CONVERGENCE OF CONVEX FUNCTIONS AND DUALITY

By Shozo Koshi (Received June 20, 1985)

Introduction

Let f_n (n=1, 2, ...) be a sequence of convex functions which converges pointwise to a proper function f which is convex as a consequence.

In the case that sequence of convex functions is monotonically decreasing, then the sequence of conjugate functions f_n^* of f_n converges to f^* (the conjugate function of f). But, we don't have the convergence of the sequence of conjugate functions f_n^* in general case. In this note, we shall discuss this problem.

Although we can consider this problem generally for convex functions defined on any finite-dimensional vector spaces, the fundamental tools of proof of the theorems are almost same in the case of functions defined on 1-dimensional space \mathbf{R} i. e. (the space of real numbers). So, we only deal with cases of convex functions defined on \mathbf{R} in this paper.

Our results show that if a sequence of convex functions $f_n(x)$ converges pointwise to a proper convex function f with domain of non-void interior, then the sequence of conjugate functions $f_n^*(y)$ of f_n converges to the conjugate function $f^*(y)$ of f except an exceptional set of y which has at most two point.

In this note, we shall show the fundamental theorem (Theorem 2) and applications of this theorem.

1. The space of convex functions

A function $f: \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ is called convex if for each $x, y, a, b \in \mathbb{R}$ with $a, b \in [0, 1]$ and a+b=1

$$f(ax+by) \leq af(x)+bf(y).$$

The effective domain of f is defined as $D(f) = \{x; f(x) < +\infty\}$. A convex function f is called *proper* if the effective domain D(f) of f is not empty. The conjugate function of f is defined as follows:

$$f^*(y) = \sup_{x \in \mathbf{R}} \{yx - f(x)\}$$
 for $y \in \mathbf{R}$.

Generally, the conjugate function f^* are defined on the dual space X^* if f is defined on a locally convex topological vector space X. But, in Euclidean spaces X or Hilbert spaces the dual X^* of X is isomorphic to X. So, conjugate functions are defined on the same space as original space.

Let *C* be a space of all proper convex functions defined on *R*. We shall discuss the structures of *C* as an ordered set. For *f*, $g \in C$, $f \leq g$ is by definition iff

$$f(x) \leq g(x)$$
 for all $x \in \mathbf{R}$.

Note that C is a semi-ordered set in this order relation.

LEMMA 1 Let $\{f_{\lambda}\}_{\lambda \in \Lambda}$ be a collection of functions in C. Then, $f(x) = \sup f_{\lambda}(x) \in C$ iff there exists x_0 with $\sup f_{\lambda}(x_0) < +\infty$.

Proof of Lemma is very easy, so it is omitted.

A collection $\{f_{\lambda}\}_{\lambda \in \Lambda}$ of *C* is called lower-directed if for any finite collection $f_{\lambda_1}, \ldots, f_{\lambda_n}$ from $\{f_{\lambda}\}_{\lambda \in \Lambda}$, there exists f_{λ} with $f_{\lambda_k} \ge f_{\lambda}$ for $k = 1, 2, \ldots, n$. The set of all interior points in a set *A* is denoted by Int *A*.

LEMMA 2 Let $\{f_{\lambda}\}_{\lambda \in \Lambda}$ be a lower-directed collection of functions in C, and let $f(x) = \inf_{\lambda} f_{\lambda}(x)$. Suppose $\operatorname{Int}\{x : f(x) < +\infty\} \neq \phi$. Then $f(x) \in C$ iff there exists $x_0 \in \operatorname{Int}\{x : f(x) < +\infty\}$ with $\inf_{\lambda} f_{\lambda}(x_0) > -\infty$.

PROOF $f(x) = \inf_{\lambda} f_{\lambda}(x_0)$ is a convex function of $x \in \mathbb{R}$ since $\{f_{\lambda}\}_{\lambda \in \Lambda}$ is lower directed. Hence, $f(x) = -\infty$ for all $x \in \operatorname{Int}\{x : f(x) < +\infty\}$ or $f(x) > -\infty$ for all $x \in \mathbb{R}$ by virtue of convexity of f. Since there exists x_0 with $\inf_{x \in \mathbb{R}} f_{\lambda}(x_0) > -\infty$, we have Lemma 2.

We must remark that C is not a lattice with the order as a simple example show below.

For each *f*, $g \in C$, we shall denote by

 $f \lor g$

the least upper bound in *C* for *f* and $g \in C$ by the order of *C*, and also we shall denote

 $f \wedge g$

the greatest lower bound in *C* for *f* and $g \in C$ by the order of *C*. It is easy to see that $f \lor g$ exists in *C* iff $D(f) \cap D(g) \neq \phi$. For example, if we define *f* and *g* as follows: $f(x) = \begin{cases} 0 & x = 0 \\ +\infty & \text{otherwise} \end{cases} \text{ and } g(x) = \begin{cases} 0 & x = 1 \\ +\infty & \text{otherwise,} \end{cases}$

there is no $f \lor g$ in C.

If we set

$$f(x) = x$$
 and $g(x) = -x$,

then we can not find the existence of $f \wedge g$ in *C*. So, even if $D(f) = D(g) = \mathbf{R}$, there exists an example $f \wedge g$ does not exist.

For a collection $\{f_{\lambda}\}_{\lambda \in \Lambda} \subset C$, we denote

$$\bigvee f_{i}$$

if there exists the least upper bound of the collection $\{f_{\lambda}\}_{\lambda \in \Lambda}$ by the order of *C*. Similarly, we denote

 $\bigwedge_{\lambda} f_{\lambda}$

if there exists the greatest lower bound of the collection $\{f_{\lambda}\}_{\lambda \in \Lambda}$ by the order of *C*.

LEMMA 3 If the collection $\{f_{\lambda}\}_{\lambda}\}_{\lambda \in \Lambda} \subset C$ is upper bounded (lower bounded) i. e. there exists an $f \in C$ with $f_{\lambda} \leq f$ ($f_{\lambda} \geq f$) for all $\lambda \in \Lambda$, then $\bigvee_{\lambda \in \Lambda} f_{\lambda}$ ($\bigwedge f_{\lambda}$) exists in C. Furthermore

$$(\bigvee_{\lambda \in \Lambda} f_{\lambda})(x) = \sup_{\lambda \in \Lambda} f_{\lambda}(x)$$

PROOF Since $g(x) = \sup_{\lambda \in \Lambda} f_{\lambda}(x) \leq f(x)$ for all $x \in \mathbb{R}$ and g(x) is a convex function, we have $g \in \mathbb{C}$. It is easy to see that g is the lower upper bound for the collection $\{f_{\lambda}\}_{\lambda \in \Lambda} \subset \mathbb{C}$. For $\bigwedge_{\lambda \in \Lambda} f_{\lambda}$, we shall consider the set A of elements g of C for which $g \leq f_{\lambda}$ for all $\lambda \in \Lambda$. Then, $\bigwedge_{\lambda \in \Lambda} f_{\lambda} = \bigvee_{\lambda \in A} g$. Note that we don't have the relation $\bigwedge_{\lambda \in \Lambda} f_{\lambda}(x) = \inf_{\lambda \in \Lambda} f_{\lambda}(x)$ for some collection $\{f_{\lambda}\}_{\lambda \in \Lambda}$.

LEMMA 4 Let $\{f_n\}$ be a sequence of convex functions and converges pointwise to f. Then f is an element of C iff there exist $x_0, x_1, x_2 \in \mathbb{R}$ with $x_1 < x_0 < x_2$ and c, $d \in \mathbb{R}$ with $c \leq f_n(x_0) \leq d$ and $c \leq f_n(x_1)$, $f_n(x_2)$ for large n. PROOF.

$$f(ax+by) = \lim_{n \to \infty} f_n(ax+by)$$
$$\leq a \lim_{n \to \infty} f_n(x) + b \lim_{n \to \infty} f_n(x) = af(x) + bf(x)$$

for a, $b \in [0, 1]$ with a+b=1 and $x \in \mathbb{R}$. Hence, $f \in \mathbb{C}$ iff there exists x_0 with $f(x_0) < +\infty$ and $f(x) > -\infty$ for all x. This means that there exists c and $d \in \mathbb{C}$ with

$$c \leq f_n(x_0) \leq d$$
 for large *n*.

Next example show shat exen if there exist x_0 and $x_1 \in \mathbb{R}$ $(x_0 < x_1)$ with $f_n(x_0) = f_n(x_1)$, f does not necessary belonging to C.

$$f_n(x) = \begin{cases} nx - n & \text{if } x > 0 \\ -nx - n & \text{if } x \le 0 \end{cases}$$

LEMMA 5 Let f and $f_{\lambda}(\lambda \in \Lambda)$ be elements of C. Then $f \wedge (\bigvee_{\lambda \in \Lambda} f) = \bigvee_{\lambda \in \Lambda} (f \wedge f_{\lambda})$

and

$$f \lor (\bigwedge_{\lambda \in \Lambda} f_{\lambda}) = \bigwedge_{\lambda \in \Lambda} (f \lor f_{\lambda})$$

if right or left side of above equalities exist in C.

Proof of this Lemma is quite easy, so that it is omitted.

Let X be a locally convex space and X^* be the dual space of X i. e. X^* is the set of all continuous linear functional of X. In the case that X is **R**, then **R**^{*} is isomorphic to **R**. We have already defined conjugate function f^* of convex function f. f^* is a convex function defined on X^* . Since $X \subset X^{**}$ we can define a convex function on X as follows:

$$f^{**}(x) = \sup\{\langle x^*, x \rangle - f^*(x^*)\}$$
 for $x \in X$.

From now on, we shall restrict ourselves X is \mathbf{R} . We shall state here the Fenchel-Moreau's theorem.

THEOREM 1 Let f be a convex function belonging to C. $f(x)=f^{**}(x)$ for $x \in \mathbf{R}$ iff f is lower-semicontinuous at $x \in \mathbf{R}$. The set $\{x; f(x) \neq f^{**}(x)\}$ is at most two point.

LEMMA 6
i)
$$f \ge g$$
 implies $f^* \le g^*$
ii) $f \ge f^{**}$
iii) $(\bigwedge_{\lambda} f_{\lambda})^*(y) = (\bigvee_{\lambda} f_{\lambda}^*)(y)$ for all $y \in \mathbb{R}^* \cong \mathbb{R}$
iv) $(\bigvee_{\lambda} f_{\lambda})^*(y) \le (\bigwedge_{\lambda} f_{\lambda}^*)(y)$ for all $y \in \mathbb{R}^* \cong \mathbb{R}$

P_{ROOF} It is known that f is proper convex iff f^* is proper convex (see [5] Chap. 6). i) and ii) are deduced easily from the definition and for

iii) we put

$$g(x) = (\bigwedge_{\lambda} f_{\lambda})(x).$$

Then $g^*(y) \ge (\bigvee_{\lambda} f^*_{\lambda})(y)$ for all $y \in \mathbf{R}$ by i) since $g(x) \le f_{\lambda}(x)$ for $x \in \mathbf{R}$ and $\lambda \in \Lambda$. Let h(x) be an element of C such that

$$h(y) \leq f_{\lambda}^{*}(y)$$
 for all $y \in \mathbf{R}$ and $\lambda \in \Lambda$.

Then, $h^*(x) \leq f^{**}(x) \leq f_{\lambda}(x)$ for all $x \in \mathbb{R}$ and $\lambda \in \Lambda$. Hence,

$$h^* \leq g$$
 and so $h \geq h^{**} \geq g^*$

by virtue of i) and ii). This means that

$$(\bigwedge_{\lambda} f_{\lambda})^* = g^* = \bigvee_{\lambda} f_{\lambda}^*.$$

The proof of iv) is easy, so it is omitted. Next example shows that the equality of iv) does not hold in general. Let

$$f_n(x) = \begin{cases} -x & (x \le 0) \\ -\frac{1}{n}x & (0 \le x \le n) \text{ and } f(x) = \begin{cases} -x & (x < 0) \\ 0 & (x \ge 0). \\ -1 & (x \ge n) \end{cases}$$

Then, $f_n \uparrow f$ and $f = \bigvee_n f_n$. But, $\bigwedge_n f_n^*$ is not f^* in this case, since

 $f_n^*(0) = 1$ and $f^*(0) = 0$.

But, we have the following lemma.

LEMMA 7 Let a sequence of $f_n \in C$ be non-decreasing and convergent pointwise to $f \in C$. Then $\lim_{n \to \infty} f_n^*(y) = f^*(y)$ except at most two points of $y \in \mathbf{R}$.

PROOF Since $f_n^*(y) \ge f_{n+1}^*(y)$ for $y \in \mathbb{R}$, for the function $g(y) = \lim_{n \to \infty} f_n^*(y)$, we have

$$\sup f_n^{**}(x) = g^*(x) \text{ for all } x \in \mathbf{R}$$

by iii) of Lemma 6.

Since $f_n^{**}(x) = f_n(x)$ except at most two point of x, $f_n(x) \rightarrow g^*(x)$ except at

most countable point of $x \in \mathbf{R}$. Hence,

 $f(x) = g^*(x)$ except at most a countable set of points in **R**.

Since f and g^* are convex functions, f and g^* are continuous except at most two point. We know that f is continuous on Int D(f): the interior of its effective domain D(f). Hence, Int D(f)=Int $D(g^*)$ i. e. f(x) and $g^*(x)$ are equal except the boundary of D(f) and $D(g^*)$. In a convex subset I of \mathbf{R} , the boundary of I consists of at most two point. Hence, $f(x)=g^*(x)$ except two point of $x \in \mathbf{R}$.

LEMMA 8 Let f be a convex function which is finite-valued on a closed interval [a, b] and g(x) be a linear function (affine function). If (f(a) - g(a))(f(b) - g(b)) < 0, then f(x) = g(x) for some exactly one point $x \in \mathbf{R}$.

PROOF Since the function h(x) = f(x) - g(x) is a convex function with h(a)h(b) < 0 and hence continuous on the closed interval [a, b], the equation h(x) = 0 has a unique solution x in \mathbf{R} . Hence we have the assertion.

PROPOSITION 1 Let $f_n \in C$ and $\lim_{n \to \infty} f_n(x) = f(x)$ and a closed interval $[a, b] \subset Int D(f)$. Then, f_n is uniformly convergent to f in [a, b].

PROOF If the assertion of Proposition 1 is false, then there exist a positive number $\epsilon > 0$ and $a_n \in [a, b]$ such that

 $|f(a_n) - f_n(a_n)| \ge \varepsilon > 0$

without loss of generality.

Since the interval [a, b] is compact, we can assume that the sequence a_n converges to some number $a_0 \in [a, b]$.

Let $f(a_n) \ge f_n(a_n) + \varepsilon$ and $a_0 < a_n$ for infinitely many *n*, and let choose c_1 with $c_1 \in \text{Int } D(f)$ and $a_0 < c_1$. Now, we consider the straight line *l* from the point $(c_1, f(c_1) + \varepsilon)$ to the point $(a_0, f(a_0) - \varepsilon)$ is the plane. Then, this straight line *l* meets with the graph of the convex function y = f(x) at only one point by Lemma 8. This point will be denoted by $(c_2, f(c_2))$ with $a_0 < c_2 < c_1$.

Since $f_n(c_1) < f(c_1) + \varepsilon$ and $f_n(a_n) \le f(a_n) - \varepsilon$ for large *n* by assumption, the graph of the function $y = f_n(x) (x \in [a_n, c_1])$ is below under the straight line *l* for large *n*. Hence, if we take $c_3 = (a_0 + c_2)/2$, we find a positive number d > 0 with

$$f_n(c_3) \leq \frac{f(a_0) + f(c_2) - \varepsilon}{2} = f(c_3) - d$$

for large *n*. But this is a contradiction to

$$\lim_{n\to\infty}f_n(c_3)=f(c_3).$$

We shall consider the case that

$$f(a_n) \ge f_n(a_n) + \varepsilon$$

and $a_0 > a_n$ for infinitely many *n*. We take an arbitrary number $c_1 < a_0$ so that $c_1 \in \text{Int } D(f)$. The straight line from the point $(a_0, f(a_0) - \varepsilon)$ to the point $(c_1, f(c_1) + \varepsilon)$ meet at only one point $(c_2, f(c_2))$ with the graph of the convex function y = f(x) in the plane. By the same discussion as written above, for $c_3 = (a_0 + c_2)/2$, we have

$$f_n(c_3) \leq f(c_3) - \varepsilon/2$$
 for large *n*.

But this is also a contradiction. Next, if we have

$$f(a_n) \leq f_n(a_n) - \varepsilon$$
 and $a_n > a_0$

for infinitely many *n*, we have hence

$$f_n(c_1) \rightarrow \infty$$
 for large *n* and for $c_1 \in \text{Int } D(f)$ with $c_1 > a_0$

But, this is a contradiction. If we have

 $f(a_n) \leq f_n(a_n) - \varepsilon$ and $a_n < a_0$

for infinitely many n, we have also

 $f_n(c_1) \rightarrow \infty$ for large *n* and for $c_1 \in \text{Int } D(f)$ with $a_0 > c_1$.

This is also a contradiction. Hence, we have the assertion of Proposition 1.

The sequence of functions f_n (n=1, 2, ...) is called uniformly Lipschitzian in the closed interval [a, b] if there exists K > 0 and positive integer N such that

$$|f_n(x) - f_n(y)| \leq K |x - y|$$

whenever $n \ge N$ and $x, y \in [a, b]$.

PROPOSITION 2 Let f_n $(n=1, 2, ...) \in C$ and $\lim_{n \to \infty} f_n(x) = f(x)$ and the closed interval $[a, b] \subset Int D(f)$. Then, the sequence of functions f_n is

S. Koshi

uniformly Lipschnitzian in the closed interval [a, b].

PROOF If there exist positive numbers $\delta > 0$ and K > 0 such that $|x-y| \le \delta$ implies $|f_n(x) - f_n(y)| \le K|x-y|$ for sufficient large *n*, then we have

$$|f_n(x) - f_n(y)| \le K |x - y|$$
 for $x, y \in [a, b]$.

Assume now that $\{f_n\}$ is not uniformly Lipschitzian in the interval $[a, b] \subset$ Int D(f). Then, for each natural number *n*, there exist a sequence of increasing numbers $K_n \uparrow \infty$ and increasing positive integers

$$m_1 < m_2 < \ldots < m_n < \ldots$$

with

$$|f_{m_n}(X_n) - f_{m_n}(Y_n)| > K_n |x_n - y_n|$$

and

ł

$$|x_n - y_n| \leq 1/n$$

for some x_n , $y_n \in [a, b]$. Since the closed interval [a, b] is compact, we can assume that the sequence of points x_n converges to some real number x_0 so that

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = x_0 \in [a, b].$$

Since $[a, b] \subset \text{Int } D(f)$, there exist real numbers a_1 and a_2 with $a_1 < x_0 < a_2$ and $a_1, a_2 \in \text{Int } D(f)$. By the former proposition 1, we know that the sequence of convex functions f_n converges uniformly to f on the closed interval $[a_1, a_2]$. Hence, we can assume that

 $f(x)+1 \ge f_n(x) \ge f(x)-1$ for $x \in [a_1, a_2]$.

Since the points $(x_n, f_{m_n}(x_n))$ and $(Y_n, f_{m_n}(Y_n))$ in the plane are between two graphs of functions y = f(x) + 1 and y = f(x) - 1 in the plane, if x_n and y_n are very close to x_0 , by virtue of convexity of functions f_{m_n} , we must have $f_{m_n}(x_n)$ or $f_{m_n}(y_n)$ converges to $+\infty$ for large *n*. But, this is a contradiction.

COROLLARY 1 Every convex function f is Lipschitzian in every interval $[a, b] \subset Int D(f)$; i. e. there exists K > 0 such that

$$|f(x)-f(y)| \leq K|x-y|$$
 for $x, y \in [a, b]$.

LEMMA 9 Let f_n (n=1, 2, ...) be a sequence of convex functions on **R**

and $\lim_{n\to\infty} f_n(x) = f(x)$ with $f \in \mathbb{C}$. If f is not a linear function (affine function) and $x_o \in Int D(f)$, then for every $\varepsilon > 0$ there exists a convex function g(x) such that

$$g(x_0) = f(x_0) - \varepsilon$$

and there exist n with

 $f_m(x) \ge g(x)$ for all $m \ge n$ and $x \in \mathbf{R}$.

PROOF (1) We assume first $f(x_0) = \inf f(x)$ and the function y = f(x) is not constant on any interval I where $I = [a, \infty)$ or $(-\infty, b]$ for some $a, b \in \mathbf{R}$.

Then, there exist a_1 and $a_2 \in \mathbf{R}$ such that $a_1 \leq a_2$ and

 $f(a) = f(x_0)$ for $a_1 \leq a \leq a_2$

and

$$f(a) > f(x_0)$$
 for $a < a_1$ or $a > a_2$.

Hence, we can find $b_1 < a_1$, $a_2 < b_2$ and $\varepsilon > 0$ with

 $f(b) > f(x_0) + \varepsilon$ for $b < b_1$ or $b > b_2$.

Define a constant function g with

 $g(\mathbf{x}) = f(\mathbf{x}_0) - \boldsymbol{\varepsilon}.$

Since f_n is uniformly convergent to f in $[b_1, b_2]$, we have

 $f(x) + \varepsilon/2 \ge f_n(x) \ge f(x) - \varepsilon/2$ for $x \in [b_1, b_2]$ and for large *n*.

If there exists $x_n \in [b_1, b_2]$ with $f_n(x_n) \leq f(x_0) - \varepsilon$ for some *n*, by virtue of convexity of f_n , we have

$$f_n(b_1) \leq f(x_0) + \varepsilon/2$$
 or $f_n(b_2) \leq f(x_0) + \varepsilon/2$.

Hence, we know that the number of such $x_n \in [b_1, b_2]$ is finite. That is, the constant function $g(x) = f(x_0) - \varepsilon$ has desired properties.

(2) Let $f(x) < +\infty$ for all $x \in \mathbb{R}$ and $f(x_0) = \inf f(x)$. Suppose that f is not constant function but constant on some interval I where I is $[b, \infty)$ or $(-\infty, b]$ for some $b \in \mathbb{R}$. If f(x) is constant on some interval $[b, \infty)$, then there exists $a_0 \le x_0$ with $f(a) > f(a_0)$ for $a < a_0$ and $f(x_0) = f(a_0)$. Consider the eqigraph of f i. e. $EP(f) = \{(x, y); y \ge f(x)\}$ in the plane and the point $(x_0, f(x_0) - \varepsilon/2) \in EP(f)$.

Since EP(f) is convex in the plane and $(x_0, f(x_0) - \varepsilon/2) \in EP(f)$, by using

the Hahn-Banach theorem, there exists a linear function (affine function) $g_1(x) = ax + b$ $(a \neq 0)$ which is through the point $(x_0, f(x_0) - \varepsilon/2)$ in the plane and places EP(f) in upper side i. e.

$$g_1(x) \leq f(x)$$
 for all $x \in \mathbb{R}$ and satisfies the condition
 $\lim_{x \to \pm \infty} (f(x) - g_1(x)) = +\infty$

Then, the linear function g defined by $g(x) = g_1(x) - (1/2)\varepsilon$ has the desired properties.

(3) We assume $f(x) < +\infty$ for all $x \in \mathbb{R}$ and $f(x_0) > \inf f(x)$ and f is not linear function. Consider the epigraph of $f : EP(f) = \{(x, y); y \ge f(x)\}$ in the plane. Since EP(f) is convex, there exists some line l therough the point $(x_0, f(x_0))$ by which EP(f) is placed in upper side. Let l be represented as the function h(x) = ax + b. Since $f(x_0) > \inf f(x)$, we have $a \neq 0$.

Considering the convex function $f_1(x) = f(x) - h(x)$ instead of f, we have $f_1(x_0) = \inf f_1(x)$ and $\lim_{n \to \infty} (f_n - h)(x) = f_1(x)$. Applying the former results (1) and (2) to this case, for each $\varepsilon > 0$ we have a convex function g_1 with $g_1(x_0) = f_1(x_0) - \varepsilon$ and there exists n with $f_m(x) - h(x) \ge g_1(x)$ for all integer $m \ge n$ and for all $x \in \mathbf{R}$.

Hence, we have the desired convex function $g(x) = g_1(x) + h(x)$.

(4) We shall consider the case that $D(f) = \{x; f(x) < +\infty\} \neq \mathbb{R}, x_0 \in$ Int D(f) and $f(x_0) = \inf f(x)$. Let a_0 be a boundary point of D(f) in \mathbb{R} i. e. $a_0 \in D(f)^- \cap D(f)^c)^-$. We can choose the point a_0 with $x_t < a_0$ and also some point $b_0 \in$ Int D(f) with $b_0 < x_0$ since x_0 since $x_0 \in$ Int D(f).

Consider the line *l* through the point $(b_0, f(b_0) + \varepsilon)$ and point $(a_0, f(X_0) - \varepsilon)$ in the plane. This line *l* will meet with the line of a constant function $y = f(x_0) - \varepsilon/2$ at the point $(a, f(x_0) - \varepsilon/2)$ in the plane for some real number a with $x_0 < a < a_0$. Since $[b_0, a] \subset \text{Int } D(f)$, f_n converges uniformly to f on $[b_0, a]$ by proposition 1.

Suppose that there exist infinitely many *n* and $x_n \in [a, a_0]$ with $f_n((x) \leq f(x_0) - \epsilon$. Then,

$$f_n(a) \leq f(a) - \varepsilon/2$$

for infinitely many n by convexity of functions f_n . But, this is a contradiction to

$$\lim_{n\to\infty}f_n(a)=f(a).$$

Since we can prove also

 $f_n(x) \geq f(x_0) - \varepsilon$

For all $x \in [b_0, a_0]^c$ and for large *n*, the function *g* defined by

 $g(x) = f(x_0) - \epsilon$ (constant function)

has the desired property on $[b_0, a_0]$.

(5) We shall consider the case that $x_0 \in \text{Int } D(f)$ and $f(x_0) > \inf f(x)$. Since $x_0 \in \text{Int } D(f)$, we can construct the line l in the plane such that l is through the point $(x_0, f(x_0))$ and EP(f) is placed in upper side of l. l will be defined by the function h(x) = cx + d $(c \neq 0)$. The convex function f(x) - h(x) has the same property as the function in (4). By (4), we can easily define a desired function g.

We shall state the following two lemmas without proof, since proofs are quite similar to the proof of Lemma 9.

LEMMA 10 Let f_n (n=1, 2, ...) be a sequence of convex functions on \mathbb{R} and $\lim_{n\to\infty} f_n(x) = f(x)$ with $f \in \mathbb{C}$. If $x_0 \in Int D(f)^c$, then for every positive number K there exists a convex function g(x) such that

$$g(x_0) \ge K$$

and there exists a natural number n_0 with

 $f_n(x) \ge g(x)$

for all $n \ge n_0$ and $x \in \mathbf{R}$.

LEMMA 11 Let f_n (n=1, 2, ...) be a sequence of convex functions on \mathbb{R} and $\lim_{n\to\infty} f_n(x) = f(x)$ with $f \in \mathbb{C}$ and $\operatorname{Int} D(f) \neq \phi$. If $x_0 \in D(f)^- \cap (D(f)^c)^-$, then for every positive number $\varepsilon > 0$, there exists a convex function g(x) such that

 $g(x_0) = f^{**}(x_0) - \varepsilon$

and there exists a natural number n_0 with

 $f_n(x) \ge g(x)$

for all $n \ge n_0$ and $x \in \mathbf{R}$.

2. Main theorem

Now, we shall state the main theorem :

THEOREM 2 Let f_n (n=1, 2, ...) be a sequence of convex functions on **R**

S. Koshi

and $\lim_{n\to\infty} f_n(x) = f(x)$ with $f \in \mathbb{C}$. If Int $D(f) \neq \phi$, then the sequence of conjugate functions f_n^* of f_n converges pointwise to the conjugate function f^* of f except at most two points of \mathbb{R} .

PROOF At first we assume that f is not a linear (affine) function. By Lemma 9, the set of convex functions $\{f_n; n \ge m\}$ of C is lower bounded for large m. By Lemma 3, we find the greatest lower bound of the family $\{f_m, f_{m+1}, \ldots\}$ in C which is denoted by $h_m = \bigwedge_{n \ge m} f_n \in C$ for large m. By definition

$$h_m \leq h_{m+1} \leq \ldots \leq f.$$

By Lemma 9 again and Lemma 11, we find that for $x \in Int D(f)$,

$$f^{**}(x) \leq \lim_{m \to \infty} h_m(x) = f_0(x) \leq f(x).$$

By the Fenchel's duality theorem, f(x) differs from $f^{**}(x)$ only at the exceptional set which consists at most two points. Hence

 $f_0(x) = f(x)$ except at most two points of $x \in \mathbf{R}$.

On the other hand, the family $\{f_m, f_{m+1}, \ldots\}$ is upper bounded for large *m*. Hence, by Lemma 3, we find the least upper bound of $\{f_m, f_{m+1}, \ldots\}$ which is denoted by

$$k_m(x) = \bigvee_{n \ge m} f_n(x) = \sup_{n \ge m} k_n(x).$$

Since the sequence of convex function k_m is monotonically decreasing and converges pointwise to f, we have

$$\lim_{m\to\infty} k_m^*(y) = f^*(y) \text{ for all } y \in \mathbf{R}.$$

By Lemma 7,

$$\lim_{m \to \infty} h_m^*(y) = f_0^*(y) = f^*(y) \text{ for } y \in \mathbf{R} \text{ except at most}$$

two points of $y \in \mathbf{R}$.

Since $h_m \leq f_m \leq k_m$ and $h_m^* \geq f_m^* \geq k_m^*$, we have

$$\lim_{n\to\infty} f_n^*(y) = f^*(y)$$

except at most two points of $y \in \mathbf{R}$.

Secondly, we assume that f(x) is a constant function i. e. f(x) = c for some real number c.

For every positive number $\varepsilon > 0$, and for all positive integer N, by Proposi-

410

tion 1,

$$|f_n(x) - f(x)| < \varepsilon$$
 for $|x| \le N$

for large *n*. If $y \neq 0$, we have

$$f_n^*(y) = \sup_{x \in \mathbf{R}} \{yx - f_n(x)\} \ge \sup_{x \in [-N, N]} \{yx - c - \varepsilon\}$$
$$= N |y| - c - \varepsilon.$$

It follows that $\lim_{n \to \infty} f_n^*(y) = +\infty$ for $y \neq 0$.

On the other hand $f^*(y) = +\infty$ for $y \neq 0$. Hence, we have the assertion of Theorem 2 in this case.

Let f(x) is a linear function, say f(x) = ax + b $(a \neq 0)$. We set

$$h_n(x) = f_n(x) - (ax+b).$$

Then $h_n(x) \rightarrow 0$ for all $x \in \mathbb{R}$. Since

$$h_{n}^{*}(y) = \sup_{x} \{yx - f_{n}(x) + ax + b\}$$

=
$$\sup_{x} \{(y + a)x - f_{n}(x)\} + b$$

=
$$f_{n}^{*}(y + a) + b,$$

we have $f_n^*(y) \rightarrow \infty$ as $n \rightarrow \infty$ for $y \neq a$. On the other hand,

$$f^*(y) = \begin{cases} b & \text{if } y = a \\ -\infty & \text{if } y \neq a \end{cases}$$

Hence, we have the assertion of Theorem 2.

REMARK 1 Next example shows that in the case $\lim_{n\to\infty} f_n(x) = f(x)$ and Int $D(f) = \phi$, Theorem 2 is not true in general. Let

$$f_n(x) = \begin{cases} n^2 x & \text{if } x \ge -1/n \\ -n^2 x - 2n & \text{if } x \le -1/n. \end{cases}$$

Then, $\lim_{n \to \infty} f_n(x) = f(x)$ where

$$f(x) = \begin{cases} 0 & \text{if } x = 0 \\ +\infty & \text{if } x \neq 0 \end{cases}$$

q. e. d.

S. Koshi

But,

$$f_n^*(y) = \begin{cases} -(1/n)y + n & \text{if } |y| \le n^2 \\ +\infty & \text{if } |y| > n^2 \end{cases}$$

and

 $f^*(y) = 0$ for all $y \in \mathbf{R}$.

In this case, $\bigvee_{n \ge m} f_n = f$ and $\bigwedge_{n \ge m} f_n$ does not exists for all positive integer *m*.

REMARK 2 Theorem 2 is true in the case that f(x) is a linear function as is shown in proof. But we don't have the existence of $\bigwedge_{n \ge m} f_n$ in C for all m in general.

3. Applications

Let Ω be a finite measure space with measure μ and let $P(\Omega)$ be a set of all measurable functions on Ω assuming values in $\mathbf{R} \cup \{+\infty\}$. Then $P(\Omega)$ is a convex set in the sppace $U(\Omega)$ of all measurable functions on Ω assuming values in $\mathbf{R} \cup \{-\infty\} \cup \{+\infty\}$. Let $S(\Omega)$ be a set of all measurable functions on Ω assuming values in \mathbf{R} . We shall identify f and g of $U(\Omega)$ if they differ only on a set of μ -measure zero. In [3], we stated the following Lemma;

LEMMA 12 Let F be a convex operator from \mathbf{R} into $P(\Omega)$ such that there exists $\alpha_0 \in \mathbf{R}$ with $F(\alpha_0) \in S(\Omega)$. Then, there exist a subset A of Ω of measure zero and a function $F(\alpha, t)$ defined on $\mathbf{R} \times \Omega$ such that for each fixed $t \in A, \mathbf{R} \ni \alpha \rightarrow F(\alpha, t)$ is a convex function on \mathbf{R} and for each fixed $\alpha \in \mathbf{R}$, $\Omega \ni t \rightarrow F(\alpha, t)$ is a measurable function on Ω which is identified with $F(\alpha)$ as an element of $P(\Omega)$.

We shall consider the average convex function of F. Let us consider the integration function I(F)(x) defined on $x \in \mathbb{R}$ with

$$I(F)(x) = \int_{\Omega} F(x, t) d\mu(t)$$

if the integral has a sense.

We assume now that $I(F)(x) > -\infty$ for all $x \in \mathbb{R}$. Then $I(F)(\alpha)$ is a convex function defined on $\alpha \in \mathbb{R}$. We shall consider the conjugate function $I(F)^*$ of the convex function I(F). Let f and g be convex functions from \mathbb{R} to $\mathbb{R} \cup \{+\infty\}$. We define the infimal convolution

$$(f \oplus g)(x) = \inf\{f(x_1) + g(x_2); x_1 + x_2 = x\}.$$

We know the following theorem (see [1] p. 178). Let f_1, \ldots, f_n be

412

(convex) functions on **R**. Then

THEOREM 3

$$(f_1 \oplus f_2 \oplus \ldots \oplus f_n)^* = f_1^* + f_2^* + \ldots + f_n^*$$

$$(f_1 + f_2 + \ldots + f_n)^* \leq f_1^* \oplus f_2^* \oplus \ldots \oplus f_n^*.$$

If f_1, f_2, \ldots, f_n are proper convex functions and if their effective domains contain a common point at which all these functions except possibly one are continuous, then

$$(f_1+f_2+\ldots+f_n)^*=f_1^*\oplus f_2^*\oplus\ldots\oplus f_n^*.$$

We shall state some Lemma:

LEMMA 13 Let F be a convex operator such that there exist at least two $\alpha_1, \alpha_2 \in \mathbf{R}$ with $F(\alpha_1, t), F(\alpha_2, t) \in L^1(d\mu)$, where $F(\alpha, t)$ is defined in Lemma 12. Then I(F) is a convex function defined on \mathbf{R} with values $\mathbf{R} \cup \{+\infty\}$ with $\operatorname{Int}(D(I(F))) \neq \phi$. If $[a, b] \subset D(I(F))$, then for every positive number $\varepsilon > 0$ there exists a measurable set A with $\mu(A) < \varepsilon$ such that

F(x, t) is bounded on $(x, t) \in [a, b] \times (\Omega \setminus A)$.

PROOF Since $F(\alpha_1, t)$ and $F(\alpha_2, t)$ as functions of $t \in \Omega$ are elements of $L^1(d\mu)$, there exists a measurable set A_1 with $\mu(A_1) < \frac{1}{2}\varepsilon$ such that $F(\alpha_1,t)$ and $F(\alpha_2,t)$ are bounded for $t \in \Omega \setminus A_1$. Set $\alpha_3 = \frac{\alpha_1 + \alpha_2}{2}$. Since $F(\alpha_3, t)$ as a function of $t \in \Omega$ is also an element of $L^1(d\mu)$, there exists a measurable set A_2 with $\mu(A_2) < \frac{1}{2}\varepsilon$ such that $F(\alpha_3, t)$ is bounded for $t \in \Omega \setminus A_2$.

If $|F(\alpha_1, t)|$, $|F(\alpha_2, t)|$, $|F(\alpha_3, t)| \leq N$ for some $t \in \Omega$, then $|F(\alpha, t)| \leq 3N$ for $\alpha \in [\alpha_1, \alpha_2]$ by virtue of convexity of $F(\alpha, t)$.

Hence, $F(\alpha, t)$ is bounded for all $\alpha \in [\alpha_1, \alpha_2]$ and for all $t \in \Omega \setminus A$ where $A = A_1 \cup A_2$ with $\eta(A) < \varepsilon$.

THEOREM 4 Let F be a convex operator from **R** into $p(\Omega)$ such that there exist α_1 and $\alpha_2(\alpha_1 < \alpha_2)$ with $F(\alpha_1, t)$ and $F(\alpha_2, t)$ as functions of $t \in \Omega$ are in $L^1(d\mu)$ where F(x, t) is a function of $(x, t) \in \mathbf{R} \times \Omega$ defined in Lemma 12. Then, there exists a sequence of $G_n(x, t)$ of form:

$$G_n(x) = \sum_{k=1}^{k(n)} \lambda_k F(x, t_k)$$

where there exists a decomposition of Ω of measurable sets $\{A_k\}$ with $\lambda_k =$

 $\mu(A_k)$, $t_k \in A_k$ such that

$$\lim_{n\to\infty} G_n(x) = I(F)(x)$$

where I(F) is the average convex function of F(x, t). Furthermore,

$$\lim_{n\to\infty} G_n^*(y) = I(F)^*(y)$$

except at most two points of $y \in \mathbf{R}$, *i. e.*

$$\lim_{n\to\infty}\sum_{k=1}^{k(n)} \oplus (\lambda_k F(\bullet, t_k))^*(y) = I(F)^*(y)$$

except at most two points of $y \in \mathbf{R}$.

PROOF If a closed interval $[a, b] \subset \text{Int}(D(I(F)))$, then by Lemma 13 for every positive integer *n* there exists a measurable subset *A* of Ω with $\mu(A) < 1/n$ such that F(x, t) is bounded for all $x \in [a, b]$ and $t \in A$. Hence, we can find

$$G_n(x) = \sum_{k=1} \lambda_k F(x, t_k)$$

such that

$$\lim_{n\to\infty} G_n(x) = \int_{\Omega} F(x, t) d\mu(t)$$

and $F(x, t_k)$ is always finite for all $x \in D(I(F))$. Hence, the assertion of Theorem 4 is an easy consequence of Theorem 2.

References

- [1] A. D. IOFFE and V. M. TIHOMIROV: Theory of Extremal Problem, North-Holland Pub. Company (1978)
- [2] S. KOSHI and N. KOMURO: A generalization of the Fenchel-Moreau theorem, Proc. Japan Acad., 59(1983) 178-181
- [3] S. KOSHI, H. C. LAI and N. KOMURO: Convex programming on spaces of measurable functions, Hokkaido Math. J., 14(1985) 75-84
- [4] R. T. ROCKAFELLAR: Network flows and monotropic optimization, John Wiley (1984)
- [5] J. V. TIEL: Convex analysis, John Wiley (1984)
- [6] J. ZOWE: A duality theorem for a convex programing problem in order complete vector lattices, J. Math. Anal. Appl., 50(1975) 273-287

Department of Mathematics Faculty of Science Hokaido University Sapporo, 060 Japan