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Introduction

Let £, (n=1, 2,...) be a sequence of convex functions which converges
pointwise to a proper function f which is convex as a consequence.

In the case that sequence of convex functions is monotonically
decreasing, then the sequence of conjugate functions f ; of f, converges to f*
(the conjugate function of /). But, we don’t have the convergence of the
sequence of conjugate functions f} in general case. In this note, we shall
discuss this problem.

Although we can consider this problem generally for convex functions
defined on any finite-dimensional vector spaces, the fundamental tools of
proof of the theorems are almost same in the case of functions defined on
1-dimensional space R i. e. (the space of real numbers). So, we only deal
with cases of convex functions defined on R in this paper.

Our results show that if a sequence of convex functions 7,(x) converges
pointwise to a proper convex function f with domain of non-void interior,
then the sequence of conjugate functions f}(y) of f, converges to the
conjugate function f*(y) of f except an exceptional set of y which has at
most two point.

In this note, we shall show the fundamental theorem (Theorem 2) and
applications of this theorem.

1. The space of convex functions

A function f: R—»RU{+co} is called convex if for each x, y, ¢, bER
with ¢, b<[0,1] and a+b=1

flax+by)saf (x)+bf (y).

The effective domain of f is defined as D(f)={x; f(x)<+o0}. A convex
function f is called proper if the effective domain D(f) of f is not empty.
The conjugate function of f is defined as follows:

f*) :§lelg{yx—f(x) } for yeR.
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Generally, the conjugate function f* are defined on the dual space X * if f is
defined on a locally convex topological vector space X. But, in Euclidean
spaces X or Hilbert spaces the dual X* of X is isomorphic to X. So,
conjugate functions are defined on the same space as original space.

Let C be a space of all proper convex functions defined on R.
We shall discuss the structures of C as an ordered set. For f, g&C, f<gis
by definition iff

f(x)=g(x) for all xER.
Note that C is a semi-ordered set in this order relation.

LEmMA 1 Let {fi}rca be a collection of functions in C. Then, f(x)=
sup f,(x) EC iff there exists xo with sup Ji(xo) < 400,
Proof of Lemma is very easy, so it is omitted.
A collection {f; },ea of C is called lower-directed if for any finite collection
fur ooy fo, from {fi}1ca, there exists f, with £, =f, for k=1, 2,..., n.
The set of all interior points in a set A is denoted by Int A.

LEMMA 2 Let{f,},ca be a lower-dirvected collection of functions in C,
and let f(x) :ilxlf fi(x). Suppose Int{x: f(x)<+oo}+¢. Then f(x)EC

iff therve exists x,€Int{x: f(x) <+oo} with inf £, (%) > —oo.
A

Proor f (x):ialf fi(x) is a convex function of x&R since {fi}rca 1S

lower directed. Hence, f(x)=—oo for all xEInt{x : f(x) <+o0o} or f(x)
> —oo for all x&R by virtue of convexity of f. Since there exists x, with
inf £, (x,) > —oo, we have [Lemma 2.

A

We must remark that C is not a lattice with the order as a simple
example show below.
For each f, g&C, we shall denote by

fVg

the least upper bound in C for f and g&C by the order of C, and also we shall
denote

f\g

the greatest lower bound in C for f and g&C by the order of C.
It is easy to see that f Vg exists in C iff D(f)ND(g)*¢. For example, if
we define f and g as follows :
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0 x=0
+ oo otherwise

0 x=1
+co otherwise,

f={ and g(x)= {

there is no f Vg in C.
If we set

f(x)=x and gx)=—x,

then we can not find the existence of fAgin C. So, even if D(f)=D(g)=
R, there exists an example f Ag does not exist.
For a collection {f;};caCC, we denote

Vi

A
if there exists the least upper bound of the collection {f, }, <4 by the order of
C. Similarly, we denote

Ah
A
if there exists the greatest lower bound of the collection {f, }, <4 by the order

of C.

LEMMA 3 If the collection {f,} }rea CC is upper bounded (lower
bounded) i. e. there exists an fEC with i <f (L =f) for all A EA, then
lVAﬁ1 (/\Aj;) exists in C. Furthermove

[ Ae

CV AH)(x)=supf, (x).
AEA AEA

Proor  Since g(x):fulpi H(x)=f(x) for all xR and g(x) is a convex
(S
function, we have g&C. It is easy to see that g is the lower upper bound for
the collection {f,},ea CC. For /\Af;, we shall consider the set A of
A e

elements g of C for which g<f, for all A €A. Then, l/\Aﬁ1 = V g. Note that

PRSI

we don’t have the relation A f, (x)=inf £, (x) for some collection {f };ca.
AEA AEA

LEMMA 4 Let {fa} be a sequence of convex functions and converges
pointwise to f. Then f is an element of C iff there exist %, x,, % <R with
1 <%<x, and ¢, dER with c<f,(%)=d and c<f,(x), fu(x) for large n.

PRrooF.

flax+by) =limf,(ax+ by)

n—>0o0

<alimf,(x) + blimf,(x) =af (x) + bf (x)

n—>0o0 n—>0o0
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for ¢, b<[0, 1] with a+b6=1 and xR. Hence, f €C iff there exists x
with 7 (%) < +o0 and f(x)> —oco for all x. This means that there exists ¢
and deC with

c<f.(x%) <d for large .

Next example show shat exen if there exist % and xER (% <x) with
fu(xo) =f.(x), f does not necessary belonging to C.

nx—nmn if x>0
—nx—mn if x<0

fiw = |

LEMMA 5 Let f and f,(AEAN) be elements of C. Then
FACNY )=V AR
A EA AEA

and

fv </1/E\Af;1> :l/E\A(fvji>

if vight or left side of above equalities exist in C.
Proof of this Lemma is quite easy, so that it is omitted.

Let X be a locally convex space and X * be the dual space of X i. e. X*
is the set of all continuous linear functional of X. In the case that X is R,
then R* is isomorphic to R. We have already defined conjugate function
f* of convex function f. f* is a convex function defined on X*. Since
X cC X** we can define a convex function on X as follows:

f**(x)=sup{<x*, x>—f*(x*)} for xeX.

From now on, we shall restrict ourselves X is R.
We shall state here the Fenchel-Moreau’s theoren.

THEOREM 1  Let f be a convex function belonging to C. f(x)=7**(x)
for xR iff f is lower-semicontinuous at xER. The set {x; fx)Ff**(x)}
is at most two point.

LEMMA 6 i) f=g implies f*<g*
i) f=f**
iii) ({l\ﬁ>*(y>:<>/fk*><y> for all yeR*=R
iv) (Y)&)*(ﬁé(/l\fﬁ(y) for all yER*=R

Proor It is known that f is proper convex iff f* is proper convex (see
Chap. 6). i) and ii) are deduced easily from the definition and for
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iii) we put
g(x)= %\ﬁ‘) (x).

Then ¢g*(y) = (‘;/f,l* )() for all yeR by i) since g(x) <f,(x) for xR and
AEA. Let h(x) be an element of C such that

h(y)=fF (y) for all yER and A €A.
Then, *(x)=f**(x)<f,(x) for all x&R and A €A. Hence,
h*<g and so h=h**=>g*

by virtue of i) and ii).
This means that

({1\]:0*:!]*: Yf/l*

The proof of iv) is easy, so it is omitted. Next example shows that the
equality of iv) does not hold in general.

Let
—x (x20)
_ 1 (= x (x<0)
)= | ——x (0=x=n) and f(x)= {0 N
-1 (=zwn)

Then, f,1f and f=Vf, But, Af is not f* in this case, since

f#(0)=1 and £*(0)=0.
But, we have the following lemma.
LEMMA 7 Let a sequence of f,&C be wmon-decveasing and convergent
pointwise to f&C. Then limfy(y)=f*(y) except at most two points of

n—> 00

yER.

Proor  Since f 5(y)=f3%.1(v) for yER, for the function g(¥)=1limf }(y),

n-—oo

we have
sup f ¥*(x)=g*(x) for all x&R

by iii) of Lemma 6.
Since f3*(x)=f,(x) except at most two point of x, f,(x)—g*(x) except at
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most countable point of x &R.
Hence,

f(x)=g*(x) except at most a countable set of points in R.

Since f and g* are convex functions, f and g* are continuous except at
most two point. We know that f is continuous on Int D(f) : the interior of
its effective domain D(f). Hence, Int D(f)=Int D(g*) i. e. f(x) and
g*(x) are equal except the boundary of D(f) and D(g*). In a convex
subset I of R, the boundary of I consists of at most two point. Hence,
f(x)=g*(x) except two point of xER.

LEMMA 8 Let f be a convex function which is finite-valued on a closed
interval [a, b) and g(x) be a linear function (affine function). If (fla)—
g(@))(f(B) —g(b)) <0, then f(x)=g(x) for some exactly one point xER.

ProorF  Since the function #(x)=f(x)—g(x) is a convex function with
h(a)h(b)<0 and hence continuous on the closed interval [a, b], the
equation 4(x) =0 has a unique solution x in RB. Hence we have the assertion.

PropoSITION 1 Let f,€C and lim f,(x)=f(x) and a closed interval

n—>00

[a, b]CInt D(f). Then, f, is uniformly convergent to f in [a, b].

Proor If the assertion of [Proposition 1 is false, then there exist a
positive number & >0 and @,&[a, b] such that

|f (@n) —fulan) | Z2e>0

without loss of generality.
Since the interval [a@, 4] is compact, we can assume that the sequence a,
converges to some number ¢ E[a, b].

Let f(an) =f,(an) +¢& and a,<a, for infinitely many #», and let choose ¢,
with ¢,€Int D(f) and @ <c¢,. Now, we consider the straight line / from the
point (¢, f(c)+e) to the point (a, f(a)—¢€) is the plane. Then, this
straight line / meets with the graph of the convex function y=7(x) at only
one point by Lemma 8. This point will be denoted by (c., f(c)) with @<
<.

Since f,(¢,) <f(c)+e€ and f,(a,) <f (a,) —e for large » by assumption,
the graph of the function y=/£,(x) (xE[a,, ¢]) is below under the straight
line [ for large n. Hence, if we take ¢=(a+¢)/2, we find a positive
number d >0 with

JACH) éf(a") +12‘(c2) —C—f(c)—d
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for large n.
But this is a contradiction to

lim f,(cs) =1 (cs).

n—» 00

We shall consider the case that

flay) 2fu(an) +&

and g, > a, for infinitely many ». We take an arbitrary number ¢, < g, so that
c.€Int D(f). The straight line from the point (a, f(a,)—e) to the point
(¢;, f(c)+e) meet at only one point (¢, f (¢c,)) with the graph of the
convex function y=f(x) in the plane. By the same discussion as written
above, for ¢;=(a+c)/2, we have

fu(cs) <f(cs)—e/2 for large n.

But this is also a contradiction.
Next, if we have

f(aw <fo(an) —e and a,> a

for infinitely many #,
we have hence

f,(c.)—oo for large » and for ¢, EInt D({f) with ¢,>a.

But, this is a contradiction.
If we have

f(an) £fa(an) —€ and an<ao
for infinitely many #», we have also

f(¢,)—oo for large = and for ¢, Elnt D({f) with &> ¢ .

This is also a contradiction. Hence, we have the assertion of IProposition 1.

The sequence of functions f, (n=1,2,..) is called uniformly
Lipschitzian in the closed interval [a, b] if there exists K >0 and positive
integer N such that

| () —fu(WD K |x—]

whenever =N and x, yE([a, b].

ProposITION 2 Let f, (n=1,2,..)€C and lim f,(x)=f(x) and the

n—oo

closed interval [a, b]1CInt D(f). Then, the sequence of functions fn 1S
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uniformly Lipschnitzian in the closed interval |a, b].

Proor  If there exist positive numbers ¢ >0 and K >0 such that [x—y|<
¢ implies |f,(x) —f,(3)| £K|x—y| for sufficient large #, then we have

()= =K|x—y]| for x, yE[a, b].

Assume now that {f,} is not uniformly Lipschitzian in the interval [a, b]C
Int D(f). Then, for each natural number #, there exist a sequence of
increasing numbers K, 1 o and increasing positive integers

m<np<...<m,<...
with
'fmn<Xn> —‘fmn< Yn) | >Kn|xn"yn’

and
lxn—ynl =1l/n

for some x,, y,€[a, b]. Since the closed interval [a, 5] is compact, we
can assume that the sequence of points x, converges to some real number Xo
so that

lim x,=lim y,= x,E€[a, b].

n—oo

Since [a, b]CInt D(f), there exist real numbers @, and @, with g, <x < a,
and @, a;€Int D(f). By the former proposition 1, we know that the
sequence of convex functions f, converges uniformly to f on the closed
interval [a,, a,]. Hence, we can assume that

fO+1zf0)2f () -1 for xE[a, ).

Since the points (x,, Sn, () and (Y, fm,(Y2)) in the plane are
between two graphs of functions y=7(x)+1 and y=7(x)—1 in the plane, if
x» and y, are very close to x, by virtue of convexity of functions f m, W€ must
have f, (x,) or fm,(¥n) converges to +oo for large ». But, this is a
contradiction.

COROLLARY 1 Every comvex function f is Lipschitzian in every interval
la, b]CInt D(f); i. e. there exists K >0 such that

fO—FWI=K|x—y]| for x, yEla, b].

LEmMma 9 Let f, (n=1, 2,...) be a sequence of convex functions on R
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and lim f,(x)=f(x) with fEC. If f is not a linear function (affine

n—>CO

function) and x,EInt D(f), then for every e>0 there exists a convex
function g(x) such that

9(x)=f (%) —e
and there exist n with
fu(x)=g(x) for all m=n and xER.

Proor (1) We assume first f (%) =inf f (x) and the function y=f(x) is
not constant on any interval I where [=[a, ) or(—oo, b] for some
a, bER.

Then, there exist @, and @ €R such that ¢, <a, and
fla)=f(x) for ; <a=a

and
fla)>f(x) for a<a, or a>a,.

Hence, we can find & <a, @, <b, and & >0 with

F(b)>f(x)+e for b< b, or b>b,.

Define a constant function g with
g =f(%)—e.
Since f, is uniformly convergent to f in [b,, b;], we have
fx)+e/2=2f(x)=f(x)—e/2for x&[ by, b,] and for large x.

If there exists x,&([b,, b.] with f£,(x,) <f(x%)—e¢ for some n, by virtue
of convexity of f,, we have

HbO=Sf(x%)+e/2 or  fullb)<f(x)+e/2

Hence, we know that the number of such x,E[ b,, b,] is finite. That is, the
constant function g(x) =f (x,) — & has desired properties.

(2) Let f(x)<+ooforall xR and f(x,)=inf f(x). Suppose that f is not
constant function but constant on some interval I where I is [b, o) or
(—oo, b] for some bER. If f(x) is constant on some interval [, o),
then there exists a<x with f(a)>f(a) for a<a and f(x)=f(a).
Consider the eqigraph of fi. e. EP(f)={(x, y); y=f(x)} in the plane and
the point (x,, f(x)—e/2)EEP(f).

Since EP(f) is convex in the plane and (x, f(x%)—¢&/2)& EP(f), by using
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the Hahn-Banach theorem, there exists a linear function (affine function)
g1(x)=ax+b (a+0) which is through the point (x, f(x%)—e&/2) in the
plane and places EP(f) in upper side i. e.

g.(x) <f(x) for all x&R and satisfies the condition
lim (f(x)—g:(x))=+00

Then, the linear function g defined by g(x) =g,(x) —(1/2)e has the desired
properties.

(3) We assume f(x)<+oo for all xR and f(x,)>inf f(x) and f is not
linear function. Consider the epigraph of f: EP(f)={(x, »); y=f(x)} in
the plane. Since EP(f) is convex, there exists some line / therough the
point (x, f(x%)) by which EP(f) is placed in upper side. Let [ be
represented as the function k(x)=ax+b. Since f(x)>inf f(x), we have
a+0.

Considering the convex function f,(x)=f(x)—h(x) instead of f, we
have f,(x)=inf f(x) and LLTOQ‘"— h)(x)=f,(x). Applying the former
results (1) and (2) to this case, for each € >0 we have a convex function g,
with ¢g,(x) =/ (%) —e and there exists n with f,(x) —h(x)=g,(x) for all
integer m=# and for all xER.

Hence, we have the desired convex function g(x)=g,(x)+ h(x).

(4) We shall consider the case that D(f)={x;f(x)<+4+o}*+R, x&
Int D(f) and f(x)=inf f(x). Let g be a boundary point of D(f) in R
i.e. aeD()ND)9-. We can choose the point @, with x,<a, and also
some point b, &Int D(f) with b,<x, since x, since x,&Int D (f).

Consider the line [/ through the point (b,, f(b,)+¢&) and point (ay,, f(X,)
—e¢&) in the plane. This line [ will meet with the line of a constant function
y=f(%)—e/2 at the point (a, f(x%)—e/2) in the plane for some real
number a with x,<a<a,. Since [b,, a]CInt D(f), f, converges uniformly
to f on [&, a] by proposition 1.

Suppose that there exist infinitely many # and x,€[a, 4] with f((x)
<f(x)—e. Then,

fla)=<f(a)—¢e/2

for infinitely many » by convexity of functions f,.
But, this is a contradiction to

lim f,(a) =f(a).

n— 00

Since we can prove also
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fal) 2 S (%) — €
For all x€[b,, a]°¢ and for large =, the function g defined by
g(x)=f(x)—e (constant function)

has the desired property on [ &, ].

(5) We shall consider the case that x&Int D(f) and f(x)>inf f(x).
Since xInt D(f), we can construct the line / in the plane such that / is
through the point (%, f (%)) and EP(f) is placed in upper side of /. [ will
be defined by the function 2(x) =cx+d (c+#0). The convex function f (x) —
h(x) has the same property as the function in (4). By (4), we can easily
define a desired function g. q. e. d.

We shall state the following two lemmas without proof, since proofs are
quite similar to the proof of [Lemma 9.

LemMA 10  Let f, (n=1, 2,...) be a sequence of convex functions on R
and lim f,(x)=f(x) with fE€C. If xx&Int D(f)*, then for every positive

n—>0

number K there exists a convex function g(x) such that
g) 2K

and there exists a natural number n, with
Ja(x) 2g(x)

for all n=n, and xER.

LEmMa 11 Let f, (n=1, 2,...) be a sequence of convex functions on R

and lim f,(x)=f(x) with fEC and Int D(f)+¢. If x&DF)H NDI)HO,

n—> 00

then for every positive number € >0, there exists a convex function g(x) such
that

g)=f**(%) —¢

and theve exists a natuval number n, with
Ja(x) 2g(x)

for all n=n, and x<ER.

2. Main theorem

Now, we shall state the main theorem :

THEOREM 2  Let f, (n=1, 2,...) be a sequence of convex functions on R
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and lim f,(x)=f(x) with f€C. If Int D(f)+¢, then the sequence of

n—>00

conjugate functions f % of f, converges pointwise to the conjugate function f*
of f except at most two points of R.

Proor At first we assume that f is not a linear (affine) function. By
[Lemma 9, the set of convex functions {f,; #=m} of C is lower bounded for
large m. By [Lemma 3, we find the greatest lower bound of the family {f,,

fms1, ...+ in C which is denoted by h,= A f,&C for large m. By definition
IS hp=..... <f.

By again and Lemma 11, we find that for x&Int D (f),

[ lim k(0= =fx).

m—>00

By the Fenchel’s duality theorem, f(x) differs from f**(x) only at the
exceptional set which consists at most two points. Hence

fo(x) =f(x) except at most two points of x=R.

On the other hand, the family {f,, fm::, ...} is upper bounded for large .
Hence, by Lemma 3, we find the least upper bound of {f,, fus1, ...} whichis
denoted by

kn(x)= V fo(x)=sup k,(x).

n=m nzm

Since the sequence of convex function k, is monotonically decreasing and
converges pointwise to f, we have

lim &n(y)=r*(y) for all yER.

m— 00

By Lemma 7,

lim 25(y)=fty)=f*(y) for yER except at most

m—C0

two points of yER.

Since hn<fn<k, and h4=fL= k. we have

lim f ;) =7*()

except at most two points of y ER.

Secondly, we assume that f (x) is a constant functioni. e. f (x) =c for some
real number c.

For every positive number ¢ >0, and for all positive integer N, by Proposi-
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tion 1,

[fo(x)—f(x)| <& for [x| <N

for large #.
If y+0, we have

f:(y)=§gg{yx—ﬁz<x>}% sup {mw—c—e}

xe[—N, N]
=N|y|—c—e.
It follows that lim f };(y)=+co for y+0.
On the other hand f*(y)=+oo for y+0. Hence, we have the assertion of
in this case.

Let f(x) is a linear function, say f(x)=ax+b (a#0).
We set

hn(x) = fu(x) — (ax+ b).

Then h,(x)—0 for all xER.
Since

h:<y>=sgp{yx—ﬁz(x)+ax+b}
=SUPi(y +a)x—fa(x) i+
=fr(y+a)+b

we have f ;(y)—co as n—oo for y+a.
On the other hand,

b if y=a
* s
S { —oo if y+a
Hence, we have the assertion of [Theorem 2. q. e. d.

ReMARK 1  Next example shows that in the case lim f,(x)=f(x) and
Int D) =6, is not true in general.

Let
[ n’x if x>=—-1/m
f,,(x)—{ —n2x—2n if x<—1/n.
Then, lim f,(x)=f(x)
where
0 if x=0
f= {+oo if x+0.
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But,

. A/ my+n if |y|=n?
7in={ g if |y]>n2

and

f*(»)=0 for all yER.

In this case, V f,=f and A f, does not exists for all positive integer m.

n=m nzm

REMARK 2 is true in the case that f (x) is a linear function as

is shown in proof. But we don’t have the existence of A f, in C for all m

nzm

in general.
3. Applications

Let Q be a finite measure space with measure g and let P(Q) be a set of
all measurable functions on Q assuming values in RU{+o0}. Then P(Q) is
a convex set in the sppace U (Q) of all measurable functions on Q assuming
values in RU{—oo}U{+oo}. Let S(Q) be a set of all measurable functions
on  assuming values in R. We shall identify f and g of U (Q) if they differ
only on a set of x-measure zero. In [3], we stated the following Lemma ;

LEMMA 12 Let F be a convex operator from R into P(Q) such that there
exists a,€R with F(a,) €SQ). Then, there exist a subset A of Q of

measure zero and a function F(a, t) defined on RXQ such that for each fixed
tEA, Roa—F(a,t) is a convex function on R and for each fixed a €R,
QS t—F(a, t) is a measurable function on Q which is identified with F (a)
as an element of P(Q).

We shall consider the average convex function of F. Let us consider the
integration function I (F)(x) defined on xR with

IF)@= [, Flx du()

if the integral has a sense.

We assume now that I(F)(x)>—o for all x&€R. Then I(F)(a) is a
convex function defined on « €R. We shall consider the conjugate function
I (F)* of the convex function I (F). Let f and g be convex functions from
Rto RU{+}. We define the infimal convolution

fog @ =inf{f(x)+g(e); nt+r=x;.
We know the following theorem (see p. 178). Let f,..., f, be
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(convex) functions on R. Then
THEOREM 3

(h®L® ... 0fW*=fF+fs+ ...+ 1
A+t ... tH)*Sfiofs0 ... 0f ;.

If fi, fo, ..., fu are proper convex functions and if their effective domains
contain a common point at which all these functions except possibly one are
continuous, then

A+t ... tf*=fief:0 ... 0f ;.
We shall state some Lemma :

LEMMA 13 Let F be a convex operator such that therve exist at least two
a,, ,€R with F(ay, t), F(a,, t)EL'(du), where F(a,t) is defined in
Lemma 12. Then I(F) is a convex function defined on R with values RU
{400} with Int(DUE)N*¢. If [a, b]C DU(F)), then for every
positive number &> 0 there exists a measurable set A with u(A) <e such that

F(x, t) is bounded on (x, t)E[a, b] X (Q\A).

ProoF Since F(a,,t) and F(a.,t) as functions of t&Q are elements of
L'(dy), there exists a measurable set A; with ,u(A1)<—%—e such that
CY]%‘CYQ

5
F(as,t)as a function of tEQ is also an element of L'(du), there exists

F(a,t) and F(a.,t) are bounded for t&Q\A,. Set az= Since

a measurable set A, with u(A,) <ie such that F(a;,t) is bounded for

2
teQ\ A,.
If |Flai,t)|, |F(as,t)|, |F(as, t)| <N for some t&Q, then |F(a,t)| <3N
for a €[ ay, a,] by virtue of convexity of F(a,t).
Hence, F(a,t) is bounded for all « €[a, @,] and for all t€Q\A where A=
A UA, with n(A)<e.

THEOREM 4 Let F be a convex operator from R into p(Q) such that there
exist a, and a,(a,<a,) with F(a,, t) and F(a,, t) as functions of tEQ are
in L*(du) wherve F(x, t) is a function of (x, 1) ERXQ defined in Lemma
12.  Then, there exists a sequence of G,(x, t) of form :

k(n)
Gal)= 3 MuF (5, )

whevre there exists a decomposition of Q of measurable sets {A.} with A,=
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u(An, te€A, such that

lim G,(x)=I(F)(x)

n—00

where 1 (F) is the average convex function of F(x, t). Furthermore,

lim GE(»)=1F)*(y)

n—00

except at most two points of yER, i. e.

k(n)

lim SV @ (A F (o, t)* ) =1(F)*(y)

e kb
except at most two points of yER.

Proor If a closed interval [a, b]CInt(D (I (F))), then by for
every positive integer » there exists a measurable subset A of Q with x(A) <

1/n such that F(x, t) is bounded for all x&[q, 6] and tEA.
Hence, we can find

Gn(x) :kgllkFQC, te)
such that

lim G,(x) = fg Flx, Ddu(t)

n—>0

and F(x, t,) is always finite for all x&D I (F)).
Hence, the assertion of is an easy consequence of [Theorem 2.
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