Hokkaido Mathematical Journal Vol. 14(1985), p. 353-364

Compact submanifolds of codimension p
of a Sasakian space form.

By Yoshiko Kuso
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Introduction.

In M. Morohashi has shown that an #-dimensional Euclidean sphere
S™ admits a conformal Killing tensor field of degree p for any positive integer
p such that p<#n. Then H. Kojyo has constructed a conformal Killing
tensor field of degree p inductively, on a Riemannian manifold of constant
curvature which admits a conformal Killing vector field. In connection with
these conformal Killing tensors of degree p, they and others [1, 6, 7, 9, 13,
15] have studied submanifolds of codimension p of a sphere or a Riemannian
manifold of constant curvature and have proved that these submaifolds are
totally umbilical under certain conditions.

In this paper, at first we point out that there naturally exist a conformal
Killing tensor field of even degree and a Killing tensor field of odd degree on
a Sasakian manifold (cf.[14]). Making use of these tensors, we prove that
Theorem 5. 1| which gives a sufficient condition for a compact submanifold of
codimension p in a Sasakian space form to be totally umbilical.

§ 1. Sasakian space forms.

Let M be a (2n+1)-dimensional manifold endowed with an almost
contact metric structure (®, &, », G), where G is a Riemannian metric, # a
1-form, & a vector field and ® a tensor field of type (1.1) on M which satisfy

(1 . 1) q)lxgl :09 (Dlx”x :Oa 6177/\ - 1
¢lx®xv - é\:{ + ﬂlgu’ Glxq)pl(pvk = G,uu R/

If, in an almost contact metric manifold M, the structure tensors (@, &,
n, G) satisfy
(1 2) vyélx:”AG/m—ﬂxGyl’ vl‘g"zélx’

where ¥ denotes the covariant derivative with respect to the Riemannian
metric G,,, the structure is called a Sasakian structure and the manifold M

is called a Sasakian manifold (cf. [10]). Moreover, if a Sasakian manifold
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M has the curvature tensor of the form

. (1 . 3) Rvplx - <k + 1> <Gylec - GVAG;m> + k<®pl¢uk -@ul(bpx
_ 2® upélx + 7, ka + 77/177va/1 - 77/177/1 Gux - nv”xG/zl> s

where k is a constant, M is called a Sasakian space form. It is easy to see
that if in a Sasakian space form M the constant £2=0, M is a space of
constant curvature 1.

§ 2. Killing tensor fields and conformal Killing tensor fields on a
Sasakian manifold.

In this section, we construct a conformal Killing tensor field of degree p
(=2q) and a Killing tensor field of degree p(=2¢—1) on a Sasakian
manifold M**"'2n+1>p).

First of all, we recall the definition of confomal Killing tensor fields of
degree p(cf. [2]).

Let N* (n>3) be an n-dimensional Riemannian manifold whose metric
tensor field is given by g,,. We call a skew symmetric tensor field #,,,, ,, a
conformal Killing tensor field of degree p if there exists a skew-symmetric
tensor field p,,,.,, such that

Valhaa, 2, TV, 2,= prz...lﬂlx.
- 2 (=D i(/)z...i,..lpgu,- +Pul..i.v..x,,g/1‘1.->

where A; means that A; is ommited. This pya, ., is called the associated
tensor field of u,,, . Especially, if the associated tensor field py1,..1,. 1S
identically zero, the conformal Killing tensor field #,,..,, is called a Killing

tensor field of degree p.
It is known that on a Sasakian manifold the structure tensor field @,, is

a conformal Killing tensor field of degree 2 with the associated tensor field 7,
and the 1-form 7, is a Killing tensor field of degree 1 (cf. [12].

Next, we adopt the symbol [ ] defined by Schouten (cf. [11D. For
avoiding complicated coefficients in the following computations, we slightly
change the meaning of brackets defined by Schouten, that is, we newly define

brackets [ ] as p /2 4] [é’_] ! multiply of the old one, where [ ]

means the Gauss symbol.
Now, we introduce the following two tensor fields on a Sasakian

manifold.

2.1 Uroo .= PPt
(2.2) Vitetor: =012 @aa - Pyt )
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About the brackets [ ], the following formulas are useful for the latter

computations (cf. [11]).
(2.3) Uroro,=(— l)a_lq’,{aul@lzlzka...ia---q)xzq,,lzq]
:zb:<_Da_lﬂhzq)aaa,,q)[x,xzq)aal....ia...ib---‘b/\zq_,az,,]
(2 . 4) Vl Y Py - 2 < - 1>a_lﬂlaQ[l‘/\z@lala--.ia" 'leq#lzqﬂ]
S. Yamaguchi proved the following two Lemmas [14]. However, as
we use the method in § 5, we give here another proof.
LemMA 2.1.  On a Sasakian manifold M**', the (2q-1)-form (g<n+1)

V/‘.] ...lgq,l = ”[AIQAZAS. * '¢A~2q72120—1]
is a Killing tensor field.

Proor.  First we note that 7, @,,,..71.--@x, 1.1 =0, because [A,...15,]
are skew-symmetric for all indices. Differentiating V;, ,, , covariantly, we
get

vl VA.) . ..A.zq7| - (vlﬂ[l|>¢1’zl‘-3 A '¢lqu212qfl]
+2”[ll®lzlg' . <v/‘-®lili+l> . ’q)/\»zq—zlzq 1]

1

=031 PP, )
‘|‘;77[A.(D1213- . -771,.G1/1 Aoy s -q)/xzq;zxzq,,]
—;77[,1,@12,13. e Giaa o
- Uulaz...xm,.-

Similarly, we get
VaVar a = Unanen -
Thus, it follows
VaiVir itV Van. 1., =0.
This means that Vi...a.. is a Killing tensor field of degree 2q-1.
LEMMA 2.2.  On a Sasakian manifold, the 2q-form

Ululz. . .lngé[lplz@lgka .. '¢lzq~lkzq]

is a conformal Killing tensor field.
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PRrOOF.
Vs 2.=Vi(@uaPaa.-- D )
= Vl (zb: ( - 1) a-l+b—2®kulb®[l,lz¢lal¢ .. .ia. .ib . '®lzqfxlzq])

=2 (= 1)a‘Hb_z(vA(I)Aaz,)q)[xl;t,@,\,/l.. N L ST

a<b
= a§b< - l)a_Hb—z(’h,,Gub - 77/1,,Gu,,>

) Q[A,Azq)xax,..,ia...ib . -q)_lmlz,,]
_ __1ya-1+b-2 P
—aEb( 1y 77/10(1)[1.12(1)/1,,1....Aa...l,,- . °q)lzq_|lz.,] Gu.,

= Zb! (=D b77 [A(DA;A,. A,, . -CI)A,Q_,AZQ] Gu,,
= z? (=D*Vinr. 4. .AzqGMb
Thus we have
Vil . 1,1V Ui,. 4.,

=-2 szxs.,.xzqGM,
+ g (=D Vi, Gt Va4, 2.G00.)

This means that U,, ,, is a conformal Killing tensor field.
§3. Submanifolds of codimension p of a Riemannian manifold.

Let M™? be a Riemannian manifold of dimension m+p with local
coordinates {y*} and G,, be the Riemannian metric tensor of Mt Let M™
be a differential submanifold of codimension p of M™* and {xi} a local
coordinates system of M™ Then the immersion ¢: M m_, M+ is locally
expressed by y‘=v(x'..... L, x™, x=1,2,..., m+p.

If we put By=0y*(3;=9/0x"), then m vectors B} span the tangent
space of M™at each point of M ™ and the induced metric tensor g, of M™is
given by g;;=Gy,B}B¥*. Assuming that manifolds M™ and M™?* are both
orientable, we assume that B¥*(i=1, 2,..., m) give the positive orientation
in M™and we choose the mutually orthogonal unit normal vectors N (a=1,
.., ) to M™in such a way that B, N give the positive orientation in
M™» We denote by (B., N2 the basis dual to (BY, N?%).

The van der Waerden-Bortolotti covariant derivatives V;Bf and VN7
of B* and N* are respectively given by

h

v,.N;;:a,.N;;Jr{ o }B}‘N;.
MV
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Let H,;; be the second fundamental tensor of M ™ with respect to the normal
N* and L, the third fundamental tensor of M™ Then we have the
following Gauss and Weingarten equations;

(3.1 V;B¥=2H,;N%,
(3.2) vjNZ:"Hath'Z“'EbLaij'z;-
where Hajh:gihHaji.
The mean curvature vector field H*of M™in M™? is defiend by
x__]‘__ kN x

H*= - %‘,Hak N%.
which is independent of the choice of mutually orthogonal unit normal
vectors N%*. The length of the mean curvature vector field H i e,

1

%(Z(Hak“)z)? is called a mean curvature.

For a normal vector N*, if the normal part of V,N* vanishes identi-

cally along M™ then we say that N* is parallel with respect to the normal
bundle.

When there exist mutually orthogonal unit nomal vector fields N} (a=

1,..., p) such that L,,;=0, we say that the connection of the normal bundle
is trivial.
When the second fundamental tensor is of the form
Haji = Hagji

at each point of the submaifold M™ we call the submanifold a totally
umbilical submanifold.

Moreover if the functions H, (a=1,..., p) vanish identically, we call
the submanifold a totally geodesic submanifold. The following facts are
well known (for example. see [1]):

LeMMA 3.1. A mecessary and sufficient condition for M™ to be totally
umbilical is that the following relations ave satisfied :

ji.__l_ BN2
H,;:H, —m(Hak )% a=1,..p.
LEMMA 3.2.  In order that the mean curvature vector field H* of M™is

parallel with respect to the commection of the normal bundle, it 1S mecessary
and sufficient that
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ijakk: - ;kukLbaj .

LEMMA 3.3.  If the mean curvature vector field H* of M™is parallel with
rvespect to the commection of the normal bundle, then the mean curvature of
M™ s constant.

We now recall the equations of Gauss, Mainardi-Codazzi and Ricci-
Kiihne :

(3.3)  R,aBiB*B}Bi=Ryin— 3 (HapnHusi— HoniHosn)
(34) EvpleZBfBz%Nz:vk aji_ijakz‘
+ ; (HbjiLbak - kuz‘Lbaj>

(35) EvplezB'}‘N/}z z:HakiHbji_Hajikui+ vkllabj
- ijabk + ? (Lachcbk - Lackchj)

§4. Submanifolds of codimension p of Sasakian space forms.

Now, let M2+ pe a Sasakian space form and M ™ be a submanifold of
condimension p of M***! where 2n+1=m+p.

The transform ®,*B} of B} by ®,* can be expressed as a linear
combination of BY and N*. So, we can put

©,*B} =f"Bi+ S h,N*

from which we have

(41) .ﬁ'h:q)AxBl}B;}:’ hia:¢lel}Nax-

Since ®,, is skew-symmetric, so is f;;=g,;/i*, and if we put h,=
®,*N2B, , we get h,+h,;=0. We can also put the transform ®,*N?% of N2
by ®,* as follows;

QAKN/}z = _hiaB;" + 7abNx ’

from which we have i, =g"'h,, and ,=®,*N2B2. We notice that since ® i
is skew-symmetric, p* functions 7,,=®,,N2N% are skew-symmetric with
respect to their indices aq, b.

Next, we express the vector field & on M?**! as a linear combination of
BY and N*% as follows :
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E*=u"B5+2w.N%
Then we have
(4.2) u"=&*Bi=g"Bin., w.,=Nin,..

Since M?"! has the curvature tensor of the form (1. 3), using the tensor

field f* hig, 7, #" and w. we can rewrite the equations of Mainardi-
Codazzi (3.4) and Ricci-Kiithne (3.5) as follows:

(4.3) Ve aji_ijaki""g(HbjiLbak_kuiLbaj>
=k(fiihwa—frilia— 2feiliat Ui @ oG ri— U @ agii)

(4 . 4) HakiHbji - Hajikuz‘ + v kLabj - ijabk + 2 (Lachcbk - Lackchj>
=k(Wiahwo— Prahiy— 2 xi7as)

Now, we recall the conformal Killing tensor field U,, ,, where p=2¢q
and Killing tensor field V,, , where p=2¢—1in§2. Inorder to simplify the
presentation, we shall denote both U,, , and V,, ; by F; .. We put
(45) VZFA'“”APN?'...N;L’,

(4.6) vi=2Hy"Fy, s, 2, Ni...Bi...NJ,

»

4.7 w;=2How*F3, 2.2, b...B¥...N}.

Then it is known that v; and w; are independent of the choice of mutually
orthogonal unit normal vectors, so they are global vector fields (cf. [6D.

§5. Integral formulas.

To apply Green-Stokes’ theorem, we compute the divergence of the
vector fields v; and w; defined by (4.6) and (4.7) respectively. Making use
of (3.1) and (3.2), we get:

VjUiZEVjHathL“.Aa.__,\lel‘...BZ“...N},F
a
+H, "By Fy ana, N} . B}...N}
+2Haih Z:L Fll..,lc“./\a.“kp

- N (= He*Bir + 2 LeosN3 ... Bl N}

+2HathA‘..Aa.,,l,,..l,,Nill- . -?HbthZl“- . -N;p
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—Z(V Hazh-}-EHb,hLba,)FL ....... N{“...BZ“...N}}"
+2Haih3}VAFAl...A,,...AsN{L' Bje.. Nl”
—EHaz "He*Fy, aea ...A.,,NA B Bl)eL°---N$"

+ 7’2 H,; Hajh

5.1 V'=S(VH+ BH" Lya) Fi, a, N1 Bl N
+2H”’B"V Fy.oa a,Nt...Bj.. N}y
—EH "Hei*Fy,. oa..oae. a,NT...Bje.. .Bi...N}
+72Hathajh

VW= Zv Haw*Fy, 2, a,Nt...B¥.. N}
+2Hak B}V Fy, i, a,Ni...B¥. . NP
+2Hak . §¢é_FA,...lc.--la...lp'
- (—He"Bi+ 2 Le,N .. Bl N
+2HakkFA,__.1,,...l,,N1“...Zb‘,H,,ﬁNi,‘“...N{,"’
=2(V,Hot + ZHou*Loa) Fy, sy a, N¥...Bl. N}

+ B Haw*B} VaFy, s, a, Nt Bl N

k h 1 c a
~ D Hu*Ho s 4y, N¥.. Bl. B N

+ 72 Han*Hyj

(5.2) % WJ_Z(V Hakk+2ku Lya) Fy, oy 2, N .B™ . N}
+2H *BATFy 4 LN .B¥...Np
+ 72 (Hae*)?

On the other hand, since F; ;, is a conformal Killing tensor field, the
following equation is valid (cf. [6]);

Vi, a LTV, FA,...A..,A
=—2(—=D%, i... A,GM

—b 2 (—l)b(p,\h“l . Aa ...A,,GAA,,+/JA ....... k...l,,G/l,,/lb>
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where p,, ., is the associated tensor field of F;,  ,,. So, we have:

(5.3) Zﬂ‘,Haf"B}Bl VaFy a A Nb. . N N

:lEHa"hB;B “(VaFy ...

WAV Fn a2, NP N2  N¥

S

:_2< 1)%H,, pA A il‘...Na’l“...N;}’

........

(54) ZI{aleklgﬁlB/1 AFAI Aa %’...Nl“ N;}”

zHakkBmBM(VAFA etV ) N N2 .. N

:—mﬂ(—l)“Hak 0 WNP L N2 .N¥

.......

Especially, in the case that F;, ,, is a Killing tensor field, we have

(5.3) ZHJhBlBMVAFL.H)La...A Ny N Ny =0.
(5.4) zHakkBMBMVAFA

.......

Now suppose that the mean curvature vector field H* of M™is parallel

with respect to the connection of the normal bundle. Then, from Lemma 3.
2 and (4.3) we get

(5.5) ijakk_"%kukLbaj:O;
(5.6) VjHaij+Zb‘.HbﬁLbaj= kQ@fiWot+(m—Du;wa).

Moreover we assume that the connection of the normal bundle is trivial.
Then, from (4.4) we get

Hathcjk_ Haijcjh: k(hkahhc" hhahkc_ 2fhk7a6> :

So, we have
(.7 D HAH L A e A LN . Bl . B¥..Ny
:izl(Hathcjk H*He M Fy g e N}, . .Bp. .. 26...N;}”

:%kE <hkahh hh hk —thkrac>FA ........ Ag.. . Ape
Nf‘...Bzﬂ...B,if...ng
— kS (Wt — W5 ) Fy  N¥...Bl...By.. N}

At first, in the case that F, ,, is a conformal Killing tensor field,
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substituting (5.3), (5.6) and (5.7) into (5.1) and also (5.4) and (5.5)
into (5.2), we get:

(5.8) Vv]—kZ(Sf Wot+t(m—Du'w)F;y, 4, . NM...B}¥... N}
—S(=DHaspr, ..., N*Np
—kZ (W' "12) Py, .o, JN¥.. Bl Bl N
+rza‘.HaﬁHaﬁ

(5.9 Vw'= —m§<—1)aHak P2
+r.§(Hak">2
From (5.8) and (5.9), we obtain:
(5.10) V,j'—V,w’
= 7S HopH? = (o)
+EDGf et (m—Du'w) By s, a NP Bl Ny
—-kaZC(h’“ah” — ") Fy,. aeodwa, N Bl By . N

Next, in the case that F;, ,, is a Killing tensor field, we get:

(5.8) VUJ—kE(Sf ot (m—Dulw)Fy, , i ,NP...Bl...Nj
— k2 (h*ehc— "1 Fy, a. ... Nl Bje.. Bgc----N}}p
+ 72 Hg:Hy "

(5.9 Vw'=r2(Hu*)?

Now, we substitute U, ,, into F;, ,, in the equation (5.10). Making

use of (2.3), (2.4), (1.1), (4.1) and (4.2), after long complicated
computations, (5.10) becomes

5.1 Vo=V’
=7 | S HoiH = (Ha)? + km =D (0~ S0 |

Next, substituting V), ,, , into F;, ,, in the equation (5.8)’, by similar
computations, (5.8)" reduces to
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(5.1 V'=r | SHuHA+k n 42D A= +(p—Dm) |

Applying Green-Stokes’ theorem to (5.11), (5.9)" and (5.12), we get
the following two sets of integral formulas;

519 [ 7| SHHoiHe— (Hoa)?) + km =D (p= S b | dM =0,
(5.14) f r S Hy®)2dM =0,
]r[zHaj,-Haﬁ+k{<m+2><1—zwz>+<p—1>m}:] dM =0.

THEOREM 5.1. Let M™? (m=1) be an (m+p)-dimensional Sasakian
space form and M™ be a compact orientable submanifold of codimension p of
M™?, We suppose that k is non-negative, the mean curvature vector field is
parallel with respect to the commection of the normal bundle, the connection
of the normal bundle is trivial and v is almost everywhere non-zevo valued
function whose sign dose not change, then we have :

1) The ambient manifold M™* is necessarilly a space of constant
curvature 1.

2) If the codimension p is even, M™ is a totally umbillical submanifold
and if the codimension p is odd, M™ is a totally geodesic submanifold.

Theorem 5.1 follows from the integral formulas (5.13), (5.14) and the

fact that v,u’'=1—X2 w2 =0.

COROLLARY 5.1.  Let M*™' be a (2n+1)-dimensional Sasakian space form
and M?" be a compact ovientable hypersurface. We suppose that the mean
curvaturve of M?*" is constant and & N* has fixed sign on M*", then we have

1)  The ambient manifold M?" is mnecessarilly a space of constant
curvature 1.

2) M?*™ s totally geodesic.

This result is obtained directly, computing the divergences of two vector
fields v; and w; which are defined as follows :

Vi = Hij&-ABlj
VVi: Hkkngil

ReMARK. The case of codimension 2 has been proved by the author [4].
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M.

Y. Kubo
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