CONVERGENCE OF CONVEX FUNCTIONS AND DUALITY

By Shozo Koshi
(Received June 20, 1985)

Introduction

Let $f_{n}(\mathrm{n}=1,2, \ldots$) be a sequence of convex functions which converges pointwise to a proper function f which is convex as a consequence.

In the case that sequence of convex functions is monotonically decreasing, then the sequence of conjugate functions f_{n}^{*} of f_{n} converges to f^{*} (the conjugate function of f). But, we don't have the convergence of the sequence of conjugate functions f_{n}^{*} in general case. In this note, we shall discuss this problem.

Although we can consider this problem generally for convex functions defined on any finite-dimensional vector spaces, the fundamental tools of proof of the theorems are almost same in the case of functions defined on 1 -dimensional space \boldsymbol{R} i. e. (the space of real numbers). So, we only deal with cases of convex functions defined on \boldsymbol{R} in this paper.

Our results show that if a sequence of convex functions $f_{n}(x)$ converges pointwise to a proper convex function f with domain of non-void interior, then the sequence of conjugate functions $f_{n}^{*}(y)$ of f_{n} converges to the conjugate function $f^{*}(y)$ of f except an exceptional set of y which has at most two point.
In this note, we shall show the fundamental theorem (Theorem 2) and applications of this theorem.

1. The space of convex functions

A function $f: \boldsymbol{R} \rightarrow \boldsymbol{R} \cup\{+\infty\}$ is called convex if for each $x, y, a, b \in \boldsymbol{R}$ with $a, b \in[0,1]$ and $a+b=1$

$$
f(a x+b y) \leqq a f(x)+b f(y) .
$$

The effective domain of f is defined as $D(f)=\{x ; f(x)<+\infty\}$. A convex function f is called proper if the effective domain $D(f)$ of f is not empty. The conjugate function of f is defined as follows:

$$
f^{*}(y)=\sup _{x \in \boldsymbol{R}}\{y x-f(x)\} \text { for } y \in \boldsymbol{R} \text {. }
$$

Generally, the conjugate function f^{*} are defined on the dual space X^{*} if f is defined on a locally convex topological vector space X. But, in Euclidean spaces X or Hilbert spaces the dual X^{*} of X is isomorphic to X. So, conjugate functions are defined on the same space as original space.

Let \boldsymbol{C} be a space of all proper convex functions defined on \boldsymbol{R}.
We shall discuss the structures of \boldsymbol{C} as an ordered set. For $f, g \in \boldsymbol{C}, f \leqq g$ is by definition iff

$$
f(x) \leqq g(x) \text { for all } x \in \boldsymbol{R} \text {. }
$$

Note that \boldsymbol{C} is a semi-ordered set in this order relation.
Lemma 1 Let $\left\{f_{\lambda}\right\}_{\lambda \in \Lambda}$ be a collection of functions in \boldsymbol{C}. Then, $f(x)=$ $\sup _{\lambda} f_{\lambda}(x) \in C$ iff there exists x_{0} with $\sup _{\lambda} f_{\lambda}\left(x_{0}\right)<+\infty$.
Proof of Lemma is very easy, so it is omitted.
A collection $\left\{f_{\lambda}\right\}_{\lambda \in \Lambda}$ of \boldsymbol{C} is called lower-directed if for any finite collection $f_{\lambda_{1}}, \ldots, f_{\lambda_{n}}$ from $\left\{f_{\lambda}\right\}_{\lambda \in \Lambda}$, there exists f_{λ} with $f_{\lambda_{\lambda}} \geqq f_{\lambda}$ for $k=1,2, \ldots, n$.
The set of all interior points in a set A is denoted by Int A.
Lemma $2 \operatorname{Let}\left\{f_{\lambda}\right\}_{\lambda \in \Lambda}$ be a lower-directed collection of functions in \boldsymbol{C}, and let $f(x)=\inf _{\lambda} f_{\lambda}(x)$. Suppose $\operatorname{Int}\{x: f(x)<+\infty\} \neq \phi$. Then $f(x) \in C$ iff there exists $x_{0} \in \operatorname{Int}\{x: f(x)<+\infty\}$ with $\inf _{\lambda} f_{\lambda}\left(x_{0}\right)>-\infty$.

Proof $f(x)=\inf _{\lambda} f_{\lambda}\left(x_{0}\right)$ is a convex function of $x \in \boldsymbol{R}$ since $\left\{f_{\lambda}\right\}_{\lambda \in \Lambda}$ is lower directed. Hence, $f(x)=-\infty$ for all $x \in \operatorname{Int}\{x: f(x)<+\infty\}$ or $f(x)$ $>-\infty$ for all $x \in \boldsymbol{R}$ by virtue of convexity of f. Since there exists x_{0} with $\inf _{\lambda} f_{\lambda}\left(x_{0}\right)>-\infty$, we have Lemma 2.

We must remark that C is not a lattice with the order as a simple example show below.

For each $f, g \in \boldsymbol{C}$, we shall denote by

$$
f \vee g
$$

the least upper bound in \boldsymbol{C} for f and $g \in \boldsymbol{C}$ by the order of \boldsymbol{C}, and also we shall denote

$$
f \wedge g
$$

the greatest lower bound in C for f and $g \in \boldsymbol{C}$ by the order of \boldsymbol{C}. It is easy to see that $f \vee g$ exists in C iff $D(f) \cap D(g) \neq \phi$. For example, if we define f and g as follows:

$$
f(x)=\left\{\begin{array}{ll}
0 & x=0 \\
+\infty & \text { otherwise }
\end{array} \text { and } g(x)= \begin{cases}0 & x=1 \\
+\infty & \text { otherwise },\end{cases}\right.
$$

there is no $f \vee g$ in \boldsymbol{C}.
If we set

$$
f(x)=x \quad \text { and } \quad g(x)=-x \text {, }
$$

then we can not find the existence of $f \wedge g$ in \boldsymbol{C}. So, even if $D(f)=D(g)=$ \boldsymbol{R}, there exists an example $f \wedge g$ does not exist.

For a collection $\left\{f_{\lambda}\right\}_{\lambda \in \Lambda} \subset \boldsymbol{C}$, we denote

$$
\underset{\lambda}{\vee} f_{\lambda}
$$

if there exists the least upper bound of the collection $\left\{f_{\lambda}\right\}_{\lambda \in \Lambda}$ by the order of C. Similarly, we denote

$$
{ }_{\lambda}^{\wedge} f_{\lambda}
$$

if there exists the greatest lower bound of the collection $\left\{f_{\lambda}\right\}_{\lambda \in \Lambda}$ by the order of \boldsymbol{C}.

Lemma 3 If the collection $\left.\left\{f_{\lambda}\right\}_{\lambda}\right\}_{\lambda \in \Lambda} \subset \boldsymbol{C}$ is upper bounded (lower bounded) i. e. there exists an $f \in \boldsymbol{C}$ with $f_{\lambda} \leqq f\left(f_{\lambda} \geqq f\right)$ for all $\lambda \in \Lambda$, then $\underset{\lambda \in \Lambda}{\vee} f_{\lambda}\left(\wedge_{\lambda \in \Lambda}^{\wedge} f_{\lambda}\right)$ exists in \boldsymbol{C}. Furthermore

$$
\left(V_{\lambda \in \Lambda} f_{\lambda}\right)(x)=\sup _{\lambda \in \Lambda} f_{\lambda}(x) .
$$

Proof Since $g(x)=\sup _{\lambda \in \Lambda} f_{\lambda}(x) \leqq f(x)$ for all $x \in \boldsymbol{R}$ and $g(x)$ is a convex function, we have $g \in C$. It is easy to see that g is the lower upper bound for the collection $\left\{f_{\lambda}\right\}_{\lambda \in \Lambda} \subset \boldsymbol{C}$. For $\hat{\lambda}_{\lambda \in \Lambda} f_{\lambda}$, we shall consider the set A of elements g of \boldsymbol{C} for which $g \leqq f_{\lambda}$ for all $\lambda \in \Lambda$. Then, $\wedge_{\lambda \in \Lambda} f_{\lambda}=\underset{\lambda \in A}{\vee} g$. Note that we don't have the relation $\underset{\lambda \in \Lambda}{\wedge} f_{\lambda}(x)=\inf _{\lambda \in \Lambda} f_{\lambda}(x)$ for some collection $\left\{f_{\lambda}\right\}_{\lambda \in \Lambda}$.

Lemma 4 Let $\left\{f_{n}\right\}$ be a sequence of convex functions and converges pointwise to f. Then f is an element of \boldsymbol{C} iff there exist $x_{0}, x_{1}, x_{2} \in \boldsymbol{R}$ with $x_{1}<x_{0}<x_{2}$ and $c, d \in \boldsymbol{R}$ with $c \leqq f_{n}\left(x_{0}\right) \leqq d$ and $c \leqq f_{n}\left(x_{1}\right), f_{n}\left(x_{2}\right)$ for large n.

Proof.

$$
\begin{aligned}
& f(a x+b y)=\lim _{n \rightarrow \infty} f_{n}(a x+b y) \\
& \leqq a \lim _{n \rightarrow \infty} f_{n}(x)+b \lim _{n \rightarrow \infty} f_{n}(x)=a f(x)+b f(x)
\end{aligned}
$$

for $a, b \in[0,1]$ with $a+b=1$ and $x \in \boldsymbol{R}$. Hence, $f \in \boldsymbol{C}$ iff there exists x_{0} with $f\left(x_{0}\right)<+\infty$ and $f(x)>-\infty$ for all x. This means that there exists c and $\mathrm{d} \in C$ with

$$
c \leqq f_{n}\left(x_{0}\right) \leqq d \text { for large } n
$$

Next example show shat exen if there exist x_{0} and $x_{1} \in \boldsymbol{R}\left(x_{0}<x_{1}\right)$ with $f_{n}\left(x_{0}\right)=f_{n}\left(x_{1}\right), f$ does not necessary belonging to \boldsymbol{C}.

$$
f_{n}(x)= \begin{cases}n x-n & \text { if } x>0 \\ -n x-n & \text { if } x \leq 0\end{cases}
$$

Lemma 5 Let f and $f_{\lambda}(\lambda \in \Lambda)$ be elements of \boldsymbol{C}. Then

$$
f \wedge\left(\vee_{\lambda \in \Lambda} f\right)=\bigvee_{\lambda \in \Lambda}\left(f \wedge f_{\lambda}\right)
$$

and

$$
f \vee\left(\wedge_{\lambda \in \Lambda} f_{\lambda}\right)=\wedge_{\lambda \in \Lambda}\left(f \vee f_{\lambda}\right)
$$

if right or left side of above equalities exist in \boldsymbol{C}.
Proof of this Lemma is quite easy, so that it is omitted.
Let X be a locally convex space and X^{*} be the dual space of X i. e. X^{*} is the set of all continuous linear functional of X. In the case that X is \boldsymbol{R}, then \boldsymbol{R}^{*} is isomorphic to \boldsymbol{R}. We have already defined conjugate function f^{*} of convex function $f . f^{*}$ is a convex function defined on X^{*}. Since $X \subset X^{* *}$ we can define a convex function on X as follows:

$$
f^{* *}(x)=\sup \left\{<x^{*}, x>-f^{*}\left(x^{*}\right)\right\} \text { for } x \in X
$$

From now on, we shall restrict ourselves X is \boldsymbol{R}.
We shall state here the Fenchel-Moreau's theoren.
ThEOREM 1 Let f be a convex function belonging to $\boldsymbol{C} . \quad f(x)=f^{* *}(x)$ for $x \in \boldsymbol{R}$ iff f is lower-semicontinuous at $x \in \boldsymbol{R}$. The set $\left\{x ; f(x) \neq f^{* *}(x)\right\}$ is at most two point.

Lemma $6 \quad$ i) $f \geqq g$ implies $f^{*} \leqq g^{*}$
ii) $f \geqq f^{* *}$
iii) $\underset{\lambda}{\left(\wedge_{\lambda}\right)^{*}}(y)=\left(\underset{\lambda}{\vee} f_{\lambda}^{*}\right)(y)$ for all $y \in \boldsymbol{R}^{*} \cong \boldsymbol{R}$
iv) $\left(\underset{\lambda}{\vee} f_{\lambda}\right)^{*}(y) \leqq\left(\wedge_{\lambda} f_{\lambda}^{*}\right)(y)$ for all $y \in \boldsymbol{R}^{*} \cong \boldsymbol{R}$

Proof It is known that f is proper convex iff f^{*} is proper convex (see [5] Chap. 6). i) and ii) are deduced easily from the definition and for
iii) we put

$$
g(x)=\left(\wedge_{\lambda} f_{\lambda}\right)(x) .
$$

Then $g^{*}(y) \geqq\left(\underset{\lambda}{\vee} f_{\lambda}^{*}\right)(y)$ for all $y \in \boldsymbol{R}$ by i) since $g(x) \leqq f_{\lambda}(x)$ for $x \in \boldsymbol{R}$ and $\lambda \in \Lambda$. Let $h(x)$ be an element of \boldsymbol{C} such that

$$
h(y) \leqq f_{\lambda}^{*}(y) \text { for all } y \in \boldsymbol{R} \text { and } \lambda \in \Lambda .
$$

Then, $h^{*}(x) \leqq f^{* *}(x) \leqq f_{\lambda}(x)$ for all $x \in \boldsymbol{R}$ and $\lambda \in \Lambda$. Hence,

$$
h^{*} \leqq g \text { and so } h \geqq h^{* *} \geqq g^{*}
$$

by virtue of i) and ii).
This means that

$$
\left(\wedge_{\lambda} f_{\lambda}\right)^{*}=g^{*}=\underset{\lambda}{\vee} f_{\lambda}^{*} .
$$

The proof of iv) is easy, so it is omitted. Next example shows that the equality of iv) does not hold in general.
Let

$$
f_{n}(x)=\left\{\begin{array}{ll}
-x & (x \leqq 0) \\
-\frac{1}{n} x & (0 \leqq x \leqq n) \\
-1 & (x \geqq n)
\end{array} \text { and } f(x)= \begin{cases}-x & (x<0) \\
0 & (x \geqq 0) .\end{cases}\right.
$$

Then, $f_{n} \uparrow f$ and $f=\underset{n}{\vee} f_{n}$. But, $\wedge_{n}^{f_{n}^{*}}$ is not f^{*} in this case, since

$$
f_{n}^{*}(0)=1 \text { and } f^{*}(0)=0 .
$$

But, we have the following lemma.
Lemma 7 Let a sequence of $f_{n} \in \boldsymbol{C}$ be non-decreasing and convergent pointwise to $f \in C$. Then $\lim _{n \rightarrow \infty} f_{n}^{*}(y)=f^{*}(y)$ except at most two points of $y \in \boldsymbol{R}$.

Proof Since $f_{n}^{*}(y) \geqq f_{n+1}^{*}(y)$ for $y \in \boldsymbol{R}$, for the function $g(y)=\lim _{\mathrm{n} \rightarrow \infty} f_{n}^{*}(y)$, we have

$$
\sup f_{n}^{* *}(x)=g^{*}(x) \text { for all } x \in \boldsymbol{R}
$$

by iii) of Lemma 6 .
Since $f_{n}^{* *}(x)=f_{n}(x)$ except at most two point of $x, f_{n}(x) \rightarrow g^{*}(x)$ except at
most countable point of $x \in \boldsymbol{R}$.
Hence,

$$
f(x)=g^{*}(x) \text { except at most a countable set of points in } \boldsymbol{R} \text {. }
$$

Since f and g^{*} are convex functions, f and g^{*} are continuous except at most two point. We know that f is continuous on Int $D(f)$: the interior of its effective domain $D(f)$. Hence, Int $D(f)=\operatorname{Int} D\left(g^{*}\right)$ i. e. $f(x)$ and $g^{*}(x)$ are equal except the boundary of $D(f)$ and $D\left(g^{*}\right)$. In a convex subset I of \boldsymbol{R}, the boundary of I consists of at most two point. Hence, $f(x)=g^{*}(x)$ except two point of $x \in \boldsymbol{R}$.

Lemma 8 Let f be a convex function which is finite-valued on a closed interval $[a, b]$ and $g(x)$ be a linear function (affine function). If $(f(a)-$ $g(a))(f(b)-g(b))<0$, then $f(x)=g(x)$ for some exactly one point $x \in \boldsymbol{R}$.
Proof Since the function $h(x)=f(x)-g(x)$ is a convex function with $h(a) h(b)<0$ and hence continuous on the closed interval $[a, b]$, the equation $h(x)=0$ has a unique solution x in \boldsymbol{R}. Hence we have the assertion.

Proposition 1 Let $f_{n} \in C$ and $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ and a closed interval $[a, b] \subset$ Int $D(f)$. Then, f_{n} is uniformly convergent to f in $[a, b]$.
Proof If the assertion of Proposition 1 is false, then there exist a positive number $\varepsilon>0$ and $a_{n} \in\left[\begin{array}{ll}a, b]\end{array}\right.$ such that

$$
\left|f\left(a_{n}\right)-f_{n}\left(a_{n}\right)\right| \geqq \varepsilon>0
$$

without loss of generality.
Since the interval $[a, b]$ is compact, we can assume that the sequence a_{n} converges to some number $a_{0} \in[a, b]$.

Let $f\left(a_{n}\right) \geqq f_{n}\left(a_{n}\right)+\varepsilon$ and $a_{0}<a_{n}$ for infinitely many n, and let choose c_{1} with $c_{1} \in \operatorname{Int} D(f)$ and $a_{0}<c_{1}$. Now, we consider the straight line l from the point $\left(c_{1}, f\left(c_{1}\right)+\varepsilon\right)$ to the point $\left(a_{0}, f\left(a_{0}\right)-\varepsilon\right)$ is the plane. Then, this straight line l meets with the graph of the convex function $y=f(x)$ at only one point by Lemma 8. This point will be denoted by ($\left.c_{2}, f\left(c_{2}\right)\right)$ with $a_{0}<$ $c_{2}<c_{1}$.

Since $f_{n}\left(c_{1}\right)<f\left(c_{1}\right)+\varepsilon$ and $f_{n}\left(a_{n}\right) \leqq f\left(a_{n}\right)-\varepsilon$ for large n by assumption, the graph of the function $y=f_{n}(x)\left(x \in\left[a_{n}, c_{1}\right]\right)$ is below under the straight line l for large n. Hence, if we take $c_{3}=\left(a_{0}+c_{2}\right) / 2$, we find a positive number $d>0$ with

$$
f_{n}\left(c_{3}\right) \leqq \frac{f\left(a_{0}\right)+f\left(c_{2}\right)-\varepsilon}{2}=f\left(c_{3}\right)-d
$$

for large n.
But this is a contradiction to

$$
\lim _{n \rightarrow \infty} f_{n}\left(c_{3}\right)=f\left(c_{3}\right) .
$$

We shall consider the case that

$$
f\left(a_{n}\right) \geqq f_{n}\left(a_{n}\right)+\varepsilon
$$

and $a_{0}>a_{n}$ for infinitely many n. We take an arbitrary number $c_{1}<a_{0}$ so that $c_{1} \in \operatorname{Int} D(f)$. The straight line from the point $\left(a_{0}, f\left(a_{0}\right)-\varepsilon\right)$ to the point $\left(c_{1}, f\left(c_{1}\right)+\varepsilon\right)$ meet at only one point ($c_{2}, f\left(c_{2}\right)$) with the graph of the convex function $y=f(x)$ in the plane. By the same discussion as written above, for $c_{3}=\left(a_{0}+c_{2}\right) / 2$, we have

$$
f_{n}\left(c_{3}\right) \leqq f\left(c_{3}\right)-\varepsilon / 2 \text { for large } n .
$$

But this is also a contradiction.
Next, if we have

$$
f\left(a_{n}\right) \leqq f_{n}\left(a_{n}\right)-\varepsilon \text { and } a_{n}>a_{0}
$$

for infinitely many n, we have hence

$$
f_{n}\left(c_{1}\right) \rightarrow \infty \text { for large } n \text { and for } c_{1} \in \operatorname{Int} D(f) \text { with } c_{1}>a_{0} .
$$

But, this is a contradiction.
If we have

$$
f\left(a_{n}\right) \leqq f_{n}\left(a_{n}\right)-\varepsilon \text { and } a_{n}<a_{0}
$$

for infinitely many n, we have also

$$
f_{n}\left(c_{1}\right) \rightarrow \infty \text { for large } n \text { and for } c_{1} \in \operatorname{Int} D(f) \text { with } a_{0}>c_{1} \text {. }
$$

This is also a contradiction. Hence, we have the assertion of Proposition 1.
The sequence of functions $f_{n}(n=1,2, \ldots)$ is called uniformly Lipschitzian in the closed interval $[a, b]$ if there exists $K>0$ and positive integer N such that

$$
\left|f_{n}(x)-f_{n}(y)\right| \leqq K|x-y|
$$

whenever $n \geqq N$ and $x, y \in[a, b]$.
Proposition 2 Let $f_{n}(n=1,2, \ldots) \in \boldsymbol{C}$ and $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ and the closed interval $[a, b] \subset$ Int $D(f)$. Then, the sequence of functions f_{n} is
uniformly Lipschnitzian in the closed interval $[a, b]$.
Proof If there exist positive numbers $\delta>0$ and $K>0$ such that $|x-y| \leqq$ δ implies $\left|f_{n}(x)-f_{n}(y)\right| \leqq K|x-y|$ for sufficient large n, then we have

$$
\left|f_{n}(x)-f_{n}(y)\right| \leqq K|x-y| \text { for } x, y \in[a, b]
$$

Assume now that $\left\{f_{n}\right\}$ is not uniformly Lipschitzian in the interval $[a, b] \subset$ Int $D(f)$. Then, for each natural number n, there exist a sequence of increasing numbers $K_{n} \uparrow \infty$ and increasing positive integers

$$
m_{1}<m_{2}<\ldots<m_{n}<\ldots
$$

with

$$
\left|f_{m_{n}}\left(X_{n}\right)-f_{m_{n}}\left(Y_{n}\right)\right|>K_{n}\left|x_{n}-y_{n}\right|
$$

and

$$
\left|x_{n}-y_{n}\right| \leqq 1 / n
$$

for some $x_{n}, y_{n} \in[a, b]$. Since the closed interval $[a, b]$ is compact, we can assume that the sequence of points x_{n} converges to some real number x_{0} so that

$$
\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=x_{0} \in[a, b] .
$$

Since $[a, b] \subset$ Int $D(f)$, there exist real numbers a_{1} and a_{2} with $a_{1}<x_{0}<a_{2}$ and $a_{1}, a_{2} \in \operatorname{Int} D(f)$. By the former proposition 1 , we know that the sequence of convex functions f_{n} converges uniformly to f on the closed interval $\left[a_{1}, a_{2}\right]$. Hence, we can assume that

$$
f(x)+1 \geqq f_{n}(x) \geqq f(x)-1 \text { for } x \in\left[a_{1}, a_{2}\right] .
$$

Since the points $\left(x_{n}, f_{m_{n}}\left(x_{n}\right)\right)$ and $\left(Y_{n}, f_{m_{n}}\left(Y_{n}\right)\right)$ in the plane are between two graphs of functions $y=f(x)+1$ and $y=f(x)-1$ in the plane, if x_{n} and y_{n} are very close to x_{0}, by virtue of convexity of functions $f_{m_{n}}$, we must have $f_{m_{n}}\left(x_{n}\right)$ or $f_{m_{n}}\left(y_{n}\right)$ converges to $+\infty$ for large n. But, this is a contradiction.

Corollary 1 Every convex function f is Lipschitzian in every interval $[a, b] \subset \operatorname{Int} D(f) ; i$. e. there exists $K>0$ such that

$$
|f(x)-f(y)| \leqq K|x-y| \text { for } x, y \in[a, b]
$$

Lemma 9 Let $f_{n}(n=1,2, \ldots)$ be a sequence of convex functions on \boldsymbol{R}
and $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ with $f \in C$. If f is not a linear function (affine function) and $x_{o} \in \operatorname{Int} D(f)$, then for every $\varepsilon>0$ there exists a convex function $g(x)$ such that

$$
g\left(x_{0}\right)=f\left(x_{0}\right)-\varepsilon
$$

and there exist n with

$$
f_{m}(x) \geqq g(x) \text { for all } m \geqq n \text { and } x \in \boldsymbol{R} \text {. }
$$

Proof (1) We assume first $f\left(x_{0}\right)=\inf f(x)$ and the function $y=f(x)$ is not constant on any interval I where $I=[\mathrm{a}, \infty)$ or $(-\infty, b]$ for some $a, b \in \boldsymbol{R}$.
Then, there exist a_{1} and $a_{2} \in \boldsymbol{R}$ such that $a_{1} \leqq a_{2}$ and

$$
f(a)=f\left(x_{0}\right) \text { for } a_{1} \leqq a \leqq a_{2}
$$

and

$$
f(a)>f\left(x_{0}\right) \text { for } a<a_{1} \text { or } a>a_{2} .
$$

Hence, we can find $b_{1}<a_{1}, a_{2}<b_{2}$ and $\varepsilon>0$ with

$$
f(b)>f\left(x_{0}\right)+\varepsilon \text { for } b<b_{1} \text { or } b>b_{2} .
$$

Define a constant function g with

$$
g(x)=f\left(x_{0}\right)-\varepsilon .
$$

Since f_{n} is uniformly convergent to f in $\left[b_{1}, b_{2}\right]$, we have

$$
f(x)+\varepsilon / 2 \geqq f_{n}(x) \geqq f(x)-\varepsilon / 2 \text { for } x \in\left[b_{1}, b_{2}\right] \text { and for large } n \text {. }
$$

If there exists $x_{n} \in\left[b_{1}, b_{2}\right]$ with $f_{n}\left(x_{n}\right) \leqq f\left(x_{0}\right)-\varepsilon$ for some n, by virtue of convexity of f_{n}, we have

$$
f_{n}\left(b_{1}\right) \leqq f\left(x_{0}\right)+\varepsilon / 2 \quad \text { or } \quad f_{n}\left(b_{2}\right) \leqq f\left(x_{0}\right)+\varepsilon / 2 .
$$

Hence, we know that the number of such $x_{n} \in\left[b_{1}, b_{2}\right]$ is finite. That is, the constant function $g(x)=f\left(x_{0}\right)-\varepsilon$ has desired properties.
(2) Let $f(x)<+\infty$ for all $x \in \boldsymbol{R}$ and $f\left(x_{0}\right)=\inf f(x)$. Suppose that f is not constant function but constant on some interval I where I is $[b, \infty)$ or $(-\infty, b]$ for some $b \in \boldsymbol{R}$. If $f(x)$ is constant on some interval $[b, \infty)$, then there exists $a_{0} \leqq x_{0}$ with $f(a)>f\left(a_{0}\right)$ for $a<a_{0}$ and $f\left(x_{0}\right)=f\left(a_{0}\right)$. Consider the eqigraph of f i. e. $E P(f)=\{(x, y) ; y \geqq f(x)\}$ in the plane and the point ($\left.x_{0}, f\left(x_{0}\right)-\varepsilon / 2\right) \equiv E P(f)$.
Since $E P(f)$ is convex in the plane and ($\left.x_{0}, f\left(x_{0}\right)-\varepsilon / 2\right) \equiv E P(f)$, by using
the Hahn-Banach theorem, there exists a linear function (affine function) $g_{1}(x)=a x+b(a \neq 0)$ which is through the point $\left(x_{0}, f\left(x_{0}\right)-\varepsilon / 2\right)$ in the plane and places $E P(f)$ in upper side i. e.

$$
\begin{aligned}
& g_{1}(x) \leqq f(x) \text { for all } x \in \boldsymbol{R} \text { and satisfies the condition } \\
& \lim _{x \rightarrow \pm \infty}\left(f(x)-g_{1}(x)\right)=+\infty
\end{aligned}
$$

Then, the linear function g defined by $g(x)=g_{1}(x)-(1 / 2) \varepsilon$ has the desired properties.
(3) We assume $f(x)<+\infty$ for all $x \in \boldsymbol{R}$ and $f\left(x_{0}\right)>\inf f(x)$ and f is not linear function. Consider the epigraph of $f: E P(f)=\{(x, y) ; y \geqq f(x)\}$ in the plane. Since $E P(f)$ is convex, there exists some line l therough the point $\left(x_{0}, f\left(x_{0}\right)\right)$ by which $E P(f)$ is placed in upper side. Let l be represented as the function $h(x)=a x+b$. Since $f\left(x_{0}\right)>\inf f(x)$, we have $a \neq 0$.

Considering the convex function $f_{1}(x)=f(x)-h(x)$ instead of f, we have $f_{1}\left(x_{0}\right)=\inf f_{1}(x)$ and $\lim _{n \rightarrow \infty}\left(f_{n}-h\right)(x)=f_{1}(x)$. Applying the former results (1) and (2) to this case, for each $\varepsilon>0$ we have a convex function g_{1} with $g_{1}\left(x_{0}\right)=f_{1}\left(x_{0}\right)-\varepsilon$ and there exists n with $f_{m}(x)-h(x) \geqq g_{1}(x)$ for all integer $m \geqq n$ and for all $x \in \boldsymbol{R}$.
Hence, we have the desired convex function $g(x)=g_{1}(x)+h(x)$.
(4) We shall consider the case that $D(f)=\{x ; f(x)<+\infty\} \neq \boldsymbol{R}, \quad x_{0} \in$ Int $D(f)$ and $f\left(x_{0}\right)=\inf f(x)$. Let a_{0} be a boundary point of $D(f)$ in \boldsymbol{R} i. e. $\left.a_{0} \in D(f)^{-} \cap D(f)^{c}\right)^{-}$. We can choose the point a_{0} with $x_{t}<a_{0}$ and also some point $b_{0} \in \operatorname{Int} D(f)$ with $b_{0}<x_{0}$ since x_{0} since $x_{0} \in \operatorname{Int} D(f)$.
Consider the line l through the point $\left(b_{0}, f\left(b_{0}\right)+\varepsilon\right)$ and point ($a_{0}, f\left(X_{0}\right)$ $-\varepsilon$) in the plane. This line l will meet with the line of a constant function $y=f\left(x_{0}\right)-\varepsilon / 2$ at the point $\left(a, f\left(x_{0}\right)-\varepsilon / 2\right)$ in the plane for some real number a with $x_{0}<a<a_{0}$. Since $\left[b_{0}, a\right] \subset$ Int $D(f), f_{n}$ converges uniformly to f on $\left[b_{0}, a\right]$ by proposition 1 .
Suppose that there exist infinitely many n and $x_{n} \in\left[a, a_{0}\right]$ with $f_{n}((x)$ $\leqq f\left(x_{0}\right)-\varepsilon$. Then,

$$
f_{n}(a) \leqq f(a)-\varepsilon / 2
$$

for infinitely many n by convexity of functions f_{n}.
But, this is a contradiction to

$$
\lim _{n \rightarrow \infty} f_{n}(a)=f(a)
$$

Since we can prove also

$$
f_{n}(x) \geqq f\left(x_{0}\right)-\varepsilon
$$

For all $x \in\left[b_{0}, a_{0}\right]^{c}$ and for large n, the function g defined by

$$
g(x)=f\left(x_{0}\right)-\varepsilon \quad \text { (constant function) }
$$

has the desired property on $\left[b_{0}, a_{0}\right]$.
(5) We shall consider the case that $x_{0} \in \operatorname{Int} D(f)$ and $f\left(x_{0}\right)>\inf f(x)$. Since $x_{0} \in \operatorname{Int} D(f)$, we can construct the line l in the plane such that l is through the point ($x_{0}, f\left(x_{0}\right)$) and $E P(f)$ is placed in upper side of l. l will be defined by the function $h(x)=c x+d \quad(c \neq 0)$. The convex function $f(x)-$ $h(x)$ has the same property as the function in (4). By (4), we can easily define a desired function g.
q. e. d.

We shall state the following two lemmas without proof, since proofs are quite similar to the proof of Lemma 9 .

Lemma 10 Let $f_{n}(n=1,2, \ldots)$ be a sequence of convex functions on \boldsymbol{R} and $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ with $f \in \boldsymbol{C}$. If $x_{0} \in$ Int $D(f)^{c}$, then for every positive number K there exists a convex function $g(x)$ such that

$$
g\left(x_{0}\right) \geqq K
$$

and there exists a natural number n_{0} with

$$
f_{n}(x) \geqq g(x)
$$

for all $n \geqq n_{0}$ and $x \in \boldsymbol{R}$.
Lemma 11 Let $f_{n}(n=1,2, \ldots)$ be a sequence of convex functions on \boldsymbol{R} and $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ with $f \in C$ and Int $D(f) \neq \phi$. If $x_{0} \in D(f)^{-} \cap\left(D(f)^{c}\right)^{-}$, then for every positive number $\varepsilon>0$, there exists a convex function $g(x)$ such that

$$
g\left(x_{0}\right)=f^{* *}\left(x_{0}\right)-\varepsilon
$$

and there exists a natural number n_{0} with

$$
f_{n}(x) \geqq g(x)
$$

for all $n \geqq n_{0}$ and $x \in \boldsymbol{R}$.

2. Main theorem

Now, we shall state the main theorem:
Theorem 2 Let $f_{n}(n=1,2, \ldots)$ be a sequence of convex functions on \boldsymbol{R}
and $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ with $f \in C$. If Int $D(f) \neq \phi$, then the sequence of conjugate functions f_{n}^{*} of f_{n} converges pointwise to the conjugate function f^{*} of f except at most two points of \boldsymbol{R}.

Proof At first we assume that f is not a linear (affine) function. By Lemma 9, the set of convex functions $\left\{f_{n} ; n \geqq m\right\}$ of C is lower bounded for large m. By Lemma 3, we find the greatest lower bound of the family $\left\{f_{m}\right.$, $\left.f_{m+1}, \ldots\right\}$ in \boldsymbol{C} which is denoted by $h_{m}=\wedge_{n \geq m} f_{n} \in \boldsymbol{C}$ for large m. By definition

$$
h_{m} \leqq h_{m+1} \leqq \ldots \ldots \leqq f
$$

By Lemma 9 again and Lemma 11, we find that for $x \in \operatorname{Int} D(f)$,

$$
f^{* *}(x) \leqq \lim _{m \rightarrow \infty} h_{m}(x)=f_{0}(x) \leqq f(x)
$$

By the Fenchel's duality theorem, $f(x)$ differs from $f^{* *}(x)$ only at the exceptional set which consists at most two points. Hence

$$
f_{0}(x)=f(x) \text { except at most two points of } x \in \boldsymbol{R} .
$$

On the other hand, the family $\left\{f_{m}, f_{m+1}, \ldots\right\}$ is upper bounded for large m. Hence, by Lemma 3, we find the least upper bound of $\left\{f_{m}, f_{m+1}, \ldots\right\}$ which is denoted by

$$
k_{m}(x)=\bigvee_{n \geqq m} f_{n}(x)=\sup _{n \geqq m} k_{n}(x)
$$

Since the sequence of convex function k_{m} is monotonically decreasing and converges pointwise to f, we have

$$
\lim _{m \rightarrow \infty} k_{m}^{*}(y)=f^{*}(y) \text { for all } y \in \boldsymbol{R}
$$

By Lemma 7,

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} h_{m}^{*}(y)=f_{0}^{*}(y)=f^{*}(y) \text { for } y \in \boldsymbol{R} \text { except at most } \\
& \text { two points of } y \in \boldsymbol{R} .
\end{aligned}
$$

Since $h_{m} \leqq f_{m} \leqq k_{m}$ and $h_{m}^{*} \geqq f_{m}^{*} \geqq k_{m}^{*}$, we have

$$
\lim _{n \rightarrow \infty} f_{n}^{*}(y)=f^{*}(y)
$$

except at most two points of $y \in \boldsymbol{R}$.
Secondly, we assume that $f(x)$ is a constant function i. e. $f(x)=c$ for some real number c.
For every positive number $\varepsilon>0$, and for all positive integer N, by Proposi-
tion 1 ,

$$
\left|f_{n}(x)-f(x)\right|<\varepsilon \text { for }|x| \leqq N
$$

for large n.
If $y \neq 0$, we have

$$
\begin{aligned}
& f_{n}^{*}(y)=\sup _{x \in \boldsymbol{R}}\left\{y x-f_{n}(x)\right\} \geqq \sup _{x \in[-N, N]}\{y x-c-\varepsilon\} \\
& =N|y|-c-\varepsilon
\end{aligned}
$$

It follows that $\lim _{n \rightarrow \infty} f_{n}^{*}(y)=+\infty$ for $y \neq 0$.
On the other hand $f^{*}(y)=+\infty$ for $y \neq 0$. Hence, we have the assertion of Theorem 2 in this case.
Let $f(x)$ is a linear function, say $f(x)=a x+b \quad(a \neq 0)$.
We set

$$
h_{n}(x)=f_{n}(x)-(a x+b)
$$

Then $h_{n}(x) \rightarrow 0$ for all $x \in \boldsymbol{R}$.
Since

$$
\begin{aligned}
& h_{n}^{*}(y)=\sup _{x}\left\{y x-f_{n}(x)+a x+b\right\} \\
& =\sup _{x}\left\{(y+a) x-f_{n}(x)\right\}+b \\
& =f_{n}^{*}(y+a)+b,
\end{aligned}
$$

we have $f_{n}^{*}(y) \rightarrow \infty$ as $n \rightarrow \infty$ for $y \neq a$.
On the other hand,

$$
f^{*}(y)= \begin{cases}b & \text { if } y=a \\ -\infty & \text { if } y \neq a\end{cases}
$$

Hence, we have the assertion of Theorem 2.
q. e. d.

Remark 1 Next example shows that in the case $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ and Int $D(f)=\phi$, Theorem 2 is not true in general.
Let

$$
f_{n}(x)= \begin{cases}n^{2} x & \text { if } x \geq-1 / n \\ -n^{2} x-2 n & \text { if } x \leq-1 / n\end{cases}
$$

Then, $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$
where

$$
f(x)= \begin{cases}0 & \text { if } x=0 \\ +\infty & \text { if } x \neq 0\end{cases}
$$

But,

$$
f_{n}^{*}(y)= \begin{cases}-(1 / n) y+n & \text { if }|y| \leqq n^{2} \\ +\infty & \text { if }|y|>n^{2}\end{cases}
$$

and

$$
f^{*}(y)=0 \text { for all } y \in \boldsymbol{R} .
$$

In this case, $\underset{n \geq m}{\vee} f_{n}=f$ and $\underset{n \geqq m}{\wedge} f_{n}$ does not exists for all positive integer m.
Remark 2 Theorem 2 is true in the case that $f(x)$ is a linear function as is shown in proof. But we don't have the existence of $\wedge_{n \geqq m} f_{n}$ in \boldsymbol{C} for all m in general.

3. Applications

Let Ω be a finite measure space with measure μ and let $P(\Omega)$ be a set of all measurable functions on Ω assuming values in $\boldsymbol{R} \cup\{+\infty\}$. Then $P(\Omega)$ is a convex set in the sppace $U(\Omega)$ of all measurable functions on Ω assuming values in $\boldsymbol{R} \cup\{-\infty\} \cup\{+\infty\}$. Let $S(\Omega)$ be a set of all measurable functions on Ω assuming values in \boldsymbol{R}. We shall identify f and g of $U(\Omega)$ if they differ only on a set of μ-measure zero. In [3], we stated the following Lemma;
Lemma 12 Let F be a convex operator from \boldsymbol{R} into $P(\Omega)$ such that there exists $\boldsymbol{\alpha}_{0} \in \boldsymbol{R}$ with $F\left(\boldsymbol{\alpha}_{0}\right) \in S(\Omega)$. Then, there exist a subset A of Ω of measure zero and a function $F(\boldsymbol{\alpha}, t)$ defined on $\boldsymbol{R} \times \Omega$ such that for each fixed $t \in A, \boldsymbol{R} \ni \boldsymbol{\alpha} \rightarrow F(\boldsymbol{\alpha}, t)$ is a convex function on \boldsymbol{R} and for each fixed $\boldsymbol{\alpha} \in \boldsymbol{R}$, $\Omega \ni t \rightarrow F(\boldsymbol{\alpha}, t)$ is a measurable function on Ω which is identified with $F(\boldsymbol{\alpha})$ as an element of $P(\Omega)$.

We shall consider the average convex function of F. Let us consider the integration function $I(F)(x)$ defined on $x \in \boldsymbol{R}$ with

$$
I(F)(x)=\int_{\Omega} F(x, t) d \mu(t)
$$

if the integral has a sense.
We assume now that $I(F)(x)>-\infty$ for all $x \in \boldsymbol{R}$. Then $I(F)(\boldsymbol{\alpha})$ is a convex function defined on $\alpha \in \boldsymbol{R}$. We shall consider the conjugate function $I(F)^{*}$ of the convex function $I(F)$. Let f and g be convex functions from \boldsymbol{R} to $\boldsymbol{R} \cup\{+\infty\}$. We define the infimal convolution

$$
(f \oplus g)(x)=\inf \left\{f\left(x_{1}\right)+g\left(x_{2}\right) ; x_{1}+x_{2}=x\right\} .
$$

We know the following theorem (see [1] p. 178). Let f_{1}, \ldots, f_{n} be
(convex) functions on \boldsymbol{R}. Then
Theorem 3

$$
\begin{aligned}
& \left(f_{1} \oplus f_{2} \oplus \ldots \oplus f_{n}\right)^{*}=f_{i}^{*}+f_{2}^{*}+\ldots+f_{n}^{*} \\
& \left(f_{1}+f_{2}+\ldots+f_{n}\right)^{*} \leqq f_{1}^{*} \oplus f_{2}^{*} \oplus \ldots \oplus f_{n}^{*} .
\end{aligned}
$$

If $f_{1}, f_{2}, \ldots, f_{n}$ are proper convex functions and if their effective domains contain a common point at which all these functions except possibly one are continuous, then

$$
\left(f_{1}+f_{2}+\ldots+f_{n}\right)^{*}=f_{1}^{*} \oplus f_{2}^{*} \oplus \ldots \oplus f_{n}^{*} .
$$

We shall state some Lemma:
Lemma 13 Let F be a convex operator such that there exist at least two $\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2} \in \boldsymbol{R}$ with $F\left(\boldsymbol{\alpha}_{1}, t\right), F\left(\boldsymbol{\alpha}_{2}, t\right) \in L^{1}(d \mu)$, where $F(\boldsymbol{\alpha}, t)$ is defined in Lemma 12. Then $I(F)$ is a convex function defined on \boldsymbol{R} with values $\boldsymbol{R} \cup$ $\{+\infty\}$ with $\operatorname{Int}(D(I(F))) \neq \phi$. If $[a, b] \subset D(I(F))$, then for every positive number $\varepsilon>0$ there exists a measurable set A with $\mu(A)<\varepsilon$ such that

$$
F(x, t) \text { is bounded on }(x, t) \in[a, b] \times(\Omega \backslash A) .
$$

Proof Since $F\left(\boldsymbol{\alpha}_{1}, \mathrm{t}\right)$ and $F\left(\boldsymbol{\alpha}_{2}, \mathrm{t}\right)$ as functions of $\mathrm{t} \in \Omega$ are elements of $\mathrm{L}^{1}(\mathrm{~d} \mu)$, there exists a measurable set A_{1} with $\mu\left(\mathrm{A}_{1}\right)<\frac{1}{2} \varepsilon$ such that $F\left(\boldsymbol{\alpha}_{1}, \mathrm{t}\right)$ and $F\left(\boldsymbol{\alpha}_{2}, \mathrm{t}\right)$ are bounded for $\mathrm{t} \in \Omega \backslash \mathrm{A}_{1} . \quad$ Set $\alpha_{3}=\frac{\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}}{2}$. Since $F\left(\alpha_{3}, \mathrm{t}\right)$ as a function of $\mathrm{t} \in \Omega$ is also an element of $\mathrm{L}^{1}(\mathrm{~d} \mu)$, there exists a measurable set A_{2} with $\mu\left(\mathrm{A}_{2}\right)<\frac{1}{2} \varepsilon$ such that $F\left(\boldsymbol{\alpha}_{3}, \mathrm{t}\right)$ is bounded for $\mathrm{t} \in \Omega \backslash \mathrm{A}_{2}$.
If $\left|F\left(\boldsymbol{\alpha}_{1}, \mathrm{t}\right)\right|,\left|F\left(\boldsymbol{\alpha}_{2}, \mathrm{t}\right)\right|,\left|F\left(\boldsymbol{\alpha}_{3}, \mathrm{t}\right)\right| \leqq \mathrm{N}$ for some $\mathrm{t} \in \Omega$, then $|F(\boldsymbol{\alpha}, \mathrm{t})| \leqq 3 \mathrm{~N}$ for $\alpha \in\left[\alpha_{1}, \alpha_{2}\right]$ by virtue of convexity of $F(\alpha, \mathrm{t})$.
Hence, $F(\alpha, \mathrm{t})$ is bounded for all $\alpha \in\left[\alpha_{1}, \alpha_{2}\right]$ and for all $\mathrm{t} \in \Omega \backslash \mathrm{A}$ where $\mathrm{A}=$ $\mathrm{A}_{1} \cup \mathrm{~A}_{2}$ with $\boldsymbol{\eta}(\mathrm{A})<\varepsilon$.

Theorem 4 Let F be a convex operator from \boldsymbol{R} into $p(\Omega)$ such that there exist $\boldsymbol{\alpha}_{1}$ and $\boldsymbol{\alpha}_{2}\left(\boldsymbol{\alpha}_{1}<\boldsymbol{\alpha}_{2}\right)$ with $F\left(\boldsymbol{\alpha}_{1}, t\right)$ and $F\left(\boldsymbol{\alpha}_{2}, t\right)$ as functions of $t \in \Omega$ are in $L^{1}(d \mu)$ where $F(x, t)$ is a function of $(x, t) \in \boldsymbol{R} \times \Omega$ defined in Lemma 12. Then, there exists a sequence of $G_{n}(x, t)$ of form:

$$
G_{n}(x)=\sum_{k=1}^{k(n)} \lambda_{k} F\left(x, t_{k}\right)
$$

where there exists a decomposition of Ω of measurable sets $\left\{A_{k}\right\}$ with $\lambda_{k}=$
$\mu\left(A_{k}\right), t_{k} \in A_{k}$ such that

$$
\lim _{n \rightarrow \infty} G_{n}(x)=I(F)(x)
$$

where $I(F)$ is the average convex function of $F(x, t)$. Furthermore,

$$
\lim _{n \rightarrow \infty} G_{n}^{*}(y)=I(F)^{*}(y)
$$

except at most two points of $y \in \boldsymbol{R}, i . e$.

$$
\lim _{n \rightarrow \infty} \sum_{k-1}^{k(n)} \oplus\left(\lambda_{k} F\left(\cdot, t_{k}\right)\right)^{*}(y)=I(F)^{*}(y)
$$

except at most two points of $y \in \boldsymbol{R}$.
Proof If a closed interval $[a, b] \subset \operatorname{Int}(D(I(F)))$, then by Lemma 13 for every positive integer n there exists a measurable subset A of Ω with $\mu(A)<$ $1 / n$ such that $F(x, t)$ is bounded for all $x \in[a, b]$ and $t \equiv A$.
Hence, we can find

$$
G_{n}(x)=\sum_{k=1} \lambda_{k} F\left(x, t_{k}\right)
$$

such that

$$
\lim _{n \rightarrow \infty} G_{n}(x)=\int_{\Omega} F(x, t) d \mu(t)
$$

and $F\left(x, t_{k}\right)$ is always finite for all $x \in D(I(F))$.
Hence, the assertion of Theorem 4 is an easy consequence of Theorem 2.

References

[1] A. D. Ioffe and V. M. Tihomirov: Theory of Extremal Problem, North-Holland Pub. Company (1978)
[2] S. Koshi and N. Komuro: A generalization of the Fenchel-Moreau theorem, Proc. Japan Acad., 59(1983) 178-181
[3] S. Koshi, H. C. Lai and N. Komuro: Convex programming on spaces of measurable functions, Hokkaido Math. J., 14(1985) 75-84
[4] R. T. Rockafellar: Network flows and monotropic optimization, John Wiley (1984)
[5] J. V. Tiel: Convex analysis, John Wiley (1984)
[6] J. Zowe: A duality theorem for a convex programing problem in order complete vector lattices, J. Math. Anal. Appl., 50(1975) 273-287

