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1. Introduction. In [3] and [4], J. Zowe has considered convex
programming with values in ordered vector spaces. His hypotheses are so
restrictive that his theory does not apply to the case of the function spaces L_{p}

(\infty>p>0) . For L_{\infty} and C(X) with X a Stonean space, his method is very
useful. We shall consider in this note convex operators whose values are in
much more general spaces than the usual function spaces such as L_{p} .
Functions assuming the value +\infty introduce certain complications, to which
we must address ourselves.

For simplicity, we consider only convex operators defined on the real
line B8 with values in the space of measurable functions with values in Bl\cup

\{+\infty\} . The general case will be treated in a later publication.
In this note, we present a generalization of the Fenchel-Moreau theorem

and also of the Fenchel theorem. It is appropriate to consider the P(\Omega) of
measurable functions, whose definition will be found in Section 2.

2. Preliminary lemmas

Let F be an extended real-valued function on the real numbers B8,
possibly assuming the value +\infty , but not the value -\infty . Let D be a
(dense) countable subfield ofBl. Such an extended real-valued function F
defined on D is said to be D-convex if

F(\alpha x+\beta y)\leqq\alpha F(x)+\beta F(y)

for \alpha , \beta\in D with \alpha+\beta=1 , \alpha , \beta\geq 0 and x, y\in D .
An ffR-convex function will be called convex, as usual.

We first present a number of lemmas.
LEMMA 1. Every fifinite-valued D-convex function defifined on D is

continuous in D : that is x_{n}arrow x(x_{n}, x\in D) implies that F(x_{n})-arrow F(x) .
PROOF. If the sequence F(x_{n}) does not converge for x_{n}arrow x , the

convexity of F implies that either F(y)=+\infty for all y>x or F(y)=+\infty for
all y<x . Since F is finite-valued, F is continuous.

Curiously enough, a D-convex function F defined on all of B8, i . e . a
function satisfying F(\alpha x+\beta y)\leqq\alpha F(x)+\beta F(y) for \alpha , \beta\in D with \alpha+\beta=1 ,
\alpha , \beta\geq 0 and x, y\in Bl , is not necessarily continuous on B8. (For example, a
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discontinuous real-valued solution of the functional equation \phi(x+y)=

\phi(x)+\phi(y) will do.) Nevertheless we have the following lemma.
LEMMA 2. Every fifinite-valued D-convex function can be extended in one

and only one way to a (continuous) convex function on B?.
We omit the proof.
We define convex functions on n-dimensional spaceIR^{n} in the same way;

they assume values in Bl\cup\{+\infty\} .
Let F be a convex function on B8^{n} with values in B8\cup\{+\infty\} . The

effective domain of F , defined as \mathscr{D}_{F}=\{x;F(x)<\infty\} is plainly a convex set.
LEMMA 3. If \mathscr{D}_{F} contains at least 2 points, then \mathscr{D}_{F} has an interior

point with respect to the affine hull A_{F} of \mathscr{D}_{F} and the restriction of F to A_{F}

is continuous at every interior point of \mathscr{D}_{F} with respect to A_{F}. In particular,
if F is always fifinite valued, then F is continuous at everywhere inB8^{n}.

PROOF. See [1] Theorem 3 p. 188.
LEMMA 4. A convex function FonR^{n}, is lower semi-continuous at h in

R^{n} if and only if the restriction map F_{l} of F on each line l through x_{0} is lower
semi-continuous at x_{0} .

PROOF. If F is not lower semi-continuous at x_{0} and F(x_{)})<+\infty , then
there exists \epsilon>0 and a sequence \{x_{n}\}_{n=1}^{\infty}\subset \mathscr{D}_{F}(n=1,2, \cdots) with x_{n}arrow x_{0} such
that F(x_{n})<F(x_{)})-\epsilon . We can assume that there is at least one n such that
x_{n} is an interior point of \mathscr{D}_{F} with respect to A_{F} (see Lemma 3). Let [k, x_{n}]

be the interval from x) to x_{n} . Then, for w\in(x_{)}, x_{n}] , F(w)\leqq F(x_{)})-\epsilon since
(x_{)}, x_{n}] is contained in the closed convex hull of \{x_{m}\}_{m=0}^{\infty} and F is continuous
on (x_{)}, x_{n}] . But this means that F_{l} is not lower semi-continuous at x_{0} where
l is the line containing the interval [x_{)}, x_{n}] . The converse is proved
similarly.

Let \Omega be a finite measure space with measure \mu .
Two measurable sets A and B are identified if

\mu(A\oplus B)=\mu(A|B)+\mu(B|A)=0 .
The collection of measurable sets of \Omega then constitutes a complete Boolean
lattice.
Let S(\Omega) be the set of all measurable functions on \Omega which are finite-valued
almost everywhere. We identify f and g\in S(\Omega) if they differ only on a set
of \mu -measure zero.

Let P(\Omega) be the totality of all measurable functions on \Omega assuming
values in B8\cup\{+\infty\} . Plainly P(\Omega) is a convex set.

We identify f and g\in P(\Omega) if they differ only on a set of \mu -measure zero.
We define Q(\Omega)=\{f ;-f\in P(\Omega)\} . Thus f\in Q(\Omega) is a measurable function
on \Omega assuming values in Bl\cup\{-\infty\} . Finally, let U(\Omega) as the totality of all
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measurable functions on \Omega with values in B8\cup\{+\infty\}\cup\{-\infty\} . it is obvious
that

U(\Omega)\supset P(\Omega)\cup Q(\Omega)

and
L_{\infty}(\Omega)\subset L_{p}(\Omega)\subset L_{1}(\Omega)\subset S(\Omega)\subset P(\Omega)Q(\Omega)\subset U(\Omega)

for p\geqq 1 .
With the usual ordering S(\Omega) is a Dedekind complete vector lattice and if
S(\Omega)\ni f=f_{a}\check{a} for f_{a}\in S(\Omega) , there exists a countable subfamily \{ a_{n}\} of \{ a\}

for which
\check{a}\check{n}f_{a}=f_{a_{n}} ,

\check{a}f_{a} defines the supremum of \{f_{a}\} in the complete vector lattice S(\Omega) .

The set P(\Omega) is complete under the supremum operation i . e . if f_{a}\in P(\Omega) ,

the supremum f=f_{a}\check{a} exists in P(\Omega) . Likewise, if f_{a}\in Q(\Omega) the infimum

f=\^a f_{a} (exists) in Q(\Omega) . Again, we can select a countable family f_{a_{n}} with
f=f_{a_{n}}\check{n} or f= \bigwedge_{n}f_{a_{n}} .

LEMMA 5. Let F be a convex operator from B8 into Y=S(\Omega) . Then
there exist a subset A of \Omega of measure zero and a function F(\alpha, t) defifined on

Bl\cross\Omega such that for each fifixed t\in\Omega\backslash A,B8\ni\alphaarrow F(\alpha, t) is a convex function
on ffR and for each fifixed \alpha\in B8, \Omega\ni t- F(\alpha, t) is a measurable function on \Omega

which is identifified with F(\alpha) as an element of S(\Omega) and F is continuous
which is to say

\alpha_{n}arrow\alpha implies F(\alpha_{n})-arrow F(\alpha)a . e .

PROOF. Let D= \{\frac{m}{2^{n}} ( m is an integer and n is a natural number) \}

For each fixed \alpha\in D , we write tarrow F(\alpha, t) for the function F(\alpha) in S(\Omega) .
This function is by definition measurable and finite a . e. . We will write
F(\alpha)=\{F(\alpha, t)\} . Since

F(\alpha\alpha_{1}+\beta\beta_{1})\leqq\alpha F(\alpha_{1})|\perp_{\beta F(\beta_{1})}

for each 4-tuple \alpha , \beta , \alpha_{1} , \beta_{1}\in D for which \alpha+\beta=1 , \alpha , \beta\geqq 0 , we have
F(\alpha\alpha_{1}+\beta\beta_{1}, t)\leqq\alpha F(\alpha_{1}, t)+\beta F(\beta_{1}, t)

except on a set A(\alpha, \beta, \alpha_{1}, \beta_{1}) of measure zero. As the number of 4-tuples
(\alpha, \beta, \alpha_{1}, \beta_{1}) is countable, we see that F(\alpha, t) is D-convex and finite except
on the set A_{0}=\cup A(\alpha, \beta, \alpha_{1}, \beta_{1}) which has measure zero. Lemma 2 and
Lemma 3 show that we can extend F to a finite valued convex function F_{1}(\alpha ,
t) on all \alpha\in\Pi for each t\in\Omega\backslash A_{0} . For each t\in A_{0} , we can define an
arbitrary finite valued convex function F_{1}(\alpha, t) .

We can prove that \{ F_{1}(\alpha, t)\}=F(\alpha) for all \alpha\in E8 . Suppose F(\alpha)=
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\{F(\alpha, t)\} and \{ F(\alpha, t)\}\neq\{F_{1}(\alpha, t)\} for some \alpha\in B8 . Then the measu-
rable set of \Omega , A=\{t;F(\alpha, t)\neq F_{1}(\alpha, t)\} has positive measure. Since F(\alpha ,

t) are finite a . e . on A there exists \alpha_{1}\in D near \alpha such that F(\alpha_{1}, t)=+\infty

for t in a set of positive measure. Since this is impossible, we have \{ F_{1}(\alpha ,

t)\}=\{F(\alpha, t)\} . That is, for each \alpha\in Bt we have F_{1}(\alpha, t)=F(\alpha, t)a . e . in
t\in\Omega .

A convex function F on the real numbers is said to be right side fifinite
(or left side infifinite) if there exists \alpha_{0} (or \beta_{0}) such that F(\alpha)<+\infty for \alpha\geqq

\alpha_{0} (or F(\alpha)=+\infty for \alpha\leqq\beta_{0}). In the same way, we can define a left side
finite and right side infinite convex function, and both sides infinite convex
function.

LEMMA 6. Let F be a convex operator from B8 into P(\Omega) such that
F(\alpha_{0})\in S(\Omega) for some \alpha_{0}\in r:. There exist pairwise disjoint measurable sets
A_{i}(i=1,2,3, 4) of \Omega with A_{1}\cup A_{2}\cup A_{3}\cup A_{4}=\Omega , such that for t\in A_{1} , F(\alpha) is
fifinite for all \alpha\in B8 ; for t\in A_{2} , F(\alpha) is right side fifinite and left side infifinite;
for t\in A_{3} , F(\alpha) is left side fifinite and right side infifinite; for t\in A_{4} , F(\alpha) is
both sides infifinite.

PROOF. We consider the complete Boolean lattice of measurable subsets
of \Omega identifying sets whose symmetric difference has measure zero. We use
the symbols \vee and \Lambda to denote supremum and infimum respectively, in this
complete Boolean lattice. We may suppose as above that F(\alpha) is
represented by a measurable function on \Omega : tarrow F(\alpha, t) . For \alpha\in B8, write
A_{a}=\{t;F(\alpha, t)=+\infty\} and

A=Aa\check{a} .

We define B=\vee A_{a} and C=\vee A_{a} . Plainly we have B\cup C=A .
a>a_{0} a<a_{0}

Finally let A_{1}=\Omega\backslash A , A_{2}=A\backslash B , A_{3}=A\backslash C and A_{4}=B\cap C . Then A_{1} , A_{2} , A_{3}

and A_{4} are as required.
LEMMA 7. Let D be a countable subfifield of IR . Then every D-convex

function F on D with values inB8\cup\{+\infty\} can be extended in exactly one way
to a convex function which is continuous on Bl except at most two points ofB8.
Second, there exists a lower semi-continuous convex function on B8 that
coincides with F on D except at most two points of D.

We omit the proof.
LEMMA 8. Aet F be a convex operator from B8 to P(\Omega) such that F(\alpha_{0})

\in S(\Omega) for some \alpha_{0}\in B8 . First, there exists a measurable function f(t)\in
P(\Omega) such that if f(t)<\alpha for all t in a set A, of positive measurable in \Omega ,

then F(\alpha) is +\infty on A. Second, there exists a measurable function g(t)\in
Q(\Omega) such that \alpha<g(t) for every t in A implies F(\alpha) is +\infty on A.

PROOF. We define f_{a}(t) with
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f_{a}(t)=\{
\alpha if t\in A_{a}

+\infty if t\not\in A_{a}

where A_{a}=\{t;F(\alpha)=F(\alpha, t)=+\infty\} .
Then f_{a}(t)\geqq\alpha_{0}a . e . t\in\Omega if \alpha>\alpha_{0} and f_{a_{0}}(t)=+\infty for all t\in\Omega .

Now define
f=\Lambda f_{a} .

a>a_{0}

As is well known, there is a decreasing sequence of step functions f_{n}\downarrow f(n=

1 , 2, \cdots ) where f_{n} is the infimum of some finite number of f_{a}’s and it is easy to
see that f satisfies the conditions of the lemma. The construction of g(t) is
similar. The following figure shows how f and g behave.

+\infty

\Omega

Remark concerning Lemma 8. It is easy to see that the set of numbers
\alpha\in\Pi in which \mu \{ t;f(t)=\alpha\}>0 is countable, as is the set of numbers \alpha\in B8

for which \mu \{ t;g(t)=\alpha\}>0 .
Now, we have the following lemma which is a generalization of Lemma

5.
LEMMA 9. Let F be a convex operator from B8 into P(\Omega) such that there

exists \alpha_{0} with F(\alpha_{0})\in S(\Omega) . Then, there exist a subset A of \Omega of measure
zero and a function F(\alpha, t) defifined on\Pi\cross\Omega such that for each fifixed t\in\Omega\backslash A ,

B8\ni\alphaarrow F(\alpha, t) is a convex function on R and for each fifixed \alpha\in B8, \Omega\ni t-arrow F

(\alpha, t) is a measurable function on \Omega which is identifified with F(\alpha) as an
element of P(\Omega) .

PROOF. For simplicity, we shall consider the case in which \Omega=A_{3}

(notation is in Lemma 8). The other cases are proved in the same way. By
the Remark concerning Lemma 8, we find the countable set \{\alpha_{n}\}\subset Bl for
which \mu \{ t;f(t)=\alpha_{n}\}>0 . Let D be a countable subfield of IR that contains
all \alpha_{n}(n=1,2, \cdots) . We first determine a countable number of measurable
functions F(\alpha, t)(\alpha\in D) such that \{ F(\alpha, t)\}=F(\alpha) for \alpha\in D . Then,
by the method used in Lemma 5, there exists a subset A_{0} of measure zero in
\Omega such that F(\alpha, t) is a D-convex function of \alpha\in D for all t\in\Omega|A_{0} and \alpha>
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f(t) implies that F(\alpha, t)=+\infty for t\in\Omega\backslash A_{0} .

If \alpha\neq\beta_{n}(n=1,2, \cdots) , then it is easy to see that F( \alpha)=\lim_{narrow\infty}F(\beta_{n}, t)a . a .
t\in\Omega for each sequence \beta_{n}arrow\alpha . We extend F(\alpha, t)(\alpha\in D) to the whole
field B8 by Lemma 7 for t\in\Omega\backslash A_{0} . We denote this extension by F(\alpha, t) for
all \alpha\in B8 . This function is equal to F(\alpha) as an element of P(\Omega) , and the
function F(\alpha, t) is as required.

3. Duality theorems

Let L(R8, S(\Omega))=L(R;\Omega) be the totality of all linear operator from B8
to S(\Omega) . The following is a special case of Lemma 5.

LEMMA 10. Let T\in L(R;\Omega) . Then there exists a measurable function
T(t)(t\in\Omega) on \Omega such that T(\alpha)=\{\alpha T(t)\} .

Let F be a convex operator from B8 to P(\Omega) , and suppose that there is at
least a number \alpha_{0}\in R such that F(\alpha_{0})\in S(\Omega) . For \alpha\in R with F(\alpha)\in S(\Omega) ,

we can defifine the subdifferential \partial F(\alpha) of F at \alpha as follows:
\partial F(\alpha)= { T\in L(R ; \Omega) : F(\alpha)-T(\alpha)\leq F(\beta)-T(\beta) for all \beta\in B8 },

where L (B8,\cdot

\Omega ) =L(R,\cdot S(\Omega))\cong S(\Omega) (Lemma 10).

THEOREM 1. Let F(\alpha)=\{F(\alpha, t)\} be a representation as in Lemma 9
such that for each t\in\Omega except a subset of measure zero, \alphaarrow F(\alpha, t) is a

convex function on IR and for each \alpha\in B8 , tarrow F(\alpha, t) is a measurable
function on \Omega which is identifified with F(\alpha) as an element of P(\Omega) . Then
\partial F(\alpha)\neq\phi iff \partial F(\cdot, t)(\alpha)\neq\phi for a. a. t\in\Omega , where

\partial F( . , t)(\alpha)= { \xi\in\Pi 8 ; F(\alpha, t)-\xi\alpha\leqq F(\beta, t)-\xi\beta for all \beta\in B8 }
PROOF. We define a sequence of measurable functions \{\phi_{n}\}\subset P(\Omega) as

follows:

\phi_{n}(t)=\{

n \{F(\alpha+\frac{1}{n}, t)-F(\alpha, t)\} if f(t)>\alpha

n \{F(\alpha, t)-F(\alpha-\frac{1}{n}, t)\} if f(t)=\alpha, g(t)<\alpha

0 if f(t)=g(t)=\alpha

where f and g are as in Lemma 8.
If \partial F ( . , t)(a)\neq\phi , then limit

\phi(t)=\lim_{narrow\infty}\phi_{n}(t)

exists as an element of S(\Omega) , and \phi(t)\in\partial F(\cdot, t)(\alpha) for a . a . t\in\Omega .
Hence the operator T\in L(R;\Omega) defined by the formula

Tx(t)=T(x)(t)=x\cdot\phi(t)

is in \partial F(\alpha) .
If \partial F(\alpha)\neq\phi , plainly we have \partial F(\cdot, t)(\alpha)\neq 0 for a . a . t\in\Omega .
LEMMA 11. Let F be a convex operator from Bl to P(\Omega) such that F(\alpha_{0})
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\in S(\Omega) for some \alpha_{0}\in B8 . By Lemma 9, we can fifind a representation of F as
functions F(\alpha, t) with F(\alpha)=\{F(\alpha, t)\} such that F(\alpha, t) is a convex
function of \alpha\in R for a. a. t\in\Omega . The set \{\alpha_{n}\} such that

\mu { t\in\Omega ; F ( \cdot , t ) is discontinuous at \alpha_{n} } >0
is countable.

This lemma follows easily from Lemma 8.
LEMMA 12. Let F be as in Lemma 11. For T(t)\in S(\Omega) , the composite

function F(T(t), t) of t\in\Omega is an element of P(\Omega) .
PROOF. Suppose first that F(\xi, t) be a countinuous function of \xi\in ffR for

a . e . t\in\Omega , i . e . F(\alpha)\in S(\Omega) for all \alpha\in Bl . For T(t)\in S(\Omega) , there exists
a sequence of simple functions T_{n}(t) with

\lim_{narrow\infty}T_{n}(t)=T(t)a . a . t\in\Omega

and
T_{n}(t)= \sum_{m=1}^{k(n)}\alpha_{m}^{n}\chi_{\Omega mn}(t)

where \{\Omega_{mn}\} is a partition of \Omega and for each n,

F( T_{n}(t), t)= \sum_{m=1}^{k(n)}\chi_{\Omega mn}(t)\cdot F(\alpha_{m}^{n}, t)

is measurable. By the continuity of F, we have
\lim_{narrow\infty}F ( ^{T_{n}(t), t)=F} ( ^{T}(t), t)

and so F(T(t), t) is a measurable function of t\in\Omega .
For the general case, let \{\alpha_{n}\} be as in Lemma 11.

Let A_{n}=\{t\in\Omega: T(t)=\alpha_{n}\} , \Omega_{1}=\bigcup_{n=1}^{\infty}A_{n} and \Omega_{2}=\Omega\backslash \Omega_{1} .

Then we have
= \sum_{1}^{\infty}\chi_{A_{n}}(t)\cdot F( \alpha_{n}, t)+\chi_{\Omega_{2}}(t)\lim_{n}F(T_{n}(t), t)a.a . t\in\Omega .

The Lemma follows.
Let us consider the conjugate operator F*ofF. By Lemma 9, there is

a family of convex functions F(\alpha, t) with F(\alpha)=\{F(\alpha, t)\} . Let T be an
element of L (B8; S(\Omega) ). By Lemma 10, T can be regarded as an element of
S(\Omega) ; and will be denoted by T(l) .
For T\in L(Bl; S(\Omega)) , we shall define

F^{*}(T)=\vee(\xi\cdot T(\cdot)-F(\xi))\xi\in lR^{\cdot}

Since there exists a dense countable set D of Bl which contains the set \{ a_{n}\}

of Lemma 11, and F^{*}(T)= \sup_{\xi\in D}\{\xi T(t)-F(x, t)\} , hence we have

F^{*}(T)= \sup_{\xi\in D}\{\xi\cdot T(t)-F(\xi, t)\}(a.e.)

= \sup_{\xi\in 1P}\{xT(t)-T(x, t)\}

=F^{*}(T(t), t)
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where F^{*}(\cdot, t) is the conjugate function of F(x, t) with F(x)=\{F(x, t)\}

as in Lemma 9. We note that \bigvee_{\zeta\in 1R}(\xi T(\circ)-F(x))=\sup_{\xi\in D}\{\xi T(t)-F(\xi, t)\}

a . e . whenever { \alpha\in B8:\mu { t\in\Omega : F (. , t ) is discontinuous at \alpha\}>0 } is
countable. For \zeta\in B8 , considering \zeta as a constant function,

F^{*}(\zeta)=\vee(\zeta\xi-F(\xi))\xi\in R^{\cdot}

Although it may happen that F^{*}(\zeta)=+\infty a . a . t\in\Omega for \zeta\in R , we know
that there exists T_{0}\in S(\Omega) with F^{*}(T_{0})\in S(\Omega) . For every T_{0}\in\partial F(\alpha_{0}) ,
F^{*}(T_{0}) belongs to S(\Omega) . We now define F^{**} . The function

F^{**} carries L (L (B8, S(\Omega) ), S(\Omega) ) \cong L(S(\Omega), S(\Omega)) into P(\Omega) . We
consider F^{**} only onlR, and define

F^{**}(\zeta)= T\in\check{S(}\Omega)(\zeta\cdot T-F^{*}(T))

for \sigma\in\Pi, since L(S(\Omega), S(\Omega)) containslR, considering every element \zeta\in B8

as follows: S(\Omega)\ni\phi(t)arrow\zeta\cdot\phi(t)\in S(\Omega) . Thus, since \zeta\in R\vee(\zeta T(\cdot)-

F( \zeta))=\sup_{\zeta\in D}\{\zeta T(t)-F(\zeta, t)\}a . e. , we have
F^{**}(\zeta)\geqq_{\xi\in 1R}\vee(\zeta\cdot\xi\cdot 1-F^{*}(\xi, \cdot))

= \sup_{\xi\in 1R}(\zeta\cdot\xi-F^{*}(\xi, t))

=F^{**}(\zeta, t) for a . a . t\in\Omega ,

where F^{**} (\cdot, t) is the conjugate function of the convex function F^{*}(\zeta, t)

for a . a . t\in\Omega .
On the other hand, we have
F^{**}(\zeta)\leq T\in\check{S(}\Omega)(\zeta\cdot T(t)-F^{*}(T(t), t))

=su_{\#}\xi\in 1(\zeta\cdot\xi-F^{*}(\xi, t))

=F^{**}(\zeta, t)

for a . a . t\in\Omega .
Hence, we have F^{**}(\zeta)=F^{**}(\zeta, t) for a . a . t\in\Omega . It is easy to see that

F^{**}(\zeta)\leqq F(\zeta) for \zeta\in B8 .
Similarly, we can define F^{**}(S) for S\in S(\Omega) by

F^{**}(S)=T\in\check{S(}\Omega)(S\cdot T-F^{*}(T))

We now prove the following theorem, which generalizes the Fenchel-Moreau
theorem :

THEOREM 2. The equality F^{**}(\zeta)=F(\zeta) hold iff the family of convex
functions F(\cdot, t) of Lemma 9 is lower semi-continuous at \zeta for a. e . t\in\Omega .

This theorem follows from the following and the original Fenchel-
Moreau theorem. We shall also give a generalization of the Fenchel-Moreau
theorem for T\in S(\Omega) . We need the following. Let F be a convex operator
from R to P(\Omega) such that F(\alpha_{0})\in S(\Omega) for some \alpha_{0}\in B8 . By| Lemma 9,
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there exists a family of convex functions F(\alpha, t) for each t\in\Omega with F(\alpha)=

\{F(\alpha, t)\} . For such F, by Lemma 11 the set \{\alpha_{n}\}\subset\Pi with
\mu { t\in\Omega;F (x, t ) is discontinuous at x=\alpha_{n} } >0

is countable. Hence, there exists a family of convex functions \tilde{F} for each
t\in\Omega with

\tilde{F}(\alpha, t)=F(\alpha, t)(a. e.)

such that \tilde{F}(\alpha, t) is lower semi-continuous for \alpha\not\in\{a_{n}\} for almost all t\in\Omega .
Such \{ \tilde{F}(\alpha, t)\} is uniquely determined a . e . in \Omega . We call \{ \tilde{F}(\alpha, t)\} the
standard representation of F(\alpha) . Then, we have the following Fenchel-
Moreau theorem for T\in S(\Omega) .

THEOREM 3. Let F be a convex operator from R to P(\Omega) such that
F(\alpha_{0})\in S(\Omega) for some \alpha_{0}\in E8 For

T(t)\in S(\Omega) , we have F^{**}(T)=F( T)

iff the standard representation \{ \tilde{F}(\alpha, t)\} of F(\alpha) is lower semi-continuous
at T(t) for a. a. t\in\Omega .

Let G be an operator from IR to Q(\Omega) . If - G(a) is a convex operator
from R to P(\Omega) , we call G a concave operator. We define the conjugate
operator G^{*} of G as follows:

G^{*}(T)=-(-G(-T))^{*}=-\vee(\zeta\cdot T+G(-\zeta))\xi\in lP

= \vee (\zeta T-G(\zeta)) .

We next considertheT\in s(\Omega) following programs P(I) and F(ar) .
P(I) : \bigwedge_{\zeta\in R} \{ ^{F}( ^{T(t)}( ^{T(t)}\}

where F(x, t) and G(x, t) are the standard representations and satisfy
F^{**}=F, G^{**}=G.

P(II):,\in\check{S(}\Omega)\{ ^{G^{*}(T(t), t)-F^{*}(T(t)}, t)\} .
THEOREM 4. Suppose that F is a convex operator. There exists a solution

T_{1} in P(I) with T_{1}\in S(\Omega) if and on/y if there exists a solution T_{0} in P(II)
with T_{0}\in S(\Omega) . In this case, we have

F( T_{1}(t), t)-G( T_{1}(t), t)=G^{*}(T_{0}(t), t)-F^{*}(T_{0}(t), t)

for a. a. t\in\Omega .
PROOF. Suppose that we have T_{0}\in S(\Omega) with

T\in\check{S(}\Omega)\{G^{*}(T(t), t)-F^{*}(T(t), t)\}=G^{*}(T_{0}(t), t)-F^{*}(T_{0}(t), t)\in S(\Omega) .
The theorem of Moreau-Rockafellar, shows that

\partial(f+g)(x)=\partial f(x)+\partial g(x) ,

and \partial(G^{*}(\cdot, t)-F^{*}(\cdot , t)) ( T_{0}(t))\ni 0 . Hence, there exists \xi(t)\in ffR with
\xi(t)\in\partial F^{*}(\cdot, t) ( T_{0}(t))\cap\partial G^{*}( . , t) ( T_{0}(t)) for a . a . t\in\Omega .

We can choose \xi(t) such that \xi(t) is an element of S(\Omega) , considering \xi(t)

as a function defined on \Omega . For each t\in\Omega , there exists \xi\in B8 with
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\xi(\alpha-T_{0}(t))\leq F^{*}(\alpha, t)-F^{*}(T_{0}(t), t)

and
\xi(\alpha’-T_{0}(t))\geq G^{*}(\alpha’t)-G^{*}(T_{0}(t), t)

for all \alpha and \alpha’\in B8 .
Putting

f( \alpha, t)=\frac{F^{*}(\alpha,t)-F^{*}(T_{0}(t),t)}{\alpha-T_{0}(t)}

g( \alpha, t)=\frac{G^{*}(\alpha,t)-G^{*}(T_{0}(t),t)}{\alpha-T_{0}(t)}

we see easily that f(\alpha, t) is increasing and g_{\backslash }^{(}\alpha , t ) is decreasing with respect
to \alpha .
Hence, putting

\xi(t)=\lim_{a-T_{0}(t)arrow-0}f(\alpha, t)\vee\lim_{a-T_{0}(t)arrow+0}g(\alpha, t)

we get a solution \xi(t) of P(I) that is in S(\Omega) . The rest of the proof is
similar. Thus we complete the proof.

The authors express their hearty thanks to Prof. Ichinose for his
valuable comments.
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