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Introduction.

Let G be a LCA group with dual group \hat{G}, and we denote by m_{G} the Haar
measure of G. Let M(G) and L^{1}(G) be the usual measure algebra and the
group algebra respectively. Let M^{+}(G) be the subset of M(G) consisting
of positive measures Let M_{d}(G) , M_{c}(G) and M_{s}(G) denote the subspaces
of M(G) consisting of di‘ s‘ c_{\Lambda}re,,te

measures, continuous measures and singular
measures respectively. and “ \vee ” denote the Fourier-Stieltjes trans-
form and the inverse Fourier transfomr respectively. For a subset B of M
(G) , B\Lambda means the set \{\hat{\mu} : \mu\in B\} , and for \mu\in M(G) , we signify ||\hat{\mu}|| by
the total variation norm ||\mu|| of \mu . When there is a nontrivial continuous
homomorphism \psi f or \hat{G} into R (the reals), we say that a measure \mu\in M

(G) is of analytic type if \hat{\mu}(\gamma)=0 for all \gamma\in\hat{G} with \psi(\gamma)<0 . We denote
by M^{a}(G) the space of all measures of analytic type and put M^{a}(G)_{s}=M^{a}

(G)\cap M_{s}(G) . The space M^{a}(G)_{s} is called the space of analytic singular
measures (induced by \psi). In this paper we consider only the case that M^{a}

(G)_{s}\neq\{0\} .
Let A be a closed subspace of M(G) and \Phi a function on \hat{G}. \Phi is called

a multiplier (or multiplier function) on A if \Phi\hat{\mu}\in A^{\Lambda} for all \mu\in A . By the
function \Phi , there exists a unique bounded linear operator S on A such that
S(\mu)^{\Lambda}=\Phi\hat{\mu} . We say that S is a multiplier operator (or merely multiplier
on A induced by the function \Phi .

As well known, function \Phi on \hat{G} become multipliers on L^{1}(G) if and
only if \Phi belong to M(G)^{\Lambda} For each \nu\in M_{d}(G) , \mu*\nu are singular
measures for all \mu\in M_{s}(G) . For a compact abelian group G, Doss proved
that multiplier operators on M_{s}(G) are given by convolution with discrete
measures ([3]). In [7], Graham and MacLean obtained an analogous
result for general LCA group. By the F. and M. Riesz theorem of Helson
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and Lowdenslager type (cf. [7], theorem 4. 1), we have M^{a}(G)=(M^{a}(G)

\cap L^{1}(G))\oplus M^{a}(G)_{s} . Every multiplier operator on M^{a}(G) necessarily maps
M^{a}(G)\cap L^{1}(G) into itslf (cf. [7], Lean (E)). However it is easy to
see that there is a multiplier operator on M^{a}(G) w ith does not map M^{a}(G)_{s}

into itself.
Let \Phi be a multiplier on H^{1}(R) (Hardy space on R). When \Phi\circ\psi is a

multiplier on M^{a}(G) , and the multiplier operator induced by the function \Phi

\circ\psi necessarily maps M^{a}(G)_{s} into itself (cf. [7], theorem I). Moreover
the author constructed a multiplier operator on M^{a}(G)_{s} w ith is not given by
convolution with a bounded regular measure on G [7] , theorem 2. 4).
Our purpose in this paper is to characterize Idempotent multipliers on M^{a}

(G)_{s} under the assumption that \psi(\hat{G}) is denote in R with respect to the usual
topology. More exactly, if \psi(\hat{G}) is dense in R, we shall show that each
idempotent multiplier operator on M^{a}(G)_{s} is necessarily given by convolu-
tion with a measure in M(G) of certain type (If \psi(\hat{G}) is not dense in R,
there exists an idempotent multiplier operator on M^{a}(G)_{s} w ith is not given
by convolution with a measure on G.). Our key methed is to consider a
covering group for G and employ the theory of disintegration.

In section 0, we state notations and the main theorem of this paper In
section 1 we shall dual with the disintegration of bounded regular measures
on X_{1}\cross X_{2} , there X_{1} is a metrizable locally compact Hausdorff space and X_{2}

is a general locally compact Hausdorff space In section 2 we characterize
convolution operators on M^{a}(G)_{s} induced by bounded regular measures on
G. We consider special Idempotent multipliers on M^{a}(G)_{s} in section 3, and
we give the proof of our main theorem in section 4.

\S 0 Notations and Main theorem

Let G be a LCA group For a closed subgroup H of G, H^{\perp} means the
annihilator of H. We denote by Trig(G) the set of all trgonometric polyn0-
mials on G. For a subset E of \hat{G}, let M_{E}(G) be the space of measures in M
(G) whose Fourier-Stieltjes transform vanish off E, and let \chi_{E} be the
characteristic function of E. We denote by E^{o} and E^{-} the interior of E and
the closure of E respectively. For x\in G, \delta_{\chi} denote the point mass at x.

DEFINITION 0. 1. Let \psi:\hat{G}arrow R be a nontrivial continuous hom0-
morphism, and let \phi : Rarrow G be the dual homomorphism of \psi(i. e. , (\phi

(t) , \gamma)=\exp(it\psi(\gamma))) . Put H_{\psi}=ker(\psi)^{\perp}

(i) A function \Phi on \hat{G} is called a multiplier (or multiplier function) on
M^{a}(G)_{s} if \Phi\hat{\mu}\in M^{a}(G)_{s^{\Lambda}} for all \mu\in M^{a}(G)_{s} . In this case, there exists a
unique bounded linear operator S on M^{a}(G)_{s} such that S(\mu)^{\Lambda}=\Phi\hat{\mu}. We say
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that S is a multiplier operator (or merely multiplier) on M^{a}(G)_{s} induced by

the function \Phi . We define a norm ||\Phi|| by ||\Phi||=||S||

(ii) Let \Phi be a multiplier on M^{a}(G)_{s} and S the multiplier operator on
M^{a}(G)_{s} induced by \Phi . \Phi is called an idempotent multiplier if S^{2}=S. We
say that S is an idempotent multiplier operator (or merely idempotent
multiplier).

(iii) We define subsets \mathscr{A}_{0} and \mathscr{A}_{1} of M(G) as follows: If ker(\psi) is
not open, we define \mathscr{A}_{0} by

\mathscr{A}_{0}=\{\sum_{i=1}^{n}m_{i}\gamma_{i}m_{H}\} ,

where m_{i}\in Z (the integers), \gamma_{i}\in\hat{G} and H is a finite subgroup of G. If ker
(\psi) is open, we define \mathscr{A}_{1} by

\mathscr{A}_{1}=\{\Sigma_{j=1}^{m}M_{j}o_{j}m_{H_{0}}+(\delta_{0}-m_{H\varphi})*(\Sigma_{i=1}^{n}m_{i}\gamma_{i}m_{H})\} ,

where m_{i}, M_{j}\in Z, \gamma_{i}\in\hat{G}, \sigma_{j}\in ker(\psi);H is a finite subgroup of G and H_{0} is
a compact subgroup of G with H_{0}\supset H_{\psi} such that \pi(H_{0}) is a finite subgroup

of G/H_{\psi}, where \pi:Garrow G/H_{\psi} is the natural homomorphism.
In their proof of the Cohen Idempotent Theorem, Ito and Amemiya

obtained the following theorem.
THEOREM 0. 2 ([11]). Let \mu be a measure in M(G) such that \hat{\mu} is

integer-valued. Then \mu can be represented as follows :
\mu=\Sigma_{i=1}^{n}\Sigma_{j=1}^{t_{i}}n_{ij}\gamma_{ij}m_{H_{i}} ,

where n_{ij}\in Z, \gamma_{ij}\in\hat{G} and H_{i} are compact subgroups of G such that \{\Sigma_{j=1}^{t_{i}}n_{ij}

\gamma_{ij}m_{H_{i}}\} are mutmlly singular.
Using Theorem 0. 2 and results which shall be obtained in sections 1-3,

we characterize idempotent multipliers on M^{a}(G)_{s} . We state our main
theorem which will be proved in section 4.

MAIN THEOREM. Let G be a LCA group and \psi : \hat{G}arrow R a nontrivial
continuous homomorphism such that M^{a}(G)_{s}\neq\{0\} and \psi(\hat{G}) is deme in R.
Let \Phi be an idempotent multiplier on M^{a}(G)_{s} and S the idempotent mut-
tiplier operater on M^{a}(G)_{s} induced by \Phi . Then the following are satisfified :

(I) If ker(\psi) is not open, there exists \nu\in \mathscr{A}_{0} such that
S(\mu)=\mu*\nu(i. e., \Phi\hat{\mu}=\hat{\nu}\hat{\mu})

for all \mu\in M^{a}(G)_{s} .
(II) If ker(\psi) is open, there exists \nu\in \mathscr{A}_{1} such that

S(\mu)=\mu*\nu(i. e., \Phi\hat{\mu}=\hat{\nu}\hat{\mu})

for all \mu\in M^{a}(G)_{s} .
Conversely, when ker(\psi) is not open, let \nu be a measure in\mathscr{A}_{0} . Then

\hat{\nu} becomes a multiplier on M^{a}(G)_{s} . When ker(\psi) is open, let \nu be a

measure in\mathscr{A}_{1} . Then \hat{\nu} becomes a multiplier on M^{a}(G)_{s} .
A lemma due to Svensson ([15], Lemma 3. 1. 1) also plays an important

role in the proof of Main Theorem. Before we close this section, we state
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remarks together with useful theorems.
REMARK 0. 3. ( i) In Main Theorem we assumed that M^{a}(G)_{s}\neq\{0\} .

A necessary and sufficient condition in order that M^{a}(G)_{s}\neq\{0\} is stated in
([17], Remark 2. 2, p. 186).

(ii) If \psi(\hat{G}) is not dense in R, Main Theorem is not satisfied. We
give an example: Let G=T\oplus K, and let \psi:Z\oplus\hat{K}arrow Z be the projection,
where T is the circle group and K is a nondiscrete LCA group. Let \{ a_{n}\} be
a sequence of positive integers such that a_{n+1}/a_{n}>3 . We put F=\{a_{n} : n\in N

(the natural numbers) \} and define a function \Phi on Z\oplus\hat{K} by \Phi(n, \sigma)=\chi_{F}

(n) . Then \Phi is an idempotent multiplier on M^{a}(G)_{s} (see [17], Theorem 2.
3). However the idempotent multiplier operator S on M^{a}(G)_{s} induced by \Phi

is not given by convolution with a bounded regular measure on G.
REMARK 0. 4. Let \psi be a nontrivial continuous homomorphism from \hat{G}

into R such that M^{a}(G)_{s}\neq\{0\} . Let \Phi be a function on \hat{G} that is a multiplier
on M^{a}(G)_{s} . Then \Phi is necessarily continuous on \{\gamma\in\hat{G}:\psi(\gamma)>0\} . In
fact, for \gamma\in G with \psi(\gamma)>0 , let f be a function in H^{1}(R) such that \hat{f}(\psi

(\gamma))\neq 0 . Put \mu=\phi y), where \phi is the dual homomorphism of \psi . Then \mu

belongs to M^{a}(G)_{s} (see Proposition 2. 2 and Remark 2. 3 in [17]). Hence
we can verify that \Phi is continuous at \gamma . Moreover, if ker(\psi) is open and
noncompact, \Phi is also continuous on ker(\psi) . This is obtained from the fact
that \chi_{ker(\psi)}\in M^{a}(G)_{s^{\Lambda}}

REMARK 0. 5. ( i) Suppose M^{a}(G)_{s}\neq\{0\} and \Phi is an idempotent
multiplier on M^{a}(G)_{s} . Then, for \gamma\in\hat{G} with \psi(\gamma)>0 , \Phi(\gamma)=0 or 1. In
fact, let f be a function in H^{1}(R) with \hat{f}(\psi(\gamma))\neq 0 . Then, as same as in
the previous remark, \mu=\phi(f) belongs to M^{a}(G)_{s} . Hence \Phi(\gamma)^{2}\hat{\mu}(\gamma)=\Phi

(\gamma)\hat{\mu}(\gamma) , which yields \Phi(\gamma)=0 or 1 since \hat{\mu}(\gamma)=\hat{f}(\psi(\gamma))\neq 0 . Moreover,
if ker(\psi) is open and noncompact, \Phi(\gamma)=0 or 1 on ker(\Phi) because \Phi|_{ker(\psi)}

becomes an idempotent multiplier on M_{s}(G/ker(\psi)^{\perp}) . However, if ker(\psi)

is not open, or open and compact, \Phi does not need assuming the values 0 or
1 on ker(\psi) since \hat{\mu}=0 on ker (\psi) for each \mu\in M^{a}(G)_{s} (cf. [18], Lemma 1.
2).

(ii) When ker(\psi) is not open, let \nu be a measure in \mathscr{A}_{0} such that \hat{\nu}=

0 or 1 no \psi^{-1}((0, \infty)) . Then \hat{\nu} becomes an idempotent multiplier on
M^{a}(G)_{s} . When ker(\psi) is open and compact, let \nu be a measure in \mathscr{A}_{1} such
that \hat{\nu}=0 or 1 on \psi^{-1}((0, \infty)) . Then \hat{\nu} becomes an idempotent multiplier on
M^{a}(G)_{s} . When ker(\psi) is open and noncompact, let \nu be a measure in \mathscr{A}_{1}

such that \hat{\nu}=0 or 1 on \psi^{-1}([0, \infty)) . Then \hat{\nu} becomes an idempotent mul-
tiplier on M^{a}(G)_{s} .

The following theorem, which will be frequently used later on, is
obtained from ([7], Theorems 1 and 2).
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THEOREM 0. 6. Let G be a nondiscrete LCA group. Let \mu be a measure
in M_{c}(G) . Then there exists a probability measure \nu\in M_{s}(G) such that \mu*\nu

\in L^{1}(G) .
We get the following theorem from the above theorem.
THEOREM 0. 7. Let G be a nondiscrete LCA group and \Phi a function on

\hat{G} that is a multiplier on M_{s}(G) . Then \Phi\in M_{d}(G)^{\Lambda}

When G is compact, Theorem 0. 7 was obtained by Doss ([3], Theorem
2).

\S 1 Disintegration of measures.

This section is devoted to the disintegration of measures on the product
space X_{1}\cross X_{2} of a metrizable locally compact Hausdorff space X_{1} and a
locally compact Hausdorff space X_{2} . We employ Edgar’s idea ([5]). For
a locally compact Hausdorff space X, let C_{0}(X) be the Banach space of
continuous functions on X which vanish at infinity and M(X) the Banach
space of complex-valued bounded regular measures on X with the total
variation norm. Then, by the Riesz representation theorem, the dual space
of C_{0}(X) coincides with M(X) . Let (M(X), w^{*}) be the space M(X)
with weak*-topology. Then (M(X), w^{*}) becomes a locally convex topol0-
gical vector space, and its dual space is C_{0}(X) . We denote by \mathscr{B}(X) the
\sigma-algebra of Borel sets in X.

DEFINITION 1. 1. Let V be a locally convex topological vector space,
and let (S,\mathscr{F}. \lambda) be a finite measure space.

(a) A function m:\mathscr{F}arrow V is called a V-valued measure if, for every

sequence \{ E_{n}\} of disjoint members in \mathscr{F} . we have m( \bigcup_{1}^{\infty}E_{n})=\sum_{n=1}^{\infty}m(E_{n}) ,

where the series converges in the topology of the space V.
(b) The measure m is said to be absolutely continuous with respect to

\lambda if m(E)=0 for each E\in \mathscr{F} with \lambda(E)=0 .
(c) The average range of m is the set \{ m(E)/\lambda(E):E\in \mathscr{F}, \lambda(E)>0\} .

The measure m is said to have relatively compact average range if the
average range of m is relatively compact.

The following lemma is due to Edgar.
LEMMA 1. 2 ([5], 2. 1 Theorem). Let V be a locally convex topological

vector space, and let (S,\mathscr{F}\lambda) be a fifinite measure space. Let m:\mathscr{F}arrow V

be a measure. Assume (1) m is absolutely continuous with respect to \lambda , and
(2) m has relatively compact average range. Then there exists a function \phi :
Sarrow V with range contained in the closure of the average range of m such

that, for E\in \mathscr{F}, we have \int_{E}\phi(s)d\lambda(s)=m(E) , i. e. , for all continuous
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linear functiomls h on V, the map sarrow h(\phi(s)) is \lambda -integrable, and \int_{E}h(\phi

(s))d\lambda(s)=h(m(E)) .
In general, for locally compact Hausdorff spaces X_{1} and X_{2} , \mathscr{B}(X_{1})\cross \mathscr{B}

(X_{2}) is included in \mathscr{B}(X_{1}\cross X_{2}) . However, if X_{1} is \sigma-compact, metrizable
locally compact space, the following lemma is satisfied.

LEMMAI. 3. Let X_{1} be a \sigma-compact, metrizable locally compact space and
X_{2} a locally compact Hausdorff space. Then \mathscr{B}(X_{1})\cross(\mathscr{B}(X_{2})=\mathscr{B}(X_{1}\cross X_{2}) .

PROPOSITION 1. 4. Let X_{1} be a \sigma-compact, metrizable locally compact
stxzce and X_{2} a locally compact Hausdorff space. Let \pi_{X_{2}} : X_{1}\cross X_{2}arrow X_{2} be the
projection. Let \mu be a positive measure in M(X_{1}\cross X_{2}) , and put \eta=\pi_{X_{2}}(\mu) .
Then there exists a family \{\lambda_{s}\}_{s\in X_{2}} of positive measures in M(X_{1}\cross X_{2}) with
the following properties :

(1) sarrow\lambda_{s}(f) is a \eta-measurable function for each bounded Borel func-
tion f on X_{1}\cross X_{2}.\vee

(2) ||\lambda_{s}||\leq 1 :
(3) supp(\lambda_{s})\subset X_{1}\cross\{s\} ;

(4) \mu\zeta f)=\int_{X_{2}}\lambda_{s}(f)d\eta(s) for each bounded Borel measurable function f
on X_{1}\cross X_{2} .

PROOF. Put V= (M(X_{1}),w^{*}) , and we define a set function m:\mathscr{B}(X_{2})

arrow V by m(E)(B)=\mu(B\cross E) for B\in \mathscr{B}(X_{1}) and E\in \mathscr{B}(X_{2}) . Then m is a
V-valued measure, and

(5) m is absolutely continuous with respect to \eta .
For E\in \mathscr{B}(X_{2}) with \eta(E)>0 , we have ||m(E)/\eta(E)||=1 , hence the
average range of m is included in the unit ball of M^{+}(X_{1}) . Since the unti
ball of M(X_{1}) is weak*-compact, m has relatively compact average range.
Hence, by Lemma 1. 2, there exists a function \phi : X_{2}arrow V with the range
contained in the closure of the average range of m such that

(6) s arrow\int_{X_{1}}h(x)d\phi(s)(x) is \eta -integrable for each h\in C_{0}(X_{1}) , and

(7) \int_{E}\int_{X_{1}}h(x)d\phi(s)(x)d\eta(s)=\int_{X_{1}}h(x)dm(E)(x) for h\in C_{0}(X_{1}) and
E\in \mathscr{B}(X_{2}) .

Since the average range of m is contained in the unit ball of M^{+}(X_{1}) , we
have

(8) \phi(X_{2})\subset\{\omega\in M^{+}(X_{1}) : ||\omega||\leq 1\} ,
hence we may replace (6) by

(6)’ s arrow\int_{X_{1}}h(x)d\phi(s)(x) is arbounded \eta -measurable function for each
h\in C_{0}(X_{1}) .



Idempotent multipliers on the space of analytic singular measures 55

Since X_{1} metrizable and \sigma-compact, the usual montonicity arguments show
that (6)’ and (7) continue to hold for bounded Borel functions. That is,

(9) s arrow\int_{X_{1}}h(x)d\phi(s)(x) is a bounded \eta -measurable function for each

bounded Borel function h on X_{1}

and

(10) \int_{E}\int_{X_{1}}h(x)d\phi(s)(x)d\eta(s)=\int_{X_{1}}h(x)dm(E)(x) for each bounded

Borel h on X_{1} and E\in \mathscr{B}(X_{2}) .
We define positive measures \lambda_{s}\in M(X_{1}\cross X_{2})(s\in X_{2}) by

d\lambda_{s}(x, y)=d\phi(s)(x)\cross d\delta_{s}(y)

Then by (8) we have
(11) ||\lambda_{s}||\leq 1 ;
(12) supp (\lambda_{s})\subset X_{1}\cross\{s\} .

Moreover, by the similar argument in the proof of ([5], Theorem 3. 1), the
following is satisfied :

(13) sarrow\lambda_{s}(F) is \eta measurable and \mu(F)=\int_{x_{2}\mathcal{A}s}(F)d\eta(s)

for F\in \mathscr{B}(X_{1})\cross \mathscr{B}(X_{2}) . Hence by (11)-(13) and Lemma 1. 3, we can
verify that \{\lambda_{s}\}_{s\in X_{2}} satisfies (1)-(4) . This completes the proof.

COROLLARY 1. 5. Let X_{1} be a metrizable locally compact space and X_{2}a

locally compact Havsdorff space. Let \mu be a positive measure in M(X_{1}\cross X_{2}) ,

and put \eta=\pi_{X_{2}}(\mu) , where \pi_{X_{2}} : X_{1}\cross X_{2}arrow X_{2} is the projection. Then there
exists a family \{\lambda_{s}\}_{s\in X_{2}} of positive masures in M(X_{1}\cross X_{2}) which satisfifies
(1)-(4) in Proposition 1. 4.

PROOF. Since \mu is bounded and regular, there exists a \sigma -compact subset
Y_{1} of X_{1} such that \mu is concentrated on Y_{1}\chi X_{2} Hence, by Proposition 1. 4,
the corollary is easily obtained.

COROLLARY 1. 6. Let X_{1} , X_{2} and \pi_{X_{2}} be as in the previous corollary. For
\mu\in M(X_{1}\cross X_{2}) , put \eta=\pi_{X_{2}}(|\mu|) . Then there exists a family \{\lambda_{s}\}_{s\in X_{2}} of
measures in M(X_{1}\cross X_{2}) with the following properties :

(1) sarrow\lambda_{s}(f) is \eta\prime measurable for each bounded Borel measurable
function f on X_{1}\cross X_{2} ;

(2) ||\lambda_{s}||\leq 1 ;
(3) supp(\lambda_{s})\subset X_{1}\cross\{s\} ;

(4) \mu(f)=\int_{X_{2}}\lambda_{s}(f)d\eta(s) for each bounded Borel function f on X_{1}\cross X_{2} .

PROOF. By Corollary 1. 5, there exists a family \{\lambda_{\acute{s}}\}_{s\in X_{2}} of positive
measures in M(X_{1}\cross X_{2}) which satisfies (1)-(4) in Proposition 1. 4 with
respect to |\mu| . Let g be a unimodular Borel function on X_{1}\cross X_{2} such that



56 H. Yamguchi

\mu=g|\mu| . We define measures \lambda_{s}\in M(X_{1}\cross X_{2}) by d\lambda_{s}(x, y)=g(x, y)d\lambda_{\acute{s}}(x,
y) . Then we can verify that \{\lambda_{s}\}_{s\in X_{2}} satisfies (1)-(4) of the corollary, and
the proof is complete.

PROPOSITION 1. 7. Let X_{1} be a \sigma-compact, metrizable locally compact
space and X_{2} a locally compact Hausdorff space. Let \eta be a nonzero positive
measure in M(X_{2}) , and let \{\mathcal{A}_{s}^{1}\}_{s\in x_{2}} and \{\mathcal{A}_{s}^{2}\}_{s\in x_{2}} be families of measures
in M(X_{1}\cross X_{2}) with the following properties :

(1) sarrow\lambda_{s}^{i}(f) are \eta\prime integrable functiom for each bounded Borel func-
tion f on X_{1}\cross X_{2}(i=1,2) ;

(2) supp(\lambda_{s}^{i})\subset X_{1}\cross\{s\}(i=1,2) ;

(3) \int_{x_{2}}\lambda_{s}^{1}(f)d\eta(s)=\int_{X_{2}}\lambda_{s}^{2}(f)d\eta(s) for f\in C_{o}(X_{1}\cross X_{2}) .
Then we have

\lambda_{s}^{1}=\lambda_{s}^{2}\eta-a. a. s\in X_{2} .
PROOF. Since X_{1} is \sigma-compact and metrizable, C_{0}(X_{1}) contains a coun-

table dense set \mathscr{A}=\{f_{n}\}_{1}^{\infty} . By (2), there exist measures \nu_{s}^{i}\in M(X_{1}) such
that

d\lambda_{s}^{i}(x, y)=d\nu_{s}^{i}(x)\cross d\delta_{s}(y) .
Then it follows from (1) that

(4) sarrow\nu_{s}^{i}(h) is a \eta -integrable function for each bounded Borel func-
tion h on X_{1} .

For f_{n}\in \mathscr{A}, we have by (3)

\int_{x_{2}}g(s)\nu_{s}^{1}(f_{n})d\eta(s)=\int_{x_{2}}g(s)\rho_{s}y_{n})d\eta(s)

for all g\in C_{0}(X_{2}) , hence (4) yields
\nu_{s}^{1}(f_{n})=\mathscr{S}_{s}(f_{n})\eta-a . a . s\in X_{2} .

Since \mathscr{A} is a countable dense set in C_{0}(X_{1}) , we have
\nu_{s}^{1}=d_{s}\eta-a . a . s\in X_{2} ,

which shows \lambda_{s}^{1}=\lambda_{s}^{2}\eta-a . a . s\in X_{2} . This completes the proof.

\S 2 Convolution operators on M^{a}(G)_{s} induced by
bounded regular measures on G.

In this section we first state several properties of measures on the direct
product group of a \sigma-compact metrizable LCA group and a general LCA
group by using the theory of disintegration (Lemmas 2.1-2.3). Next we
characterize convolution operators on M^{a}(G)_{s} induced by bounded regular
measures on G. From Lemma 2.1 through Lemma 2.3, we shall assume that
G_{1} is a \sigma-compact metrizable LCA group, G_{2} is a general LCA group and \pi_{G_{2}} :
G_{1}\oplus G_{2}arrow G_{2} is the projection.

LEMMA 2. 1. Let E_{1} be a closed set in \hat{G}_{1} . For \mu\in M_{E_{1}\cross C_{2}}(G_{1}\oplus G_{2}) , put
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\eta=\pi_{G_{2}}(|\mu|) . Let \{\lambda_{S}\}_{S\in X_{2}} be the family of measures in M(G_{1}\oplus G_{2}) which
satisfifies (1)-(4) in Corollary 1. 6. Put d\lambda_{h}(x, y)=d\nu_{h}(x)\cross d\delta_{h}(y) , where \nu_{h}

\in M(G_{1}) and \delta_{h} is the point rms at h\in G_{2} . Then we have \nu_{h}\in M_{E_{1}}(G_{1})\eta- a .
a. h\in G_{2} .

PROOF. Since G_{1} is \sigma-compact and metrizable, there exists a countable
dense set \mathscr{A}=\{f_{m}\}_{1}^{\infty} in C_{0}(G_{1}) . Let F_{m} be a function on G_{1}\oplus G_{2} such that F_{m}

(x, y)=f_{m}(x) . Then, since harrow\nu_{h}(f_{m})=\lambda_{h}(F_{m}) is \eta -measurable, it follows
from Lusin’s theorem that there exists a compact set K_{m} in G_{2} such that

(1) \eta(G_{2}|K_{m})<\frac{1}{m}

and
(2) harrow\nu_{h}U_{n}) is continuous on K_{m} for all f_{n}\in \mathscr{A}.

Since \eta is regular, we may assume that K_{m} satisfies
(3) \eta(V\cap K_{m})>0

for each x\in K_{m} and neighborhood V of x. In fact, put

F=\{x\in K_{m} : thereexistsan\eta(V_{\chi}\cap K_{m})=0

.
open set V_{x} containing x such

that\} .
Then F=K_{m}\cap\cup { V : open set in G_{2}’ , V\cap K_{m}\neq\emptyset , \eta ( V\cap K_{m})=0 }. By
regularity of \eta , for \epsilon>0 , there exists a compact set S contained in F such
that \eta(F|S)<\epsilon . Hence there exist open sets V_{1} , \cdots V_{t} in G_{2} with V_{i}\cap

K_{m}\neq\emptyset , \eta
( V_{i}\cap K_{m})=0 such that S \subset\bigcup_{i=1}^{l}V_{i} Then \eta(S)\leq\Sigma_{i=1}^{t}\eta ( V_{i}\cap K_{m})=

0 , so that \eta(F)=\eta(F\backslash S)+\eta(S)<\epsilon . Since \epsilon>0 is arbitrary, we have
\eta(F)=0 . We employ K_{m}\backslash F instead of K_{m} if necessary. Then K_{m}\backslash F is
compact and it satisfies (1)-(3) .

By (2), (3) and the method used in ([16], Lemma 3, Claim 1), we
have

(4) \nu_{h}\in M_{E_{1}}(G_{1}) for all h\in K_{m}

Hence, by (1) and (4), we have \nu_{h}\in M_{E_{1}}(G_{1})\eta-a . a . h\in G_{2} and the
proof is complete.

Lemma 2. 2. Under the assumption in the previous lemma, the following
are satisfified :

(I) If \eta\in L^{1}(G_{2}) and \nu_{h}\in L^{1}(G_{1})\eta-a . a . h\in G_{2} , then \mu\in L^{1}(G_{1}\oplus

G_{2}) ;
(II) If \mu\in M_{S}(G_{1}\oplus G_{2}) and \nu_{h}\in L^{1}(G_{1})\eta-a . a. h\in G_{2} , the \eta\in M_{S}

(G_{2}) .
PROOF. (I): Let E be a compact set in G_{1}\oplus G_{2} with m_{G_{1}\oplus G_{2}}(E)=0 .

Then there exists a Borel set A_{2} in G_{2} with m_{G_{2}}(A_{2})=0 such that
m_{G_{1}}(E_{y})=0 for y\in A_{2} ,

where E_{y}=\{x\in G_{1} : (x, y)\in E\} . Then we have
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\mu(E)=\int_{G_{2}}\lambda_{h}(E)d\eta(h)

= \int_{G_{2}}\nu_{h}(E_{h})d\eta(h)

= \int_{A_{2}}\nu_{h}(E)d\eta(h)+\int_{G_{2}\backslash A_{2}}\nu_{h}(E_{h})d\eta(h)

=0.
Hence, by regularity of \mu , we get \mu(F)=0 for all Borel sets F in G_{1}\oplus G_{2}

with m_{G_{1}\oplus G_{2}}(F)=0 , which shows \mu\in L^{1}(G_{1}\oplus G_{2}) .
(II): Let \eta=\eta_{a}+\eta_{s} be the Lebesgue’s decomposition of \eta with respect

to We define measures \mu_{1} , \mu_{2}\in M(G_{1}\oplus G_{2}) by
\mu_{1}(f)=\int_{G_{2}}\lambda_{h}\zeta f)d\eta_{a}(h) ,

\mu_{2}(f)=\int_{G_{2}}\lambda_{h}(f)d\eta_{s}(h)

for f\in C_{0}(G_{1}\oplus G_{2}) . Then \mu=\mu_{1}+\mu_{2} and \mu_{2}\in M_{S}(G_{1}\oplus G_{2}) . Moreover we
have \mu_{1}\in L^{1}(G_{1}\oplus G_{2}) as same as in (I), hence \mu=\mu_{2} . Therefore, since
||\lambda_{h}||\leq 1\eta-a . a . h\in G_{2} , we get

||\eta_{a}||+||\eta_{s}||=||\eta||

\leq||\eta_{s}|| ,
which shows \eta=\eta_{s}\in M_{s}(G_{2}) . This completes the proof.

LEMMA 2. 3. Let \mu_{i} be measures in M(G_{1}\oplus G_{2}) , and put \eta_{i}=\pi_{G_{2}}(|\mu_{i}|)

(i=1,2) . Let \{\lambda_{h}^{i}\}_{h\in G_{2}}=\{\nu_{h}^{i}\cross\delta_{h}\}_{h\in G_{2}} be families of measures in M(G_{1}\oplus

G_{2}) which satisfy (1)-(4) in Corollary 1. 6 with respect to \mu_{i} . Then the
following is satisfified :

(h_{1}, h)arrow \mathcal{A}_{h_{1}}^{1}*\lambda_{h_{2}}^{2}\sigma)=\{(\nu_{h_{1}}^{1}*\nu_{h_{2}}^{2})\cross\delta_{h_{1}+h_{2}}\}(f) is a
(I) (\eta_{1}\cross\eta_{2})- masurable function for each bounded Borel function fon G_{1}\oplus G_{2}

In particular, we can defifine a measure \xi\in M(G_{1}\oplus G_{2}) by
\xi(f)=\int_{G_{2}}\int_{G_{2}}\{(\nu_{h_{1}}^{1}*\nu_{h_{2}}^{2})\cross\delta_{h_{1}}+_{h_{2}}\}(f)d\eta_{1}(h_{1})d\eta_{2}(h)

for f\in C_{0}(G_{1}\oplus G_{2}) . Then the following are satisfified:
(II) \xi=\mu_{1}*\mu_{2} ;
(III) If \eta_{1}*\eta_{2}\in L^{1}(G_{2}) and \nu_{h_{1}}^{1}*\nu_{h_{2}}^{2}\in L^{1}(G_{1}) (\eta_{1}\cross\eta_{2})-a . a.

(h_{1}, h)\in G_{1}\oplus G_{2} , then \mu_{1}*\mu_{2} belongs to L^{1}(G_{1}\oplus G_{2}) .
PROOF. ( I) : We note that harrow\nu_{n}^{i}(f) is a measurable function for

each bounded Borel function f on G_{1} . Hence
(1) (h_{1}, h)arrow\nu_{h_{1}}^{1}*\nu_{h_{2}}^{2}(f) is a (\eta_{1}\cross\eta_{2})-measurable function for each

bounded Borel function f on G_{1} .
In fact, for f_{1} , f_{2}\in C_{0}(G_{1}) , we define a function f\in C_{0}(G_{1}\oplus G_{1}) by f(x_{1}, \ ) =
f_{1}(x_{1})f_{2}(xi) . Then

(2) (h_{1}, h_{2}) -arrow(\nu_{h_{1}}^{1}\cross\nu_{h_{2}}^{2})(f) is (\eta_{1}\cross\eta_{2}) -measurable.
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Since \{\Sigma_{i=1}^{n}f_{1i}(x)f_{2i}(y) : f_{1i}, f_{2i}\in a(G_{1})\} is dense in C_{0}(G_{1}\oplus G_{1}) , (2) holds
for all f\in C_{0}(G_{1}\oplus G_{1}) . Hence, since G_{1} is \sigma-compact and metrizable, (2)

holds for every bounded Borel function f on G_{1}\oplus G_{1} . Let \tau_{1}(x, y)=x+y for
(x, y)\in G_{1}\oplus G_{1} . Then, for each bounded Borel function g on G_{1} , we have
\nu_{h_{1}}^{1}*\nu_{h_{2}}^{2}(g)=(\nu_{h_{1}}^{1}\cross\nu_{h_{2}}^{2})(g\circ\tau_{1}) and (1) follows.
Let E\in \mathscr{B}(G_{1}) and F\in \mathscr{B}(G_{2}) , and put A=E\cross F. Then

(3) (h_{1}, h)arrow\{(\nu_{h_{1}}^{1}*\nu_{h_{2}}^{2})\cross\delta_{h_{1}+h_{2}}\}(A) is (\eta_{1}\cross\eta_{2})-measurable.
In fact, let \tau_{2}(u, v)=u+v for (u, v)\in G_{2}\oplus G_{2} . Then \{(\nu_{h_{1}}^{1}*\nu_{h_{2}}^{2})\cross\delta_{h_{1}+h_{2}}\}

(A)=\nu_{h_{1}}^{1}*\nu_{h_{2}}^{2}(E)\chi_{\tau_{2}(F)}^{-1}(h_{1}, h) , hence (3) in obtained from (1).

Now let \mathscr{F} be the collection of all subsets A of G_{1}\oplus G_{2} which satisfy (3).

Then by (3) we have

(4) \bigcup_{i=1}^{n}E_{i}\cross F_{i}\in \mathscr{F}

for E_{i}\in \mathscr{B}(G_{1}) and F_{i}\in \mathscr{B}(G_{2}) such that \{E_{i}\cross F_{i}\} are pairwise disjoint.
Moreover J^{} is closed under monotone limits, hence it follows from Lemma
1. 3 that \mathscr{F}\supset \mathscr{B}(G_{1}\oplus G_{2}) . Thus ( I) is satisfied.

(II) is obtained by considering their Fourier-Stieltjes transforms (cf ,

[16], Theorem 1, Claim 3). We can prove (III) as same as in the proofs of
Lemma 2. 2 ( I) and ([16], lines 1-13 on p. 275). This completes the
proof.

Let G be a LCA group and \psi : \hat{G}arrow R a nontrivial continuous homomor-
phism. We assume that there exists \chi_{0}\in\hat{G} such that \psi(\chi_{0})=1 for
convenience’ sake. Let \phi : Rarrow G be the dual homomorphism of \psi , and let
\Lambda be the discrete subgroup of \hat{G} generated by Xo . Let K be the annihilator
of \Lambda . We define a continuous homomorphism \alpha : R\oplus K - G by

(2. 1) \alpha(t, u)=\phi(t)+u for (t, u)\in R\oplus K.
Then \alpha is onto and satisfies the following (cf. [17], Proposition 2. 2) :

(2. 2) \alpha(L_{1}(R\oplus K))\subset L^{1}(G) ;
(2. 3) \alpha(M_{s}(R\oplus K))\subset M_{s}(G) .

For 0< \epsilon<\frac{1}{6} , let \Delta_{\epsilon} be a function on R\oplus K defined by \Delta_{\epsilon}(t, \sigma)=\max(1-

\frac{1}{\epsilon}|t| , 0) if \sigma=0 and \Delta_{\epsilon}(t, \sigma)=0 if \sigma\neq 0 . For \mu\in M(G) , we define a

function \Phi_{\mu}^{\epsilon}(t, \sigma) on R\oplus K by
(2. 4)^{(*)} \Phi_{\mu}^{\epsilon}(t, \sigma)=\Sigma_{\gamma\in\hat{G}}\hat{\mu}(\gamma)\Delta_{\epsilon}((t, \sigma)-(\psi(\gamma), \gamma|_{K})) .

Then the following are satisfied (cf. [19], Lemma 3. 3):

(2. 5) \Phi_{\mu}^{\epsilon}\in M(R\oplus K)^{\Lambda} and ||\Phi_{\mu}^{\epsilon}||=||\mu|| :

(*) In [17], we define \Phi_{\mu}^{\epsilon}(=\Phi_{\mu}) by \Phi_{\mu}^{\epsilon}(t, \sigma)=\Sigma_{\gamma\in}c\hat{\mu}(\gamma)\Delta_{\epsilon}^{2}((t, \sigma)-(\psi(\gamma), \gamma|_{K})) . However
we may take \Delta_{\epsilon} instead of \Delta_{\epsilon}^{2} (cf. [19], Lemma 3. 3)
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(2. 6) \Phi_{\mu}^{\epsilon}\in L_{1}(R\oplus K)^{\Lambda} if \mu\in L^{1}(G) ;
(2. 7) \Phi_{\mu}^{\epsilon}\in M_{s}(R\oplus K)^{\Lambda} if \mu\in M_{s}(G) .

Moreover by ([19], Lemma 4. 1) we have
(2. 8) \alpha((\Phi_{\mu}^{\epsilon})^{\vee})=\mu .

We define an isometry(**) T_{\psi}^{\epsilon} : M(G)arrow M(R\oplus K) by
(2. 9) T_{\psi}^{\epsilon}(\mu)^{\Lambda}=\Phi_{\mu}^{\epsilon} .
DEFINITION 2. 4. Let \psi : \hat{G}arrow R be a nontrivial continuous homomor-

phism and \phi : Rarrow G the dual homomorphism of \psi . Let H_{\psi} be the annihi-
lator of ker(\psi) .

(i) Fer \nu\in M(G) , we define a bounded linear operator S_{\nu} on M(G)
by S_{\nu}(\mu)=\nu*\mu .

(ii) If ker(\psi) is not open, we define a subspace \mathscr{B}_{0} of M(G) by
\mathscr{B}_{0}=\{\Sigma_{n=1}^{\infty}u_{n}*\delta_{x_{n}}\} ,

where x_{n}\in G and u_{n}\in\phi(M(R)) with \Sigma_{n=1}^{\infty}||u_{n}||<\infty .
(iii) If ker(\psi) is open, we define a subspace \mathscr{B}_{1} of M(G) by

\mathscr{B}_{1}=\{m_{H_{\psi}}*\rho+(\delta_{0}-m_{H\psi})*(\Sigma_{n=1}^{\infty}u_{n}*\delta_{x_{n}})\} ,
where x_{n}\in G, \rho\in M_{d}(G) and u_{n}\in\phi(M(R)) with \Sigma_{n=1}^{\infty}||u_{n}||<\infty .

Before we state our theorem, we note that K is not discrete if M^{a}(G)_{s}\neq

\{0\} (cf. [17], Remark 2. 3).

THEOREM 2. 5. Let G be a LCA group and \psi:\hat{G}arrow R a nontrivial
continuous homomorphism. We assume M^{a}(G)_{s}\neq\{0\} and there exists \chi_{0}\in\hat{G}

with \psi(\chi_{0})=1 . For \nu\in M(G) , suppose S_{\nu}(M^{a}(G)_{s})\subset M_{a}(G)_{s} . Then the
following are satisfified :

(I) If ker(\psi) is not open, therc exists \xi\in \mathscr{B}_{0} such that
S_{\nu}(\mu)=\mu*\xi for all \mu\in M^{a}(G)_{s} ;

(II) If ker(\psi) is open, there exists \xi\in \mathscr{B}_{1} such that
S_{\nu}(\mu)=\mu*\xi for all \mu\in M^{a}(G)_{s} .

Conversely, when ker(\psi) is not open, let \nu be a measure in\mathscr{B}_{0} . Then
S_{\nu} maps M^{a}(G)_{s} into itself. When ker(\psi) is open, let \nu be a measure in \mathscr{B}_{1} .
Then S_{\nu} also maps M^{a}(G)_{s} into itself.

PROOF. Put \eta=\pi_{K}(|T_{\psi}^{\epsilon}(\nu)|) , where \pi_{K} : R\oplus K -arrow K is the projection.
Then by Corollary 1. 6 there exists a family \{\lambda_{h}\}_{h\in k}=\{\nu_{h}X\delta_{h}\}_{h\in k} of
measures in M(R\oplus K) with the following properties:

(1) harrow\lambda_{h}(f) is \eta-measurable for each bounded Borel
function f on R\oplus K :

(**) J. Inoue recently constructed lifting operators with properties (2. 5)-(2.7) under a
general circumustance ([10]). However, in general, it is not known whether the
representation as (2. 4) is satisfied or not.
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(2) ||\lambda_{h}||\leq 1 :
(3) T_{\psi}^{\epsilon}( \nu)(’f)=\int_{K}\lambda_{h}(f)d\eta(h) for each bounded Borel

function f on R\oplus K.
Let \eta=\eta_{1}+\eta_{2}(\eta_{1}\in M_{d}(K), \eta_{2}\in M_{c}(K) , and we define measures \omega_{i}\in M(R\oplus

K)(i=1,2) by

(4) \omega_{i}(f)=\int_{K}\lambda_{h}(f)d\eta_{i}(h)

for bounded Borel functions f on R\oplus K. Then we have
(5) \alpha(\omega_{1})*M^{a}(G)_{s}\subset M^{a}(G)_{s} .

In fact, let \mu be a measure in M^{a}(G)_{s} and put \eta_{\mu}=\pi_{K}(|T_{\psi}^{\epsilon}(\mu)|) . Let \{_{\nu_{h}^{\mu}}\cross

\delta_{h}\}_{h\in k} be a family of measures in M(R\oplus K) which satisfies (1)-(3) with
respect to T_{\psi}^{\epsilon}(\mu) and \eta_{\mu} . By (2. 4) we note

T_{\psi}^{\epsilon}(\mu)^{\Lambda}(t, \sigma)=0 for t<-\epsilon ,

hence by Lemma 2. 1 and the F. and M. Riesz theorem we have
(6) \nu_{h}^{\mu}\in L^{1}(R)\eta_{\mu}-a . a . h\in K.

Thus (2. 7) and Lemma 2. 2 (II) yield \eta_{\mu}\in M_{s}(K) . Hence by Lemma 2. 3
(II) and the fact fact that \eta_{1}\in M_{d}(K) , we can verify that T_{\psi}^{\epsilon}(\mu)*\omega_{1}\in M_{s}(R

\oplus K) . Thus by (2. 3) and (2. 8) we get \mu*\alpha(\omega_{1})=\alpha ( T_{\psi}^{\epsilon}(\mu)*\omega_{1})\in M^{a}

(G)_{s}, and (5) follows.
Next we claim the following.
(7) If \alpha(\omega_{2})^{\Lambda}(\gamma_{0})\neq 0 for some \gamma_{0}\in\hat{G} with \psi(\gamma_{0})>0 ,

there exists a measure \mu\in M^{a}(G)_{s} such that 0\neq\alpha(\omega_{2})*\mu\in L^{1}(G) .
In fact, since \eta_{2}\in M_{C}(K)\cap M^{+}(K) , it follows from Theorem 0.6 that there
exists a positive measure \eta_{3}\in M_{s}(K) such that 0\neq\eta_{2}*\eta_{3}\in L^{1}(K) . Put \sigma_{0}=

\gamma_{0}|_{K}, and let g be a function in H^{1}(R) such that \hat{g}(\psi(\gamma_{0}))\neq 0 . We define a
measure \zeta\in M_{s}(R\oplus K) by \zeta=g\cross(\sigma_{0}\eta_{3}) . Then \alpha(\zeta)\in M^{a}(G)_{s} and \alpha(\zeta)^{\Lambda}

(\gamma_{0})=\hat{\zeta}(\psi(\gamma_{0}) , \gamma_{0}|_{K}\neq 0 . We note that \zeta can be represented as follows:
\zeta(f)=\int_{K}\{\sigma_{0}(h)g\cross\delta_{h}\}(f)d\eta_{3}(h)

for all bounded Borel functions f on R\oplus K. Hence we can verify that \omega_{2}*\zeta

belongs to L^{1}(R\oplus K) (cf. Lemma 2. 3 (III)), so that \alpha(\omega_{2})*\alpha(\zeta)\in L^{1}(G) .
Thus \mu=\alpha(\zeta) is the desired one, and (7) follows. Since T_{\psi}^{\epsilon}(\nu)=\omega_{1}+\omega_{2} ,

it follows from (2. 8) that \nu=\alpha(\omega_{1})+\alpha(\omega_{2}) . Hence, by (5), (7) and the
hypothesis that S_{\nu}(M^{a}(G)_{s})\subset M^{a}(G)_{s}, we have

(8) \hat{\nu}(\gamma)=\alpha(\omega_{1})^{\Lambda}(\gamma) on \{\gamma\in\hat{G}:\psi(\gamma)>0\} .
We note \alpha(\omega_{1})\in \mathscr{B}_{0} . Thus, if ker(\psi) is not open, (8) says that ( I) is
satisfied since \{\gamma\in\hat{G}:\psi(\gamma)<0\}^{-}=\{\gamma\in\hat{G}:\psi(\gamma)\leq 0\} .

Next we consider (II). When ker(\psi) is compact, \hat{\mu} vanishes on ker
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(\psi) for each \mu\in M^{a}(G)_{s} (cf. [18], Lemma 1. 2). Put \xi=(\delta_{0}-m_{H_{\psi}})*\alpha

(\omega_{1}) . Then \xi\in \mathscr{B}_{1} , and by (8) we can verify that \xi satisfies (II). If ker
(\psi) is not compact, then M_{s}(G/H_{\psi})\neq\{0\} and \hat{\nu}|_{ker(\psi)} becomes a multiplier
on M_{s}(G/H_{\psi}) . Hence it follows from Theorem 0.7 that there exists L\in M_{d}

(G/H_{\psi}) such that \hat{L}(\gamma)=\hat{\nu}|_{ker(\psi)}(\gamma) on ker(\psi) . We note that there exists
\rho\in M_{d}(G) such that ( m_{H\varphi}*\rho)^{\Lambda}(\gamma)=\hat{L}(\gamma) for \gamma\in ker(\psi) . Put \xi=m_{H_{\psi}}*

\rho+(\delta_{0}-m_{H_{\psi}})*\alpha(\omega_{1}) . Then, in this case, \xi\in \mathscr{B}_{1} and \xi satisfies (II) by
virtue of (8). Thus (II) is obtained. Finally we prove the converse. For
u_{n}\in\phi(M(R)) , put u_{n}=\phi(A_{n})(A_{n}\in M(R)) . Then \hat{u}_{n}=\hat{A}_{n}\circ\psi, and the
converse follows from ([17], Theorem 2. 3) and ([18], Lemma 1. 2). This
completes the proof.

REMARK 2. 6. In Theorem 2. 5 we can remove the assumption that there
exists \chi_{0}\in\hat{G} such that \psi(\chi_{0})=1 . This is obtained from the following fact:
Let \psi : \hat{G}arrow R be a nontrivial continuous homomorphism. For \beta>0 , we
define \psi_{\beta} : \hat{G}arrow R by \psi_{\beta}(\gamma)=\beta\psi(\gamma) . Then the dual homomorphism \phi_{\beta} of
\psi_{\beta} is given by \phi_{\beta}(t)=\phi(\beta t) , and so \phi_{\beta}(M(R))=\phi(M(R)) .

REMARK 2. 7. The operator T_{\psi}^{\epsilon} , which is defined in (2. 8), becomes a
positive operator (i . e. , T_{\psi}^{\epsilon}(\mu)\geq 0 if \mu\geq 0). This is obtained from ([8], A.
7. 1 Theorem ( ii) , p. 421) and the construction of \Phi_{\mu}^{\epsilon} (see the proof of
([17], Theorem 2. 1) or ([19], Lemma 3. 3) ) .

\S 3 Special idempotent multipliers on M^{a}(G)_{s} .
Helson and Lowdenslager obtained the following useful result.
LEMMA 3. 1 (cf. [14], 8. 2. 3 Theorem (b), p. 200).

Let G be a compact abelian group such that \hat{G} is ordered. Let \mu be a measure
in M_{s}(G) that is of analytic type ( i. e.,\hat{\mu}(\gamma)=0 for \gamma<0). Then \hat{\mu}(0)=0 .

On the other hand, the author extended the above lemma as follows:
LEMMA 3. 2 (cf. [18], Lemma 1. 2). Let G be a LCA group and P an

open semigroup in \hat{G} such that P\cup(-P)=\hat{G}. Let H be the annihilator of
P\cap(-P) . Then we have m_{H}*\{M_{P}(G)\cap M_{s}(G)\}\subset M_{P}(G)\cap M_{s}(G) .

In orther words, Lemma 3. 2 claims that the characteristic function of P
\cap(-P) becomes a multiplier on M_{P}(G)\cap M_{S}(G) . In this section, when
there is a nontrivial continuous homomorphism \psi from \hat{G} into R, we
consider whether characteristic functions of cosets of ker(\psi) become
multipliers on M^{a}(G)_{s} or not. We state our result.

THEOREM 3. 3. Let G be a LCA group and \psi:\hat{G}arrow R a nontrivial
continuous homomorphism. We assume that ker(\psi) is noncompact and
open. Let \gamma_{0} be an element in \hat{G} with \psi(\gamma_{0})<0 . Then \mathcal{X}\gamma_{0}+ker(\Psi) is a

multiplier on M^{a}(G)_{s} if and only if \psi(\hat{G}) is isomorphic to the integer group
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Z.
PROOF. Suppose \psi(\hat{G}) is isomorphic to Z. Then we have \hat{G}\cong Z\oplus F

and \{\gamma\in\hat{G}:\psi(\gamma)\geq 0\}=\{n, \sigma)\in Z\oplus F : n\geq 0\} , where F=ker(\psi) . Let \nu

be a measure in M^{a}(G)_{s}, and put \eta=\pi_{\hat{F}}(|\nu|) , where \pi_{\hat{F}} is the projection
from T\oplus\hat{F} onto \hat{F}. Then, by Corollary 1. 6, there exists a family
\{\lambda_{h}\}_{h\in\hat{F}} of measures in M (T\oplus\hat{F}) with the following properties:

(1) harrow\lambda_{h}\zeta f) is a \eta-measurable function for each bounded Borel
function f on T\oplus\hat{F} :

(2) ||\lambda_{h}||\leq 1 :
(3) supp (\lambda_{h})\subset T\cross\{h\} :
(4) \nu(f)=\int_{F}\wedge\lambda_{h}(f)d\eta(h) for each bounded Borel measurable function

f on T\oplus\hat{F}.
By (3) we have

(5) d\lambda_{h}(x, y)=d\nu_{h}(x)\cross d\delta_{h}(y) ,
where \nu_{h}\in M (T) and \delta_{h} is the point mass at h. Since \hat{\nu}(n, \sigma)=0 for n<0 ,
it follows from Lemma 2. 1, Lemma 2. 2 and the F. and M. Riesz theorem
that

(6) \eta\in M_{s}(\hat{F}) .
Put n_{0}=\psi(\gamma_{0}) . Then we have

\hat{\nu}(n_{0}, \sigma)=\int_{\hat{F}}(\nu_{h}\cross\sigma_{h})(e^{in_{0}}. (-\cdot, \sigma)d\eta(h)

= \int_{F}\wedge\hat{\nu}_{h}(n_{0})(-h, \sigma)d\eta(h)

= \int_{F}\wedge(-h, \sigma)d\eta(\# h) ,

where \eta^{\#} is a measure in M_{s}(\hat{F}) defined by d_{\eta}^{\#}(h)=\hat{\nu}_{h}(n_{0})d\eta(h) . Then
\chi_{\gamma_{0}+ker(\Psi)}(n, \sigma)\hat{\nu}(n, \sigma)=((e^{in_{0}}\cdot m_{T})\cross\eta^{\#})^{\Lambda}(n, \sigma) , so that
becomes a multiplier on M^{a}(G)_{s} .

Conversely suppose \psi(\hat{G}) is not isomorphic to Z. We may assume that
there exists \chi_{0}\in\hat{G} such that \psi(\chi_{0})=1 without loss of generality. Let \Lambda be
the discrete subgroup of \hat{G} generated by Xo , and let K be the annihilator of
\Lambda . Let F_{1} be the open subgroup of \hat{G} generated by ker(\psi) and \Lambda , and let K_{1}

be the annihilator of F_{1} . Then K_{1} is an infinite compact subgroup of K, so
that m_{K_{1}} is a continuous measure. Hence it follows from Theorem 0.7 that
there exists a positive measure \xi\in M_{s}(K) such that 0\neq\xi*m_{K_{1}}\in L^{1}(K) . Let
g and k be functions in H^{1}(R) satisfying the following:

(7) \hat{g}(\psi(\gamma_{0}))\neq 0 and supp (\hat{g})\subset(\psi(\gamma_{0})-\epsilon, \psi(\gamma_{0})+\epsilon) :
\hat{k}(\psi(\gamma_{0}))=1 and supp (\hat{k})\subset(\psi(\gamma_{0})-\epsilon, \psi(\gamma_{0})+\epsilon) ,

where 0< \epsilon<\min(\psi(\gamma_{0}), \frac{1}{6}) . Moreover we define measures \mu , \nu\in M(R\oplus
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K) by
(8) d\mu(x, y)=g(x)dx\cross(y, \gamma_{0}|_{K})d\xi(y) ;

dv(x, y)=k(x)dx\cross(y, \gamma_{0}|_{K})dm_{K_{1}}(y) .
Then we have \mu\in M_{s}(R\oplus K) and \mu*\nu\in L^{1}(R\oplus K) . Let \alpha : R\oplus K -arrow G be
the continuous homomorphism defined in (2. 1). Then (2. 2) yields \alpha(\mu)*\alpha

(\nu)=\alpha(\mu*\nu)\in L^{1}(G) . Since \alpha(\mu)^{\Lambda}(\gamma_{0})\alpha(\nu)^{\Lambda}(\gamma_{0})=\hat{\mu}(\psi(\gamma_{0}), \gamma_{0}|_{K})\neq 0 , we
have \alpha(\mu)*\alpha(\nu)\neq 0 . On the other hand, by (2. 2) and the construction of
\mu , we get \alpha(\mu)\in M^{a}(G)_{s} . Moreover, noting \psi^{-1}((\psi(\gamma_{0})-\epsilon, \psi(\gamma_{0})+\epsilon))

\cap(ker(\psi)+\Lambda+\gamma_{0})=\gamma_{0}+ker(\psi) , we have \alpha(\nu)^{\Lambda}=\mathcal{X}\gamma_{0}+ker(\Psi) . Thus x\gamma 0+ker(\Psi)

is not a multiplier on M^{a}(G)_{s} and the proof is complete.
COROLLARY 3. 4. Let G be a LCA group and \psi:\hat{G}arrow R a nontrivial

continuous homomorphism with M^{a}(G)_{s}\neq\{0\} . We assume that ker(\psi) is
open and \psi(\hat{G}) is dense in R. Let \gamma_{0} be an element in \hat{G} with \psi(\gamma_{0})>0 .
Then, for each nonzero function \Phi on \hat{G} with supp(\Phi)\subset\gamma_{0}+ker(\psi) , \Phi does
not become a multiplier on M^{a}(G)_{s} .

PROOF. We consider the corollary by dividing two cases that ker(\psi) is
compact or not.

Case 1. ker (\psi) is compact.
In this case, the corollary follows from the fact that measures, whose
Fourier-Stieltjes transforms have compact supports, belong to L^{1}(G) .

Case 2. ker(\psi) is not compact.
Suppose \Phi is a multiplier on M^{a}(G)_{s} . Then it is easy to see that

(1) \Phi\in M^{a}(G)_{s^{\Lambda}}

By Theorem 3. 3, there exists \mu\in M^{a}(G)_{s} such that 0\neq\overline{\mu}\chi_{\gamma 0+ker(\Psi)}\in\{L^{1}(G)

\cap M^{a}(G)\}^{\Lambda} and \Phi\hat{\mu}\neq 0 . Then by (1) we have
\Phi\hat{\mu}=\Phi\overline{\mu}\chi_{\gamma_{0}+ker(\Psi)}

\in\{L^{1}(G)\cap M^{a}(G)\}^{\Lambda}

Hence we have a contradiction, and the proof is complete.

\S 4 Proof of Main Theorem.

Our purpose in this section is to prove Main Theorem. We denote by B
(\hat{G}) the set M(G)^{\Lambda}\wedge

DEFINITION 4. 1 Let G be a LCA group and \psi:\hat{G}arrow R a nontrivial
continuous homomorphism. Let \Phi and \Phi’ be functions on \hat{G}. We write \Phi\approx

\Phi’ if \Phi\hat{\mu}=\Phi\acute{\hat{\mu}} for all \mu\in M^{a}(G)_{s} .
The following lemma is due to [20].
LEMMA 4. 2 (cf. [20], Main Theorem).

Let G be a LCA group and \psi a nontrivial continuous homomorphism from \hat{G}

into R. Let \Omega be a bounded open interval in R. Suppose \hat{\mu}\in B(\hat{G}) is



Idempotent multipliers on the space of analytic singular measures 65

integer-valued on \psi^{-1}(\Omega) . Then there exists an integer-valued \hat{\nu}\in B(\hat{G})

such that \hat{\nu}(\gamma)=\hat{\mu}(\gamma) on \psi^{-1}(\Omega) .
LEMMA 4. 3. Let G be a LCA group, and let \phi : Rarrow G be an one-to

-One, continuous homomorphism. Let F be a compact subgroup of G

contained in \phi(R) . Then F=\{0\} .
PROOF. Put \Gamma=\phi^{-1}(F) . Then \Gamma is a closed subgroup of R, so that \Gamma\cong

\{0\} , Z or R. By ([9], (6. 29) Theorem, p. 42), \phi|_{\Gamma} : \Gammaarrow F is an open
continuous homomorphism, so that \phi|\Gamma is a homeomorphism. Since F is
compact, we have F=\{0\} and the proof is complete.

LEMMA 4. 4. Let G be a LCA group and \psi : \hat{G}arrow R a nontrivial
continuous homomorphism. We assume that \psi(\hat{G}) is dense in R. Let \phi : R
arrow G be the dml homomorphism of \psi and H a compact subgroup of G.
Suppose

m_{H}=\Sigma_{k=1}^{\infty}\phi(\nu_{k})*\delta_{\chi_{k};}

where \nu_{k}\in M(R) with \Sigma_{k=1}^{\infty}||\nu_{k}||<\infty and \delta_{x_{k}} is the point rms at x_{k}\in G .
Then H is a fifinite group.

PROOF. We note that \phi is one-t0-0ne since \psi(\hat{G}) is dense in R.

Suppose H is an infinite group. Since m_{H} is concentrated on \bigcup_{k=1}^{\infty}(\phi(R)+x_{k}) ,

we have m_{H}(\phi(R)+x_{i})>0 for some i. Let y_{i} be an element in H\cap(\phi(R)+

x_{i}) . Then
0<m_{H}(\phi(R)+x_{i})

=m_{H}((\phi(R)+x_{i})\cap H-y_{i})

=m_{H}(\phi(R)\cap H) ,

which shows that \phi(R)\cap H is an open subgroup of H. In particular, \phi(R)

\cap H is a compact subgroup of G, hence it follows from Lemma 4. 3 that \phi

(R)\cap H=\{0\} . Thus we have
(1) (\phi(R)+x_{k})\cap H is a single point if (\phi(R)+x_{k})\cap H\neq\{0\} .

Hence by (1) we have m_{H}( \bigcup_{k=1}^{\infty}(\phi(R)+x_{k}))=0 , which yields a contradiction.

This completes the proof.
Lemma 4. 5. Let G be a LCA group and \psi : \hat{G}arrow R a nontrivial

continuous homomorphirm such that \psi(\hat{G}) is deme in R. We assume that
there exists \chi_{0}\in\hat{G} with \psi(\chi_{0})=1 , and let K be the annihilator of the discrete
subgroup of \hat{G} generated by \chi_{0} . Then for infifinite compact subgroups H of G,

\pi_{K}( T_{\psi}^{\epsilon}(m_{H})) belong to M_{c}(K)\cap M^{+}(K) , where \pi_{K} : R\oplus K -arrow K is the
projection and T_{\psi}^{\epsilon} : M(G)arrow M(R\oplus K) is the operator defifined in (2. 9).

PROOF. We first note that T_{\psi}^{\epsilon}(m_{H}) is a positive measure (cf. Remark
2. 7). Put \eta=\pi_{K}( T_{\psi}^{\epsilon}(m_{H})) and \eta=\eta_{d}+\eta_{c} , where \eta_{d}\in M_{d}(K) and \eta_{c}\in M_{c}
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(K). Suppose \eta_{d}\neq 0 . Then
\eta_{d}=\Sigma_{n=1}^{\infty}a_{n}\delta_{\mathcal{Y}n} ,

where a_{n}\geq 0,0<\Sigma_{n=1}^{\infty}a_{n}<\infty and y_{n}\in K. By Proposition 1. 4, there exists a
family \{\lambda_{h}\}_{h\in K}=\{\nu_{h}X\delta_{h}\}_{h\in K} of measures in M^{+}(R\oplus K) with the following
properties:

(1) h– \lambda_{h}(f) is a \eta -measurable function for each bounded Borel
function f on R\oplus K ;

(2) ||\lambda_{h}||\leq 1 ;

(3) T_{\psi}^{\epsilon}(m_{H})(f)= \int_{K}\lambda_{h}(f)d\eta(h) for each bounded Borel function f on
R\oplus K.

Since ||\lambda_{h}||=1\eta- a . a . h\in K, we note
(4) \nu_{y_{n}}\cross\delta_{y_{n}}\neq 0 if a_{n}>0 .

Let \alpha : R\oplus K -arrow G be the homomorphism defined in (2. 1). Then, since \alpha

(T_{\psi}^{\epsilon}(m_{H}))=m_{H}, we have

(5) m_{H}= \Sigma_{n=1}^{\infty}a_{n}\phi(\nu_{\mathcal{Y}n})*\delta_{\mathcal{Y}n}+\alpha(\int_{K}\nu_{h}\cross\delta_{h}d\eta_{c}(h)) ,

where \int_{K}\nu_{h}X\delta_{h}d\eta_{c}(h) is the measure defined by ( \int_{K}\nu_{h}X\delta_{h}d\eta_{c}(h))(f)=\int_{K}

(\nu_{h}\cross\delta_{h})(f)d\eta_{c}(h) for bounded Borel functions f on R\oplus K. Since \Sigma_{n=1}^{\infty}a_{n}\phi

(\nu_{\mathcal{Y}n})*\delta_{\mathcal{Y}n}\neq 0 , it follows from (5) that there exists a natural number n such
that a_{n}>0 and (\phi(R)+y_{n})\cap H\neq 0 . Then, since m_{H} is H-invariant, we
have

m_{H}(\phi(R)\cap H)=m_{H}((\phi(R)+y_{n})\cap H)

=m_{H}(\phi(R)+y_{n})

\geq a_{n}\phi(\nu_{\mathcal{Y}n})*\delta_{\mathcal{Y}n}(\phi(R)+y_{n})

=a_{n}\nu_{\mathcal{Y}n}(R)

>0 . (by (4))
Hence \phi(R)\cap H is an open subgroup of H. Since \alpha(R\oplus K)=G and H is
compact, there exist x_{1} , \cdots x_{t}\in K such that H \subset\bigcup_{m=1}^{t}(\phi(R)+x_{m}) . Then,
noting ker (\alpha)=\{(2\pi n, -\phi(2\pi n)) : n\in Z\} , we have

\alpha(\int_{K}\nu_{h}\cross\delta_{h}d\eta_{c}(h))(H)=\int_{K}(\nu_{h}\cross\delta_{h})(\alpha^{-1}(H))d\eta_{c}(h)

\leq\int_{K}(\nu_{h}\cross\delta_{h})(\alpha^{-1}(\bigcup_{m=1}^{t}(\phi(R)+x_{m})))d\eta_{c}(h)

\leq\Sigma_{n\in z}\int_{K}(\nu_{h}\cross\delta_{h})(\bigcup_{m=1}^{l}R\cross\{x_{m}\}+(2\pi n, -\phi(2\pi n)))d\eta_{c}(h)

=0. (\eta_{c}\in M_{c}(K))

Hence we have m_{H}= \sum_{n=1}^{\infty}a_{n}\phi(\nu_{\mathcal{Y}n})*\delta_{\mathcal{Y}n} . Then it follows from Lemma 4. 4
that H is finite, which contradicts the hypothesis. Hence we have \eta_{d}=0 and
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the proof is complete.
The following lemma is due to [19].
Lemma 4. 6 (cf. [19], Proposition 2. 7, p. 149).

Let G be a LCA group and \psi : \hat{G}arrow R a nontrivial continuous homomO-
rphism. We assume that there exists x_{0}\in\hat{G} with \psi(\chi_{0})=1 , and let \Lambda be the
discrete subgroup of \hat{G} generated by Xo . Put K=\Lambda^{\perp} . and we defifine a

homomorphism \tau:\hat{G}arrow R\oplus\hat{K} by \tau(\gamma)=(\psi(\gamma),\gamma|K) . Then \tau(\hat{G}) is a

closed subgroup of R\oplus\hat{K} and \tau : \hat{G}arrow\tau(\hat{G}) is a topological isomorphism.
The following lemma is due to Svensson.
Lemma 4. 7 (cf. [15], Lemma 3. 1. 1, p. 124).

Let a_{1} , \cdots,-a_{m}\in C (complex numbers), and let \Delta_{1} , \cdots . \Delta_{m} be cosets of
subgroups of R^{n}\oplus\Gamma . where \Gamma is a LCA group. Let \Omega be a nonempty open
subset of R^{n} . Suppose

(1) CLP(\Delta_{i})=R^{n}(1\leq i\leq m) ;
(2) \Sigma_{i=1}^{m}a_{i}\chi_{\Delta i}(\gamma)=0 for all \gamma\in\Omega\cross\Gamma-

where CLP(\Delta_{i}) means the closure of the projection of \Delta_{i} into R^{n} . Then
\Sigma_{i=1}^{m}a_{i}\chi_{\Delta_{i}}(\gamma)=0 for all \gamma\in R^{n}\cross\Gamma .

LEMMA 4. 8. Let G be a LCA group and \psi : \hat{G}arrow R a nontrivial
continuous homomorphism such that \psi(\hat{G}) is dense in R. Let a_{i}\in C, and
let H_{i} be compact subgroups of G such that \psi(H_{i}^{\perp}) are dense in R(1\leq i\leq n) .
Let \Omega be a nonempty open set in R. For \gamma_{i}\in\hat{G}(1\leq i\leq n) , suppose

(1) \{\sum_{i=1}^{n}a_{i}\gamma_{i}m_{H_{t}}\}^{\Lambda}(\gamma)=0 on \psi^{-1}(\Omega) .
Then \Sigma_{i=1}^{n}a_{i}\gamma_{i}m_{H_{i}}=0 .

PROOF. For \beta>0 , let \psi_{\beta} : \hat{G}arrow R be a continuous homomorphism

defined by \psi_{\beta}(\gamma)=\beta\psi(\gamma) . By considering \psi_{\beta} instead of \psi if necessary, we
may assume that there exists Xo\in\hat{G} with \psi(\chi_{0})=1 . Let K and \tau be as in
Lemma 4. 6. Then it follows from Lemma 4. 6 that \tau(H_{i}^{-}) are closed
subgroups of R\oplus\hat{K}. Put \Delta_{i}=\tau(H_{i}^{\perp})+\tau(\gamma_{i}) . Then CLP (\Delta_{i})=R since \psi

(H_{i}^{\perp}) are dense in R. By (1) we have \Sigma_{i=1}^{n}a_{i}\chi_{\Delta i}(x, \sigma)=0 on \Omega\cross\hat{K}.
Hence by Lemma 4. 7 we have

\Sigma_{i=1}^{n}a_{i}\chi_{\Delta i}(x, \sigma)=0 for all (x, \sigma)\in R\oplus\hat{K}.
In particular,

\Sigma_{i=1}^{n}a_{i}\chi_{\Delta_{i}}(\psi(\gamma),\gamma|_{K})=0 for all \gamma\in\hat{G},

which shows tnat
\{\Sigma_{i=1}^{n}a_{i}\gamma_{i}m_{H_{i}}\}^{\Lambda}(\gamma)=\sum_{i=1}^{n}a_{i}\chi_{H_{i}+\gamma i}^{\perp}(\gamma)=0

for all \gamma\in\hat{G}. This completes the proof.
Lemma 4. 9. Let G and \psi be as in the previous lemma. Moreover we

assume that M^{a}(G)_{s}\neq\{0\} . Let \Phi be a multiplier on M^{a}(G)_{s} that is
integer-valued on \psi^{-1}((0, \infty)) , and let [a, b) be a bounded n\dot{g}ht-half open
interval in R contained in (0, \infty) . Suppose \Phi|_{\psi^{-1}((a,b))}\neq 0 . Then we
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have
\Phi(\gamma)=\{\Sigma_{i=1}^{n}m_{i}\gamma_{i}m_{H}\}^{\Lambda}(\gamma)+\{\Sigma_{j=1}^{p}\Sigma_{k=1}^{q_{j}}M_{jk}\sigma_{jk}m_{L_{j}}\}^{\Lambda}(\gamma)

for all \gamma\in\psi^{-1}((a, b)) , where \gamma_{i}, \sigma_{jk}\in\hat{G}, m_{i}, M_{jk}\in Z ; H is a fifinite
subgroup of G and L_{j} are compact subgroups of G such that \psi(L_{j}^{\perp}) are not
dense in R.

PROOF. We may assume that there exists \chi_{0}\in\hat{G} with \psi(\chi_{0})=1 as in
Lemma 4. 8. Let K, \alpha and T_{\psi}^{\epsilon} be as in section 2. Let f be a function in H^{1}

(R) such that \hat{f}(x)=1 on (a, b) . We note \phi(f) belongs to M^{a}(G)_{sy}

where \phi : Rarrow G is the dual homomorphism of \psi . Hence, by Lemma 4. 2,
there exists \nu\in M(G) such that

(1) \hat{\nu} is integer-valued on \hat{G}

and
(2) \hat{\nu}(\gamma)=\Phi(\gamma)\hat{f}(\psi(\gamma))=\Phi(\gamma) for \gamma\in\psi^{-1}((a, b)) .

Then by Theorem 0. 2 we have
\nu=\sum_{i=1}^{m}\sum_{j=1}^{t_{i}}m_{ij}\gamma_{ij}m_{H_{i}} ,

where m_{ij}\in Z, \gamma_{ij}\in\hat{G} and H_{i} are compact subgroups of G such that\{\sum_{j^{i}=1}^{t}m

ij\gamma_{ij}m_{H_{i}}\}_{i=1}^{m} are mutually singular. We define subsets I_{1} and I_{2} of \{ 1, \cdots m\}

as follws:
I_{1}= { i:\psi(H_{i}^{\perp}) is dense in R } :
I_{2}= { i:\psi(H_{i}^{\perp}) is not dense in R }.

Then we have
(3) \nu=\Sigma_{i\in I_{J}}\Sigma_{j=1}^{li}m_{ij}\gamma_{ij}m_{H_{i}}+\sum_{i\in I_{2}}\sum_{j=1}^{t_{i}}m_{ij}\gamma_{ij}m_{H_{i}} .

We define subsets I_{1I} and I_{1F} of I_{1} as follows:
I_{1I}= { i\in I_{1} : H_{i} is an infinite compact subgroup of G }:
I_{1F}= { i\in I_{1} : H_{i} is a finite subgroup of G }.

Claim 1. \alpha(\Sigma_{i\in I},i\Sigma_{j^{i}=1m_{ij}\tau_{ij}T_{\psi}^{\epsilon}}^{t}(m_{H_{i}}))=\Sigma_{i\in I_{J}i}\Sigma_{j=1}^{t_{i}}m_{ij}\gamma_{ij}m_{H_{i}} ,
where \tau_{ij}\in R\oplus\hat{K} such that \tau_{ij}(x, u)=\exp(i\psi(\gamma_{ij})x)(\gamma_{ij}|_{K}, u) .

In fact, it is sufficient to show that \alpha(\tau_{ij}T_{\psi}^{\epsilon}(m_{H}.))=\gamma_{ij}m_{H_{l}} since \alpha is linear.
\alpha(\tau_{ij}T_{\psi}^{\epsilon}(m_{H_{i}}))^{\Lambda}(\gamma)=(\tau_{ij}T_{\psi}^{\epsilon}(m_{H_{i}}))^{\Lambda}(\psi(\gamma), \gamma|_{K})

=T_{\psi}^{\epsilon}(m_{H_{i}})^{\Lambda}(\psi(\gamma)-\psi(\gamma_{ij}), \gamma|_{K}-\gamma_{ij}|_{K})

=\Phi_{mH_{i}}^{\epsilon}(\psi(\gamma)-\gamma_{ij}, (\gamma-\gamma_{ij})|_{K})

=m_{H_{i}}^{\Lambda}(\gamma-\gamma_{ij})

=(\gamma_{ij}m_{H_{i}})^{\Lambda}(\gamma) .
Thus the claim is obtained.
Claim 2. \Sigma_{i\in I_{1}},\Sigma_{j=1}^{ti}m_{ij}\gamma_{ij}m_{H_{i}}=0 .
In fact, suppose \Sigma_{i\in I_{1}},\Sigma_{j=1}^{t\iota}m_{ij}\gamma_{ij}m_{H_{i}}\neq 0 . Then, by Lemma 4. 8, \{\psi(\gamma)\in(a,
b) : (\Sigma_{i\in I_{1}},\Sigma_{j=1}^{t_{i}}m_{ij}\gamma_{ij}m_{H_{i}})^{\Lambda}(\gamma)\neq 0\} is dense in (a, b) , hence there exists an
open interval (a_{1}, b_{1}) included in (a, b) such that

(4) \{\sum_{i\in I_{2}}\sum_{j=1}^{t_{i}}m_{ij}\gamma_{ij}m_{H_{i}}\}^{\Lambda}(\gamma)=0 on \psi^{-1}((a_{1} _{b_{1}}))
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and
(5) \{\Sigma_{i\in I_{1J}}\Sigma_{j=1}^{\iota_{i}}m_{ij}\gamma_{ij}m_{H_{i}}\}^{\Lambda}|_{\psi^{-1}((a_{1}}

,
b_{1}))\neq 0 .

We define measures \eta , \eta*\in M^{+}(K) as follows:
(6) \eta=\sum_{i\in I_{1J}}\pi_{K}(T_{\psi}^{\epsilon}(m_{H_{i}})) ;

\eta_{*}=\pi_{K}(|\Sigma_{i\in I_{1J}}\Sigma_{j=1}^{\iota_{i}}m_{ij}\tau_{ij}T_{\psi}^{\epsilon}(m_{H_{i}})|) ,
where \pi_{K} : R\oplus Karrow K is the projection. Then 0\neq\eta_{*}<<\eta . Moreover, by
Lemma 4. 5, we have \eta\in M_{c}(K) . We put

\xi=\Sigma_{i\in I_{1J}}\Sigma_{j=1}^{\iota_{i}}m_{ij}\tau_{ij}T_{\psi}^{\epsilon}(m_{H_{i}})

for convenience’ sake. Then, by Corollary 1. 6, there exists a family
\{\lambda_{h}\}_{h\in K} of reasures in M(R\oplus K) with the following properties:

(7) harrow\lambda_{h}(f) is a \eta_{*} -measurable function for each bounded Borel
function f on R\oplus K ;

(8) ||\lambda_{h}||\leq 1 ;
(9) supp (\lambda_{h})\subset R\cross\{h\} ;

(10) \xi(f)=\int_{K}\lambda_{h}(f)d\eta*(h) for each bounded Borel function f on R\oplus K.

By (8) and (9), there exist measures \nu_{h}\in M(R) with ||\nu_{h}||\leq 1 such that
(11) d\lambda_{h}(x, y)=d\nu_{h}(x)\cross d\delta_{h}(y) .

Since 0\neq\eta_{*}\in M^{+}(K)\cap M_{c}(K) , it follows from Theorem 0. 6 that there
exists \eta_{0}\in M^{+}(K)\cap M_{s}(K) such that

(12) \eta_{0}*\eta_{*}\neq 0 and \eta_{0}*\eta_{*}\in L^{1}(K) .
By (5) and Claim 1, there exists \gamma_{*}\in\psi^{-1}((a_{1}, b_{1})) such that

(13) \alpha(\xi)^{\Lambda}(\gamma_{*}^{)}=\{\Sigma_{i\in I_{1J}}\Sigma_{j=1}^{\iota_{i}}m_{ij}\gamma_{ij}m_{H_{i}}\}^{\Lambda}(\gamma_{*})

\neq 0 .
We choose \sigma_{0}\in\hat{K} so that

(14) (\sigma_{0}\eta_{0})^{\Lambda}(\gamma_{*})\neq 0 .
Let f_{*} be a function in H^{1}(R) such that

(15) supp (\hat{f}_{*})\subset(a_{1}, b_{1}) and \hat{f}_{*}(\psi(\gamma_{*}))\neq 0 ,

and we define a measure \mu’\in M(R\oplus K) by
(16) d_{\mu}’(x, y)=f_{*}(x)dx\cross(y, \sigma_{0})d\eta_{0}(y) .

Then we have
(17) \alpha(\mu’)\in M^{a}(G)_{s} and supp (\alpha(\mu’)^{\Lambda})\subset\psi^{-1}((a_{1}, b_{1})) .

Moreover, by (13)-(15), we have
(18) \alpha(\mu’)*\alpha(\xi)\neq 0 .

We note that \mu’ can be represented as follows:

\mu’=\int_{K}(\sigma_{0}(h)f_{*})\cross\delta_{h}d\eta_{0}(h) .

Then it follown from (12) and Lemma 2. 3 (III) that \mu’*\xi\in L^{1}(R\oplus K) ,

hence (2. 2) and (18) yield
(19) 0\neq\alpha(\mu’)*\alpha(\xi)\in L^{1}(G) .
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On the other hand, by (2)-(4) , (17) and Claim 1, we have
\Phi(\gamma)\alpha(\mu’)^{\Lambda}(\gamma)=\{\Sigma_{i\in I_{1}}\Sigma_{j=1}^{ti}m_{ij}\gamma_{ij}m_{H_{i}}\}^{\Lambda}(\gamma)\alpha(\mu’)^{\Lambda}(\gamma)

=\{\Sigma_{i\in I_{1F}}\Sigma_{j=1}^{ti}m_{ij}\gamma_{ij}m_{H_{i}}\}^{\Lambda}(\gamma)\alpha(\mu’)^{\Lambda}(\gamma)+

\{\Sigma_{i\in I_{11}}\Sigma_{j=1}^{li}m_{ij}\gamma_{ij}m_{H_{i}}\}^{\Lambda}(\gamma)\alpha(\mu’)^{\Lambda}(\gamma)

=F(\gamma)+\alpha(\xi)^{\Lambda}(\gamma)\alpha(\mu’)^{\Lambda}(\gamma) (\gamma\in\hat{G}) ,

where F(\gamma)=\{\Sigma_{i\in I_{1F}}\Sigma_{j1}^{\iota_{i}}=m_{ij}\gamma_{ij}m_{H_{i}}\}^{\Lambda}(\gamma)\alpha(\mu’)^{\Lambda}(\gamma) . If i\in I_{1F}, m_{H_{l}} are
discrete measures, so that F\in M^{a}(G)_{s^{\Lambda}} . Hence by (19) we have

\Phi\cdot\alpha(\mu’)^{\Lambda}=F+\alpha(\xi)^{\Lambda}\alpha(\mu’)^{\Lambda}

\not\in M^{a}(G)_{s^{\Lambda}-}

which contradicts the hypothesis that \Phi is a multiplier on M^{a}(G)_{s} . Hence
we have \Sigma_{i\in I_{1J}}\Sigma_{j=1}^{ti}m_{ij}\gamma_{ij}m_{H_{i}}=0 and the claim follows. We note that there
exist \gamma_{i}\in\hat{G}, m_{i}\in Z and a finite subgroup H of G such that

\sum_{i=1}^{n}m_{i}\gamma_{i}m_{H}=\sum_{i\in I_{1F}}\Sigma_{j-1}^{t_{i}}-m_{ij}\gamma_{ij}m_{H_{i}} .
Hence the lemma is obtained from (2), (3) and Claim 2. This completes
the proof.

LEMMA 4. 10. Under the assumption in the previous lemrm, we have
\Phi(\gamma)=\{\Sigma_{i=1}^{n}m_{i}\gamma_{i}m_{H}\}^{\Lambda}(\gamma) on \psi^{-1}((a, b)) ,

where m_{i}\in Z, \gamma_{i}\in\hat{G} and H is a fifinite subgroup of G.
PROOF. By Lemma 4. 9, there exist m_{i}, M_{jk}\in Z and \gamma_{i} , \sigma_{jk}\in\hat{G} such

that
\Phi(\gamma)=\{\Sigma_{i=1}^{n}m_{i}\gamma_{i}m_{H}\}^{\Lambda}(\gamma)+\{\Sigma_{j=1}^{p}\Sigma_{k=1}^{qj}M_{jk}\sigma_{jk}m_{L_{j}}\}^{\Lambda}(\gamma)

for \gamma\in\psi^{-1}((a, b)) , where H is a finite subgroup of G and L_{j} are compact
subgroups of G such that \psi(L_{j}^{\perp}) are not dense in R. Since m_{H} is a discrete
measure, \Phi’=\Phi-\{\sum_{i=1}^{n}m_{i}\gamma_{i}m_{H}\}^{\wedge}(\gamma) becomes a multiplier on M^{a}(G)_{s}

Suppose there exists \gamma_{*}\in\psi^{-1}((a, b)) such that\{\Sigma_{j=1}^{p}\Sigma_{k=1}^{qj}M_{jk}\sigma_{jk}m_{L_{j}}\}^{\Lambda}(\gamma_{*})\neq

0 . Then there exists a positive real number \delta with (\psi(\gamma_{*})-\delta, \psi(\gamma_{*})+\delta)

\subset(a, b) such that
\{\psi(\gamma)\in(\psi(\gamma_{*})-\delta, \psi(\gamma_{*})+\delta) : \{\Sigma_{j=1}^{p}\Sigma_{k^{j}=1}^{q}M_{jk}\sigma_{jk}m_{L_{j}}\}^{\Lambda}(\gamma)\neq 0\}

=\{\psi(\gamma_{*})\} .
We may assume that ker(\psi) is open. Let f be a function in H^{1}(R) such
that \hat{f}(\psi(\gamma_{*}))=1 and supp \hat{\omega}\subset(\psi(\gamma_{*}))-\delta, \psi(\gamma_{*})+\delta) . Let \phi : Rarrow G

be the dual homomorphism of \psi . Then \phi(f)^{\Lambda}=\hat{f}\circ\psi is a multiplier on M^{a}

(G)_{s} (cf. [17], Theorem 2. 3, p. 188), hence \Phi’\phi(f)^{\Lambda} becomes a multiplier
on M^{a}(G)_{s} and (\Phi’\phi(f)^{\Lambda})|_{\gamma*+ker(\psi)}\neq 0 . This contradicts Corollary 3. 4
since supp(\Phi’\phi(f)^{\Lambda})\subset\gamma_{*}+ker(\psi) , and the proof is complete.

Let \mathscr{A}_{0} and \mathscr{A}_{1} be subsets of M(G) defined in Definition 0. 1.
THEOROM 4. 11. Let G be a LCA group, and let \psi : \hat{G}arrow R be a

nontrivial continuous homomorphism such that M^{a}(G)_{s}\neq\{0\} and \psi(\hat{G}) is
dense in R. Let \Phi be a multiplier on M^{a}(G)_{s} that is integer-valued on \{\gamma\in
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\hat{G}:\psi(\gamma)\geq 0\}^{0} . Then the following are satisfified :
(I) If ker(\psi) is not open, there exists a measure \nu\in.\mathscr{A}_{0} such that

\Phi\approx\hat{\nu} ;
(II) If ker(\psi) is open, there exists a measure \nu\in \mathscr{A}_{1} such that \Phi\approx\hat{\nu}.
Conversely, when ker(\psi) is not open, let \nu be a masure in\mathscr{A}_{0} . Then

\hat{\nu} becomes a multiplier on M^{a}(G)_{s} . When ker(\psi) is open, let \nu be a
measure in\mathscr{A}_{1} . Then \hat{\nu} becomes a multiplier on M^{a}(G)_{s(}

PROOF. We first show that there exist m_{i}\in Z, \gamma_{i}\in\hat{G} and a finite
subgroup H of G such that

(1) \Phi(\gamma)=\{\sum_{i=1}^{n}m_{i}\gamma_{i}m_{H}\}^{\Lambda}(\gamma) on \psi^{-1}((0, \infty)) .
In fact, if \Phi vanishes on \psi^{-1}((0, \infty)) , (1) is trivial. Hence we may assume
that there exists \gamma_{0}\in\hat{G} with \psi(\gamma_{0})>0 such that \Phi(\gamma_{0})\neq 0 . We choose

positive real numbers a and b so that a<\psi(\gamma_{0})<b, and put \Omega_{n}=(\frac{a}{n}, nb)

(n=1,2,3, \cdots) . Then, for each n\in N, it follows from Lemma 4. 10 that
there exists a measure \xi_{n}=\sum_{i=1}^{\iota_{n}}m_{i,n}\gamma_{i,n}m_{H_{n}} such that

(2) \hat{\xi}_{n}(\gamma)=\Phi(\gamma) on \psi^{-1}(\Omega_{n}) ,
where m_{i.n}\in Z, \gamma_{i,n}\in Z and H_{n} is a finite subgroup of G. Since H_{n} is a finite
subgroup of G, \psi(H_{n}^{\perp}) is dense in R because \psi(\hat{G}) is dense in R. Hence
by (2) and Lemma 4. 8 we have

(3) \xi_{1}=\xi_{n}(n=1,2,3, \cdots) ,
Hence

(4) \Phi(\gamma)=\xi_{1}(\gamma) on \psi^{-1}((0, \infty)) .
Thus (1) follows from (4). If ker(\psi) is not open, \{\gamma\in\hat{G}:\psi(\gamma)\geq 0\}^{0}

coincides with \psi^{-1}((0, \infty)) . Hence ( I) follows from (1). Next we prove
(II). We consider (II) by dividing two cases that ker(\psi) is compact or
not.

Case 1. ker(\psi) is compact.
We note by Lemma 3. 2 that

(5) \hat{\mu}(\gamma)=0 on ker (\psi)

for all \mu\in M^{a}(G)_{s} . Hence, in this case, (II) follows from (1) and (5).

Case 2. ker(\psi) is not compact.
Put H_{\psi}=ker(\psi)^{\perp} and let \pi:Garrow G/H_{\psi} be the natural homomorphism.
Then, in this case, G/H_{\psi} is not discrete and \Phi|_{ker1\Psi)} becomes a multiplier
on M_{s}(G/H_{\psi}) . Hence, by Theorems 0. 2 and 0. 7, there exist M_{j}\in Z and \sigma_{j}

\in ker(\psi) such that
(6) \Phi|_{ker(\Psi)}(\gamma)=\{\Sigma_{j=1}^{m}M_{j}\sigma_{j}m_{H_{0}}\}^{\Lambda}(\gamma) on ker(\psi) ,

where H_{0} is a compact subgroup of G with H_{0}\supset H_{\psi} such that \pi(H_{0}) is a finite
subgroup of G/H_{\psi} Hence, in this case, (II) follows from (1) and (6).

The converse is obtained from Lemma 3. 2 and the fact that Fourier-Stieltjes
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transforms of discrete measures become multipliers on M^{a}(G)_{s} . This
completes the proof.

Now we prove Main Theorem. By Remark 0. 5, \Phi(\gamma)=0 or 1 on \{\gamma\in

\hat{G}:\psi(\gamma)>0\} . If ker(\psi) is not open, then \{\gamma\in\hat{G}:\psi(\gamma)\geq 0\}^{0} coincides
with \{\gamma\in\hat{G}:\psi(\gamma)>0\} . Hence ( I) follows from Theorem 4. 11 ( I ).

Next we consider (II) by dividing two cases that ker(\psi) is compact or not.
Case 1. ker (\psi) is compact.

In this case, \hat{\mu} vanish on ker(\psi) for all \mu\in M^{a}(G)_{s} (cf. Lemma 3. 2). We
define a function \Phi’ on \hat{G} by \Phi’(\gamma)=0 on ker(\psi) and \Phi’(\gamma)=\Phi(\gamma) on \hat{G}\backslash ker

(\psi) . Then \Phi\approx\Phi’ and \Phi’(\gamma) is integer-valued on \{\gamma\in\hat{G}:\psi(\gamma)\geq 0\}^{0} .
Thus, in this case, (II) is obtained from Theorem 4. 11 (II) .

Case 2. ker(\psi) is not compact.
In this case, G/H_{\psi} is not discrete and \Phi|_{ker(\Psi)} becomes an idempotent
multiplier on M_{s}(G/H_{\psi}) . In particular, \Phi(\gamma)=0 or 1 on \{\gamma\in\hat{G}:\psi(\gamma)\geq 0\} ,

and so (II) follows from Theorem 4. 11 (II). Thus (II) is obtained.
The converse has already been proved in Theorem 4. 11, and the proof of
Main Theorem is complete.

Finally the author wishes to express his thanks to the referee for his
valuable advice.
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