin{cases} u_0 = (1 - x_1^2 + x_2^2 + \dots + x_n^2)/2x_n \\ u_i = -x_i/x_n, & i = 1, \dots, n-1 \\ u_n = (1 + x_1^2 - x_2^2 - \dots - x_n^2)/2x_n. \end{cases}$$

Then f is an isometric imbedding of U_n into H_1^n and the image $f(U_n)$ is the open submanifold

$$\{u=(u_0,\cdots,u_n)\in H_1^n;\ u_0+u_n>0\}.$$

Now, we define an isomorphism h of the group G_n into the identity component SO(2, n-1) of the full isometry group of H_1^n . In the first, we define an isomorphism of the Lie algebra \mathfrak{g} of G_n into the Lie algebra $\mathfrak{g}(2, n-1)$ of SO(2, n-1). In the Lie algebra \mathfrak{g} , let

$$X_{i} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & \cdots & 0 \end{bmatrix} < i \qquad (i = 1, \dots, n-1) \quad X_{n} = \begin{bmatrix} -1 & 0 \\ \vdots & \vdots \\ -1 & 0 \\ 0 & \cdots & 0 & 0 \end{bmatrix}$$

Then X_1, \dots, X_n form a basis of g such that

$$[X_i, X_j] = 0$$
 for $1 \le i$, $j \le n-1$
 $[X_i, X_n] = X_i$ for $1 \le i \le n-1$.

In the Lie algebra o(2, n-1), let

$$Y_{1} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ -1 & 0 & 0 & \cdots & 0 & -1 \\ 0 & 0 & & & & \\ & & & & & \\ 0 & -1 & & & \end{bmatrix} \qquad Y_{n} = \begin{bmatrix} 0 & \cdots & 0 & 1 \\ \vdots & & & & \\ 0 & & & & \\ 1 & & & & \end{bmatrix}$$

$$Y_i = \begin{bmatrix} i \\ -1 \\ -1 \end{bmatrix} < i \quad \text{for} \quad 2 \leq i \leq n-1.$$

Then Y_1, \dots, Y_n satisfy

$$[Y_i, Y_j] = 0$$
 for $1 \le i$, $j \le n-1$
 $[Y_i, Y_n] = Y_i$ for $1 \le i \le n-1$,

and generate a Lie subalgebra of $\mathfrak{o}(2, n-1)$ which is isomorphic to \mathfrak{g} by $dh(X_i) = Y_i$ $(i=1, \dots, n)$. Since G_n is simply connected, the isomorphism dh gives rise to a homomorphism h of G_n into SO(2, n-1) which maps

$$\exp(sX_{1}) = \begin{bmatrix} 1 & s \\ \ddots & 0 \\ & \ddots & \\ & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ into } \exp(sY_{1}) = \begin{bmatrix} 1-t^{2}/2, -t, 0 & 0, t^{2}/2 \\ -t, & 1, & 0 & 0, -t \\ 0 & \ddots & & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & & 1 & 0 \\ t^{2}/2, -t, & 0 & \cdots & 0, & 1+t^{2}/2 \end{bmatrix}$$

and

$$\exp(sX_n) = \begin{bmatrix} e^{-s} & 0 \\ \ddots & \\ e^{-s} & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ into } \exp(sY_n) = \begin{bmatrix} \cosh s, 0, \dots, 0, \sinh s \\ 0 & 1 & 0 \\ & \ddots & \\ 0 & & 1 & 0 \\ \sinh s, 0, \dots, 0, \cosh s \end{bmatrix}$$

and

$$\operatorname{exp}(sX_{i}) = \begin{vmatrix} 1 & \cdots & s \\ & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} < i$$

$$\operatorname{into} \operatorname{exp}(sY_{i}) = \begin{vmatrix} 1 + s^{2}/2, 0, \cdots, 0, -s, 0, \cdots, 0, s^{2}/2 \\ 0 & 1 & 0 \\ \vdots & \ddots & \vdots \\ 0 & & 0 \\ -s & & -s \\ 0 & & \ddots & \vdots \\ 0 & & & 1, & 0 \\ -s^{2}/2, 0, \cdots, 0, s, 0, \cdots, 0, 1 - s^{2}/2 \end{vmatrix} < i$$

for each i, $1 \le i \le n-1$.

It is verified by the same method as [3] that the imbedding $f: U_n \to H_1^n$ is equivariant relative to $h: G_n \to SO(2, n-1)$, that is,

$$f(gp) = h(g)f(p)$$
 for all $g \in G_n$ and $p \in U_n$,

and h is an isomorphism.

We can extend h to an isomorphism of the largest connected isometry group $I^0(U_n)$ into S(2, n-1) in such a way that f remains equivariant. To do this, it is sufficient to define

$$h(g) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & 1 \end{bmatrix} \in SO(2, n-1) \text{ for } g = \begin{bmatrix} A & 0 \\ 0 & 1 \end{bmatrix} \in I^{0}(U_{n})$$

where $A \in SO^+(1, n-2)$.

Thus we have

THOREM. There exists an isometric imbedding of the upper half-space U_n with the metric (3) into the anti de Sitter space H_1^n which is equivariant relative to an isomorphism of the largest connected isometry group $I^0(U_n)$ into the largest connected isometry group SO(2, n-1) of H_1^n .

References

- [1] L. GRAVES and K. NOMIZU: On sectional curvature of indefinite metrics, Math. Ann. 232 (1978), 262-272.
- [2] K. NOMIZU: Left-invariant Lorentz metrics on Lie groups, Osaka J. Math. 16 (1979), 143-150.
- [3] K. NOMIZU: The Lorentz-Poincaré metric on upper half-space and its extension, Hokkaido Math. J. 11 (1982), 253-261.
- [4] J. Wolf: Spaces of Constant Curvature, MacGraw-Hill, New York, 1967.

Department of Mathematics Kanazawa Medical University Uchinada-machi, Ishikawa-ken 920-02, Japan