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Introduction

Let f_{n} (n=1,2, \ldots) be a sequence of convex functions which converges
pointwise to a proper function f which is convex as a consequence.

In the case that sequence of convex functions is monotonically
decreasing, then the sequence of conjugate functions f_{n}^{*} of f_{n} converges to f^{*}

(the conjugate function of f). But, we don’t have the convergence of the
sequence of conjugate functions f_{n}^{*} in general case. In this note, we shall
discuss this problem.

Although we can consider this problem generally for convex functions
defined on any finite-dimensional vector spaces, the fundamental tools of
proof of the theorems are almost same in the case of functions defined on
1-dimensional space Ri . e . (the space of real numbers). So, we only deal
with cases of convex functions defined on R in this paper.

Our results show that if a sequence of convex functions f_{n}(x) converges
pointwise to a proper convex function f with domain of non-void interior,
then the sequence of conjugate functions f_{n}^{*}(y) of f_{n} converges to the
conjugate function f^{*}(y) of f except an exceptional set of y which has at
most two point.
In this note, we shall show the fundamental theorem (Theorem 2) and
applications of this theorem.

1. The space of convex functions

A function f : Rarrow R\cup\{+\infty\} is called convex if for each x, y, a, b\in R

with a, b\in[0,1] and a+b=1

f(ax+by)\leqq af(x)+bf(y) .

The effective domain of f is defined as D\varphi ) =\{x:f(x)<+\infty\} . A convex
function f is called proper if the effective domain D(f) of f is not empty.
The conjugate function of f is defined as follows:

f^{*}(y)= \sup_{x\in R}\{yx-f(x)\} for y\in R.
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Generally, the conjugate function f^{*} are defined on the dual space X^{*} if f is
defined on a locally convex topological vector space X . But, in Euclidean
spaces X or Hilbert spaces the dual X^{*} of X is isomorphic to X . So,
conjugate functions are defined on the same space as original space.

Let C be a space of all proper convex functions defined on R.
We shall discuss the structures of C as an ordered set. For f, g\in C , f\leqq g is
by definition iff

f(x)\leqq g(x) for all x\in R.

Note that C is a semi-0rdered set in this order relation.

LEMMA 1 Let \{f_{\lambda}\}_{\lambda\in\Lambda} be a collection of functions in C. Then, f(x)=
\sup_{\lambda}f_{\lambda}(x)\in C iff there exists x_{0} with \sup_{\lambda}f_{\lambda}(x_{0})<+\infty .

Proof of Lemma is very easy, so it is omitted.
A collection \{f_{\lambda}\}_{\lambda\in\Lambda} of C is called lower-directed if for any finite collection

f_{\lambda_{1}} , \ldots . f_{\lambda_{n}} from \{f_{\lambda}\}_{\lambda\in\Lambda} , there exists f_{\lambda} with f_{\lambda_{k}}\geqq f_{\lambda} for k=1,2 , \ldots . n .
The set of all interior points in a set A is denoted by Int A.

LEMMA 2 Let{f\mbox{\boldmath $\lambda$}}\mbox{\boldmath $\lambda$}\in \Lambda be a lower-directed collection of functions in C,

and let f(x)= \inf_{\lambda}f_{\lambda}(x) . Suppose Int \{x : f(x)<+\infty\} \neq\phi . Then f(x)\in C

iff there exists x_{)}\in Int\{x : f(x)<+\infty\} with \inf_{\lambda}f_{\lambda}(x_{I})>-\infty .

PROOF f(x)= \inf_{\lambda}f_{\lambda}(x_{)}) is a convex function of x\in R since \{f_{\lambda}\}_{\lambda\in\Lambda} is

lower directed. Hence, f(x)=-\infty for all x\in Int\{x:f(x)<+\infty\} or f(x)
>-\infty for all x\in R by virtue of convexity of f . Since there exists x_{0} with
\inf_{\lambda}f_{\lambda}(x_{)})>-\infty , we have Lemma 2.

We must remark that C is not a lattice with the order as a simple
example show below.

For each f, g\in C , we shall denote by

f\vee g

the least upper bound in C for f and g\in C by the order of C, and also we shall
denote

f\wedge g

the greatest lower bound in C for f and g\in C by the order of C .
It is easy to see that f\vee g exists in C iff D(f)\cap D(g)\neq\phi . For example, if
we define f and g as follows:
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f(x)=\{
0 x=0

and g(x)=\{
+\infty otherwise

0 x=1
+\infty otherwise,

there is no f\vee g in C.
If we set

f(x)=x and g(x)=-x,

then we can not find the existence of f\wedge g in C . So, even if D(f)=D(g)=
R, there exists an example f\wedge g does not exist.

For a collection \{f_{\lambda}\}_{\lambda\in\Lambda}\subset C , we denote
\vee f_{\lambda}\lambda

if there exists the least upper bound of the collection \{f_{\lambda}\}_{\lambda\in\Lambda} by the order of
C. Similarly, we denote

\bigwedge_{\lambda}f_{\lambda}

if there exists the greatest lower bound of the collection \{f_{\lambda}\}_{\lambda\in\Lambda} by the order
of C.

LEMMA 3 If the collection \{f_{\lambda}\}_{\lambda}\}_{\lambda\in\Lambda}\subset C is upper bounded {lower
bounded) i. e. there exists an f\in C with f_{\lambda}\leqq f(f_{\lambda}\geqq f) for all \lambda\in\Lambda , then

\lambda\in\Lambda\vee f_{\lambda}(\bigwedge_{\lambda\in\Lambda}f_{\lambda}) exists in C. Furthermore

( \vee f_{\lambda})(x)=\sup_{\lambda\lambda\in\Lambda\in\Lambda}f_{\lambda}(x) .

PROOF Since g(x)= \sup_{\lambda\in\Lambda}f_{\lambda}(x)\leqq f(x) for all x\in R and g(x) is a convex
function, we have g\in C . It is easy to see that g is the lower upper bound for

the collection \{f_{\lambda}\}_{\lambda\in A}\subset C . For \bigwedge_{\lambda\in\Lambda}f_{\lambda} , we shall consider the set A of

elements g of C for which g\leqq f_{\lambda} for all \lambda\in\Lambda . Then, \bigwedge_{\lambda\in\Lambda}f_{\lambda}=\vee g\lambda\in A^{\cdot} Note that

we don’t have the relation \bigwedge_{\lambda\in\Lambda}f_{\lambda}(x)=\inf_{\lambda\in\Lambda}f_{\lambda}(x) for some collection \{f_{\lambda}\}_{\lambda\in\Lambda} .

LEMMA 4 Let \{f_{n}\} be a sequence of convex functions and converges
pointwise to f. Then f is an element of C iff there exist x_{0} , x_{1} , x_{2}\in R with
x_{1}<x)<x_{2} and c, d\in R with c\leqq f_{n}(x_{)})\leqq d and c\leqq f_{n}(x_{1}) , f_{n}(x_{2}) for large n.

PROOF.

f(ax+by)= \lim_{narrow\infty}f_{n}(ax+by)

\leqq a\lim_{narrow\infty}f_{n}(x)+b\lim_{narrow\infty}f_{n}(x)=af(x)+bf(x)
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for a, b\in[0,1] with a+b=1 and x\in R. Hence, f\in C iff there exists x_{0}

with f(x_{0})<+\infty and f(x)>-\infty for all x . This means that there exists c

and d\in C with

c\leqq f_{n}(x_{0})\leqq d for large n .

Next example show shat exen if there exist x_{0} and x_{1}\in R(xi)<x_{1}) with
f_{n}(x_{0})=f_{n}(x_{1}) , f does not necessary belonging to C .

f_{n}(x)=\{
nx - n if x>0
-nx-n if x\leq 0

LEMMA 5 Let f and f_{\lambda}(\lambda\in\Lambda) be elements of C. Then

f\wedge(\vee f)=\vee U\wedge f_{\lambda})\lambda\in\Lambda\lambda\in\Lambda

and

f \vee(\bigwedge_{\lambda\in\Lambda}f_{\lambda})=\bigwedge_{\lambda\in\Lambda}(f\vee f_{\lambda})

if right or left side of above equalities exist in C .
Proof of this Lemma is quite easy, so that it is omitted.

Let X be a locally convex space and X^{*} be the dual space of Xi. e . X^{*}

is the set of all continuous linear functional of X . In the case that X is R,

then R^{*} is isomorphic to R. We have already defined conjugate function
f^{*} of convex function f . f^{*} is a convex function defined on X^{*} . Since
X\subset X^{**} we can define a convex function on X as follows:

f^{**}(x)= \sup\{<x^{*}, x>-f^{*}(x^{*})\} for x\in X.

From now on, we shall restrict ourselves X is R.
We shall state here the Fenchel-Moreau’s theoren.

THEOREM 1 Let f be a convex function belonging to C. f(x)=f^{**}(x)

for x\in R iff f is lower-semicontinuous at x\in R . The set \{x;f(x)\neq f^{**}(x)\}

is at mos/ two point.

LEMMA 6 i ) f\geqq g implies f^{*}\leqq g^{*}

ii) f\geqq f^{**}

iii) ( \bigwedge_{\lambda}f_{\lambda})^{*}(y)=(\vee f_{\lambda}^{*}\lambda)(y) for all y\in R^{*}\cong R

iv) (f_{\lambda})^{*}(y)\lambda\leqq(f_{\lambda}^{*}\lambda)(y) for all y\in R^{*}\cong R

PROOF It is known that f is proper convex iff f^{*} is proper convex (see

[5] Chap. 6). i ) and ii ) are deduced easily from the definition and for
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iii) we put

g(x)=(f_{\lambda})(x)\hat{x} .

Then g^{*}(y)\geqq(\vee f_{\lambda}^{*}\lambda)(y) for all y\in R by i ) since g(x)\leqq f_{\lambda}(x) for x\in R and
\lambda\in\Lambda . Let h(x) be an element of C such that

h(y)\leqq f_{\lambda}^{*}(y) for all y\in R and \lambda\in\Lambda .

Then, h^{*}(x)\leqq f^{**}(x)\leqq f_{\lambda}(x) for all x\in R and \lambda\in\Lambda . Hence,

h^{*}\leqq g and so h\geqq h^{**}\geqq g^{*}

by virtue of i ) and ii ).

This means that

(f_{\lambda})^{*}=g^{*}=\lambda\lambda f_{\lambda}^{*}

The proof of iv ) is easy, so it is omitted. Next example shows that the
equality of iv ) does not hold in general.
Let

f_{n}(x)=\{

-x (x\leqq 0)

- \frac{1}{n}x-\rceil\perp(0\leqq x\leqq n)
and f(x)=\{_{0(x\geqq 0)}-x(x<.0)

(x\geqq n)

Then, f_{n}\uparrow f and f=\vee f_{n}n . But, \bigwedge_{n}f_{n}^{*} is not f^{*} in this case, since

f_{n}^{*}(0)=1 and f^{*}(0)=0 .

But, we have the following lemma.

LEMMA 7 Let a sequence of f_{n}\in C be non-decreasing and convergent

pointwise to f\in C . Then \lim_{narrow\infty}f_{n}^{*}(y)=f^{*}(y) except at most two points of
y\in R .

PROOF Since fn*(y)\geqq f_{n+1}^{*}(y) for y\in R, for the function g(y)= \lim_{narrow\infty}f_{n}^{*}(y) ,

we have

sup fn**(x)=g^{*}(x) for all x\in R

by iii ) of Lemma 6.
Since f_{n}^{**}(x)=f_{n}(x) except at most two point of x, f_{n}(x)arrow g^{*}(x) except at
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most countable point of x\in R.
Hence,

f(x)=g^{*}(x) except at most a countable set of points in R.

Since f and g^{*} are convex functions, f and g^{*} are continuous except at
most two point. We know that f is continuous on Int D(f) : the interior of
its effective domain D(f) . Hence, Int D(f)=IntD(g^{*})i . e . f(x) and
g^{*}(x) are equal except the boundary of D(f) and D(g^{*}) . In a convex
subset I of R, the boundary of I consists of at most two point. Hence,

f(x)=g^{*}(x) except two point of x\in R .

Lemma 8 Let f be a convex function which is fifinite-valued on a closed
interval [a, b] and g(x) be a linear function {affine function. If (f(a)-
g(a))\sigma(b)-g(b))<0 , then f(x)=g(x) for some exactly one point x\in R .

PROOF Since the function h(x)=f(x)-g(x) is a convex function with
h(a)h(b)<0 and hence continuous on the closed interval [a, b] , the
equation h(x)=0 has a unique solution x in R. Hence we have the assertion.

PROPOSITION 1 Let f_{n}\in C and \lim_{narrow\infty}f_{n}(x)=f(x) and a closed interval

[a, b]\subset IntD(f) . Then, f_{n} is uniformly convergent to f in [a, b] .

PROOF If the assertion of Proposition 1 is false, then there exist a
positive number \epsilon>0 and a_{n}\in[a, b] such that

|f(a_{n})-f_{n}(a_{n})|\geqq\epsilon>0

without loss of generality.
Since the interval [a, b] is compact, we can assume that the sequence a_{n}

converges to some number a_{0}\in[a, b] .
Let f(a_{n})\geqq f_{n}(a_{n})+\epsilon and a_{0}<a_{n} for infinitely many n, and let choose c_{1}

with c_{1}\in IntD(f) and a_{0}<c_{1} . Now, we consider the straight line l from the
point (c_{1}, f(c_{1})+\epsilon) to the point (a_{0}, f(a_{0})-\epsilon) is the plane. Then, this
straight line l meets with the graph of the convex function y=f(x) at only

one point by Lemma 8. This point will be denoted by (c_{2}, f(c_{2})) with a_{0}<

c_{2}<c_{1} .
Since f_{n}(c_{1})<f(c_{1})+\epsilon and f_{n}(a_{n})\leqq f(a_{n})-\epsilon for large n by assumption,

the graph of the function y=f_{n}(x)(x\in[a_{n}, c_{1}]) is below under the straight

line l for large n . Hence, if we take c_{3}=(a_{0}+c_{2})/2 , we find a positive
number d>0 with

f_{n}(c_{3}) \leqq\frac{f(a_{0})+f(c_{2})-\epsilon}{2}=f(c_{3})-d
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for large n.
But this is a contradiction to

\lim_{narrow\infty}f_{n}(c_{3})=f(c_{3}) .

We shall consider the case that

f(a_{n})\geqq f_{n}(a_{n})+\epsilon

and a_{0}>a_{n} for infinitely many n . We take an arbitrary number c_{1}<a_{0} so that
c_{1}\in IntDO^{}) . The straight line from the point (a_{0}, f(a_{0})-\epsilon) to the point
(c_{1}, f(c_{1})+\epsilon) meet at only one point (c_{2}, f(c_{2})) with the graph of the

convex function y=f(x) in the plane. By the same discussion as written
above, for c_{3}=(a_{0}+c_{2})/2 , we have

f_{n}(c_{3})\leqq f(c_{3})-\epsilon/2 for large n .

But this is also a contradiction.
Next, if we have

f(a_{n})\leqq f_{n}(a_{n})-\epsilon and a_{n}>a_{0}

for infinitely many n,

we have hence

f_{n}(c_{1})arrow\infty for large n and for c_{1}\in IntD(f) with c_{1}>a_{0} .

But, this is a contradiction.
If we have

f(a_{n})\leqq f_{n}(a_{n})-\epsilon and a_{n}<a_{0}

for infinitely many n, we have also

f_{n}(c_{1})arrow\infty for large n and for c_{1}\in IntD(f) with a_{O}>c_{1} .

This is also a contradiction. Hence, we have the assertion of Proposition 1.

The sequence of functions f_{n} (n=1,2, ...) is called uniformly

Lipschitzian in the closed interval [a, b] if there exists K>0 and positive
integer N such that

|f_{n}(x)-f_{n}(y)|\leqq K|x-y|

whenever n\geqq N and x, y\in[a, b] .

PROPOSITION 2 Let f_{n}(n=1,2, \ldots)\in C and \lim_{narrow\infty}f_{n}(x)=f(x) and the

closed interval [a, b]\subset IntD(f) . Then, The sequence of functions f_{n} is
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uniformly Lipschnitzian in the closed interval [a, b] .

PROOF If there exist positive numbers \delta>0 and K>0 such that |x-y|\leqq
\delta implies |f_{n}(x)-f_{n}(y)|\leqq K|x-y| for sufficient large n, then we have

|f_{n}(x)-f_{n}(y)|\leqq K|x-y| for x, y\in[a, b] .

Assume now that \{f_{n}\} is not uniformly Lipschitzian in the interval [ a, b]\subset

Int D(f) . Then, for each natural number n, there exist a sequence of
increasing numbers K_{n}\uparrow\infty and increasing positive integers

m_{1}<m_{2}<\ldots<m_{n}<\ldots

with

|f_{m_{n}}(X_{n})-f_{m_{n}}(Y_{n})|>K_{n}|x_{n}-y_{n}|

and

|x_{n}-y_{n}|\leqq 1/n

for some x_{n} , y_{n}\in[a, b] . Since the closed interval [a, b] is compact, we
can assume that the sequence of points x_{n} converges to some real number x_{0}

so that

\lim_{narrow\infty}x_{n}=\lim_{narrow\infty}y_{n}=x_{0}\in[a, b] .

Since [ a, b]\subset IntD(f) , there exist real numbers a_{1} and a_{2} with a_{1}<x_{1}<a_{2}

and a_{1} , a_{2}\in IntD(f) . By the former proposition 1, we know that the
sequence of convex functions f_{n} converges uniformly to f on the closed
interval [ a_{1}, a_{2}] . Hence, we can assume that

f(x)+1\geqq f_{n}(x)\geqq f(x)-1 for x\in[a_{1} , a_{2}] .

Since the points (x_{n}, f_{m_{n}}(x_{n})) and ( Y_{n}, f_{m_{n}}(Y_{n})) in the plane are
between two graphs of functions y=f(x)+1 and y=f(x)-1 in the plane, if
x_{n} and y_{n} are very close to x_{0} , by virtue of convexity of functions f_{m_{n}} , we must
have f_{m_{n}}(x_{n}) or f_{m_{n}}(y_{n}) converges to +\infty for large n. But, this is a
contradiction.

COROLLARY 1 Every convex function f is Lipschitzian in every interval
[a, b]\subset IntD(f),\cdot i. e . there exists K>0 such that

|f(x)-f(y)|\leqq K|x-y| for x, y\in[a, b] .

LEMMA 9 Let f_{n} (n=1,2, \ldots) be a sequence of convex functions on R
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and \lim_{narrow\infty}f_{n}(x)=f(x) with f\in C . If f is not a linear function (ajfine

function and x_{o}\in IntD(f) , then for every \epsilon>0 there exists a convex
function g(x) such that

g(x_{1})=f(x_{0})-\epsilon

and there exist n with

f_{m}(x)\geqq g(x) for all m\geqq n and x\in R .

PROOF (1) We assume first f(X_{)})= \inf f(x) and the function y=f(x) is
not constant on any interval I where I=[a, \infty) or(-\infty , b ] for some
a, b\in R.
Then, there exist a_{1} and a_{2}\in R such that a_{1}\leqq a_{2} and

f(a)=f(\eta) for a_{1}\leqq a\leqq a_{2}

and

f(a)>f(\chi_{)}) for a<a_{1} or a>a_{2} .

Hence, we can find b_{1}<a_{1} , a_{2}<b_{2} and \epsilon>0 with

f(b)>f(x_{0})+\epsilon for b<b_{1} or b>b_{2} .

Define a constant function g with

g(x)=f(x_{)})-\epsilon .

Since f_{n} is uniformly convergent to f in [ b_{1}, b_{2}] , we have

f(x)+\epsilon/2\geqq f_{n}(x)\geqq f(x)-\epsilon/2 for x\in[b_{1}, b_{2}] and for large n .

If there exists x_{n}\overline{\in}[b_{1} , b_{2}] with f_{n}(x_{n})\leqq f(x_{)})-\epsilon for some n, by virtue
of convexity of f_{n} , we have

f_{n}(b_{1})\leqq f(x_{)})+\epsilon/2 or f_{n}(b_{2})\leqq f(h)+\epsilon/2 .

Hence, we know that the number of such x_{n}\overline{\in}[b_{1}, b_{2}] is finite. That is, the
constant function g(x)=f(x_{0})-\epsilon has desired properties.
(2) Let f(x)<+\infty for all x\in R and f(x_{1})= \inf f(x) . Suppose that f is not
constant function but constant on some interval I where I is [ b, \infty) or
(-\infty, b] for some b\in R. If f(x) is constant on some interval [ b, \infty) ,

then there exists a_{0}\leqq x_{J} with f(a)>f(a_{0}) for a<a_{1} and f(xi))=f(a_{0}) .
Consider the eqigraph of fi. e . EP(f)=\{(x, y):y\geqq f(x)\} in the plane and
the point (xi), f(x_{)})-\epsilon/2)\overline{\in}EP(f) .
Since EPy) is convex in the plane and (\chi) , f(xi))-\epsilon/2)\overline{\in}EP(f) , by using
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the Hahn-Banach theorem, there exists a linear function (affine function)

g_{1}(x)=ax+b(a\neq 0) which is through the point (x_{1}, f(x_{)})-\epsilon/2) in the
plane and places EP(f) in upper side i . e .

g_{1}(x)\leqq f(x) for all x\in R and satisfies the condition

\lim_{xarrow\pm\infty}y(x)-g_{1}(x))=+\infty

Then, the linear function g defined by g(x)=g_{1}(x)-(1/2)\epsilon has the desired
properties.
(3) We assume f(x)<+\infty for all x\in R and f(x_{0})> \inf f(x) and f is not
linear function. Consider the epigraph of f:EP(f)=\{(x, y):y\geqq f(x)\} in
the plane. Since EP(f) is convex, there exists some line l therough the
point (x_{0}, f(x_{1})) by which EP(f) is placed in upper side. Let l be
represented as the function h(x)=ax+b. Since f(x_{)})> \inf f(x) , we have
a\neq 0 .

Considering the convex function f_{1}(x)=f(x)-h(x) instead of f . we
have f_{1}(x_{)})= \inf f_{1}(x) and \lim_{narrow\infty}(f_{n}-h)(x)=f_{1}(x) . Applying the former
results (1) and (2) to this case, for each \epsilon>0 we have a convex function g_{1}

with g_{1}(h)=f_{1}(X_{\}})-\epsilon and there exists n with f_{m}(x)-h(x)\geqq g_{1}(x) for all
integer m\geqq n and for all x\in R.
Hence, we have the desired convex function g(x)=g_{1}(x)+h(x) .
(4) We shall consider the case that D(f)=\{x\cdot,f(x)<+\infty\}\neq R, x_{0}\in

Int D\varphi ) and f( \eta_{)})=\inf f(x) . Let a_{o} be a boundary point of D(f) in R
i . e . a_{0}\in D(f)^{-}\cap D(f)^{c})^{-} We can choose the point a_{0} with x_{t}<a_{0} and also
some point b_{0}\in IntD\varphi ) with b_{0}<x} since x_{0} since x_{0}\in IntD(f) .
Consider the line l through the point (b_{0}, f(b_{0})+\epsilon) and point (a_{0}, f(X_{0})

-\epsilon) in the plane. This line l will meet with the line of a constant function
y=f(xi_{1})-\epsilon/2 at the point (a, f(x_{)})-\epsilon/2) in the plane for some real
number a with x_{0}<a<a_{0} . Since [ b_{0}, a]\subset IntD(f) , f_{n} converges uniformly
to f on [ b_{0}, a] by proposition 1.
Suppose that there exist infinitely many n and x_{n}\in[a, a_{0}] with f_{n}((x)

\leqq f(x_{0})-\epsilon . Then,

f_{n}(a)\leqq f(a)-\epsilon/2

for infinitely many n by convexity of functions f_{n} .
But, this is a contradiction to

\lim_{narrow\infty}f_{n}(a)=f(a) .

Since we can prove also
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f_{n}(x)\geqq f(x_{)})-\epsilon

For all x\in[b_{0}, a_{0}]^{c} and for large n , the function g defined by

g(x)=f(x_{1})-\epsilon (constant function)

has the desired property on [ b_{0}, a_{0}] .
(5) We shall consider the case that x_{0}\in IntD(f) and f(x i))>\inf f(x) .
Since x) \in IntD(f) , we can construct the line l in the plane such that l is
through the point (xo, f(\eta)) and EP(f) is placed in upper side of l. l will
be defined by the function h(x)=cx+d(c\neq 0) . The convex function f(x)-
h(x) has the same property as the function in (4). By (4), we can easily
define a desired function g . q . e . d .

We shall state the following two lemmas without proof, since proofs are
quite similar to the proof of Lemma 9.

LEMMA 10 Let f_{n} (n=1,2, \ldots) be a sequence of convex functions on R

and \lim f_{n}(x)=f(x) with f\in C . If x_{0}\in IntD(f)^{c}, then for every positive
narrow\infty

number K there exists a convex function g(x) such that

g(X_{)})\geqq K

and there exists a natural number n_{0} with

f_{n}(x)\geqq g(x)

for all n\geqq n_{0} and x\in R .

Lemma 11 Let f_{n} (n=1,2, \ldots) be a sequence of convex functions on R

and \lim_{narrow\infty}f_{n}(x)=f(x) with f\in C and Int D(f)\neq\phi . If x_{0}\in D\varphi)^{-}\cap(D\sigma)^{c})^{-}

then for every positive number \epsilon>0 , there exists a convex function g(x) such
that

g(_{Xi)})=f^{**}(x_{0})-\epsilon

and there exists a natural number n_{0} with

f_{n}(x)\geqq g(x)

for all n\geqq n_{0} and x\in R .

2. Main theorem

Now, we shall state the main theorem:

THEOREM 2 Let f_{n} (n=1,2, \ldots) be a sequence of convex functions on R
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and \lim f_{n}(x)=f(x) with f\in C . If Int D(f)\neq\phi , then the sequence of
narrow\infty

conjugate functions fn* of f_{n} converges pointwise to the conjugate function f^{*}

of f except at most two points of R.

PROOF At first we assume that f is not a linear (affine) function. By
Lemma 9, the set of convex functions \{f_{n}jn\geqq m\} of C is lower bounded for
large m . By Lemma 3, we find the greatest lower bound of the family \{f_{m} ,

f_{m+1} , .../( in C which is denoted by h_{m}= \bigwedge_{n\geq m}f_{n}\in C for large m. By definition
h_{m}\leqq h_{m+1}\leqq\ldots..\leqq f.

By Lemma 9 again and Lemma 11, we find that for x\in IntD(f) ,

f^{**}(x) \leqq\lim_{marrow\infty}h_{m}(x)=f_{0}(x)\leqq f(x) .

By the Fenchel’s duality theorem, f(x) differs from f^{**}(x) only at the
exceptional set which consists at most two points. Hence

f_{0}(x)=f(x) except at most two points of x\in R.

On the other hand, the family \{f_{m}, f_{m+1}, \ldots\} is upper bounded for large m.
Hence, by Lemma 3, we find the least upper bound of \{f_{m}, f_{m+1}, \ldots\} which is
denoted by

k_{m}(x)= \vee f_{n}(x)=\sup_{nn\geqq m\geqq m}k_{n}(x) .

Since the sequence of convex function k_{m} is monotonically decreasing and
converges pointwise to f , we have

\lim_{marrow\infty}k_{m}^{*}(y)=f^{*}(y) for all y\in R .

By Lemma 7,

\lim_{marrow\infty}h_{m}^{*}(y)=f_{0}^{*}(y)=f^{*}(y) for y\in R except at most

two points of y\in R.

Since h_{m}\leqq f_{m}\leqq k_{m} and h_{m}^{*}\geqq f_{n}^{*}\geqq k_{m}^{*} , we have

\lim_{narrow\infty}fn(*y)=f^{*}(y)

except at most two points of y\in R.
Secondly, we assume that f(x) is a constant function i . e . f(x)=c for some
real number c.
For every positive number \epsilon>0 , and for all positive integer N, by Proposi-
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tion 1,

|f_{n}(x)-f(x)|<\epsilon for |x|\leqq N

for large n.
If y\neq 0 , we have

f_{n}*(y)= \sup_{x\in R}\{yx-f_{n}(x)\}\geqq\sup_{x\in 1-N.NJ}\{y\kappa-c-\epsilon\}

=N|y|-c-\epsilon .

It follows that lim fn*(y)=+\infty for y\neq 0 .
narrow\infty

On the other hand f^{*}(y)=+\infty for y\neq 0 . Hence, we have the assertion of
Theorem 2 in this case.
Let f(x) is a linear function, say f(x)=ax+b(a\neq 0) .
We set

h_{n}(x)=f_{n}(x)-(ax+b) .

Then h_{n}(x)-arrow 0 for all x\in R .
Since

h_{n}^{*}(y)= \sup_{x}\{yx-f_{n}(x)+ax+b\}

= \sup_{X}\{(y+a)x-f_{n}(x)\}+b

=f*n(y+a)+b,

we have fn*(y)- \infty as narrow\infty for y\neq a .
On the other hand,

f^{*}(y)=\{
b if y=a
-\infty if y\neq a .

Hence, we have the assertion of Theorem 2. q . e . d .

REMARK 1 Next example shows that in the case \lim_{narrow\infty}f_{n}(x)=f(x) and

Int D(f)=\phi , Theorem 2 is not true in general.

Let

f_{n}(x)=\{
n^{2}x if x\geq-1/n

-n^{2}x-2n if x\leq-1/n .

Then, \lim_{narrow\infty}f_{n}(x)=f(x)

where

f(x)=\{
0 if x=0
+\infty if x\neq 0 .
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But,

f_{n}*(y)=\{
-(1/n)y+n if |y|\leqq n^{2}

+\infty if |y|>n^{2}

and

f^{*}(y)=0 for all y\in R .

In this case, \vee f_{n}=f and \wedge f_{n} does not exists for all positive integer m.
n\geqq m n\geqq m

REMARK 2 Theorem 2 is true in the case that f(x) is a linear function as

is shown in proof. But we don’t have the existence of \bigwedge_{n\geqq m}f_{n} in C for all m

in general.

3. Applications

Let \Omega be a finite measure space with measure \mu and let P(\Omega) be a set of
all measurable functions on \Omega assuming values in R\cup\{+\infty\} . Then P(\Omega) is
a convex set in the sppace U(\Omega) of all measurable functions on \Omega assuming
values in R\cup\{-\infty\}\cup\{+\infty\} . Let S(\Omega) be a set of all measurable functions
on \Omega assuming values in R. We shall identify f and g of U(\Omega) if they differ
only on a set of \mu -measure zero. In [3], we stated the following Lemma;

LEMMA 12 Let F be a convex operator from R into P(\Omega) such that there
exists \alpha_{0}\in R with F(\alpha_{0})\in S(\Omega) . Then, there exist a subset A of \Omega of
measure zero and a function F(\alpha, t) defifined on R\cross\Omega such that for each fifixed
t\overline{\in}A , R\ni\alphaarrow F(\alpha, t) is a convex function on R and for each fixed \alpha\in R ,

\Omega\ni tarrow F(\alpha, t) is a measurable function on \Omega which is identifified with F(\alpha)

as an element of P(\Omega) .
We shall consider the average convex function of F. Let us consider the

integration function I(F)(x) defined on x\in R with

I(F)(x)= \int_{\Omega}F(x, t)d\mu(t)

if the integral has a sense.
We assume now that I(F)(x)>-\infty for all x\in R . Then I(F)(\alpha) is a
convex function defined on \alpha\in R. We shall consider the conjugate function
I(F)^{*} of the convex function I(F) . Let f and g be convex functions from
R to R\cup\{+\infty\} . We define the infimal convolution

(f \oplus g)(x)=\inf\{f(x_{1})+g(\ ) : x_{1}+n=x \} .

We know the following theorem (see [1] p. 178). Let f_{1} , ... f_{n} be
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(convex) functions on R. Then

THEOREM 3
(f_{1}\oplus f_{2}\oplus\ldots\oplus f_{n})^{*}=f1+*f2+*\ldots+fn*

U_{1}+f_{2}+\ldots+f_{n})^{*}\leqq f1\oplus*f2\oplus*\ldots\oplus fn* .

If f_{1} , f_{2} , \ldots . f_{n} are proper convex functions and if their effective domains
contain a common point at which all these functions except possibly one are
continuous, then

(f_{1}+f_{2}+\ldots+f_{n})^{*}=f1\oplus*f2\oplus*\ldots\oplus fn* .

We shall stete some Lemma:

LEMMA 13 Let F be a convex operator such that there exist at least two
\alpha_{1} , \alpha_{2}\in R with F(\alpha_{1}, t) , F(\alpha_{2}, t)\in L^{1}(d\mu) , where F(\alpha, t) is defined in
Lemma 12. Then I(F) is a convex function defifined on R with values R\cup

\{+\infty\} with Int(D (I(F)) ) \neq\phi . If [ a, b]\subset D(I(F)) , then for every
positive number \epsilon>0 there exists a measurable set A with \mu(A)<\epsilon such that

F(x, t) is bounded on (x, t)\in[a, b]\cross(\Omega|A) .

PROOF Since F(\alpha_{1}, t) and F(\alpha_{2}, t) as functions of t\in\Omega are elements of

L^{1}(d\mu) , there exists a measurable set A_{1} with \mu(A_{1})<\frac{1}{2}\epsilon such that

F(\alpha_{1},t) and F(\alpha_{2}, t) are bounded for t\in\Omega\{A_{1} . Set \alpha_{3}=\frac{\alpha_{1}+\alpha_{2}}{2} . Since

F(\alpha_{3}, t) as a function of t\in\Omega is also an element of L^{1}(d\mu) , there exists

a measurable set A_{2} with \mu(A_{2})<\frac{1}{2}\epsilon such that F(\alpha_{3}, t) is bounded for

t\in\Omega|A_{2} .
If |F(\alpha_{1}, t)| , |F(\alpha_{2}, t)| , |F(\alpha_{3}, t)|\leqq N for some t\in\Omega , then |F(\alpha, t)|\leqq 3N

for \alpha\in[\alpha_{1}, \alpha_{2}] by virtue of convexity of F(\alpha, t) .
Hence, F(\alpha, t) is bounded for all \alpha\in[\alpha_{1}, \alpha_{2}] and for all t\in\Omega {A where A=
A_{1}\cup A_{2} with \eta(A)<\epsilon .

THEOREM 4 Let F be a convex operator from R into p(\Omega) such that there
exist \alpha_{1} and \alpha_{2}(\alpha_{1}<\alpha_{2}) with F(\alpha_{1}, t) and F(\alpha_{2}, t) as functions of t\in\Omega are
in L^{1}(d\mu) where F(x, t) is a function of (x, t)\in R\cross\Omega defifined in Lemma
12. Then, there exists a sequence of G_{n}(x, t) of form:

G_{n}(x)= \sum_{k=1}^{k(n)}\lambda_{k}F(x, t_{k})

where there exists a decomposition of \Omega of measurable sets \{ A_{k}\} with \lambda_{k}=
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\mu(A_{k}) , t_{k}\in A_{k} such that

\lim_{narrow\infty}G_{n}(x)=I(F)(x)

where I(F) is the average convex function of F(x, t) . Furthermore,

\lim_{narrow\infty}G_{n}^{*}(y)=I(F)^{*}(y)

except at most two points of y\in R, i. e.

\lim_{narrow\infty}\sum_{k-1}^{k(n)}\oplus(\lambda_{k}F(\cdot, t_{k}))^{*}(y)=I(F)^{*}(y)

except at most two points of y\in R .

PROOF If a closed interval [a, b]\subset Int(D(I(F))) , then by Lemma 13 for
every positive integer n there exists a measurable subset A of \Omega with \mu(A)<

1/n such that F(x, t) is bounded for all x\in[a, b] and t\overline{\in}A .
Hence, we can find

G_{n}(x)= \sum_{k=1}\lambda_{k}F(x, t_{k})

such that

\lim_{narrow\infty}G_{n}(x)=\int_{\Omega}F(x, t)d\mu(t)

and F(x, t_{k}) is always finite for all x\in D(I(F)) .
Hence, the assertion of Theorem 4 is an easy consequence of Theorem 2.
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