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Introduction.

Let G be a LCA group with dual group G, and we denote by m, the Haar
measure of G. Let M (G) and L'(G) be the usual measure algebra and the
group algebra respectively. Let M*(G) be the subset of M ((G) consisting
of positive measures. Let M,(G), M.(G) and M;(G) denote the subspaces
of M (G) consisting of discrete measures, continuous measures and singular
measures respectively. “”” and “ Y ” denote the Fourier-Stieltjes trans-
form and the inverse Fourier transfomr respectively. For a subset B of M
(G), B " means the set {:u<B}, and for M (G), we signify | | by
the total variation norm ||x| of . When there is a nontrivial continuous
homomorphism v from G into R (the reals), we say that a measure ueEM
(G) is of analytic type if 2(y)=0 for all yeG with ¢ (y) <0. We denote
by M%(G) the space of all measures of analytic type, and put M¢(G)s=M?¢
(GONM,(G). The space M2 G)s is called the space of analytic singular
measures (induced by ). In this paper we consider only the case that M@
(G)s+1{0}. )

Let A be a closed subspace of M (G) and ® a functionon G. @ is called
a multiplier (or multiplier function) on A if ®z< A" for all u€A. By the
function ®, there exists a unique bounded linear operator S on A such that
Su)"=®n. We say that S is a multiplier operator (or merely multiplier)
on A induced by the function ®.

As well known, functions ® on G become multipliers on L!(G) if and
only if ® belong to M(G)". For each veM,(G), u*v are singular
measures for all u €M,(G). For a compact abelian group G, Doss proved
that multiplier operators on M,(G) are given by convolution with discrete
measures ([3]). In [7], Graham and MacLean obtained an analogous
result for general LCA groups. By the F. and M. Riesz theorem of Helson
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and Lowdenslager type (cf. [17], Theorem 4.1), we have M%(G) = (M G)
NL'(G))® M*G)s. Every multiplier operator on M%(G) necessarily maps
M*(G)NL'(G) into itslf (cf. [17], Lemma (E)). However it is easy to
see that there is a multiplier operator on M %(G) which does not map M4(G),
into itself.

Let @ be a multiplier on H'(R) (Hardy space on R). Then ®-y is a
multiplier on M“(G), and the multiplier operator induced by the function ®
>y necessarily maps M*(G), into itself (cf. [18], Theorem I). Moreover
the author constructed a multiplier operator on M2(G), which is not given by
convolution with a bounded regular measure on G ([17], Theorem 2.4).
Our purpose in this paper is to characterize idempotent multipliers on M¢
(G) s under the assumption that 10(@) is dense in R with respect to the usual
topology. More exactly, if ¥(&) is dense in R, we shall show that each
idempotent multiplier operator on M4%(G); is necessarily given by convolu-
tion with a measure in M (G) of certain type. (If 1/;(@) is not dense in R,
there exists an idempotent multiplier operator on M%(G), which is not given
by convolution with a measure on G.). Our key methed is to consider a
covering group for G and employ the theory of disintegration.

In section 0, we state notations and the main theorem of this paper. In
section 1 we shall deal with the disintegration of bounded regular measures
on X; X X,, where X, is a metrizable locally compact Hausdorff space and X,
is a general locally compact Hausdorff space. In section 2 we characterize
convolution operators on M*(G); induced by bounded regular measures on
G. We consider special idempotent multipliers on M2(G); in section 3, and
we give the proof of our main theorem in section 4.

§0 Notations and Main Theorem.

Let G be a LCA group. For a closed subgroup H of G, H" means the
annihilator of H. We denote by Trig(G) the set of all trgonometric polyno-
mials on G. For a subset E of G, let M (G) be the space of measures in M
(G) whose Fourier-Stieltjes transforms vanish off E, and let x. be the
characteristic function of E. We denote by E°and E - the interior of £ and
the closure of E respectively. For x&G, J, denotes the point mass at x.

DerFINITION 0.1. Let ¢ :G—R be a nontrivial continuous homo-
morphism, and let ¢ :R— G be the dual homomorphism of ¥ (.e. (¢
(1), y)=exp(ity(y))). Put H,=ker(y)".

(i) A function ® on Gis called a multiplier (or multiplier function) on
MG, if PpeMA(G)s" for all ueM*(G)s. In this case, there exists a
unique bounded linear operator S on M%(G)ssuch that S(u)"=®g. We say
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that S is a multiplier operator (or merely multiplier) on M*(G), induced by
the function ®. We define a norm || ®| by |®| =] S|.

(ii) Let ® be a multiplier on M2(G)s and S the multiplier operator on
M%(G), induced by ®. @ is called an idempotent multiplier if S*>=S. We
say that S is an idempotent multiplier operator (or merely idempotent
multiplier).

(iii) We define subsets.« , and .« , of M (G) as follows: If ker(y) is
not open, we define &, by

vq/oz{ziglmi'y:'m}]}»
where m;=Z (the integers), ylEG and H is a finite subgroup of G. If ker
(¢) is open, we define .+, by
B :{2?=1Mj(7ijo+(5o - mHW) * (2?=1 mi)’iWLH)},
where m;, M,;EZ, yiEC, o;€ker(y) ; H is a finite subgroup of G and H, is
a compact subgroup of G with H,D H, such that z(H,) is a finite subgroup
of G/H,, where n:G— G/H, is the natural homomorphism.

In their proof of the Cohen Idempotent Theorem, Ito and Amemiya
obtained the following theorem.

TueoreM 0.2 ([11]). Let u be a measure in M (G) such that i is
integer-valued. Then u can be represented as follows :

U’= 2?=12§'i=1 NiiYiiMH;,
where n;SZ, yijeé and H, ave compact subgroups of G such that {Zi-1n;
vimu) ave mutually singular.

Using Theorem 0. 2 and results which shall be obtained in sections 1-3,
we characterize idempotent multipliers on M%(G)s. We state our main
theorem which will be proved in section 4.

MAIN THEOREM. Let G be a LCA group and + : G— R a nontrivial
continuous homomorphism such that M*(G)s+1{0} and V(B is dense in R.
Let ® be an idempotent multiplier on M*(G)s and S the idempotent mul-
tiplier operater on M(G)s induced by ®. Then the following are satisfied :

(1) If ker (W) is not open, there exists vE.«, such that

Sw)=u*v (i e, Pa=1)
for all ueM(G)s.
(IID) If ker(Y) is open, theve exists vE .« such that
Sy =u*v (i. e, Pa=7)
for all peM*(G)s.

Conversely, when ker () is not open, let v be a measure inso. Then
b becomes a multiplier on M*(G)s. When ker(y) is open, let v be a
measure insz . Then v becomes a multiplier on M*(G)s.

A lemma due to Svensson ([15], Lemma 3.1.1) also plays an important
role in the proof of Main Theorem. Before we close this section, we state
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remarks together with useful theorems.

REMARK 0.3. (i) In Main Theorem we assumed that M%(G),+{0}.
A necessary and sufficient condition in order that M%(G)s+{0} is stated in
([17], Remark 2.2, p. 186).

(ii) If 1#(@) is not dense in R, Main Theorem is not satisfied. We
give an example: Let G=T® K, and let ¢: Z& K— Z be the projection,
where T is the circle group and K is a nondiscrete LCA group. Let {a,} be
a sequence of positive integers such that a@,,,/a,>3. Weput F={a,: nEN
(the natural numbers)} and define a function ® on Z& K by ®&(#, ¢) = Xr
(n). Then ® is an idempotent multiplier on M*(G), (see [17], Theorem 2.
3). However the idempotent multiplier operator S on M%(G); induced by @
is not given by convolution with a bounded regular measure on G.

REMARK 0.4. Let ¢ be a nontrivial continuous homomorphism from G
into R such that M*(G),+{0}. Let ® be a function on G that is a multiplier
on M%G);. Then ® is necessarily continuous on {yeG : Yv(y)>0}. In
fact, for y€G with ¢ (y) >0, let f be a function in H'(R) such that Ay
(y))#0. Put u=¢(f), where ¢ is the dual homomorphism of ¢. Then
belongs to M%(G)s (see Proposition 2.2 and Remark 2. 3 in [17]). Hence
we can verify that ® is continuous at y. Moreover, if ker(y) is open and
noncompact, @ is also continuous on ker(¢). This is obtained from the fact
that xyerpy EM*(G) .

ReEMARK 0.5. (i) Suppose M4 G)s+{0} and ® is an idempotent
multiplier on M G);. Then, for y&G with ¥(y)>0, ®(y)=0 or 1. In
fact, let f be a function in H'(R) with fwr(y))#:o. Then, as same as in
the previous remark, u=¢ (f) belongs to M2 G),. Hence ®(y)*u(y)=>0
(y)a(y), which yields ®(y) =0 or 1 since a(y) :f(w(y))io. Moreover,
if ker () is open and noncompact, ®(y)=0 or 1 on ker(®) because P| Ker(y)
becomes an idempotent multiplier on M,(G/ker (¢)*). However, if ker(y)
is not open, or open and compact, ® does not need assuming the values 0 or
1 onker(¢) since z=0onker(y) for each u€MG);s (cf. [18], Lemma 1.
2).

(ii) When ker(y) is not open, let v be a measure in %, such that =
0 or 1 no ¥7'((0,c0)). Then ¥ becomes an idempotent multiplier on
M*(G),. When ker(y) is open and compact, let v be a measure in .o, such
that =0 or 1 on ¥~'((0, c0)). Then ¥ becomes an idempotent multiplier on
M(G)s. When ker(y) is open and noncompact, let v be a measure in &,
such that =0 or 1 on ¢!([0,)). Then ¥ becomes an idempotent mul-
tiplier on M4(G),.

The following theorem, which will be frequently used later on, is
obtained from ([7], Theorems 1 and 2).
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THEOREM 0.6. Let G be a nondiscrete LCA group. Let u be a measure
in M.(G). Then there exists a probability measure vEM;(G) such that u*v
eLl'(G).

We get the following theorem from the above theorem.

THEOREM 0.7. Let G be a nondiscrete LCA group and ® a function on
G that is a multiplier on M(G). Then ®EM, ().

When G is compact, Theorem 0. 7 was obtained by Doss ([3], Theorem
2).

§1 Disintegration of measures.

This section is devoted to the disintegration of measures on the product
space X; XX, of a metrizable locally compact Hausdorff space X; and a
locally compact Hausdorff space X,. We employ Edgar’s idea ([5]). For
a locally compact Hausdorff space X, let (,(X) be the Banach space of
continuous functions on X which vanish at infinity and M (X ) the Banach
space of complex-valued bounded regular measures on X with the total
variation norm. Then, by the Riesz representation theorem, the dual space
of G(X) coincides with M(X). Let (M(X),w*) be the space M(X)
with weak*-topology. Then (M (X), w*) becomes a locally convex topolo-
gical vector space, and its dual space is C,(X). We denote by Z(X) the
o-algebra of Borel sets in X.

DeriNiTION 1.1. Let V be a locally convex topological vector space,
and let (S,.#, 1) be a finite measure space.

(a) A function m : 57— V is called a V-valued measure if, for every

sequence {E,} of disjoint members in.¥, we have m(GE,,):Z‘;;’:lm(E,,),
1

where the series converges in the topology of the space V.

(b) The measure m is said to be absolutely continuous with respect to
A if m(E)=0 for each £ # with A(E)=0.

(c) The average range of m is the set{m(E)/A(E).:E€.7,A(E)>0}.
The measure m is said to have relatively compact average range if the
average range of m is relatively compact.

The following lemma is due to Edgar.

LEmMA 1.2 ([5], 2.1 Theorem). Let V be a locally convex topological
vector space, and let (S, %, 1) be a finite measure space. Let m : ¥ — V
be a measure. Assume (1) m is absolutely continuous with respect to A, and
(2) m has relatively compact average range. Then there exists a function ¢:
S— V with range contained in the closure of the average range of m such

that, for E& ., we have qu(s)dl(s):m(E), i. e., for all continuous
E
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linear functionals h on V, the map s — h(¢p(s)) is A-integrable, and fE h(g
($)dA(s)=h(m(E)).

In general, for locally compact Hausdorff spaces X, and X,, % (X,) X%
(X;) is included in Z (X, X X,). However, if X, is ¢-compact, metrizable
locally compact space, the following lemma is satisfied.

LEmmAL. 3. Let X, be a o-compact, metrizable locally compact space and
X, a locally compact Hausdorff space. Then % (X)X (% (X,) =% (X, xX,).

ProposiTiON 1.4. Let X, be a o-compact, metrizable locally compact
space and X, a locally compact Hausdorff space. Let ny : X: X X, — X; be the
projection. Let u be a positive measure in M (X, X X,), and put n=my(u).
Then there exists a family {As},cx, of positive measures in M (X, X X;) with
the following properties :

(1) s— A,(f) is a n-measurable function for each bounded Borel func-

tion f on X, XX, ;

2) Al =1;

Q) supp(AH)CT X1 X{s};

4) ul(f)= fx le(f )dn(s) for each bounded Borel measurable function f

on X, X X,.

Proor. Put V=(M(X,),w*), and we define a set function m : % (X,)
— Vbym(E)(B)=u(BXE) for BeZ(X,) and E€#%(X,). Then misa
V -valued measure, and

(6) m is absolutely continuous with respect to 7.
For FEe%(X,) with 5(E)>0, we have | m(E)/n(E)| =1, hence the
average range of m is included in the unit ball of M*(X,). Since the unti
ball of M (X,) is weak*-compact, m has relatively compact average range.
Hence, by Lemma 1.2, there exists a function ¢ : X, — V with the range
contained in the closure of the average range of m such that

(6) s—»j;‘h(x)dqs (s)(x) 1s p-integrable for each 2 €(C,(X,), and

D ) hods o) dn(s)= [ h@dm(E) @) for he G(X,) and

Few(X,).
Since the average range of m is contained in the unit ball of M*(X,), we
have

@) d(XpTHweM (XD : |wl <1},
hence we may replace (6) by

6) s— fX h(x)d¢ (s)(x) is a"bounded 7-measurable function for each
he G (X).
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Since X, metrizable and ¢-compact, the usual montonicity arguments show
that (6)” and (7) continue to hold for bounded Borel functions. That is,

9@ s— '[( h(x)d¢ (s)(x) is a bounded z-measurable function for each

bounded Borel function % on X,
and

(10) fE fX (0 dg () (D (s) = fX h(x)dm(E)(x) for each bounded

Borel 2 on X; and F€%(X,).
We define positive measures A, EM (X, X X,) (s&€X,) by
dAds(x, y) =d¢ (s)(x) X ddos(y)

Then by (8) we have

AD A4 =1;

(12) supp(As)C X, X{s}.
Moreover, by the similar argument in the proof of ([5], Theorem 3. 1), the
following is satisfied :

(13) s— A, (F) is z-measurable and ”<F):fx ,15<F>d77(3>

for Fez(X,)x%(X,). Hence by (11)-(13) and Lemma 1.3, we can
verify that {As} oy, satisfies (1)-(4). This completes the proof.

CorOLLARY 1.5. Let X, be a metrizable locally compact space and X, a
locally compact Havsdorff space. Let u be a positive measure in M (X, X X,),
and put n=mny(u), where ny : X, X X, — X, is the projection. Then there
exists a family {As},cx, of positive measures in M (X, X X,) which satisfies
(1)-(4) in Proposition 1. 4.

Proor. Since y is bounded and regular, there exists a ¢-compact subset
Y: of X, such that x is concentrated on Y; X X, . Hence, by Proposition 1. 4,
the corollary is easily obtained.

CoroLLARY 1.6. Let X, X, and =ny be as in the previous covollary. For
HEM(XiXX,), put n=ny(lu|). Then there exists a family {As},cx, of
measures in M (X, X X,) with the following properties :

(1) s— A(f) is n-measurable for each bounded Bovel wmeasurable

function f on X; X X5 ;

@) lAd =1,

) supp(A) T X\ X{s};

@4 u(H= .[(2'180[ )dn(s) for each bounded Borel function f on X, X X,.

Proor. By [Corollary 1.5, there exists a family {As},oy, of positive
measures in M (X;XX,) which satisfies (1)-(4) in [Proposition 1.4 with
respect to |u|. Let g be a unimodular Borel function on X; X X, such that
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u=glu|. We define measures A ,EM (X, X X;) by dA.(x, v)=g(x, y)dA,(x,
y). Then we can verify that {1 } x, satisfies (1)-(4) of the corollary, and
the proof is complete.

PROPOSITION 1.7. Let X, be a o-compact, metrizable locally compact
space and X, a locally compact Hausdor(f space. Let n be a nonzero positive
measure in M (X,), and let {As}sex, and {Ai}scx, be families of wmeasures
in M (X, X X;) with the following properties :

(D) s— Af) are n-integrable functions for each bounded Borel func-

tion f on X;xX, (i=1,2);

(2) supp(AHC X, X {s} (1=1,2);

@ APdn(s)= [ BN dn(s) for fEC,(Xx Xy,

Then we have
Ai=A% 7—a. a. sEX,.

Proor. Since X, is ¢-compact and metrizable, C,(X,) contains a coun-
table dense set .« ={f,}7. By (2), there exist measures vieM (X,) such
that

dAs(x, y) = dvi(x) X dos ().
Then it follows from (1) that
(4) s— vi(h) is a 5-integrable function for each bounded Borel func-
tion 2 on X,.
For f,€.o, we have by (3)

I OEALIOE ISP AP IS
for all g (X,), hence (4) yields
vs(fn) =Vi(f,) n—a.a. s€eX,.
Since .« is a countable dense set in G,(X,), we have
vs=1v:i n—a.a. sEX,,
which shows 1;=21% n—a.a. s€X,. This completes the proof.

§2 Convolution operators on M?(G), induced by
bounded regular measures on G.

In this section we first state several properties of measures on the direct
product group of a o-compact metrizable LCA group and a general LCA
group by using the theory of disintegration (Lemmas 2.1-2.3). Next we
characterize convolution operators on M2(G), induced by bounded regular
measures on G. From through [Lemma 2.3, we shall assume that
G, is a o-compact metrizable LCA group, G, is a general LCA group and TG
G, ® G, — G, is the projection.

Lemma 2.1, Let E, be a closed set in G,. For €M, +(G.®G,), put
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n=n;(lul). Let {As}sex, be the family of measures in M (G,® G,) which
satisfies (1)-(4) in Corollary 1.6. Put dA,(x, y) =dv,(x) X dd,(y), where v,
EM(G) and 0, is the point mass at hEG,. Then we have v, €My (G) 7-a.
a. het,.

Proor. Since G, is o-compact and metrizable, there exists a countable
dense set &« ={f,}Tin G (G,). Let F,, be a function on G,® G, such that F,,
(x, y)=fu(x). Then, since h—v,(f,) =1,(F,) is n-measurable, it follows
from Lusin’s theorem that there exists a compact set K,, in G, such that

1
M 7(G\Ew <
and

(2) h— v,(f,) is continuous on K, for all f,€.«~.
Since 7 is regular, we may assume that K, satisfies

3 7(VNKp>0
for each x=K,, and neighborhood V of x. In fact, put
_ there exists an open set V, containing x such that
F_{xEK’"' 7 (Ve K =0, }
Then F=K,NU{V:open set in G; VNK,+0, n(VNK,=0}. By
regularity of », for € >0, there exists a compact set S contained in F such
that #(F'|S)<e. Hence there exist open sets V,, ---, V, in G, with VN

K,+8, n( V.0 K,) =0 such that SC OV Then 7(S) <y (ViN Kp) =

0, so that #(F)=n(F\S)+#(S)<e. Since e€>0 is arbitrary, we have
n(F)=0. We employ K,\F instead of K, if necessary. Then K,\F is
compact and it satisfies (1)-(3).

By (2), (3) and the method used in ([16], Lemma 3, Claim 1), we
have

4) v,eMe(Gy) for all heK,,.
Hence, by (1) and (4), we have v,& Mg (G) n-a. a. h€G, and the
proof is complete.

LeMMA 2.2. Under the assumption in the previous lemma, the following
are satisfied :

(1) If n€L*(G and vi&L'(G) n-a. a. hEG,, then u€L'(G®
Gs) ;

(I If peEM(G®Gy,) and vi€L'(G) n-a. a. h€EG,, the nE M

(G).

Proor. (I): Let E be a compact set in G;® G, with mg ¢ (E)=0.
Then there exists a Borel set 4, in G, with m,(A2) =0 such that

me, (E,) =0 for yEA,,
where E,={x€G,: (x, y)€E}. Then we have
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u(E)= f Au(E)dy (h)
= [ w(Bodn ()

=) Eddn W+ [ u(Edy(h)
=0.
Hence, by regularity of x, we get u(F)=0 for all Borel sets F in G, & G,
with 7 e (F)=0, which shows x SL'(G,® G,).
(IID: Let »=nq+ 7, be the Lebesgue’s decomposition of » with respect
to . We define measures u,, 1, EM(G,® G,) by

w= [ A dnah),

()= [ A dnaCh

for f€G(G®G,). Then y=u +u, and w,€M,(G,®G,). Moreover we
have 4, €EL'(G,®G;) as same as in (), hence x=yu, Therefore, since
A4 <1 -a. a. hEG,, we get
I 7all +1 76l =1l 7]
<l s,
which shows » =#,€M(G,). This completes the proof.

LEMMA 2.3. Let p; be measures in M(G,®G,), and put =g (| pu:|)
(i=1, 2). Let {Ai}nec,={viXOn}lnec, be families of measures in M(G,®
Go) which satisfy (1)-(4) in Corollary 1.6 with respect to p;. Then the
following is satisfied :

(h, Be) = Ak = 25, (F) = {(Vh, * V3) X Sniens) () is a
(1) (o X m2) — measurable function for each bounded Borel function f
on GeG,.
In particular, we can define a measure EEM (G, @ G,) by

§N = [ {0k * )X Sn bk (D) dpaCh)

for fEG(G®G,). Then the following ave satisfied

(II)  E=p1*u»;

(i  If m*n. €LY (G,) and Vhy * Vi, eL'(Gy) (771X772>_a- a.

(h, ) EG @G, then py*u, belongs to L'(G,® G,).

Proor. (I): We note that 21— vi(f) is a z,—measurable function for
each bounded Borel function f on G,. Hence

(D (b, k) — vk, = vE, (f) isa (9 X n,)-measurable function for each

bounded Borel function f on G,.

In fact, for £, L,EG(G)), we define a function f €C,(G,® G,) by f(x,, %)=
A fa(x). Then

(2) (h, h)— (vi,XVi,) (f) is (g X n,)-measurable.
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Since {271 £:(0) () : fir, £-:EG(G)} isdense in Co(G,® Gy), (2) holds
for all feC,(G,® G,). Hence, since G, is 6-compact and metrizable, (2)
holds for every bounded Borel function f on G;® G,. Let ,(x, y)=x+y for
(x, ¥)EG®G,. Then, for each bounded Borel function ¢ on G,, we have
Vi * Vi, (@) = (Vh, X vE,) (gom) and (1) follows.
Let E€%(G,) and FE%((,), and put A=EXF. Then

B (M, B) — {(Vh, * Vi) X Onyny) (A) is (s X mp)-measurable.
In fact, let 7,(u, v)=u+v for (u, V)EG®G,. Then {(v}, * v2,) X Shi+rs)
(A)=vh, * Vi(E)x: » (h, hy), hence (3) in obtained from (1).

Now let .# be the collection of all subsets A of G, ® G, which satisfy (3).
Then by (3) we have

@) U EXF.c5

for E;,€%(G,) and F,€%(G,) such that {E; X F;} are pairwise disjoint.
Moreover ¢ is closed under monotone limits, hence it follows from Lemma
1.3 that ¥ D% (G,® G,). Thus (1) is satisfied.

(II) is obtained by considering their Fourier-Stieltjes transforms (cf,
[16], Theorem 1, Claim 3). We can prove (III) as same as in the proofs of
Lemma 2. 2 (I) and (, lines 1-13 on p. 275). This completes the
proof.

Let G be a LCA group and ¢ : G— R a nontrivial continuous homomor-
phism. We assume that there exists x,&G such that y(x,)=1 for
convenience’ sake. Let ¢ : R — G be the dual homomorphism of i, and let
A be the discrete subgroup of G generated by xo. Let K be the annihilator
of A. We define a continuous homomorphism a : R® K — G by

2.1) alt, wy=¢(@)+u for (t, uy eR®K.

Then « is onto and satisfies the following (cf. [17], Proposition 2. 2) :

2.2) a(Liy(ReK))CL'(G);

2.3) aM(ReK))CM,(G).

For 0<e <%, let A, be a function on R® K defined by A, (¢, ¢)=max(1—

»l—ltl, 0) if 6=0 and A, (¢, 6)=0 if 0+0. For u&M(G), we define a

function ®;(f, 0) on R® K by

Then the following are satisfied (cf. [19], Lemma 3.3):
2.5) @, eM(ReK)" and | @] =[xl ;

(#) In [17], we define ®5(=®, )by @5(t, 0)=2ycct(Y)AZ((t, 6)—(¥(¥), v|Kx)). However
we may take A, instead of AZ (cf. [19], Lemma 3.3).
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(2.6) @=L (ReK)" f ucli(G);
2.7 d:eM,(ReoK)" if rHEM(G).
Moreover by ([19], Lemma 4.1) we have

(2.8) a((®)Y)=u.

We define an isometry** T5: M(G) — M(R®K) by

(2.9 T =

DEFINITION 2.4. Let ¢:G— R be a nontrivial continuous homomor-
phism and ¢ : R — G the dual homomorphism of ¢. Let H, be the annihi-
lator of ker(y).

(i) Fer veM(G), we define a bounded linear operator S, on M(G)

by S,(u)=v*u.

(ii) If ker(¢) is not open, we define a subspace. %, of M (G) by

ﬁoz{Z?}’:lun * 6xn}7
where x,€G and u,=¢ (M (R)) with 3%_, | u,] < co.
(iii) If ker(y) is open, we define a subspace %, of M (G) by
F :{me * ‘0+(80“WLH¢) * (Z?‘Zﬂun * 8xn)},
where %, €G, pEM,;(G) and u,E¢(M(R)) with 5., | u,] <co.

Before we state our theorem, we note that K is not discrete if M WG+
{0} (cf. [17], Remark 2. 3).

THEOREM 2.5. Let G be a LCA group and v :G— R a nontrivial
continuous homomorphism. We assume M*(G)+{0} and there exists pN=te
with ¥ (x0)=1. For veM(G), suppose S,(M*(G)s)C M, (G),. Then the
Jollowing ave satisfied -

(1) If ker(y) is not open, theve exists &%, such that

SS(w)=u+&  for all ueM(G)s;

(11 If ker(y) is open, there exists & S.%, such that

S\u)=u*&  for all ucM*(G)..

Conversely, when ker (y) is not open, let v be a measure in %,. Then
S, maps M*(G)s into itself. When ker () is open, let v be a measure in %,
Then S, also maps M*(G), into itself.

Proor. Put =z,(|T3(v)|), where z,: R® K — K is the projection.
Then by Corollary 1.6 there exists a family {d,},c,=1{v, X On}per Of
measures in M (R® K) with the following properties :

(1) h—21,(f) is y—measurable for each bounded Borel

function f on Re K ;

(»*) J. Inoue recently constructed lifting operators with properties (2.5)—(2.7) under a
general circumustance ([I0]). However, in general, it is not known whether the
representation as (2. 4) is satisfied or not.
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2) (A =1;
3 T3 (= [4(dgh) for each bounded Borel

function f on R® K.

Let =m+m(pneM(K), n,eM.(K), and we define measures o, EM (R ®
K)(i=1, 2) by

@ @H= [ LD dnh)
for bounded Borel functions f on R® K. Then we have

®) a(@)*M*(G) M4 (G)s.
In fact, let 4 be a measure in M*(G), and put 7, =z, (| T5(u)|). Let {y£x
Onfner be a family of measures in M (R® K) which satisfies (1)-(3) with
respect to T;,(u) and 7,. By (2.4) we note

Ts(u)"(t, 0)=0 for t<—e,
hence by Lemma 2.1 and the F. and M. Riesz theorem we have

®6) vieL'(R) n,—a. a. h&K.
Thus (2.7) and Lemma 2.2 (II) yield 5, €M;(K). Hence by Lemma 2.3
(II) and the fact fact that », €M,(K), we can verify that T 5 (u) *w, € M;(R
®K). Thus by (2.3) and (2.8) we get ura(w)=a(Ti;(u)*o)EM?
(G)s, and (5) follows.

Next we claim the following.

(1) If a(w)” (7)) 0 for some y,&G with ¥ (y,) >0,

there exists a measure y EM?(G), such that 0+ a (w,)*u L'(G).

In fact, since n,eM.(K)NM*(K), it follows from Theorem 0.6 that there
exists a positive measure 7, EM;(K) such that 0+ 7,*p,€L'(K). Put o,=
¥l x and let g be a function in H'(R) such that §(¢(y,))+0. We define a
measure SEM,(R® K) by §=gX (oo7:). Then a(&)eM*G)s and a ()"
(70) =& (v), %l x#0. We note that & can be represented as follows :

§NH= [ {algx ) (Fdns(h)

for all bounded Borel functions f on R® K. Hence we can verify that w,*¢&
belongs to L'(R® K)(cf. Lemma 2.3 (Il)), so that a(w,)*a(&)ELHG).
Thus g =a(§) is the desired one, and (7) follows. Since T5(v) =w,+ w,,
it follows from (2.8) that v=a(w,) +a(w@,). Hence, by (5), (7) and the
hypothesis that S,(M*(G)s)C M4 G), we have

® () =al@) (y) on {yeG: ¢(y)>0}.
We note a(w,) €%, Thus, if ker(y) is not open, (8) says that (I) is
satisfied since {yEG: Y (y) <0} ={yeG: ¢ (y)<0}.

Next we consider (II). When ker(y) is compact, i vanishes on ker
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(¢) for each pueM*G)s (cf. [18], Lemma 1.2). Put &=(d—mu )*a
(@). Then £€.4%,, and by (8) we can verify that & satisfies (II). If ker
(¢) is not compact, then M;(G/H,)+1{0} and ?|yey) becomes a multiplier
on M;(G/H,). Hence it follows from that there exists LEM,
(G/H,) such that Liy)=1| rercyy () on ker(¢). We note that there exists
pEM(G) such that (mu, +p)"(y)=L(y) for yEker(y). Put &=mu,+
p+ (06— mu)*a(w,). Then, in this case, £€.%, and & satisfies (II) by
virtue of (8). Thus (II) is obtained. Finally we prove the converse. For
u,€dp(M(R)), put wu,=¢(A,)(A,EM(R)). Then f,=A,oy, and the
converse follows from ([17], Theorem 2.3) and ([18], [Lemma 1.2). This
completes the proof.

REMARK 2.6. In we can remove the assumption that there
exists xOEG such that ¥(x,)=1. This is obtained from the following fact:
Let ¢ G— R be a nontrivial continuous homomorphism. For g>0, we
define ¥ : G— R by ¥s(y)=pB¢(y). Then the dual homomorphism ¢, of
¥, is given by ¢,()=¢ (A1), and so (M (R)=¢(M(R)).

REMARK 2.7. The operator T'j, which is defined in (2.8), becomes a
positive operator (i. e., T5(u)=01if x=0). This is obtained from (, A.
7.1 Theorem (ii), p. 421) and the construction of ®; (see the proof of
([17], Theorem 2.1) or ([19], Lemma 3. 3)).

§3 Special idempotent multipliers on M*(G)..

Helson and Lowdenslager obtained the following useful result.

Lemma 3.1 (cf. [14], 8.2.3 Theorem (b), p. 200).

Let G be a compact abelian group such that G is ordeved. Let u be a measure
in M,(G) that is of analytic type (i. e., g(y)=0 for y<0). Then (0)=0.

On the other hand, the author extended the above lemma as follows:

Lemma 3.2 (cf. [18], Lemma 1.2). Let G be a LCA group and P an
open semigroup in G such that PU(—P)=G. Let H be the annihilator of
PN (—=P). Then we have my*{ Mp(G)N M:;(G)}C Mp(G)N M (G).

In orther words, Lemma 3. 2 claims that the characteristic function of P
N (—P) becomes a multiplier on M,(G)N M;(G). In this section, when
there is a nontrivial continuous homomorphism ¢ from G into R, we
consider whether characteristic functions of cosets of ker(y) become
multipliers on M%(G)s or not. We state our result.

THEOREM 3.3. Let G be a LCA group and ¢ : G— R a nontrivial
continuous homomorphism. We assume that ker () is noncompact and
open. Let vy, be an element in G with ¥(y)<0. Then Xrorrer@ is a
multiplier on M*(G)s if and only if ¥(G) is isomorphic to the integer group
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Z.

Proor. Suppose w(é) is isomorphic to Z. Then we have G=Zo F
and {yeG: v(»)=20t={n c)EZSOF : n>0}, where F=ker(y). Let v
be a measure in M%G),, and put n=ni(|v|), where =z is the projection
from To&F onto F. Then, by Corollary 1. 6, there exists a family
{An} e of measures in M (T @ F) with the following properties :

(1) h— 1,(f) is a x-measurable function for each bounded Borel

function f on T F ;

@) Al =1;

) supp(A)C T X{h};

@4 v(H)= '/; A.(f)dn(h) for each bounded Borel measurable function

fon TokF
By (3) we have
B dln(x, ¥)=dv,(x) X do,(),
where v,EM (T) and &), is the point mass at #. Since v(n, 0)=0for n<0,
it follows from Lemma 2. 1, Lemma 2.2 and the F. and M. Riesz theorem
that

6) neM(F).
Put #,=v(y). Then we have

Wom, 0= [ (X0 (e™ (—+, @)dy(h)
=[5 (—h, &) (W)

= [ (~h, ®art(n,

where #* is a measure in M.(F) defined by dn*(h) =6,(ny)dn(h). Then
Lrotrerw (n, 0)0(n, o)=((e"™ m) Xy (n, ), so that
becomes a multiplier on M2(G),.

Conversely suppose ¥ ( &) is not isomorphic to Z. We may assume that
there exists x, =G such that ¥ (x0) =1 without loss of generality. Let A be
the discrete subgroup of G generated by x., and let K be the annihilator of
A. Let F, be the open subgroup of G generated by ker(¢) and A, and let K,
be the annihilator of F,. Then K, is an infinite compact subgroup of K, so
that mx, is a continuous measure. Hence it follows from Theorem 0.7 that
there exists a positive measure &€ M,(K) such that 0+ &*mx,cL'(K). Let
g and % be functions in H'(R) satisfying the following :

0§ (7)) #0 and supp@C (¥ (r) —¢, ¥ (yo)+e);

k(Y (y0)) =1 and supp(B)C (¥ (yo) —&, ¥ () +e&),

where 0 <e <min(y(y,), %). Moreover we define measures u, vEM (R ®
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K) by
@) dulx, »)=gx)dxx (¥, vlg)d&E();
dv(x, y)=k@X)dxX(y, volg)dmx,(y).

Then we have M, (R®K) and u*vel'(R®K). Let a:R®K — G be
the continuous homomorphism defined in (2.1). Then (2.2) yields a(u)*a
(W =a(u*v)EL'(G). Since a(u)” (y)a(w)" (yo) =p2(¥(¥0), vl x) #0, we
have a(u)*a(v) #0. On the other hand, by (2.2) and the construction of
u, we get a(u) € M*G)s. Moreover, noting ¥ '((¢(yo) —¢, ¥(¥)+e))
N(ker(¢) +A+ Yo) = vo+ker(¢), we have a(v)" = Xrorrer@. Thus Xro+rer@
is not a multiplier on M4%(G)s and the proof is complete.

COROLLARY 3.4. Let G be a LCA group and +:G— R a nontrivial
continuous homomorphism with M*(G):#{0}. We assume that ker () 1s
open and ¥ (G) is dense in R. Let v, be an element in G with ¥ (y,) >0.
Then, for each nonzero function ® on G with supp (®)C yo+ ker (), ® does
not become a multiplier on M*(G)s.

Proor. We consider the corollary by dividing two cases that ker(y) is
compact or not.

Case 1. ker(y) is compact.

In this case, the corollary follows from the fact that measures, whose

Fourier-Stieltjes transforms have compact supports, belong to L'(G).
Case 2. ker(y) is not compact.

Suppose @ is a multiplier on M%(G)s. Then it is easy to see that

L oeM*(G), .

By Theorem 3. 3, there exists u EM(G), such that 0+ £ Xro+rerw €{L'(G)
NMeG)}” and ®a+0. Then by (1) we have
OL=DU Xyot+rerw)
(L GHNM(G)H".
Hence we have a contradiction, and the proof is complete.

§4 Proof of Main Theorem.

Our purpose in this section is to prove Main Theorem. We denote by B
(G) the set M(G)".

DEFINITION 4.1 Let G be a LCA group and ¢ :G— R a nontrivial
continuous homomorphism. Let ® and ®’ be functions on G. We write @~
@ if ®p='% for all u&M*(G)s.

The following lemma is due to [20].

LemMa 4.2 (cf. [20], Main Theorem).

Let G be a LCA group and  a nontrivial continuous homomorphism from G
into R. Let Q be a bounded open interval in R. Suppose /JEB(@) 18
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integer—valued on v *(Q). Then there exists an integer-valued 7€B(&
such that v(y)=4Cy) on ¥ '(Q).

LEmMA 4.3. Let G be a LCA group, and let ¢ : R— G be an one-to
—one, continuous homomorphism. Let F be a compact subgroup of G
contained in ¢(R). Then F={0}.

ProoF. Put '=¢ '(F). ThenT isa closed subgroup of R, so thatT"=
{0}, Z or R. By ([9], (6.29) Theorem, p. 42), ¢|r:I'— F is an open
continuous homomorphism, so that ¢ | r is a homeomorphism. Since F is
compact, we have F={0} and the proof is complete.

LemMMA 4.4. Let G be a LCA group and +:G— R a montrivial
continuous homomorphism. We assume that V(G isdensein R. Let ¢ :R
— G be the dual homomorphism of  and H a compact subgroup of G.
Suppose

mHZZ‘Z:lcﬁ(vk)*c?xh ,
wheve vi €M (R) with 25| vill <oo and 6, is the point mass at x,EG.
Then H is a finite group.
Proor. We note that ¢ is one-to-one since +(5) is dense in R.

Suppose H is an infinite group. Since m;; is concentrated on kO(qS (R) +x),
=1

we have my ($ (R)+x,)>0for some i. Let y; be an element in H N (¢ (R) +
x;). Then
0<my (b (R)+x:)
=my((¢(R)+x)NH—y;)
=my(d(RONH),
which shows that ¢ (R) N H is an open subgroup of H. In particular, ¢ (R)

N H is a compact subgroup of G, hence it follows from Lemma 4. 3 that ¢
(R)NH={0}. Thus we have

(1) (p(R)+x.)NH is a single point if (¢(R)+x.)NH+{0}.
Hence by (1) we have m,, ( O(gb (R)+x,)) =0, which yields a contradiction.
k=1

This completes the proof.

LemMa 4.5. Let G be a LCA group and ¢ :G— R a nontrivial
continuous homomorphirm such that (G is dense in R. We assume that
there exists x, =G with ¥ (x,) =1, and let K be the annihilator of the discrete
subgroup of G generated by xo. Then for infinite compact subgroups H of G,
(T3 (my)) belong to M (K)NM*(K), where ny: R®@K — K is the
projection and T : M(G) > M(R® K) is the operator defined in (2.9).

Proor. We first note that T (m,) is a positive measure (cf. Remark
2.7). Put p=n, (T 3(my)) and =294+, where n,€M,(K) and n.€M,
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(K). Suppose 7,+0. Then
77d:2?1°:1(ln6yn,
where a,20, 0<3%.,4,< and y,€K. By [Proposition 1. 4, there exists a
family {A,},cx={v, X ,},cx of measures in M*(R®K) with the following
properties :
(1) h— A,(f) is a z-measurable function for each bounded Borel
function f on Re K ;

(2) A =1;
) Ts(mF)=[ 1,(f)dn(k) for each bounded Borel function f on
ROK.

Since | A, =1 n-a.a. hEK, we note

4 v, X6, +0 if a,>0.
Let @ : R® K — G be the homomorphism defined in (2.1). Then, since «
(T 3 (my)) =my, we have

(5) my=3%_1and(vy,) + 8y,,+a<fxuh><ahdnc<h>>,

where f vn X Ondnc(h) is the measure defined by ( f Up X Ondnc(h)) (f) = f
K K K

(vn X 0) (f)dnc.(h) for bounded Borel functions f on R® K. Since 2 1and
(Vyn) * 0yn #0, it follows from (5) that there exists a natural number # such
that @,>0 and (¢(R)+y,)NH #0. Then, since m, is H-invariant, we
have
my (¢ (RONH)=my((¢(R)+y,) N H)

=my (¢ (R)+y,)

> and(vy,) * Oy, (¢(R)+yn)

=dan Uyn(R)

>0. (by (4))
Hence ¢ (R)N H is an open subgroup of H. Since a(R®K)=G and H is
compact, there exist x, -, K such that HC ”L:J_ 1(¢ (R)+x,). Then,
noting ker(a) ={2zn, —¢ (2nxn)) : nEZ}, we have

al [ vuxX Oudne() CHD = [ (0, X 8 (™ (HDY dine(B)
< X 8@ (Y (bR +2)) deh)

< e [ X 80 (U RX () + @an, — ¢ Qan)) de(h)

=0. (n.EM(K))
Hence we have my, = 3%_,a,¢(vy,) * 85,» Then it follows from
that H is finite, which contradicts the hypothesis. Hence we have 74=0 and
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the proof is complete.

The following lemma is due to [19].

Lemma 4.6 (cf. [19], Proposition 2.7, p. 149).

Let G be a LCA group and ¢ : G— R a nontrivial continuous homomo-
rphism. We assume that therve exists x0€G with ¥ (x,) =1, and let A be the
discrete subgroup of G gemerated by x.. Put K=A", and we define a
homomorphism T : GoRoK by v()=((),y| x). Then (B is a
closed subgroup of RoK and v : G— (B is a topological isomorphism.

The following lemma is due to Svensson.

LemmA 4.7 (cf. [15], Lemma 3.1.1, p. 124).

Let a, -, an=C (complex numbers), and let A, -+, A, be cosets of
subgroups of R"®T, where T is a LCA group. Let Q be a nonempty open
subset of R™. Suppose

(1) CLP(A)=R"1<i<m);

(2) DP1aixa(y) =0 for all yeQXT,
where CLP(A;) means the closure of the projection of A; into R™. Then
S\ axs (y)=0 for all yER"XT.

LemMMA 4.8. Let G be a LCA group and ¢ : G— R a nontrivial
continuous homomorphism such that V(B is dense in R. Let a,€C, and
let H; be compact subgroups of G such that (H;") are dense in R (1<i<n).
Let Q be a nonempty open set in R. For yiEG (1<i<mn), suppose

D {2 ayimu} (7)=0 on ¥ 1(Q).

Then X a:y:mu; =0.

Proor. For B>0, let 5: G— R be a continuous homomorphism
defined by ¥,(y) =8¢ (y). By considering ¥ instead of y if necessary, we
may assume that there exists 2 EG with ¥ (x.)=1. Let K and 7 be as in
Lemma 4.6. Then it follows from Lemma 4.6 that z(H,”) are closed
subgroups of RoK PutA,=z(H;,)+7(y;). Then CLP(A,) =R since ¥
(H*) are dense in R. By (1) we have 2%iaixs:(x, 6)=0 on QXK.
Hence by Lemma 4.7 we have

2 aixai (x, 0)=0 for all (x, 9)ER®K.
In particular,

S vaika; (P (p),y| ) =0 for all y<G,
which shows tnat

{ Loagyimu) (Y)=2k1aixst v (7)=0
for all yeG. This completes the proof.

LEMMA 4.9. Let G and  be as in the previous lemma. Moreover we
assume that M G)s+{0). Let ® be a multiplier on M*(G)s that is
integer-valued on ¥~((0,0)), and let [a, b) be a bounded right-half open
interval in R contained in (0,00).  Suppose ®| 4o 5»*0. Then we
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have

<I>(7)={EZ-’=1 mi?’imH}A(7’)"‘{2§=1ZZ"=1Mjk0jkij}/\(7’)
for dl yey((a b)), where v, 64xEG, m, MucZ; H is a finite
subgroup of G and L; are compact subgroups of G such that v(L;") are not
dense in R.

Proor. We may assume that there exists y,=G with ¥ (x,)=1 as in
Lemma 4.8 Let K, a and T'j be as in section 2. Let f be a function in '
(R) such that A(x)=1 on (a, b). We note ¢(f) belongs to M(G),,
where ¢ : R — G is the dual homomorphism of Y. Hence, by Lemma 4.2
there exists v&eM (G) such that

(1) vis integer-valued on G
and

2 W) =@WAY()=(y) for yE¢v((a b)).

Then by [Theorem 0.2 we have

v=27", 25—": \Mis7Y iiMu;,
where m;;€Z, y,G and H, are compact subgroups of G such that{3%_
iYimu )1 are mutually singular. We define subsets 7, and [, of {1, ---, m)
as follws:

L={i:¢(H") is dense in R} ;

L={i: ¢ (H") is not dense in R}.
Then we have

Q) v=2en 2 MY M+ D ien, 205 MY
We define subsets 7,; and I, of I, as follows :

I,,={i€l : H; is an infinite compact subgroup of G}
I,r={i€l, : H; is a finite subgroup of G}.
Claim 1. o(Xicn. 2= 1m 75 Ty (mu))=2icri 28— imuyyimau,,
where 7,;€R® K such that 7,;(x, u) =exp (Y (v:,)%) (yis| g0 %)
In fact, it is sufficient to show that a(r; Ty (my)) =y,;my since a is linear.
(15 Ty (mu) (7)) =(ri; T (mu)) (¥ (7), 7lk)
=T 5 (mu) ¥ (r) =¥ (i), 7lk— 75lk)
=@uu(V(7)— 7, (¥ —7:i)lx)
=mu,(7—7:)
:(Yiijf)A(Y)-
Thus the claim is obtained.
Claim 2. 3/, 2% mivimu, =0.
Infact, suppose 3ics, 251 miymu, #0. Then, by Cemma 4.8, {v(y)E(a,
b) (B Xicvmuyumu) () #0} is dense in (g, b), hence there exists an
open interval (@, &) included in (g, b) such that

@ {ZenXiamiyima} (y)=0 on v (@, b))

M

b
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and
(5> {Ziezl,Zﬁ-‘:l MijViiji}/\ l v 'a, &) +0.
We define measures », n*&M*(K) as follows:
6) 7=2ier,mx(T 5 (mu,));
s = k(|2 icr, 2 v mut; T 5 (my,))),
where 7, : R® K — K is the projection. Then 0+#4,<<#%. Moreover, by
Lemma 4.5, we have €M .(K). We put
&= 2:‘51”252 Wi Tij Tfp(mﬂi)
for convenience’ sake. Then, by Corollary 1. 6, there exists a family
{4,},x of reasures in M (R® K) with the following properties :
(7 h— A,(f) is a n,-measurable function for each bounded Borel
function f on R® K ;
@) Al =1,
(9) supp(ACRX{h};

10) &) :j;{lh(f) dn+(h) for each bounded Borel function f on R® K.

By (8) and (9), there exist measures v,&M (R) with ||v,| <1 such that
D  dAw(x, y) =dv,(x) X dou(y).
Since 0+, eM*(K)NM.(K), it follows from [Theorem 0.6 that there
exists 7, EM*(K)N Ms(K) such that
(12) ne*n,+0 and #y*n, L' (K).
By (5) and Claim 1, there exists y, ¢ ((a, 5,)) such that
13) a’(f)A<7*> = {2ie1112§i=1mz’j?’iijf}A('y*)
*0.
We choose o,€K so that
(14)  (oom)” (y,) 0.
Let £, be a function in H'(R) such that
(15) supp(%)C (@, ) and f(¢(y,)) %0,
and we define a measure y’'eM(R® K) by
16) du'(x, y)=f,(0)dx X (y, 60)dno(¥).
Then we have
A7) aw)EM*(G)s and supp (a(u) " )T Y '((a, b)).
Moreover, by (13)-(15), we have
(18) a(u)*a(&)+0.

We note that ¢’ can be represented as follows :

u'= [K (oo (B)f ) X Sudmo(h).

Then it follown from (12) and (IID) that g+l (RoK),
hence (2.2) and (18) yield
19 0+aw)H*a(E)eL'(G).
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On the other hand, by (2)-(4), (17) and Claim 1, we have
O(7)a()NY)={Z e 251 muyimu ) () a(w)(y)
:{Eiemz}ﬁ'i:lMij')’iiji}A(V)a(#,)/\(?’)“*‘
{Eieluz.g'ilmi.iyijmﬂi}/\(Y)a(ﬂ/)A(’)/)
=F()+a® " (paw)"(y) (yeb),
where F(y)={Zi/ . Zi~murimu} (¥aw) (y). I i€l m, are
discrete measures, so that FEM4(G),". Hence by (19) we have
Cea(u)" =F+a(&) auH"
EMA(G)s",
which contradicts the hypothesis that ® is a multiplier on M%(G),. Hence
we have Xic, 251 mi7imu; =0 and the claim follows. We note that there
exist y,€G, m;=Z and a finite subgroup H of G such that
D imyime=2] ie1pl 1 L5 1M,
Hence the lemma is obtained from (2), (3) and Claim 2. This completes
the proof.
LEMMA 4.10. Under the assumption in the previous lemma, we have
¢(7)={§}?=1mi7imH}A(7) on ¥((a, b)),
where m;Z, yv,;=G and H is a finite subgroup of G.
Proor. By Lemma 4.9, there exist m,, M;,Z and vy;, o‘jkE@ such
that
‘D(?’):{27=1MiViMH}/\(Y)‘*'{Z?:xZ%J;l J‘kdikmLf}A(y)
for yey'((a, b)), where H is a finite subgroup of G and L, are compact
subgroups of G such that ¥ (L;") are not dense in R. Since my, is a discrete
measure, ®'=®— {3 m.7:mu}(7) becomes a multiplier on M%G),.
Suppose there exists y,Ev¢((q, b)) such that{I2 Y Mino;eme, ) (7:)+
0. Then there exists a positive real number ¢ with (¢ (y,)—d, ¥ (y,)+6)
C (a, b) such that
(v(eWly)—6¢vy,)+d: {2%12%’;1 womme; ) (y) #0}
={¢(y.)}.
We may assume that ker(y) is open. Let f be a function in H'(R) such
that f(¥(y,)) =1 and supp(AC (¥(y,))—8, ¥(y,)+6). Let $:R—G
be the dual homomorphism of 4. Then ¢ ()" :}oxlf is a multiplier on M¢
(G)s (cf. [17], Theorem 2.3, p. 188), hence ®'¢ ()" becomes a multiplier
on M*G)s and (@@ (f)")|rssrerwy#0. This contradicts Corollary 3.4
since supp(®'¢ (f)")Cy,+ker(y), and the proof is complete.
Let &, and ./, be subsets of M (G) defined in Definition 0. 1.
THEOROM 4.11. Let G be a LCA group, and let :G— R be a
nontrivial continuous homomorphism such that M4(G):+{0} and 10(@) is
dense in R. Let ® be a multiplier on M(G); that is integer-valued on {y<
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G:y(y)=>0}. Then the following are satisfied :

(1) If ker(y) is not open, there exists a measure veE ., such that

dxv;

(II) If ker(y) is open, theve exists a measure veE &, such that ®=7.

Conversely, when ker () is not open, let v be a measure in.,. Then
v becomes a multiplier on M(G)s. When ker () is open, let v be a
measure in 7 ,. Then v becomes a multiplier on M*(G)s.

Proor. We first show that there exist m;eZ y,=G and a finite
subgroup H of G such that

Q) () ={Zkimamu)"(y) on (0, ).
In fact, if ® vanishes on ¢1((0, o)), (1) is trivial. Hence we may assume
that there exists yoeé with ¢ (y9)>0 such that ®(y,) #0. We choose

positive real numbers ¢ and b so that a<y(y,) <b, and put Q,,:(%, nb)

(n=1,2,3,---). Then, for each nEN, it follows from Lemma 4.10 that
there exists a measure §,=2%1m;, ,7;,my, such that

(2) E(y)=2(y) on ¥1(Qw),
where m;,&Z, v;,<Z and H, is a finite subgroup of G. Since H, is a finite
subgroup of G, ¢ (Hy) is dense in R because ¢(G) is dense in R. Hence
by (2) and Lemma 4. 8 we have

Q) &=& n=1,2,3,-),
hence

1) @(y)=&(y) on ¢¥'((0, ). )
Thus (1) follows from (4). If ker(y) is not open, {yEG: ¥ (y)=>0}°
coincides with ¥~1((0, )). Hence (I) follows from (1). Next we prove
(IT1). We consider (II) by dividing two cases that ker(y) is compact or
not.

Case 1. ker(y) is compact.
We note by Lemma 3. 2 that

) aly)=0 on ker(y»)
for all u&M*(G)s. Hence, in this case, (II) follows from (1) and (5).

Case 2. ker(4) is not compact.
Put H,=ker(y)*, and let = :G— G/H,; be the natural homomorphism.
Then, in this case, G/H, is not discrete and ® |rerw becomes a multiplier
on M;(G/H,). Hence, by Theorems 0.2 and 0. 7, there exist M;EZ and o;
&ker(y¢) such that

(6) ®lrera(y)={2L1M;osmu,}"(y) on ker(y),
where H, is a compact subgroup of G with H,D H, such that z(H,) is a finite
subgroup of G/H, . Hence, in this case, (II) follows from (1) and (6).
The converse is obtained from Lemma 3. 2 and the fact that Fourier-Stieltjes
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transforms of discrete measures become multipliers on M4 G)s. This
completes the proof.

Now we prove Main Theorem. By Remark 0.5, ®(y)=0o0r1on {y&
G:¢(y)>0). If ker(y) is not open, then {yeG: v (y)=0}° coincides
with {y€G: ¢ (y)>0}. Hence (1) follows from [Theorem 4.11 ().
Next we consider (II) by dividing two cases that ker(y) is compact or not.

Case 1. ker(y) is compact.

In this case, z vanish on ker(¢) for all x&M*(G)s (cf. Lemma 3.2). We
define a function @ on G by ®'(y)=0onker(¢) and ®'(y)=®(y) on Glker
(¢). Then ®=~® and ®(y) is integer-valued on {y&G: v (y)=0}°.
Thus, in this case, (II) is obtained from [['heorem 4. 11 (II).

Case 2. ker(4) is not compact.

In this case, G/H, is not discrete and ® |zcr@ becomes an idempotent
multiplier on M,(G/H,). In particular, ®(y)=0 or 1 on (ye: Yv(y)=0},
and so (II) follows from [['heorem 4.11 (II). Thus (II) is obtained.
The converse has already been proved in [Theorem 4. 11, and the proof of
Main Theorem is complete.

Finally the author wishes to express his thanks to the referee for his
valuable advice.
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