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Introduction

Let R be a manifold, and let E and F be two differential systems on R,

i . e. , subbundles of the tangent bundle T(R) of R. Then the pair (F, F) is
called a product structure on R , if it satisfies the following conditions:

(P. 1) T(R)=E+F (direct sum),

(P. 2) Both E and F are completely integrable.
A manifold R equipped with a product structure (F, F) is called a

product manifold. Let R (resp.R’) be a product manifold, and (F, F)

(resp. (E’F\gamma) its product structure. By an isomorphism of R onto R’ we
mean a diffeomorphism \phi of R onto R’ such that the differential \phi_{*} of \phi

sends E to E’ and F to F’ Clearly the product M\cross N of two manifolds M

and N , and hence its open submanifolds \Omega become naturally product

manifolds in our sense.
The main purpose of the present paper is to study the automorphism

groups Aut(\Omega ) of product manifolds \Omega together with some related problems,

based on the results in our previous works [8], [12] and our recent work
[13]. (For several years we have worked on the geometrizations of systems

of ordinary differential equations, and the results, obtained, will be publ-

ished in the near future as a series of papers under the title: On pseud0-

product structures and the geometrizations of systems of ordinary different-
ial equations, which we quote by [13] )

First of all we shall explain the main theorem in the present paper.
Let \mathfrak{H} be a simple graded Lie algebra of the first kind, by which we mean

a graded Lie algebra (over R), \mathfrak{g}=\sum_{p}\mathfrak{h}_{p} , satisfying the following conditions:

1) dim \mathfrak{g}<\infty , and \mathfrak{g} is simple, 2) \mathfrak{h}_{-1}\neq\{0\}\} , and \mathfrak{h}_{p}=\{0\} if p\leqq-2 or p\geqq 2 .
(Note that dim \mathfrak{h}_{-1}=\dim \mathfrak{h}_{1}. ) If we set \mathfrak{h}=\mathfrak{h}_{0} and \mathfrak{m}=\mathfrak{h}_{-1}+\mathfrak{h}_{1} we see that the
system \mathfrak{S}=\{\mathfrak{g};\mathfrak{h}, \mathfrak{m}\} gives an (affine) symmetric triple, that is, it satisfies
the following conditions: 1) \mathfrak{g}=\mathfrak{h}+\mathfrak{m} (direct sum), 2) [\mathfrak{h}, \mathfrak{m}]\subset\iota \mathfrak{n} , and
[\mathfrak{m}, \mathfrak{m}]\subset h . Clearly the symmetric triple \mathfrak{S} is of simple and reducible type,

that is, \mathfrak{g} is simple, and the linear isotropy representation of \mathfrak{h} on r\mathfrak{n} is
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reducible. In his paper [3], Berger classified the symmetric triples of
simple type, especially showing that any symmetric triple of simple and
reducible type can be obtained in this manner.

Now, there is naturally associated to \mathfrak{H} a (non-compact) affine symmet-
ric homogeneous space G/H such that the symmetric triple associated with
G/H is given by \mathfrak{S} and such that G/H is standard in a suitable sense (see 2.
4). The space G/H will be called the standard affine symmetric space
associated with \mathfrak{H} . It should be noticed that the space G/H is endowed with
a product structure. In fact, the subspaces \mathfrak{h}_{-1} and \mathfrak{h}_{1} of t naturally give
rise to invariant differential systems E and F on G/H respectively, and the
pair (E, F) gives an invariant product structure on the space. Giving
attention only to the product structure, we denote by Aut(G/H) the
automorphism group of the product manifold G/H.

These being prepared, the main theorem (Theorem 2. 8) in the present
paper may be stated as follows: Assume that \mathfrak{H} is of the classical type. If
\zeta p is isomorphic with a definite M\"obius (graded Lie) algebra, then the
automorphism group Aut(G/H) is naturally isomorphic with the diffe0-
morphism group of a sphere. Otherwise, the automorphism group Aut
(G/H) is naturally isomorphic with the group G.

Here the definite M\"obius algebras mean the simple graded Lie algebras
of the first kind which play an important role in the definite conformal
geometry and which may be regarded as the symbols of definite conformal
structures. (For the precise definition, see 2. 3.)

We shall now make some remarks on the main theorem.
(1) Clearly a product structure is of infinite type and not elliptic in the

sense that the equation of local infinitesimal automorphisms of the structure
is of infinite type and not elliptic. Nevertheless the main theorem implies the
finiteness for the automorphism group Aut (G/H) of the product manifold
G/H , provided \mathfrak{H} is not isomorphic with a definite M\"obius algebra. It
should be here recalled that the finiteness for the automorphism group of a
geometric structure (such as a Riemannian structure, a complex structure
and so on) which we have known up to now, is all based on the ellipticity for
the geometric structure.

(2) We first remark that the Killing form of the Lie algebra \mathfrak{g} naturally
gives rise to an invariant indefinite Riemannian metric g on G/H, and it
satisfies the following: 1) g(E_{x}, E_{x}) g(Ex, F_{x})=\{0\} at each x\in G/H, 2)
Both E and F are parallel with respect to the Levi-Civita connection \nabla

associated with g. Thus the space G/H equipped with the product structure
(E, F) and the metric g turns out to be a space analogous to a hermitian
symmetric space of simple and non-compact type (cf. a parahermitian
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symmetric space in the sense of [5] ) . As an important consequence of the
main theorem we now remark that the metric g is completely determined (up

to constant factors\neq 0) by the product structure (E, F) , provided \mathfrak{H} is not
isomorphic with a definite M\"obius algebra (cf. the K\"ahlerian metric of a
hermitian symmetric space of simple and non-compact type, and the
Bergmann metric of a bounded domain). In connection with this fact, see
the problem at the end of \S 2.

(3) Through the proof of the main theorem we shall find an analogy
between the study of the product manifolds G/H and the study of Siegel
domains (of the first and the second kinds) due to Pyatetski-Shapiro [7] as
developed by [10]. At the same time we shall find some essential differences
between the two studies. For example, consider the finiteness for the
automorphism groups.

(4) Finally we remark that the geometry of the product manifold G/H
is closely related to the geometry of a certain involutive system of partial
differential equations of finite type, provided \mathfrak{H} is of the second class (cf.

Remark at the end of 2. 2).

Now, we proceed to the descriptions of the various sections.
\S 1 is preliminary to the subsequent sections.
After general remarks on terminologies and notations, we recall several

known facts on simple graded Lie algebras ([12]), and prove some facts
(Lemma 1. 11 and its corollaries) on simple graded Lie algebras of the first
kind. We also recall some fundamental facts (Facts A and B) in the
equivalence problems associated with simple graded Lie algebras of the first
kind ([8] and [12]).

We then introduce the notion of a pseud0-product manifold ([13]),
which plays an important role in the present paper. By a pseud0-product
structure on a manifold R we mean a pair (F, F) of differential systems E
and F on R satisfying the following condtions: 1) E\cap F=0 , the zero cross
section of T(R) , 2) Both E and F are completely integrable. A manifold
R equipped with a pseud0-product structure (E, F) is called a pseud0-
product manifold. Now let R be a submanifold of a product manifold R’
and (E’F’) the product structure of R’ Then R becomes a pseud0-
product manifold simply by setting E_{x}=E_{\acute{x}}\cap T(R)_{x} and F_{x}=F_{\acute{x}}\cap T(R)_{x} at
each point x of R, provided both dim E_{x} and dim F_{x} are constant.

Furthermore we introduce the notion of a pseud0-product FGLA, which
may be regarded as the symbol of a pseud0-product manifold at a point
([13]). Finally we introduce the notion of a pseud0-product manifold of
type \mathfrak{L} , where \mathfrak{L} is a pseud0-product FGLA of the second kind, and state some
fundamental facts (Facts C and D) in the equivalence problem for pseud0-
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product manifolds of type \mathfrak{L} , under the condition that the prolongation \mathfrak{G} of
\mathfrak{L} is simple ([13]).

In \S 2, we first prove some propositions on the automorphism groups
Aut (\Omega) of product manifolds \Omega , and then state the main theorem together
with some related facts.

Let P^{n} be the n-dimensional projective space over R, and G^{r}(P^{n}) the
Grassmann manifold of r -dimensional projective subspaces of P^{n}, where 1\leqq

r\leqq n-1 . Let us consider the relation R in the product manifold P^{n}\cross G^{r}(P^{n})

defined by

R=\{(p, \alpha)\in P^{n}\cross G^{r}(P^{n})|p\subset\alpha\} .

As is easily seen, R is a compact submanifold of the product manifold, and
hence the complement \Omega of R is an open submanifold of the product manifold.
Then it can be shown that the automorphism group Aut(O) of the product
manifold \Omega is naturally isomorphic with the projective transformation group
G of P^{n} (Proposition 2. 1), indicating that the projective geometry has a
close relationship with the geometry of product manifolds.

Proposition 2. 1, this apparently simple fact, is just the starting-point of
our study, and it is generalized (or partially generalized) in two manners:
One is from the view-point of the manifold theory (Propositions 2. 5 and
2. 6); The other is from the view-point of the Lie group theory, which is
nothing but our subject.

\S 3--\S 8 are devoted to the proof of the main theorem.
We first notice that the simple graded Lie algebras of the first kind (of

the classical type) are divided into two classes, called of the first class and
of the second class (see \S 5). In our notations, the simple graded Lie
algebras of the second class consists of \mathfrak{G}(n, k;K)(k>n\geqq 1, K=R or C or
Q) , a class of Grassmann graded Lie algebras, and \mathfrak{S}\mathfrak{O}(n, n;K)(n odd,
n\geqq 5 , K=R or C), where Q denotes the skew field of quaternions. Thus the
standard affine symmetric spaces G/H are divided into two classes, which
just correspond to the symmetric Siegel domains of the first kind and those of
the second kind (but not of the first kind). It should be here noted that to
every simple graded Lie algebra \mathfrak{H} of the second class there is suitably
associated a simple graded Lie algebra \mathfrak{G} of the second kind such that the
underlying Lie algebras of \mathfrak{H} and \mathfrak{G} coincide and such that \mathfrak{G} is pseud0-
product in our terminology (see \S 3 and \S 7).

Now, the proof of the main theorem is treated in different manners,
according as \mathfrak{H} is of the first class or of the second class. Let us explain our
basic idea for the proof in the case where \mathfrak{H} is of the second class. This is
to construct two connected, compact manifolds M and N on which the group
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G acts transitively and effectively, and successively to carry out the
following procedures (cf. the proofs of Propositions 2. 1, 2. 5 and 2. 6):

(I) The group G acts on the product manifold M\cross N through the
diagonal map of G to G\cross G. Then we show that the action of G on M\cross N

have a single open orbit \Omega and a single minimal dimensional orbit R. Hence
\Omega is an open, dense subset of M\cross N, and the submanifold R of M\cross N is in
the boundary \partial\Omega of \Omega .

(II) We show that G/H and \Omega are isomorphic as homogeneous product
manifolds, and that every automorphism \phi of the product manifold \Omega is
naturally extended to a unique automorphism \phi_{M\cross N} of the product manifold
M\cross N. Note that \phi_{M\cross N} leaves \partial\Omega invariant.

(III) We show that \phi_{M\cross N} leaves R invariant and hence the restriction
of \phi_{MxN} to R gives an automorphism of the pseud0-product manifold R.
From the procedures so far we see that there are natural injective
homomorphisms i_{\Omega} , i_{R} and j of G to Aut (\Omega) , of G to Aut(Q) and of Aut (\Omega)

to Aut(R) respectively. Thus we obtain the following commutative
diagram:

G^{arrow}i_{\Omega}Aut (.\Omega)

\backslash
\downarrow J

i_{R} Aut (R)

(IV) We apply Facts C and D to the pseud0-product manifold R, and
show that the homomorphism i_{R} gives an isomorphism of G onto Aut(R).

Consequently we have the natural isomorphisms: Aut (\Omega)\cong G, proving the
main theorem for the given \mathfrak{H} .

Let us return to the descriptions of the various sections. In \S 3 we
develop a general theory for the proof of the main theorem in the case where
\mathfrak{H} is of the second class. We start from any simple graded Lie algebra \mathfrak{G} of
the second kind which is pseud0-product. Then it is shown that there are
naturally associated to Q) two simple graded Lie algebras \mathfrak{A} and \mathfrak{B} of the first
kind whose underlying Lie algebras coincide with that of \mathfrak{G} . Our task here
is to realize our basic idea for \mathfrak{H}=\mathfrak{A} . Indeed, we consider two conditions,
(II. 1) and (II. 2) , on \mathfrak{G} , and show by the realization of the basic idea that
the main theorem is true for \mathfrak{H}=\mathfrak{A} under these conditions. Similarly in \S 4
we develop a general theory for the proof in the case where \mathfrak{H} is of the first
class. We start from any simple graded Lie algebra \mathfrak{G} of the first kind. As
above we consider three conditions, (I. 1), (I. 2) and (I. 3), on \mathfrak{G}, and show
by an analogous idea that the main theorem is true for \mathfrak{H}=\mathfrak{G} under these
conditions.
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In \S 6 we study certain algebraic varieties of the spaces M_{n}(C) of square
matrices over C, etc. We discuss generators of the ideals of the varieties,
and determine the linear transformations leaving the varieties invariant. In
\S 7 we apply the arguments in \S 3 to the simple graded Lie algebra \mathfrak{G} of the
second kind associated with each simple graded Lie algebra \mathfrak{H} of the second
class. Note that \mathfrak{G} is pseud0-product, and the associated \mathfrak{A} coincides with
the given \mathfrak{H} . We easily verify condition (II, 1) , and verify condition (II. 2)
by the use of the results in \S 6 and by the method of complexification, thus
completing the proof of the main theorem for \mathfrak{H}=\mathfrak{A} . Similarly in \S 8, we
apply the arguments in \S 4 to each simple graded Lie algebra \mathfrak{G} of the first
class. Unless \mathfrak{G} is a definite M\"obius algebra, we easily verify condition (I.
1), and verify conditions (I. 2) and (I. 3) by the similar arguments to the
above. Thus we complete the proof of the main theorem for \mathfrak{H}=\mathfrak{G} . (The
exceptional case can be easily settled.)

Finally I thank to Dr. Yamaguchi who kindly helped me through reading
the manuscript.

\S 1. Preliminaries

1. 1. General remarks on terminologies and notations. Throughout the
present paper, we shall always assume the differentiability of class C^{\infty} .

(a) Let M be a manifold. T(M) denotes the tangent bundle of M.
By a differential system on M we mean a subbundle of T(M) .

(b) Let E be a vector bundle over a manifold M. For each x\in M, E_{x}

or E(x) denotes the fibre of E at x. E denotes the sheaf of germs of local
cross sections of E. For each x\in M, \underline{E}(x) denotes the stalk of E at x.

(c) Let \pi be a map of a manifold M to a manifold N. Then M is
called a fibred manifold over the base space N with projection \pi , if \pi is
surjective, and further if, for each x\in M, the differential \pi_{*_{\chi}} of \pi at x is
surjective. If M is a fibred manifold over N with projection \pi , the
differential system E=\pi_{*}^{-1}(O)=\{X\in T(M)|\pi_{*}(X)=0\} on M is called the
vertical tangent bundle of this fibred manifold.

(d) Let f be a function on a manifold M. For any x\in M and any
integer k\geqq 0 , j_{x}^{k}y ) denotes the k-jet of f at x.

(e) Let M be a manifold, and let r be an integer with 1\leqq r\leqq\dim M-

1 . Then G^{r}(T(M)) denotes the Grassmann bundle of r-dimensional
contact elements to M. Let \varpi be the projection of G^{r}(T(M)) onto M.
For each z\in G^{r}(T(M)) , let C_{z} denote the subspace of the tangent (vector)
space T(G^{r}(T(M)))_{z} consisting of all vectors X such that the vectors \varpi_{*}

(X) are in the subspace z of the tangent space T(M)_{\varpi(z)} . Then the union
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C= \bigcup_{z}C_{z} gives a differential system on G^{r}(T(M)) , which is called the

canonical system on G^{r}(T(M)) . Let A be an r-dimensional submanifold of
M. For each x\in A , the tangent space T(A)_{x} gives a point of G^{r}(T(M)) .
This being said, \hat{A} denotes the subset \{ T(A)_{x}|x\in A\} of G^{r}(T(M)) , which
is an r-dimensional submanifold of G^{r}(T(M)) and is called the lift of A to
G^{r}(T(M)) . Note that \hat{A} is an integral manifold of the canonical system C.

(f) The rest of the paragraph will be devoted to the definition of a
Cartan connection (cf. [8], [11] and [12]).

Let G/G^{(0)} be a homogeneous space of a Lie group G over its closed
subgroup G^{(0)} . Put m=\dim G/G^{(0)} , and let \mathfrak{g} (resp. \mathfrak{g}^{(0)}) denote the Lie
algebra of G (resp. of G^{(0)}). Now let M be an m-dimensional manifold,
and let P be a principal fibre bundle over the base space M with structure
group G^{(0\rangle} . Let \omega be a \mathfrak{g} -valued 1-form on P. Then the pair (P, \omega) is
called a Cartan connection of type G/G^{(0\rangle} on M if it satisfies the following
conditions:

(C. 1) For each z\in P, the assignment Xarrow\omega(X) gives an isomorphism
of T(P)_{z} onto \mathfrak{g} ,

(C. 2) R_{a}^{*}\omega=Ad(a^{-1})\omega , a\in G^{(0)} ,

(C. 3) \omega(A^{*})=A , A\in \mathfrak{g}^{(0\rangle} .

Here, as usual, R_{a} denotes the right translation on P corresponding to a,

and A^{*} the vertical vector field on P corresponding to A .
Let (P, \omega) (resp. (P’\omega 9) be a Cartan connection of type G/G^{(0)} on a

manifold M (resp. on M’). Let \pi (resp. \pi’) be the projection of P onto M
(resp. of P’ onto M’). Then a diffeomorphism \phi of M onto M’ is called an
isomorphism of (P, \omega) onto (P’\omega’) , if there is a bundle isomorphism \tilde{\phi} of
P onto P’ such that \pi’\circ\tilde{\phi}=\phi\circ\pi and \tilde{\phi}^{*}\omega’=\omega . Note that \tilde{\phi} is uniquely
determined by \phi , if G/G^{(0)} is connected and if the action of G on G/G^{(0\rangle} is
effective.

The Lie group G may be naturally regarded as a principal fibre bundle
over the base space G/G^{(0)} with structure group G^{(0)} . Let \omega be the
Maurer-Cartan form of G, i . e. , the \mathfrak{g} -valued 1-form on G defined by \omega(X_{z})=

X for all X\in \mathfrak{g} and z\in G, where X should be identified with a left invariant
vector field on G. Then it is easy to see that the pair (G, \omega) gives a Cartan
connection of type G/G^{(0)} on G/G^{(0)} , which is called the standard Cartan
connection of type G/G^{(0)} .

1. 2. Simple graded Lie algebras ([12]). First of all we recall the
definition of a graded Lie algebra and of a FGLA. Let K be the field R of real
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numbers or the field C of complex numbers. Let \mathfrak{g} be a Lie algebra over K,

and let ( _{\iota}q_{p})_{p\in Z} be a family of subspaces of \mathfrak{g} , where Z denotes the additive
group of integers. Then the pair \mathfrak{G}=\{\mathfrak{g}, (\mathfrak{g}_{p})\} is called a graded Lie algebra,
if it satisfies the following conditions: 1)

\mathfrak{g}=\sum_{p}\mathfrak{g}_{p}
(direct sum), 2) dim

.q_{p}<\infty , 3) [\mathfrak{g}_{p}, \mathfrak{g}_{q}]\subset.q_{p+q} .
Let \mathfrak{T}=\{t, (\mathfrak{g}_{p})\} be a graded Lie algebra such that \mathfrak{g}_{p}=\{0\} for all p\geqq 0 .

(Hereafter such a graded Lie algebra will be written as q-\sim=\{t , (\mathfrak{g}_{p})_{p<0}\}.)

Then \mathfrak{T} is called a fundamental graded Lie algebra or briefly a FGLA, if it
satisfies the following conditions:

(FGLA. 1) dim t<\infty ,
(FGLA. 2) \mathfrak{g}_{-1}\neq\{0\} , and the Lie algebra t is generated by \mathfrak{g}_{-1} .
Given a positive integer \mu , a FGLA, c_{\zeta,\sim},, is called of the \mu -th kind, if \mathfrak{g}_{-\mu}

\neq\{0\} and \mathfrak{g}_{p}=\{0\} for all p<-\mu . It is also called non-degenerate, if the
condition “

X\in \mathfrak{g}_{-1} and [X, \mathfrak{g}_{-1}]=\{0\}
” implies X=0.

Now, let \mathfrak{G}=\{\mathfrak{g}, (\mathfrak{g}_{p})\} be a graded Lie algebra. If we set t=\sum_{p<0}\mathfrak{g}_{p} , we

see that c
\sim\Gamma_{=},\{t, (\mathfrak{g}_{p})_{p<0}\} is a (truncated) graded subalgebra of G. Then \mathfrak{G} is

called a simple graded Lie algebra or briefly a SGLA, if it satisfies the
following conditions:

(SGLA. 1) dim \mathfrak{g}<\infty , and \mathfrak{g} is simple,
(SGLA 2) \mathfrak{T} is a FGLA.
A simple graded Lie algebra \mathfrak{G} is called of the \mu -th kind, if the FGLA, \mathfrak{T} ,

is of the \mu -th kind.
Let \mathfrak{G} be a simple graded Lie algebra of the \mu -th kind.

LEMMA 1. 1. There is a unique element E in the centre of \mathfrak{g}_{0} such that
[E, X]=pX for all X\in \mathfrak{g}_{p} and p.

The element E will be called the characteristic element of \mathfrak{G} .
Let \langle , \rangle be the Killing form of the Lie algebra \mathfrak{g} .

LEMMA 1. 2. (1) <\mathfrak{g}_{p}, \mathfrak{g}_{q}>=\{0\} if p+q\neq 0 .
(2) For any integer p, the bilinear function (X, Y)arrow<X, Y> on

\mathfrak{g}_{p}\cross \mathfrak{g}_{-p} is non-degenerate.
In particular it follows from this fact that dim \mathfrak{g}_{p}=\dim \mathfrak{g}_{-p}.

Lemma 1. 3. (1) The natural representation of the Lie algebra \mathfrak{g}_{0} on \mathfrak{g}_{-1}

is faithful.
(2) Let p\geqq 0 , and X\in \mathfrak{g}_{p} . If [X, \mathfrak{g}_{-1}]=\{0\} , then X=0.
From this fact we know that \mathfrak{g}_{0} may be naturally regarded as a

subalgebra of the derivation algebra Der(T) of \mathfrak{T} , and that \mathfrak{G} may be
naturally regarded as a graded subalgebra of the prolongation of the pair
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(\mathfrak{T}\mathfrak{g}_{0}) . (For the definition of the prolongation, see [9] or preferably [10].)

We also remark that if \mu\geqq 2 , \mathfrak{T} is necessarily non-degenerate.
Examples. Let K be the field R or the field C or the skew field Q of

quaternions. Let us consider the space M_{n}(K) of matrices of degree n over
K, being an associative algebra over R. As usual, M_{n}(K) may be
considered as a Lie algebra over R, which we denote by \mathfrak{g}1(n, K) .
Furthermore the Lie algebra \mathfrak{g}\mathfrak{l}(n, K) is reductive, and \epsilon_{\sim}\mathfrak{l}(n, K) denotes its
semi-simple part. (For the details, see \S 5.) Now take k positive integers,
n_{1} , \ldots-n_{k} , and set n=n_{1}+\ldots+n_{k} , where k\geqq 2 . Then every matrix X of
\mathfrak{g}=\mathfrak{s}\mathfrak{l}(n, K) may be expressed as follows: X=(X_{ij})_{1\leqq i,j\leqq k}, where X_{ij} are

n_{i}\cross n_{j} -matrices. For any integer p, define a subspace \mathfrak{g}_{p} of \mathfrak{g} by

\mathfrak{g}_{p}= { X\in \mathfrak{g}|X_{ij}=0 if j-i\neq p }.

Then we easily see that \mathfrak{G}=\{\mathfrak{g}, (\mathfrak{g}_{p})\} becomes a simple graded Lie algebra of
the (k-1) -th kind over R, which we denote by \mathfrak{G}(n_{1}, \ldots-n_{k}\cdot, K) .
Correspondingly the space \mathfrak{g}_{p} will be denoted by \mathfrak{g}_{p}(n_{1} , ... . n_{k} ; K) .

In the following we shall consider a fixed simple graded Lie algebra \mathfrak{G} of
the \mu -th kind over R. Let us consider the automorphism group Aut(g) of
the simple Lie algebra \mathfrak{g} . As usual, the Lie algebra of Aut(g) may be
identified with \mathfrak{g} , so that Ad(a)X =aX for all a\in Aut(\mathfrak{g}) and X\in-\mathfrak{g} .

For any injeger p, define a subspace \mathfrak{g}^{(p)} of \mathfrak{g} by \mathfrak{g}^{(p)}=\sum_{i\geqq p}\mathfrak{g}_{i} . Then we

have [ \mathfrak{g}^{(p)}, \mathfrak{g}^{(q)}]\subset \mathfrak{g}^{(p+q)} , and hence the family (\mathfrak{g}^{(p)}) gives a filtration in \mathfrak{g} .
Thus we get the filtred Lie algebra F(\mathfrak{G})=\{\mathfrak{g}, (-\mathfrak{g}^{(p)})\} . Now consider the
automorphism group Aut (\mathfrak{G}) of the graded Lie algebra \mathfrak{G} , and the
automorphism group Aut(g) (\mathfrak{G})) of the filtred Lie algebra F(\mathfrak{G}) .

Lemma 1. 4. Aut(g) (\mathfrak{G})) coincides with the normalizer of the sub-
algebra \mathfrak{g}^{(0)} of \mathfrak{g} in Aut (\mathfrak{g}) .

Lemma 1. 5. The Lie algebra of Aut(Q}) is \mathfrak{g}_{0} , and the Lie algebra of
Aut (F(\mathfrak{G})) is \mathfrak{g}^{(0)} .

Clearly the graded Lie algebra associated with the filtred Lie algebra
F(\mathfrak{G}) is naturally isomorphic with the given \mathfrak{G} . Hence we have a natural
homomorphism \kappa of Aut(g) (\mathfrak{G})) onto Aut(G). Let G^{(1)} be the Lie subgroup
of Aut(\mathfrak{g}) generated by the (nilpotent) subalgebra \mathfrak{g}t1 ) of \mathfrak{g} , and let exp be
the expential map of \mathfrak{g} to Aut(\mathfrak{g}) .

Lemma 1. 6. The kernel of the homomorphism \kappa is G^{(1)} , and
Aut (F(\mathfrak{G})) is a semi-direct product of Aut(G) and G^{(1)} . Furthermore every
element a of G^{(1)} may be written uniquely in the following form:
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a=\exp X_{1}\ldots exp X_{\mu} ,

where X_{i}\in 9_{i}\backslash (1\leqq i\leqq\mu) .

LEMMA 1. 7. The natural representation of Aut(G) on \mathfrak{g}_{-1} is faithful.
Now, let G_{0} be an open subgroup of Aut(G). We define subgroups G^{(0)}

and G of Aut (\mathfrak{g}) respectively by

G^{(0\rangle}=\kappa^{-1}(G_{0})=G_{0}\cdot G^{(1)} , G=Aut(\mathfrak{g})^{0}\cdot G_{0} ,

where Aut ( \mathfrak{g})^{0} stands for the connected component of the identity of Aut (g).

REMARK. The groups G^{(0)} and G will be called associated with the pair
(\mathfrak{G}, G_{0}) . In the special case where G_{0}=Aut(\mathfrak{G}) , the groups G_{0} , G^{(0)} and G
will be called associated with \mathfrak{G} . In our previous paper [12], we exclusively
considered the groups G_{0} , G’(=G^{(0)}) and G associated with \mathfrak{G} , on the basis
of which the theory was developed. However, as is easily observed, all the
results in that paper hold good even in our generalized or modified situation.

Let us consider the homogeneous space G/G^{(0)} .

LEMMA 1. 8. G/G^{(0)} is connected and compact, and the action of G on
G/G^{(0)} is effective.

We have \mathfrak{g}=t+_{c}q^{(0)} (direct sum). This being said, we define a represen-
tation \rho of G^{(0)} on t by

\rho(a)X\equiv Ad(a)X (mod \mathfrak{g}^{(0)}) for all a\in G^{(0)} and X\in t ,

which may be naturally regarded as the linear isotropy representation of G^{(0)}

on the tangent space T(G/G^{(0)})_{0}(\cong t) , 0 being the origin of G/G^{(0)} . Let G^{(\mu)}

be the Lie subgroup of G^{(1)} generated by the (abelian) ideal \mathfrak{g}^{(\mu)} of \mathfrak{g}^{(1)} .

LEMMA 1. 9. The kernel of the homomorphism \rho coincides with G^{(\mu)} .
Finally we recall some definitions in the equivalence problem associated

with the simple graded Lie algebra \mathfrak{G} . A Cartan connection (P, \omega) of type
G/G^{(0)} on a manifold M is called a connection of type \mathfrak{G} on M, and this
connection is called normal, if the curvature K= \sum_{p}K^{p} satisfies the following

conditions: 1) K^{p}=0 for p<0,2 ) \partial^{*}K^{p}=0 for p\geqq 0 (see page 47 in [12]).
Clearly the standard connection (G, \omega) of type G/G^{(0)} is a normal connec-
tion of type \mathfrak{G} , which is called the standard connection of type \mathfrak{G} .

1. 3. Some facts on simple graded Lie algebras of the first kind. Let
\mathfrak{G} be a simple graded Lie algebra of the first kind. Let G_{0} be an open
subgroup of Aut(Q}) such that Aut (\mathfrak{g})^{0}\cap Aut(\mathfrak{G})\subset G_{0} . Let G^{(0)} and G be the
groups associated with the pair (\mathfrak{G}, G_{0}):G^{(0)}=G_{0}\cdot G_{1} and G=Aut(\mathfrak{g})^{0}\cdot G_{0} ,
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where G_{1} stands for the group G^{(1)} , i . e. , the Lie subgroup of Aut (*q)^{0}

generated by the abelian subalgebra \mathfrak{g}_{1} of \mathfrak{g} . Similarly let G_{-1} be the Lie
subgroup of Aut(\mathfrak{g})^{0} generated by the abelian subalgebra .q_{-1} of .q . Let us
consider the subset of G :

S=G_{-1}\cdot G_{0}\cdot G_{1} .

LEMMA 1. 10. Every element a of S can be written uniquely in the
following form:

a=\exp X_{-1}\cdot b\cdot\exp X_{1} ,

where X_{-1}\in \mathfrak{g}_{-1} , b\in G_{0} and X_{1}\in \mathfrak{g}_{1} .

PROOF. Let X_{-1}\in \mathfrak{g}_{-1} , b\in G_{0} and X_{1}\in.q_{1} . To prove the lemma, it
suffices to prove that the condition “ exp X_{-1}=b\cdot\exp X_{1}

” implies {-
\dot{L}hat X_{-1}=

X_{1}=0 , and b=e, the identity of G. Accordingly assume that exp X_{-1}=b .
exp X_{1} . Then we have Ad(exp X_{-1} ) E=Ad(b\cdot\exp X_{1})E, where E is the
characteristic element of G. We have Ad(exp X_{-1} ) E=E+X_{-1} , and Ad (b .
exp X_{1} )E=E-Ad (b)X_{1} , whence X_{-1}=-Ad (b)X_{1} . Therefore we obtain
X_{-1}=X_{1}=0 , and hence b=e. Thus the lemma follows.

Let a\in S and Y_{1}\in \mathfrak{g}_{1} . The notations being as in Lemma 1. 10, we have

Ad (a) Y_{1}=Ad (exp X_{-1} )Ad (b) Y_{1}\equiv Ad(b)Y_{1} (mod t.)_{-1}+.q_{0} ).

Now, for any a\in G, we define an endomorphism \zeta(a) of q\iota

1 by

Ad (a) Y_{1}\equiv\zeta(a)Y_{1} (mod .q_{-1}+\mathfrak{g}_{0} ) for all Y_{1}\in_{1}q_{1} ,

and set

S’=\{a\in G|\zeta(a)\in GL(\mathfrak{g}_{1})\} ,

where GL(\mathfrak{g}_{1}) denotes the general linear group of \mathfrak{g}_{1} . We have S\subset S’ as
we have just seen.

Lemma 1. 11. S=S’

PROOF. Take any a\in S’, and set \zeta=\zeta(a) . Since \zeta\in GL^{(}\backslash \mathfrak{g}_{1} ), there is
X_{1}\in \mathfrak{g}_{1} such that

Ad (a)E\equiv-\zeta X_{1} (mod \mathfrak{g}_{-1}+_{\iota}q_{0} ).

Put a’=a\cdot\exp(-X_{1}) . Then we have Ad (a’)E=Ad(a)(E+X_{1})\equiv-\zeta X_{1}+

\zeta X_{1} (mod \mathfrak{g}_{-1}+\mathfrak{g}_{0} ), and hence Ad (a’)E\equiv 0 (mod \mathfrak{g}_{-1}+q_{\backslash 0} ). Therefore there
is X_{0}\in \mathfrak{g}_{0} such that

Ad (a’)E\equiv X_{0} (mod \mathfrak{g}_{-1} ).
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We assert that X_{0}=E. Indeed, let Y_{1}\in \mathfrak{g}_{1} . Then we have [E, Y_{1}]=Y_{1} ,

and hence [Ad (a’)E, Ad(a’) Y_{1} ] =Ad(a’)Y_{1} . We have Ad(a’) Y_{1}=Ad(a)Y_{1}

\equiv\zeta Y_{1} (mod \mathfrak{g}_{-1}+\mathfrak{g}_{0}). From these facts it follows that [X_{0}, \zeta Y_{1}]=\zeta Y_{1}=[E,

\zeta Y_{1}] . Since \zeta \mathfrak{g}_{1}=\mathfrak{g}_{1} , and since the natural representation of \mathfrak{g}_{0} on \mathfrak{g}_{1} is
faithful (cf. Lemmas 1. 2 and 1. 7), it follows that X_{0}=E, proving our
assertion.

Therefore we have Ad (a’)E\equiv E (mod \mathfrak{g}_{-1} ), and hence there is X_{-1}\in \mathfrak{g}_{-1}

such that

Ad (a’)E=E+X_{-1} .

If we put b=\exp(-X_{-1})\cdot a’, we easily have Ad(b)E =E, which means that
b\in Aut(\mathfrak{G})\cap G=G_{0} . We have thus shown that a=a’\cdot\exp X_{1}=

exp X_{-1}\cdot b\cdot\exp X_{1}\in S, and hence S’\subset S, proving the lemma.

COROLLARY 1. S is an open, dense subset of G.
Let \pi be the projection of G onto G/G^{(0\rangle} . We define a map \iota of \mathfrak{g}_{-1} to

G/G^{(0)} by

\iota (X)=\pi(\exp X) for a11X\in \mathfrak{g}_{-1} .

Then we see from Lemma 1. 10 that \iota is an (open) imbedding. Clearly we
have S=\pi^{-1}(\iota(\mathfrak{g}_{-1})) . Therefore from Corollary 1 we get

COROLLARY 2. The image \iota
(\mathfrak{g}_{-1}) of \mathfrak{g}_{-1} by \iota is an open, dense subset of

G/G^{(0)} .

1. 4. \tilde{G}_{0} -structures ([8] and [12]). Let \mathfrak{G} be a simple graded Lie
algebra of the first kind, and let G_{0} , G^{(0)} and G be the associated groups.
Let us consider the homogeneous space G/G^{(0)} , and let \rho be the associated
linear isotropy representation of the group G^{(0)} on the space \mathfrak{g}_{-1}(=t) . We
denote by \tilde{G}_{0} the image of G^{(0)} by the homomorphism \rho of G^{(0)} to GL(\mathfrak{g}_{-1}) ,

which is called the linear isotropy group associated with G/G^{(0)} . Since
G^{(0)}=G_{0}\cdot G_{1} , and since the kernel of \rho coincides with G^{(1)}=G_{1} (Lemma 1. 9),

we see that \rho gives an isomorphism of G_{0} onto \tilde{G}_{0} .
\tilde{G}_{0} being a Lie subgroup of GL(\mathfrak{g}_{-1}) , we have the notion of a \tilde{G}_{0}

-

structure, which we shall clarify from now on.
For this purpose, we first recall the definition of the frame bundle. Put

m=\dim G/G^{(0)}=\dim \mathfrak{g}_{-1} , and let M be an m-dimensional manifold. For
each x\in M, we denote by F(M)_{x} the set of all isomorphisms z of \mathfrak{g}_{-1} to the
tangent space T(M)_{x} , and put F(M)= \bigcup_{x}F(M)_{x} . Then F(M) becomes

naturally a principal fibre bundle over the base space M with structure group
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GL(\mathfrak{g}_{-1}) , which is called the frame bundle of M. Let M (resp. M’) be an
m-dimensional manifold, and F(M) (resp. F(M0) its frame bundle.
Then a diffeomorphism \phi of M onto M’ naturally induces a bundle isomor-
phism \overline{\phi} of F(M) onto F(M’) :

\overline{\phi}(z)\cdot X=\phi_{*}(z\cdot x) , z\in F(M) , X\in \mathfrak{g}_{-1} .

Let M be an m-dimensional manifold. Then a reduction Q of the frame
bundle F(M) to the group \tilde{G}_{0} (or a \tilde{G}_{0}-subbundle of F(M) ) is called a \tilde{G}_{0}

-

structure on M. Let Q (resp. Q’) be a \tilde{G}_{0}-structure on a manifold M (resp.
on M^{r}). By an isomorphism of Q onto Q’ we mean a diffeomorphism \phi of
M onto M’ such that the bundle isomorphism \overline{\phi} sends Q to Q’.

We now show that to the homogeneous space G/G^{(0)} there is naturally
associated a \tilde{G}_{0}-structure on it. Consider the frame bundle F(G/G^{(0)}) of
G/G^{(0)} . Let z_{0} be the point of F(G/G^{(0)}) given by

z_{0}\cdot X=\pi_{*}(X_{e}) , X\in \mathfrak{g}_{-1} ,

where \pi is the projection of G onto G/G^{(0)} . For each a\in G, let \tau_{a} denote the
transformation of G/G^{(0)} induced by a. Then the group G acts on F(G/G^{(0)})

through the correspondence aarrow\overline{\tau}_{a} , and let Q be the G-0rbit through the point
z_{0}\in F(G/G^{(0)}) . As is easily verified, we have

\overline{\tau}_{a}(z_{0})=z_{0}\cdot\rho(a) , a\in G^{(0)} .

Using this fact, we easily show that Q is a \tilde{G}_{0}-structure on G/G^{(0)} .
Here, we recall the following

LEMMA 1. 12 (cf. [6], III, and [8]). \mathfrak{G} is the prolongation of (\mathfrak{g}_{-1} ,
\mathfrak{g}_{0}) (or precisely of ( \mathfrak{T}, \mathfrak{g}_{0} )) if and only if \mathfrak{G} is isomorphic with none of the
simple graded Lie algebras \mathfrak{G}(1, n;K) of the fifirst kind, where n\geqq 1 and K=
R or C .

Now we have the notion of a normal connection of type \mathfrak{G} , being a
connection of type G/G^{(0)} . In the following we assume that \mathfrak{G} is the prolong-
notion of (\mathfrak{g}_{-1}, \mathfrak{g}_{0}) .

FACT A (Theorem 2. 7 in [12]). To every \tilde{G}_{0} -structure Q on a manifold
M there is associated a normal connection (P, \omega) of type \mathfrak{G} on M in an
invariant manner.

In connection with this fact, see also [8]. Let Q (resp. Q’) be a \tilde{G}_{0}
-

structure on a manifold M (resp. on M’), and let (P, \omega) (resp. (P’\omega 0)

be the associated normal connection of type \mathfrak{G} on M (resp. on M’). Then
the invariance means that a diffeomorphism \phi of M onto M’ is an isomor-
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phism of Q onto Q’, if and only if it is an isomorphism of (P, \omega) onto
(P’\omega’) . Therefore it follows that the automorphism group Aut(Q) of the
\tilde{G}_{0} structure Q coincides with the automorphism group Aut(P, \omega ) of the
connection (P, \omega) , and further that Aut (Q) becomes naturally a Lie group
of dimension at most dim \mathfrak{g} .

Let us now consider the \tilde{G}_{0} structure Q associated with G/G^{(0)} . The
following fact also follows from Theorem 2. 7 cited above.

FACT B. The standard connection of type \mathfrak{G} , (G, \omega) , may be naturally

regarded as the normal connection of type \mathfrak{G} associated with the \tilde{G}_{0} structure
Q.

Therefore we have Aut(Q) =Aut(G,\omega ), from which we can easily

derive the following

LEMMA 1. 13. The natural homomorphism, aarrow\tau_{a} , of G to Aut(Q)

gives an isomorphism (onto).

1. 5. PseudO-product manifolds, and the symbol algebras ([13] and
cf. [9] ) . Let R’ be a product manifold, and (E’. F’) its product structure.
Let R be a submanifold of R’ For each x\in R, we define subspaces E_{x} and
F_{X} of T(R)_{x} respectively by

E_{x}=E_{\acute{x}}\cap T(R) , F_{x}=F_{\acute{x}}\cap T(R)_{\chi} ,

and set E= \bigcup_{x}E_{x} and F= \bigcup_{x}F_{x} . We now assume the following regularity

condtion: Both dim E_{x} and dim F_{x} are constant. Then we see that E and F
give differential systems on R and that the pair (E, F) satisfies the
following conditions:

(PP. 1) E\cap F=0 , the zero cross section of T(R) ,

(PP. 2) Both E and F are completely integrable.
Now, let R be a manifold, and let E and F be differential systems on it.

Then the pair (E, F) is called a pseud0-product structure on R, if it satisfies
conditions (PP. 1) and (PP. 2) . A manifold R equipped with a pseud0-
product structure (E, F) is called a pseud0-product manifold. Let R (resp.

R’) be a pseud0-product manifold, and (E, F) (resp. (E’. F’)) its pseud0-
product structure. By an isomorphism of R onto R’ we mean a diffe0-
morphism \phi of R onto R’ such that the differential \phi_{*} of \phi sends E to E’ and

F to F’
As we have seen above, a submanifold R of a product manifold R’

becomes naturally a pseud0-product manifold, provided R satisfies the
regularity condition. Conversely it is shown that any pseud0-product
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manifold R can be locally realized as a submanifold of a product manifold.
More precisely, let x be any point of R. Then there are a product manifold
R’ and an imbedding \iota of a neighborhood of x to R’ such that the pseud0-
product structure (E, F) of R, restricted to the neighborhood, is induced
from the product structure (E’F’) of R’ by the imbedding \iota , and such that
2 dim R=\dim R’+rankE+rank F. Note that such a pair (R’\iota) is unique
in a suitable sense.

Let R be a pseud0-product manifold, and (F, F) its pseud0-product
structure. Set D=E+F, which is a differential system on R by (PP. 1) .
The sheaf \underline{T(R)} of germs of local cross sections of the tangent bundle T(R)
is naturally a sheaf of Lie algebras, and the sheaf D of germs of local cross
sections of the differential system D is a subsheaf of T(R) . Now assume
the following conditions:

(*. 1) D is regular in the sense of [9] and the derived system of D
coincides with T(R) , or in other words,

\underline{T(R)}(x)=[\underline{D}(x), \underline{D}(x)]+\underline{D}(x) at each x\in R,

(*. 2) T(R)\supsetneqq D\supsetneqq 0 .

Let x\in R. For any negative integer p we define a vector space Q_{t}p(\chi) as
follows:

\mathfrak{g}_{p}(x)=\{0\} if p<-2 ,
\mathfrak{g}_{-2}(x)=T(R)(x)/D(x) , \mathfrak{g}_{-1}(x)=D(x) ,

and set t(x)=\sum_{p<0}\mathfrak{g}_{p}(x)=\mathfrak{g}_{-2}(x)+\mathfrak{g}_{-1}(x) . We now define a bracket opera-
tion [ ] in t (x) by the requirement that [\mathfrak{g}_{-2}(x), \mathfrak{g}_{-2}(x)]=

[\mathfrak{g}_{-2}(x), \mathfrak{g}_{-1}(x)]=\{0\} , and

[X_{x}, Y_{x}]=\varpi([X, Y]_{x}) for all X, Y\in\underline{D}(x) ,

where \varpi denotes the projection of T(R) onto T(R)/D. Then we easily see
that [ ] is well defined, and that t(x) becomes a Lie algebra with respect
to this bracket operation. We also see that \mathfrak{T}(x)=\{t(x) , (.q_{p}(x))_{p<0r}^{(}

becomes a FGLA of the second kind, which is called the symbol algebra of
the differential system D at the point x([9]) .

Now, E(x) and F(x) are subspaces of \mathfrak{g}_{-1}(x)=D(x) . Then the
system \mathfrak{L} (x)=\{_{\tilde{-b}}(x) : E(x), F(x)\} will be called the symbol algebra of the
pseud0-product manifold R at the point x. Clearly we have q_{-1}\backslash (x)=E(x)+

F(x) (direct sum), and by condtion (PP. 2) we have [E(x), E(x)]=
[F(x), F(x)]=\{0\} .
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1. 6. PseudO-product FGLA’s, and pseud0-product manifolds of type \mathfrak{L}

([13] and cf. [9]). Let \mathfrak{T}=\{t, (_{-}\mathfrak{g}_{p})_{p<0}\} be a FGLA over K, where K=R or
C, and let e and f be subspaces of \mathfrak{g}_{-1} . Then the system \mathfrak{L}=\{\mathfrak{T};e, f\} is
called a pseud0-product FGLA, if it satisfies the following conditions:

(PPF. 1) \mathfrak{g}_{-1}=e+f (direct sum),

(PPF. 2) [e, e]=[\mathfrak{f}, f]=\{0\} .
Let \mathfrak{L}=\{\mathfrak{T};e, f\} and \mathfrak{L}’=\{\mathfrak{T}’je’, f’\} be two pseud0-product FGLA’s. By

an isomorphism of \mathfrak{L} onto \mathfrak{L}’ we mean an isomorphism \phi of \mathfrak{T} onto q-r\sim such that
\phi sends e to e’ and f to \mathfrak{f}’-

Let \mathfrak{L}=\{\mathfrak{T};e, f\} be a pseud0-product FGLA. Then \mathfrak{L} is called of the
\mu -th kind (resp. non-degenerate), if c_{\zeta,\sim}, is of the \mu -th kind (resp. non-
degenerate). Furthermore let \mathfrak{g}_{0} be the derivation algebra Der(2) of \mathfrak{L} :
Der (\mathfrak{L})=\{X\in Der(Q^{-})\sim|Xe\subset e, X\mathfrak{f}\subset \mathfrak{f}\} . Then the prolongation \mathfrak{G} of (\mathfrak{T}, \mathfrak{g}_{0})

is called the prolongation of \mathfrak{L} .

LEMMA 1. 14. Let \mathfrak{G} be the prolongation of \mathfrak{L} . If \mathfrak{L} is non-degenerate,

then the underlying Lie algebra \mathfrak{g} of \mathfrak{G} is fifinite dimensional.
Let R be a pseud0-product manifold satisfying conditions (*. 1) and

(*. 2) . Let us consider the symbol algebra \mathfrak{L} (x) of R at each point x\in R,

which is a pseud0-product FGLA of the second kind. Now let \mathfrak{L} be a fixed
pseud0-product FGLA of the second kind over R. Then we say that the
pseud0-product manifold R is of type \mathfrak{L} , if \mathfrak{L}(x) is isomorphic with \mathfrak{L} at each
point x.

Hereafter we assume that \mathfrak{L} is non-degenerate and that the prolongation
\mathfrak{G} of \mathfrak{L} is simple. Then the automorphism group Aut(S) of \mathfrak{L} may be
naturally identified with an open subgroup of the automorphism group
Aut(S) of \mathfrak{G} . Set G_{0}=Aut(\mathfrak{L}) , and let G^{(0)} and G be the groups associated
with the pair (\mathfrak{G}, G_{0}) .

Now, we have the notion of a normal connection of type \mathfrak{G} , being a
Cartan connection of type G/G^{(0)} .

FACT C. To every pseudO-product manifold R of type \mathfrak{L} there is assoc-
iated a connection (P, \omega) of type \mathfrak{G} on R in an invariant manner.

As before it follows from this fact that the automorphism group Aut(R)

of the pseud0-product manifold R coincides with the automorphism group
Aut(P, \omega ) of the connection (P, \omega) , and that Aut(R) becomes naturally a
Lie group of dimension at most dim \mathfrak{g}-\cdot

We shall now show that the homogeneous space G/G^{(0)} becomes
naturally a pseud0-product manifold of type \mathfrak{L} . Let us consider the
subspaces 0^{(0\rangle}=e+\mathfrak{g}^{(0)} and b^{(0)}=\mathfrak{f}+\mathfrak{g}^{(0)} of \mathfrak{g} . Then we can easily verify the
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following: 1) Ad (G^{(0)})\alpha^{(0)}=\mathfrak{a}^{(0)} and Ad (G^{(0)})b^{(0)}=b^{(0)} , 2) 0^{(0)}\cap b^{(0)}=_{\iota}q^{(0)} , 3)

Both \mathfrak{a}^{(0)} and b^{(0)} are subalgebras of \mathfrak{g} . By 1) we see that 0^{(0)} and b^{(0)}

naturally induce invariant differential systems E and F on G/G^{(0\rangle} respec-

tively, and by 2) and 3) that the pair (F, F) gives an invariant pseud0-

product structure on G/G^{(0)} . Since \mathfrak{g}_{-2}=[\mathfrak{g}_{-1}, \mathfrak{g}_{-1}] , it follows easily that the

pseud0-product manifold G/G^{(0)} , thus obtained, satisfies conditions (*. 1)

and (*. 2) . Moreover it is not difficult to verify that the symbol algebra \mathfrak{L}(0)

of G/G^{(0)} at the origin 0 is isomorphic with the given pseud0-product FGLA,

\mathfrak{L} , indicating that G/G^{(0)} is of type \mathfrak{L} .

FACT D. The standard connection (G, \omega) of type \mathfrak{G} may be naturally

regarded as the normal connection of type \mathfrak{G} associated with the pscudO-

product manifold G/G^{(0)} of type \mathfrak{L} .
Therefore the automorphism group Aut(G/G^{(0)}) of the pseud0-product

manifold G/G^{(0)} coincides with the automorphism group Aut (G, \omega) of the

connection (G, \omega) . For a\in G let \tau_{a} denote the transformation of G/G^{(0)}

induced by a. Then we have the following

LEMMA 1. 15. The natural homomorphism, aarrow\tau_{a} , of G to Aut(G/G^{(0)})

gives an isomorphism onto.

REMARK. Let (P, \omega) be the normal connection of type \mathfrak{G} associated
with a pseud0-product manifold R of type \mathfrak{L} . We shall explain how the

connection is related to the pseud0-product structure (E, F) of R. Set \mathfrak{G}=

\{\mathfrak{g}, (\mathfrak{g}_{p})\} , and set e =\mathfrak{g}_{-1}^{+} and \mathfrak{s}=\mathfrak{g}_{-1}^{-} . According to the decomposition q_{c}=\sum_{p}

\mathfrak{g}_{p} , the connection form \omega is decomposed as follows: \omega=\sum_{p}\omega_{p}
, and

according to the decomposition \mathfrak{g}_{-1}=\mathfrak{g}_{-1}^{+}+\mathfrak{g}_{-1}^{-} , the \mathfrak{g}_{-1} -valued l-form \omega_{-1} as
follows: \omega_{-1}=\omega_{-1}^{+}+\omega_{-1}^{-} . Let \pi be the projection of P onto R. Then the

differential system \pi_{*}-1(E) on P is defined by the equations: \omega_{-2}=\omega_{-1}^{-}=0 ,

and the differential system \pi_{*}-1(F) on P by the equations: \omega_{-2}=\omega_{-1}^{+}=0 .

Note that these conditions together with the normality condition characterize
the connection (P, \omega) .

\S 2. The automorphism groups of product manifolds

2. 1. The projective geometry. Let (n, r) be a pair of integers with
1\leqq r\leqq n-1 . Let P^{n} be the n-dimensional projective space over R, and
G^{r}(P^{n}) the Grassmann manifold of r,dimensional projective subspaces ofP^{n} .

Let us consider the relation R=R_{nr} in the product manifold P^{n}\cross G^{r}(P^{n})

defined by
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R=\{(p, \alpha)\in P^{n}\cross G^{r}(P^{n})|p\subset\alpha\} ,

where “
p\subset\alpha

” means that the point p lies on the projective subspace \alpha . It
is easy to see that R is a compact submanifold of the product manifold. Let
\Omega=\Omega_{\eta r} be the complement of R, being an open submanif of the product
manifold. We remark that dim G^{r}(P^{n})=(r+1)(n-r) and dim R_{n,r}=n+

r(n-r) .
Let G be the projective transformation group of P^{n} . The group G

naturally acts on the manifold G^{r}(P^{n}) , and hence it acts on the product
manifold P^{n}\cross G^{r}(P^{n}) through the diagonal map of G to G\cross G :

a\cdot(p, \alpha)=(ap, a\alpha) , a\in G, (p, \alpha)\in P^{n}\cross G^{r}(P^{n}) .

We remark that the actions of G on both P^{n} and G^{r}(P^{n}) are transitive, and
that R and \Omega are G-0rbits.

Let us consider the automorphism group Aut (\Omega) of the product manifold
\Omega . Then we have a natural injective homomorphism i of G to Aut(O): For
a\in G, i(a) is the transformation of \Omega induced by a.

We shall prove the following

PROPOSITION 2. 1. The homomorphism i gives an isomorphism of G onto
Aut (\Omega) .

Let \rho’ (resp. \rho’ ) be the projection of \Omega to P^{n} (resp. of \Omega to G^{r}(P^{n}) ),
and let (E_{\Omega}, F_{\Omega}) be the product structure of \Omega . Then we can easily prove
the following

LEMMA 2. 2. \Omega is a fifibred manifold over the base space P^{n} (resp. over
G^{r}(P^{n})) with projection \rho’ (resp. with \rho^{rr} ). Furthermore its fifibres are all
connected, and its vertical tangent bundle is given by F_{\Omega} (resp. by E_{\Omega}).

Therefore we see that each fibre of the fibred manifold is a maximal
connected integral manifold of F_{\Omega} (resp. of E_{\Omega}), and vice versa. Hence
it follows that every \phi\in Aut(\Omega) naturally induces a diffeomorphism \phi’

(resp. \phi \prime\prime ) of P^{n} (resp. of G^{r}(P^{n}) ) : \rho’\circ\phi=\phi’\circ\rho’ (resp. \rho^{rr}\circ\phi=\phi\prime\prime\circ\rho’ ).
Thus we have the product transformation \phi’\cross\phi^{rr} of P^{n}\cross G^{r}(P^{n}) , being

an automorphism of the product manifold. Clearly the restriction of \phi’\cross\phi’

to \Omega coincides with the given \phi , and hence \phi’\cross\phi^{rr} leaves the boundary \partial\Omega=

R of \Omega invariant. This clearly means the following: Let p\in P^{n} and \alpha\in

G^{r}(P^{n}) . Then p\subset\alpha, if and only if \phi’(p)\subset\phi’(\alpha) . Conseguently we know
that \phi’ naturally induces a transformation on the r-dimensional projective
subspaces, and hence a transformation on the projective lines. Therefore it
follows from a fundamental theorem in the projective geometry that \phi’ is a
projective transformation. Hence there is a\in G such that \phi’(p)=ap for all
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p\in P^{n} . Clearly we have \phi^{rr}(\alpha)=a\alpha for all \alpha\in G^{r}(P^{n}) . We have thus

shown that \phi(w)=aw for all w\in\Omega , that is, \phi=i(a) , proving the proposi-

tion.
As we have mentioned in Introduction, Proposition 2. 1 is just the star-

ting-point of our study, which will be generalized in tw0-manners: One is
from the view-point of the manifold theory, and the other from the view-
point of the Lie group theory.

2. 2. Generic submanifolds of product manifolds ([13]). As in the
preceding paragraph, let (n, r) be a pair of integers with 1\leqq r\leqq n-1 . Let
R be a pseud0-product manifold, and (F, F) its pseud0-product structure.
Set D=E+F, and, for each point x\in R, let \gamma_{x} be the torsion of the

differential system D at x. Recall that \gamma_{x} is the anti-symmetric bilinear map

of D_{x}\cross D_{x} to T(R)_{x}/D_{x} defined by

\gamma_{x}(X_{x}, Y_{x})=\varpi([X, Y]_{x}) for all X, Y\in\underline{D}(x) ,

there \varpi denotes the projection of T(R) onto T(R)/D.
Now, the pseudo\prime product manifold R is called a projective system of

type (n, r) , if it satisfies the following conditions:
(PRS. 1) dim R=n+r(n-r) , rank E=r and rank F=r(n-r) ,

(PRS. 2) D is non-degenerate, i . e. , the torsion \gamma_{x} of D at each point x

is non-degenerate.
Let \mathfrak{L}=\{\mathfrak{T};e, f\} be a pseud0-product FGLA, and set \mathfrak{T}=\{t, (\mathfrak{g}_{p})_{p<0}\} .

Then \mathfrak{L} is called a projective FGLA of type (n, r) , if it satisfies the following

conditions:
(PRF. 1) \mathfrak{L} is of the second kind, and dim \mathfrak{g}_{-2}=n-r, dim e =m and

dim f=r(n-r) ,

(PRF. 2) \mathfrak{L} is non-degenerate.
It is easy to see that there is a unique projective FGLA of type (n, r) up

to isomorphism.

Lemma 2. 3. Let R be a pseudO-product manifold, and let \mathfrak{L} be a

projective FGLA of type (n, r) . Then R is a projective system of type (n, r) ,

if and only if it is of type \mathfrak{L} .
Let R be a submanifold of the product M\cross N of two manifolds M and

N. Assume that dim M=n, dim N=(r+1)(n-r) and \dim R=n+r(n-
r) . Let (E’-F’) be the product structure of M\chi N, and, for each point x\in

R, set E_{x}=E_{\acute{x}}\cap T(R)_{x} and F_{x}=F_{\acute{x}}\cap T(R)_{\chi} . Then we easily have

dim E_{x}\geqq r, dim F_{x}\geqq r(n-r) .

This being remarked, we say that R is generically embedded in the product
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manifold M\cross N, if it satisfies the following conditions:
1) dim E_{x}=r and dim F_{x}=r(n-r) at each point x. Hence (E, F)

gives a pseud0-product structure on R.
2) The differential system D=E+F is non-degenerate.
It is clear that, if R is generically embedded in M\cross N, then R becomes

a projective system of type (n, r) .
Let us now consider a system \mathfrak{P}=\{R:M, N\} of connected manifolds M,

N and a submanifold R of M\cross N. Let \Omega be the complement of R in M\cross N.
Let \rho_{M}^{R} (resp. \rho_{N}^{R} ) be the projection of R to M (resp. of R to N), and
similarly let \rho_{M}^{\Omega} (resp. \rho_{N}^{\Omega} ) be the projection of \Omega to M (resp. of \Omega to N).
Now assume the following conditions on the system \mathfrak{P} :

i) dim M=n, dim N=(r+1)(n-r) and dim R=n+r(n-r) ,
ii) R is generically embedded in the product manifoldM\cross N, and is

closed in it,
iii) The projections \rho_{M}^{R} and \rho_{N}^{R} are both surjective, and their fibres are

all connected,
iv) If r=n-1 , the fibres of the projections \rho_{M}^{\Omega} and \rho_{N}^{\Omega} are all

connected.
For example, the system \mathfrak{P}=\{R_{\eta r} ; P^{n}. G^{r}(P^{n})\} satisfies conditions i)

-iv) .
We see from conditions i) and ii ) that R becomes a projective system of

type (n, r) , and from ii ) that \Omega becomes an open submanif of the
product manifold M\cross N. Let (E_{\Omega}, F_{\Omega}) be the product structure of \Omega , and
similarly let (E_{R}, F_{R}) be the pseudoproduct structure of R.

We easily have the following

LEMMA 2. 4. (1) \Omega is a fifibred manifold over the base space M (resp.
over N) whth projection \rho_{M}^{\Omega} (resp. with \rho_{N}^{\Omega} ). Furthermore its fifibres are all
connected, and its vertical tangent bundle is given by F_{\Omega} (resp. by E_{\Omega}).

(2) R is a fifibred manifold over the base space M (resp. over N) with
projection \rho_{M}^{R} (resp. with \rho_{N}^{R} ). Furthermore its fifibres are all connected, and
its vertical tangent bundle is given by F_{R} (resp. by E_{R}).

In particular we see from this lemma that both R and \Omega become
connected.

Now, consider the automorphism group Aut (\Omega) of the product manifold
\Omega as well as the automorphism group Aut(R) of the pseud0-product
manifold R.

As before it follows from (1) of Lemma 2. 4 that every \phi\in Aut(\Omega)

naturally induces a diffeomorphism \phi_{M} (resp. \phi_{N} ) of M (resp. of N).
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Thus we have the product transformation \phi_{M\cross N}=\phi_{M}\cross\phi_{N} of M\cross N : The
restriction of \phi_{M\cross N} to \Omega coincides with the given \phi , and hence \phi_{M\cross N} leaves
R invariant. Let \phi_{R} denote the restriction of \phi_{MxN} to R. Then we see that
the assignment \phiarrow\phi_{R} gives an injective homomorphism \Lambda of Aut(O) to
Aut (R).

Similarly it follows from (2) of Lemma 2. 4 that every \psi\in Aut(R)

naturally induces a diffeomorphism \psi_{M} (resp. \psi_{N} ) of M (resp. of N).

Thus we have the product transformation \psi_{M\cross N}=\psi_{M}\cross\psi_{N} ; The restriction
of \psi_{M\cross N} to R coincides with the given \psi , and hence \psi_{M\cross N} leaves \Omega

invariant. Let \psi_{\Omega} denote the restriction of \psi_{M\cross N} to \Omega . Then we see that
the assignment \psiarrow\psi_{\Omega} gives an injective homomorphism \Lambda’ of Aut(O) to
Aut (\Omega) .

Clearly we have \Lambda’\circ\Lambda=1 and \Lambda\circ\Lambda’=1 . Thus we have proved the
following

PROPOSITION 2. 5. The homomorphism \Lambda gives an isomorphism of
Aut (\Omega) onto Aut (R).

Let \mathfrak{L} be a projective FGLA of type in,r), and \mathfrak{G} its prolongation.
Then it can be shown that \mathfrak{G} is isomorphic with the simple graded Lie algebra
\mathfrak{G}(1, r, n-r;R) of the second kind. Moreover we know from Lemma 2. 3
that the pseud0-product manifold R, being a projective system of type (w,

r) , is of type \mathfrak{L} . Therefore, by virtue of Fact C , there is associated to the
pseud0-product manifold R a normal connection (P, \omega) of type \mathfrak{G} on it in an
invariant manner. In particular it follows that Aut (R) becomes naturally a
Lie group and dim Aut(R) \leqq\dim \mathfrak{s}t(n+1, R)=n^{2}+2n .

Consequently we have the following

PROPOSITION 2. 6 Aut(R) as well as Aut(\Omega ) becomes naturally a Lie
group of dimension at most n^{2}+2n, so that \Lambda gives a Lie group isomorphism
of Aut (\Omega) onto Aut (R).

REMARK. Let P be as above. Let us consider the Grassmann bundle
G^{r}(T(M)) and the canonical system C on it. Let \varpi be the projection of
G^{r}(T(M)) onto M. Then it can be shown that there is a unique
(open) immersion \phi of R into G^{r}(T(M)) such that \varpi\circ\phi=\rho_{M}^{R} and such
that D=\phi*-1(C) , where D=E_{R}+F_{R} as before. For simplicity let us
assume that \phi is an (open) imbedding, and identify R with an open
submanifold of G^{r}(T(M)) .

Now let A be an r-dimensional submanifold of M. Then we say that A
is a solution of the pair \mathscr{H}=(R, E_{R}) , if the lift \hat{A} of A to G^{r}(T(M)) is an
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integral manifold of E_{R} . In this way \mathscr{H} can be regarded as a differential
equation. We can easily show that the equation \mathscr{H} is locally represented by
an involutive system of partial differential equations of the second order of
the following form:

\frac{\partial^{2}y^{a}}{\partial x^{i}\partial x}F_{ij}^{a} (j^{=}(x^{k}) , (y^{\beta}) , ( \frac{\partial y^{\beta}}{\partial x^{k}}) ) 1\leqq i, j\leqq r, 1\leqq\alpha\leqq n-r.

In the special case where r=1 , this system simply means a system of
ordinary differential equations of the second order:

\frac{d^{2a}y}{dx^{2}}=F^{a} ( x, y^{1} , \ldots . y^{n-1} , \frac{dy^{1}}{dx} , , . \frac{dy^{n-1}}{dx} ) \cdot 1\leqq\alpha\leqq n-1 .

By an automorphism of the equation \mathscr{H} we mean a diffeomorphism \phi of
M which naturally induces a transformation on the solutions of \mathscr{H} . Then we
remark that the automorphism group Aut(R) of the pseud0-product
manifold R is naturally isomorphic with the automorphism group Aut (\mathscr{H}) of
the equation \mathscr{H} .

2. 3. Affine symmetric triples, and simple graded Lie algebras of the
first kind. This paragraph is preliminary to the subsequent paragraph. Let
.q be a finite dimensional Lie algebra over R. Let \mathfrak{h} be a subalgebra of \mathfrak{g} , and
\iota\iota\iota a subspace \neq\{0\} of \mathfrak{g} . Then the system \mathfrak{S}=\{\mathfrak{g} : \mathfrak{h}, \mathfrak{m}\} is called an
(affine) symmetric triple, if it satisfies the following conditions:

(AST. 1) \mathfrak{g}=\mathfrak{h}+\iota \mathfrak{n} (direct sum),
(AST. 2) [\mathfrak{h}, r\mathfrak{n}]\subset\iota \mathfrak{n} , and [\mathfrak{m}, \mathfrak{m}]\subset \mathfrak{h} .
Let \mathfrak{S}=\{\mathfrak{g}\cdot, \mathfrak{h}, \uparrow\uparrow\uparrow\} and \mathfrak{S}’=\{\mathfrak{g}’\cdot, \mathfrak{h}’-\mathfrak{m}’\} be two symmetric triples. By an

isomorphism of \mathfrak{S} onto \mathfrak{S}’ we mean a Lie algebra isomorphism \phi of \mathfrak{g} onto \mathfrak{g}^{r}

which sends \mathfrak{h} to \mathfrak{h}’ and \uparrow \mathfrak{n} to \mathfrak{m}’.
Let \mathfrak{S}=\{\mathfrak{g};\mathfrak{h} , r\mathfrak{n} ] be a symmetric triple. Then \mathfrak{S} is called of simple type,

if the Lie algebra \mathfrak{g} is simple, and it is also called of reducible type, if the
linear isotropy representation \rho of \mathfrak{h} on rr is reducible. (Recall that \rho is
defined by \rho(X)Y=[X, Y] for all X\in \mathfrak{h} and Y\in\iota \mathfrak{n} .)

In his paper [3], Berger classified the symmetric triples of simple type
up to isomorphism.

Now, let \mathfrak{H}=\{\mathfrak{g}, (\mathfrak{h}_{p})\} be a simple graded Lie algebra of the first kind.
We know that \mathfrak{H}^{*}=\{\mathfrak{g}, (\mathfrak{h}_{-p})\} is also a simple graded Lie algebra of the first
kind, and is isomorphic with \mathfrak{H} (cf. Lemma 1. 5 in [12]). Furthermore if
we set
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\mathfrak{h}=\mathfrak{h}_{0} , and \mathfrak{m}=\mathfrak{h}_{-1}+\mathfrak{h}_{1} ,

we see that the system \mathfrak{S}=\{\mathfrak{g} ; \mathfrak{h}, \mathfrak{m}\} gives a symmetric triple of simple and
reducible type, which will be called associated with \mathfrak{H} . Conversely we have
the following lemma, which was first proved by Berger [3].

Lemma 2. 7(cf. Lemma 2, Appendix, in [11]). Any symmtric triple Crightarrow

of simple and reducible type is associated with a simple graded Lie algebra \mathfrak{H}

of the first kind. Furthermore, such a\mathfrak{H} is unique in the following sense:
If \mathfrak{S} is associated with another simple graded Lie algebra \mathfrak{H}’ of the fifirst kind,
then \mathfrak{H}’=\mathfrak{H} or \mathfrak{H}’=\mathfrak{H}^{*} .

Accordingly we have known that there is a natural one-t0-0ne corre-
spondence between the symmetric triples of simple and reducible type, and
the simple graded Lie algebras of the first kind up to the respective isomor-
phisms.

We shall now exhibit some examples of simple graded Lie algebras of the
first kind.

(1) The Grassmann graded Lie algebras: \mathfrak{G}(n, k;K) , where k\geqq n\geqq

1 , and K=R or C or Q.
(2) The M\"obius graded Lie algebras. Let (n, r) be a pair of integers

with 0\leqq 2r\leqq n . We define a diagonal matrix of degree n, T_{nr} , by

T_{n,r}=(^{-1}...-\cdot 11....|1 ( -1r times),

and define a symmetric matrix of degree n+2,\tilde{T}_{r4r} , by

\tilde{T}_{n,r}=(\begin{array}{lll}0 0 10 T_{nr} 01 0 0\end{array}) .

We then dfine a subalgebra \mathfrak{g} of \mathfrak{g}\mathfrak{l}(n+2, R) by

\mathfrak{g}=\{X\in \mathfrak{g}\mathfrak{l}(n+2, R)|{}^{t}X\tilde{T}_{nr}+\tilde{T}_{n.r}X=0\} ,

which is isomorphic with the Lie algebra e_{\backslash 0}\backslash (r+1, n-r+1) . If we put n_{1}=

n_{3}=1 and n_{2}=n, every matrix X\in \mathfrak{g}\mathfrak{l}(n+2, R) can be expressed as follows:
X=(X_{ij})_{1\leqq i.j\leqq 3} , where X_{ij} are n_{i}\cross n_{j}-matrices. Then the subalgebra .q is
defined by the equations :

X_{31}=0,{}^{t}X_{32}+T_{n,r}X_{21}=0 , X_{11}+X_{33}=0 ,
{}^{t}X_{22}T_{n,r}+X_{22}T_{n,r}=0,{}^{t}X_{12}+T_{n,r}X_{23}=0 , X_{13}=0 .
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For any integer p we now define a subspace \mathfrak{g}_{p} of \mathfrak{g} by \mathfrak{g}_{\rho}=\mathfrak{g}\cap \mathfrak{g}_{p}(1, n,

1: R) = { X\in \mathfrak{g}|X_{ij}=0 if j-i\neq p }. Then we see that \mathfrak{G}=\{\mathfrak{g}, (\mathfrak{g}_{p})\} is a
graded subalgebra of \mathfrak{G}(1, n, 1 \cdot, R) . If r=0, n\geqq 1 or 1\leqq 2r\leqq n, n\geqq 3 , \mathfrak{G}

turns out to be a simple graded Lie algebra of the first kind, which will be
called the M\"obius graded Lie algebra of degree n and of index r, and will be
denoted by \mathfrak{M}_{r}(n) . In particular, \mathfrak{M}_{0}(n) will be called the definite M\"obius

graded Lie algebra of degree n. Note that \mathfrak{G}(1,1;R)\cong \mathfrak{M}_{0}(1) , \mathfrak{G}(1,1;C)\cong

{}^{t}JJl_{0}(2) and \mathfrak{G}(1,1 ; Q)\cong \mathfrak{M}_{0}(4) .
By using the matrix \tilde{T}_{no} , we define a subalgebra \mathfrak{g} of \mathfrak{g}\mathfrak{l}(n+2, C) and

their subspaces \mathfrak{g}_{p} in the same manner as above. Then we see that \mathfrak{G}=\{\mathfrak{g} ,
(\backslash q_{p})\} is a graded subalgebra of \mathfrak{G}(1, n, 1\cdot, C) . If n\neq 2 , \mathfrak{G} turns out to be a
simple graded Lie algebraof the first kind, which will be called the M\"obius

graded Lie algebra of degree n over C, and will be denoted by \mathfrak{M}(n, C) .
Note that \mathfrak{M}l(1, C)\cong \mathfrak{M}_{0}(2) .

2. 4. The standard affine symmetric spaces, and the main theorem.
Let \mathfrak{H}=\{\backslash q, (\mathfrak{h}_{p})\} be a simple graded Lie algebra of the first kind, and \mathfrak{S}=\{-\mathfrak{g} ;
() , \iota\iota\iota\} the associated symmetric triple. We define subgroups H and G of
Aut (.q) respectively by

H=Aut(\mathfrak{H}) , G=Aut(\mathfrak{g})^{0}\cdot H.

We also consider the subalgebra \mathfrak{h}^{\phi}=\mathfrak{h}+\mathfrak{h}_{1} , of \mathfrak{g} , and denote by H^{\#} the
normalizer of \mathfrak{h}\# in Aut (\mathfrak{g}) . The groups H, H^{ff} and G, thus obtained, are
nothing but the groups associated with \mathfrak{H} . (Note that H^{\#}=Aut(F(\mathfrak{H}))=H .
exp \mathfrak{l})_{1} (Lemmas 1. 4 and 1. 6).) We know that the homogeneous space
G/H^{\#} is connected and compact, and that the action of G on G/H^{\#} is
effective.

Let us now consider the homogeneous space G/H. It is easy to see that
G/H is connected and non-compact, and that the action of G on G/H is
effective. We show that G/H becomes naturally an affine symmetric space.
Indeed, let \alpha be the involutive automorphism of the Lie algebra \mathfrak{g} associated
with the symmetric triple \mathfrak{S} :

\alpha(X)=X if X\in \mathfrak{h} , and \alpha(X)=-X if X\in \mathfrak{m} .

Clearly we have \alpha\cdot G\cdot\alpha=G. We define an involutive automorphism \theta of the
Lie group G by \theta(a)=\alpha a\alpha for all a\in G, and a subgroup G_{\theta} of G by G_{\theta}=\{a

\in G|\theta(a)=a\} . Then we easily have G_{\theta}^{0}\subset H\subset G_{\theta} , where G_{\theta}^{0} denotes the
connected component of the \dot{1}dentity of G_{\theta} . Thus we have seen that G/H
becomes an affine symmetric space, and its infinitesimal structure is given by
the symmetric triple \mathfrak{S}.
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We next show that the space G/H is endowed with a product structure.
Indeed, we have \mathfrak{g}=\mathfrak{h}+\mathfrak{m} (direct sum), Ad(H) \mathfrak{h}_{-1}=\mathfrak{h}_{-1} and Ad(H) \mathfrak{h}_{1}=\mathfrak{h}_{1} .
Thus the subspaces \mathfrak{h}_{-1} and \mathfrak{h}_{1} of \mathfrak{m} naturally give rise to invariant differential
al systems E and F on G/H respectively. Since \iota \mathfrak{n}=\mathfrak{h}_{-1}+\mathfrak{h}_{1} (direct sum),

and since both \mathfrak{h}_{-1} and \mathfrak{h}_{1} are abelian subalgebrat of \mathfrak{g} , we see that (E, F)
gives an invariant product structure on G/H.

Giving attention only to the product structure, we denote by Aut (G/H)
the automorphism group of the product manifold G/H. Then we have a
natural injective homomorphism i of G to Aut(G/i/): For a\in G, i(a) is
the transformation of G/H induced by a. Now G/H becomes naturally a
fibred manifold over the base space G/H^{\#} . As is easily observed, its fibres
are all connected, and its vertical tangent bundle is given by F. Therefore
every \phi\in Aut(G/H) naturally induces a diffeomorphism \phi^{\#} of G/H^{\#} , and
the assignment \phiarrow\phi^{\#} gives a homomorphism j of Aut(G/i/) to Diffff(G/H^{f1}) ,

the diffeomorphism group of G/H^{\#} .
We are now in a position to state the main theorem in the present paper,

which completely determines the automorphism group Aut(G/H).

THEOREM 2. 8. Assume that \mathfrak{H} is of the classical type. If\prime \mathfrak{H} is is0-
morphic with a defifinite M\"obius (graded Lie) algebra, then the homomor-
phism j gives an isomorphism of Aut(G/i/) onto Diffff(G/H^{fl}) . Otherwise,
the homomorphism i gives an isomorphism of G onto Aut(G/i/).

This theorem will be proved in \S 3--\S 8.
We note that, if \mathfrak{H}\cong \mathfrak{M}_{0}(n) , the definite M\"obius algebra of degree n,

then G/H^{\#} is diffeomorphic with the n-dimensional sphere S^{n} .
We also note that Theorem 2. 8 partially generalizes Proposition 2. 1. In

fact, consider the product manifold \Omega_{nn-1} , being an open submanifold of the
product manifold P^{n}\cross G^{n-1}(P^{n}) . (Note that G^{n-1}(P^{n}) is the dual space of
P^{n}.) Recall that the projective transformation group G of P^{n} naturally acts
on P^{n}\cross G^{n-1}(P^{n}) , and \Omega_{nn-1} is an open G-0rbit. Let (z_{0}, \ldots.z_{n}) be the
homogeneous coordinate system of P^{n} . Let p_{0} be the point of P^{n} given by
z_{1}=\ldots=z_{n}=0 , and \alpha_{0} the hyperplane of P^{n} given by z_{0}=0 . Let H be the
isotropy group of G at the point (p_{0}, \alpha_{0})\in\Omega_{\eta n-1} . Then \Omega_{\eta n-1} may be
represented by the homogeneous space G/H. Moreover we can show that
G/H is the standard affine symmetric space associated with \mathfrak{H}=\mathfrak{G}(1, n;R) ,

and that G/H and \Omega_{n,n-1} coincides as product manifolds. We have thus
confirmed our claim.

2. 5. Some remarks on the standard affine symmetric spaces, and a
problem. Let G/H be the standard affine symmetric space associated with
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a simple graded Lie algebra \mathfrak{H} of the first kind. Let \langle \rangle be the Killing
form of the Lie algebra \mathfrak{g} . By Lemma 1. 2 we know that \langle \mathfrak{h}_{-1}, \mathfrak{h}_{-1}\rangle=

\langle \mathfrak{h}_{1}, \mathfrak{h}_{1}\rangle=\{0\} , and the bilinear function (X, Y)arrow\langle X, Y\rangle on \mathfrak{h}_{-1}\cross \mathfrak{h}_{1} is
non-degenerate. In particular, it follows that the restriction \langle \rangle| rn of
\langle \rangle to r\mathfrak{n} is non-degenerate. Clearly we have \langleAd(a)X, Ad(a) Y\rangle =
\langle X, Y\rangle for all a\in H and X, Y\in \mathfrak{s}\mathfrak{n} . Therefore \langle \rangle|\mathfrak{m} naturally gives rise
to an invariant indefinite Riemannian metric g on G/H. Let \nabla be the
Levi-Civita connection associated with the metric g. Then it it easy to verify
that g satisfies the following conditions:

1) g(E_{x}, E_{x}) g(Ex, F_{x})=\{0\} at each point x\in G/H,

2) Both E and F are parallel with respect to \nabla .
Accordingly, the space G/H equipped with the product structure (F, F)

and the metric g turns out to be a space analogous to a hermitian symmetric
space of simple and non-compact type.

REMARK. Clearly the product structure (F, F) satisfies rank E=rank
F, which means that (F, F) is a paracomplex structure in the sense of [5].
Furthermore the conditions 1) and 2) above mean that the metric g together
with the paracomplex structure (F, F) is a parak\"ahlerian metric again in
the sense of [5].

From the discussions above we see that G/H becomes naturally an
oriented manifold, which is even a symplectic manifold. Let \omega be the
volume element on G/H associated with the metric and the orientation. Let
(x^{1}, \ldots x^{m}, y^{1}. .. y^{m}) be a coordinate system of G/H which is positive with
respect to the orientation and which is compatible with the product structure,
i . e. , such that x^{i} and y^{i} are first integrals of F and E respectively. Then the
volume element \omega can be expressed as follows:

\omega=fdx^{1}\wedge\ldots\wedge dx^{m}\wedge dy\wedge 1\ldots \wedge dym,

where f is a positive function on the coordinate neighborhood. Now, we
remark that, in terms of the function f, the metric g can be expressed as
follows:

g=4 \sum_{i,j}\frac{\partial^{2}1ogf}{\partial x^{i}\partial y^{j}}dx^{i}dy^{j} .

Clearly, invariant volume elements on G/H uniquely exist up to
non-zero constant factors. Thus we know from Theorem 2. 8 combined with
the remark above that the metric g is completely determined by the product
structure (E, F) (up to non-zero constant factors), provided \mathfrak{H} is not
isomorphic with a definite M\"obius algebra.
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Finally we propose a problem in connection with Proposition 2. 6 and the
observation above.

Let \mathfrak{P}=\{R:M, N\} be a system satisfying conditions i ) \sim iv ) with r=
n-1 . (Note that dim M=\dim N=n, and dim R=2n-1.) Let us consider
the product manifold \Omega , the complement of R in M\cross N which is a
paracomplex manifold. Assume that R, and hence M and N are compact.

PROBLEM. Is there associated to the paracomplex manifold \Omega a volume
element \omega on it in an invariant manner so that \omega induces a parak\"ahlerian
metric g (in the same fashion as above) .\rho More weakly, is there associated to
\Omega any geometric structure or any geometric object on it in an invariant
manner ?

Consider the following conditions on the system \mathfrak{P} (cf. Remark at the
end of 2. 2) :

a) The natural (open) immersion of R to G^{n-1}( T(M)) is a diffffeo-
morphism,

b) The natural (open) immersion of R to G^{n-1}( T(N)) is a diffffeo-
morphism.

It is known that these conditions considerably restrict the topology of M
and of N (see [13]). Consequently we mention that they can be important
additional conditions for the problem.

\S 3. Some studies on simple graded Lie algebras of the second kind

3. 1. PseudO-product SGLA’s of the second kind, and the associated
SGLA’s of the first kind. Following [13], we first introduce the notion for a
simple graded Lie algebra (or briefly a SGLA) of being pseud0-product.

Let \mathfrak{G}=\{\mathfrak{g}, (\mathfrak{g}_{p})\} be a SGLA of the \mu -th kind, where \mu\geqq 2 . Let us
consider the truncated graded subalgebra \mathfrak{T}=\{t, (\mathfrak{g}_{p})_{p<0}\} of \mathfrak{G} , where t=\sum_{p<0}

\mathfrak{g}_{p} . We recall that \mathfrak{g}_{0} may be regarded as a subalgebra of the derivation
algebra Der(X) of the FGLA, \mathfrak{T} , and that \mathfrak{G} may be regarded as a graded
subalgebra of the prolongation of the pair (\mathfrak{T}, \mathfrak{g}_{0}) . We also recall that \sigma_{\zeta,\sim}, is
non-degenerate.

Now, \mathfrak{G} is called pseud0-product, if there are given subspaces e and \mathfrak{s} of
\mathfrak{g}_{-1} satisfying the following conditions :

1) \mathfrak{L}=\{\mathfrak{T};e, \mathfrak{f}\} is a pseud0-product FGLA,
2) \mathfrak{g}_{0} is a subalgebra of the derivation algebra Der(2) of \mathfrak{L} , i . e. ,

[\mathfrak{g}_{0}, e]\subset e and [\mathfrak{g}_{0}, f]\subset \mathfrak{f} .

Lemma 3. 1 ([13]). If \mathfrak{G} is pseudO-product, then it is the prolongation
of the pseudO-product FGLA, \mathfrak{L} .
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Outline of the proof (cf. the proof of Lemma 3. 4 in [11]). Let \overline{\mathfrak{G}}=

\{\hat{.q}, (\hat{.}q_{p})\} be the prolongation of \mathfrak{L} or of the pair (^{c_{i^{-}}}\sim,\hat{\mathfrak{g}}_{0}) , where \hat{\mathfrak{g}}_{0}=

Der(2). Since q_{t0}\subset_{c}\hat{q}_{0} , we see that \mathfrak{G} is a graded subalgebra of \overline{\mathfrak{G}} .
Moreover, since L^{l} or \mathfrak{T} is non-degenerate, we know from Lemma 1. 14 that \hat{\mathfrak{g}}

is finite dimensional. Since \mathfrak{g} is simple, it follows from these facts that the

(
\mathfrak{y}ra.dical of \hat{0c} vanishes, i . e.,\hat{\mathfrak{g}} is semi-simple. It is now easy to show that \overline{\mathfrak{G}}=

Hereafter we shall consider a fixed pseud0-product SGLA, \mathfrak{G} , of the
second kind over R. We preserve the notations as above.

We have t=.q_{-2}+\mathfrak{g}_{-1}=\mathfrak{g}_{-2}+e+f . Then we define an endomorphism J of
the vector space,t as follows:

JX—0 if X\in \mathfrak{g}_{-2} ; JX=X if X\in e;JX=-X if X\in \mathfrak{f} .
Clearly J is in the centre of .q_{0}=Der(\mathfrak{G}) . By Lemma 1. 2 we can easily prove
the following

LEMMA 3. 2. If p is even, then [J, \mathfrak{g}_{p}]=\{0\} . If p is odd, then
[J, [J, X]]=X for all X\in \mathfrak{g}_{p} .

REMARK. Let \mathfrak{G} be a SGLA of the second kind. As is easily seen, \mathfrak{G} is
pseud0-product, if and only if there is given an element J in the centre of \mathfrak{g}_{0}

such that [J,.q_{-2}]=\{0\} and [/, [J, X]]=X for all X\in \mathfrak{g}_{-1} .
Now, let E be the characteristic element of \mathfrak{G} . Using E and J, we define

elements E_{1}\backslash)
\backslash

and E_{\mathfrak{B}}\backslash in the centre of q_{\iota}o respectively by

E_{J1} \backslash =\frac{1}{2}(E-J) , E_{\mathfrak{B}}= \frac{1}{2}(E+J) ,

and, for any integer p, define subspaces o p and b_{p} of \mathfrak{g} respectively by

0_{p}=\{X\in_{c}q|[E_{l1}\backslash , X]=pX\} , b_{p}=\{X\in \mathfrak{g}|[E_{\mathfrak{B}}, X]=pX\} .

Then we assert that both \mathfrak{A}=\{\mathfrak{g}, ( .q_{p})\} and \mathfrak{B}=\{\mathfrak{g}, (b_{p})\} are SGLA’s of the
first kind. Indeed, let \epsilon be 1 or -1. We define subspaces \mathfrak{g}_{c}^{+} and \mathfrak{g}_{\epsilon}^{-} of \mathfrak{g}_{\epsilon}

respectively by

q_{\iota\zeta}^{+}=\{X\in q_{\epsilon}\llcorner|[J, X]=X\} , \mathfrak{g}_{\epsilon}^{-}=\{X\in 9_{\epsilon}|[J, X]=-X\} .

(Note that q_{\backslash -1}^{+}=e and q_{\backslash -1}^{-}=i .) By Lemma 3. 2 we easily have the following:

c\downarrow_{-1}=\mathfrak{g}_{-2}+.q_{-1}^{+} , \mathfrak{a}_{0}=\mathfrak{g}_{-1}^{-}+\mathfrak{g}_{0}+\mathfrak{g}_{1}^{+} , \mathfrak{a}_{1}=\mathfrak{g}_{1}^{-}+\mathfrak{g}_{2} ;
b_{-1}=_{c}q_{-2}+_{L}q_{-1}^{-} , b_{0}=\mathfrak{g}_{-1}^{+}+\mathfrak{g}_{0}+\mathfrak{g}_{1}^{-} , b_{1}=\mathfrak{g}_{1}++\mathfrak{g}_{2} .

Hence we obtain \mathfrak{g}=\sum_{p}0_{p}=\sum_{p}b_{p} , proving our assertion.
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LEMMA 3. 3. (1) Both \mathfrak{g}_{-1}^{+}+\mathfrak{g}_{1}^{+} and \mathfrak{g}_{-1}^{-}+_{c}q_{1}^{-} are abelian subalgebras of
\mathfrak{g} .

(2) [\mathfrak{g}_{-2\epsilon}, \mathfrak{g}_{c}^{+}]=\mathfrak{g}_{-\epsilon}^{+} , [\mathfrak{g}_{-2\epsilon}, \mathfrak{g}_{-}^{-}\vee]=\mathfrak{g}_{-\epsilon}^{-} , \mathfrak{g}_{2\epsilon}=[\backslash q_{\epsilon}^{+}, _{\backslash }q_{\epsilon}^{-}] ,

where \epsilon is 1 or -1.
The proof of this fact is left to the readers as an exercise (cf. Lemma 3.

1 in [11] ) .
Set G_{0}=Aut(\mathfrak{L}) , which may be regarded as an open subgroup of

Aut(G). Let G^{(0)} and G be the groups associated with the pair (\mathfrak{G}, G_{0}) :
G^{(0)}=G_{0}\cdot G^{(1)} , G=Aut(\mathfrak{g})^{0}\cdot G_{0} ,

where G^{(1)} is the Lie subgroup of Aut(\mathfrak{g})^{0} generated by the nilpotent
subalgebra \mathfrak{g}^{(1)}=\mathfrak{g}_{1}+\mathfrak{g}_{2} . We know that the Lie algebra of G_{0} and G^{(0)} are q\tau 0

and \mathfrak{g}^{(0)}=\mathfrak{g}_{0}+\mathfrak{g}_{1}+\mathfrak{g}_{2} respectively. We also know that G/G^{(0)} is connected
and compact, and that the action of G on G/G^{(0)} is effective.

We define subgroups A_{0} and B_{0} of G respectively by

A_{0}=G\cap Aut(\mathfrak{A}) , B_{0}=G\cap Aut(\mathfrak{B}) ,

which are open subgroups of Aut(A) and Aut(93) respectively. Clearly we
have

G_{0}= { a\in G|Ad(a)E=E, Ad (a)J=J },
A_{0}=\{a\in G|Ad(a)E_{\mathfrak{A}}=E_{\mathfrak{A}}\} , B_{0}=\{a\in G|Ad(a)E_{\mathfrak{B}}=E_{\mathfrak{B}}\} ,

whence
A_{0}\cap B_{0}=G_{0} .

In particular, it follows that

G=Aut(\mathfrak{g})^{0}\cdot A_{0}=Aut(\mathfrak{g})^{0}\cdot B_{0} .

We now define subgroups A^{(0)} and B^{(0)} of G respectively by

A^{(0)}=A_{0}\cdot A_{1} , B^{(0)}=B_{0}\cdot B_{1} ,

where A_{1} and B_{1} are the Lie subgroups of Aut(\mathfrak{g})^{0} generated respectively by
the abelian subalgebras t1_{1} and b_{1} of \mathfrak{g} . Then we see from the remark above
that A^{(0)} and G are the groups associated with the pair (\mathfrak{A}, A_{0}) , and similarly
B^{(0)} and G are the groups associated with the pair (\mathfrak{B}, B_{0}) . We know that
the Lie algebras of A_{0} and A^{(0)} are t1_{0} and (\chi^{(0)}=_{t1_{0}}+_{t1_{1}} respectively, and
similarly the Lie algebras of B_{0} and B^{(0)} are b_{0} and b^{(0)}=b_{0}+b_{1} respectively.
We also know that both G/A^{(0)} and G/B^{(0)} are connected and compact, and
that the action of G on both G/A^{(0)} and G/B^{(0)} are effective.

LEMMA 3. 4. A^{(0)}\cap B^{(0)}=G^{(0)} .
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PROOF. We have G_{0}=A_{0}\cap B_{0}\subset A^{(0)}\cap B^{(0)} . Since \mathfrak{g}^{(1)}\subset \mathfrak{g}^{(0)}=\mathfrak{a}^{(0)}\cap b^{(0)} , we
have G^{(1)}\subset A^{(0)}\cap B^{(0)} . Hence it follows that G^{(0)}\subset A^{(0)}\cap B^{(0)} . Conversely we
show that A^{(0)}\cap B^{(0)}\subset G_{0} . Let a\in A^{(0)}\cap B^{(0)} . Then we have Ad(a)_{t1^{(0)}}=\mathfrak{a}^{(0\rangle}

and Ad (a)b^{(0)}=b^{(0)} , whence Ad(a) \mathfrak{g}^{(0)}=\mathfrak{g}^{(0)} . Consequently we see from
Lemma 1. 4 that a\in Aut(\mathfrak{G})\cdot G^{(1)} . Now, we have Ad(a)E_{\mathfrak{A}}\equiv E_{\mathfrak{A}} (mod 0_{1} )

and Ad(a) E_{\mathfrak{V}}\equiv E_{\mathfrak{B}} (mod \mathfrak{h}_{1} ), whence

Ad (a)J\equiv J (mod \mathfrak{g}^{(1)}).

Since a\in Aut(\mathfrak{G})\cdot G^{(1)} , it can be written as follows: a=b\cdot c, where b\in

Aut (\mathfrak{G}) and c\in G^{(1)} . Then we have

Ad (a)J\equiv Ad(b)J (mod \mathfrak{g}^{(1)}).

Therefore it follows that Ad(b)J =J, i.e. , b\in G_{0} . Thus we obtain a\in G^{(0)} ,

and hence A^{(0)}\cap B^{(0)}\subset G^{(0)} , proving the lemma.

3. 2. The action of the group G on the product manifold G/A^{(0)}\cross

G/B^{(0)} . Set M=G/A^{(0)} and N=G/B^{(0)} . Then the group G naturally acts
on the product manifold M\cross N :

a\cdot(p, q)=(ap, aq) , a\in G, (p, q)\in M\cross N.

Let us consider the natural imbeddings \iota_{M} and \iota_{N} of \alpha_{-1} and \mathfrak{y}_{-1} into M

and N respectively:

\iota_{M}(X)=\pi_{M} (exp X), X\in \mathfrak{a}_{-1\prime}
.

\iota_{N}(Y)=\pi_{N} (exp Y), Y\in b_{-1} ,

where \pi_{M} and \pi_{N} denote the projections of G onto M and N respectively (see

1. 3). Then the product map \iota=\iota_{M}X\iota_{N} gives an imbedding of \mathfrak{a}_{-1}\cross b_{-1} into
M\cross N. We know from Corollary 2 to Lemma 1. 11 that the images \iota_{M}(t1_{-1})

and \iota_{N}(b_{-1}) of 0_{-1} and b_{-1} by \iota_{M} and \iota_{N} are open, dense subsets of M and N
respectively. Consequently it follows that the image \iota ( _{0-1}\cross \mathfrak{h}_{-1})=\iota_{M}(\mathfrak{a}_{-1})\cross

\iota_{N}(b_{-1}) of o_{-1}Xb_{-1} by \iota is an open, dense subset of M\cross N.

We have 0_{-1}=\mathfrak{g}_{-2}+\mathfrak{g}_{-1}^{+} and b_{-2}=\mathfrak{g}_{-2}+\mathfrak{g}_{-1}^{-} . Thus every point w of t1_{-1}\cross

b_{-1} may be expressed as follows: w=(x+y, u+v) , where x\in \mathfrak{g}_{-2} ,

y\in \mathfrak{g}_{-1}^{+} , u\in \mathfrak{g}_{-2} and v\in \mathfrak{g}_{-1}^{-} . Hereafter the point w will be also expressed as
(x, y, u, v) . By the letters x, y, etc. let us now mean the functions warrow x,

warrow y, etc. Then the system of functions, (\#, y, u. v) , may be considered as a
coordinate system of 0_{-1}\cross b_{-1} , which will be called the canonical coordinate
system of 0_{-1}\cross b_{-1} .
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Let T be the Lie subgroup of G generated by the nilpotent subalgebra t=
\mathfrak{g}_{-2}+\mathfrak{g}_{-1} of \mathfrak{g} , which is “ dual ” to the subgroup G^{(1)} of G.

LEMMA 3. 5. (1) Let X_{-2} , Y_{-2}\in \mathfrak{g}_{-2} and X_{-1} , Y_{-1}\in \mathfrak{g}_{-1} . Then
exp (X_{-2}+X_{-1}) \cdot\exp(Y_{-2}+Y_{-1})=\exp(X_{-2}+Y_{-2}+\frac{1}{2}[X_{-1}, Y_{-1}]+X_{-1}+Y_{-1}) .

(2) Let X_{-2}\in \mathfrak{g}_{-2} , X_{-1}^{+}\in g_{-1}^{+} and X_{-1}^{-}\in \mathfrak{g}_{-1}^{-} . Then
exp (X_{-2}+X_{-1}^{+}+X_{-1}^{-})= \exp(X_{-2}+\frac{1}{2}[X_{-1}^{-}, X_{-1}^{+}]+X_{-1}^{+})\cdot\exp X_{-1}^{-}=

exp (X_{-2}+ \frac{1}{2}[X_{-1}^{+}, X_{-1}^{-}]+X_{-1}^{-})\cdot\exp X_{-1}^{+} .

PROOF. (1) Let X_{-1} , Y_{-1}\in \mathfrak{g}_{-1} . Then we can find unique elements
Z_{-2} and Z_{-1} of \mathfrak{g}_{-2} and \mathfrak{g}_{-1} respectively such that exp X_{-1}\cdot\exp Y_{-1}=\exp(Z_{-2}+

Z_{-1}) (cf. Lemma 1. 6), whence

Ad (exp X_{-1} )Ad (exp Y_{-1} ) E=Ad(exp (Z_{-2}+Z-1)) E.

It follows easily that Z_{-2}= \frac{1}{2}[X_{-1}, Y_{-1}] and Z_{-1}=X_{-1}+Y_{-1} .

Hence we obtain

exp X_{-1} \cdot\exp Y_{-1}=\exp(\frac{1}{2}[X_{-1}, Y_{-1}]+X_{-1}+Y_{-1}) .

Since exp \mathfrak{g}_{-2} is in the centre of T , (1) follows immediately from this
equality.

(2) can be easily obtained from (1), proving the lemma.
Now, we notice that the product T\cdot G_{0} of T and G_{0} gives a (closed)

subgroup of G, which is “ dual ” to the subgroup G^{(0)} of G. Being a
subgroup of G, the group T\cdot G_{0} acts on the product manifold M\cross N.

LEMMA 3. 6 The group T\cdot G_{0} leaves the subset \iota (0_{-1}\cross b_{-1}) of M\cross N

invariant.
Therefore the group T\cdot G_{0} acts on the product manifold t1_{-1}\cross b_{-1} in such

a way that the imbedding \iota : \mathfrak{a}_{-1}\cross b_{-1}arrow M\cross N becomes equivariant:

\iota (aw)=a\iota(w) , a\in T\cdot G_{0} , w\in 0_{-1}\cross b_{-1} .

The following lemma clarifies the action of T\cdot G_{0} on 0_{-1}\cross b_{-1} .

Lemma 3. 7. For any a\in T\cdot G_{0} and (x, y, u, v)\in 0
-

1\cross b_{-1} , set a\cdot(x, y,

u, v)=(x’y’u’, v’) . Express a as follows : a=\exp(X_{-2}+X_{-1}^{+}+X_{-1}^{-})\cdot b,

where X_{-2}\in \mathfrak{g}_{-2} , X_{-1}^{+}\in \mathfrak{g}_{-1}^{+} , X_{-1}^{-}\in \mathfrak{g}_{-1}^{-} and b\in G_{0} . Then the vectors x’. y’ .
etc. are described as follows:
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x’=Ad(b)x+ [ X_{-1}^{-} , Ad (b) y ] +X_{-2}+ \frac{1}{2}[X_{-1}^{- }, X_{-1}^{+}] ,

y’=Ad(b)y+X_{-1}^{+} ,

u’=Ad(b)u+ [ X_{-1}^{+} , Ad (b) v ] +X_{-2}+ \frac{1}{2}[X_{-1}^{+} , X_{-1}^{-}] ,

v’=Ad(b)v+X_{-1}^{-} .

We shall prove Lemmas 3. 6 and 3. 7 together. For any a\in T\cdot G_{0} and
(x, y, u, v)\in t1_{-1}\cross b_{-1} , we have

a\cdot\iota(x, y, u, v)=(\pi_{M}(a\cdot\exp(x+y)), \pi_{N}(a\cdot\exp(u+v))) .

Let us define x’. y_{r}’ etc. to be the right-hand sides of the equalities in Lemma

3. 7. Using Lemma 3. 5, we calculate a\cdot\exp(x+y) . Then we have

a\cdot\exp(x+y)=\exp(X_{-2}+X_{-1}^{+}+X_{-1}^{-})\cdot b\cdot\exp(x+y)

=\exp(X_{-2}+X_{-1}^{+}+X_{-1}^{-})\cdot\exp (Ad(b)x+Ad(b)y) \cdot b

=\exp(x’+y’)\cdot\exp X_{-1}^{-}\cdot b .

Similarly, calculating a\cdot\exp(u+v) , we obtain

a\cdot\exp(u+v)=\exp(u’+v’)\cdot\exp X_{-1}^{+}\cdot b .

We have thus shown that a\cdot\iota(x, y, u, v)=\iota(x’, y’u’v’) , proving the

lemmas.
We define a map \Phi of \mathfrak{a}_{-1}\cross b_{-1} to \mathfrak{g}_{-2} by

\Phi(w)=u-x+[v, y] for all w=(x, y, u, v)\in \mathfrak{a}_{-1}Xb_{-1} .

Clearly Q_{-1}\cross b_{-1} is a fibred mnifold over the base space \mathfrak{g}_{-2} with projection \Phi .

By Lemma 3. 7 we have the following two lemmas.

Lemma 3. 8. The group T freely acts on c\iota_{-1}\cross b_{-1} , and, for any w\in

\alpha_{-1}Xb_{-1} , w and (0, 0, \Phi(w), 0) belong to the same T-Orbit.

LEMMA 3. 9. \Phi(aw)=Ad(b)\Phi(w) , a\in T\cdot G_{0} , w\in 0_{-1}\cross b_{-1} , where b

stands for the G_{0} -component of a.
Let us now consider the natural representation of G_{0} on \mathfrak{g}_{-2} , and denote

by \tilde{G}_{0} the image \rho_{-2}(G_{0}) of G_{0} by \rho_{-2} . In what follows, T\cdot G_{0} will be exclu-
sively considered as a transformation group on \mathfrak{a}_{-1}\cross b_{-1} .

In view of Lemmas 3. 8 and 3. 9 we obtain the following

LEMMA 3. 10. If V_{1} is a \tilde{G}_{0} -Orbit, then the inverse image \Phi^{-1}(V_{1}) of V_{1}

by \Phi is a T\cdot G_{0} -Orbit, and the assignment V_{1}arrow\Phi^{-1}( V_{1}) gives a one-tO-One

correspondence between the \tilde{G}_{0} -Orbits and the T\cdot G_{0} -Orbits.

LEMMA 3. 11. Let V_{1} be any \tilde{G}_{0} -Orbit. If X\in V_{1} , and if t is a non-
zcro real number, then tX\in V_{1} .
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PROOF. Let \lambda and \mu be any non-zero real numbers. Define a linear
transformation a=a(\lambda, \mu) of t as follows:

aX=\lambda\mu X if X\in \mathfrak{g}_{-2} ; aX=\lambda X if X\in \mathfrak{g}_{-1}+jaX=\mu X if X\in\underline{\mathfrak{g}}_{-1}^{-} .

Then we easily see that a is an automorphism of the pseud0-product FGLA,
\mathfrak{L} , i.e. , a\in Aut(\mathfrak{L})=G_{0} . Thus the lemma follows.

Hereafter we shall identify the vector spaces 0_{-1} and b_{-1} with open,

dense subsets of the manifolds M and N by the imbeddings \iota_{M} and \iota_{N} respec-

tively, so that the vector space 0_{-1}\cross b_{-1} will be identified with an open, dense
subset of the product manifold M\cross N by the imbedding \iota .

Let X\in\underline{\mathfrak{g}} . Let \tilde{X} be the vector field on M\cross N induced from the one-
parameter group of transformations of M\cross N:\phi_{t}(w)=(\exp tX)\cdot w, w\in

M\cross N. Denote by \delta_{X} the Lie derivation with respect to \tilde{X}. Furthermore,

express X as follows: X= \sum_{p=-2}^{2}X_{p} , where X_{p}\in \mathfrak{g}_{p} , and, for \epsilon=1 or -1,

express X_{\epsilon} as follows: X_{\epsilon}=X_{\epsilon}^{+}+X_{\epsilon}^{-} , where X_{-}^{+}.\in \mathfrak{g}_{\epsilon}^{+} and X_{\epsilon}^{-}\in \mathfrak{g}_{\epsilon}^{-} .

LEMMA 3. 12. Let (x, y, u, v) be the canonical coordinate system of
t1_{-1}\cross b_{-1} . Then the Lie derivatives \delta_{X}x, \delta_{X}y, etc. of the functions x, y, etc.

are described as follows:
\delta_{X}x=X_{-2}+[X_{0}, x]+[X_{-1}^{-}, y]+[x, [y, X_{-1}^{-}]]+\frac{1}{2}[x, [x, X_{2}]] ,

\delta_{X}y=X_{-1}^{+}+[X_{1\prime}^{+}x]+[X_{0}, y]+[x, [y, X_{2}]]+\frac{1}{2}[y, [y, X_{1}^{-}]] ,

\delta_{X}u=X_{-2}+[X_{0}, u]+[X_{-1}^{+}, v]+[u, [ v, X_{1}^{+}]]+\frac{1}{2}[u, [ u, X_{2}]] ,

\delta_{X}v=X_{-1}^{-}+[X_{1\prime}^{-}u]+[X_{0}, v]+[u, [ v, X_{2}]]+\frac{1}{2}[v, [ v, X_{1}^{+}]] .

PROOF Let (x, y, u, v) be any point of 0_{-1}\cross b_{-1} . Put a(t)=\exp tX,

and, assuming that a(t)\cdot(x, y, u, v)\in 0- 1\cross b_{-1} , put

a(t)\cdot(x, y, u, v)=(x(t), y(t), u(t) , v(t)) ,

which clearly means the following two equalities:

\pi_{M}(a(t)\cdot\exp(x+y))=\pi_{M}(\exp(x(t)+y(t))) ,

\pi_{N}(a(t)\cdot\exp(u+v))=\pi_{N} (exp (u(t)+v(t)) ).

Now, the first equality means that there are unique elements b(t) and Y(t)

of A_{0} and 0_{1} respectively such that

a(t)\cdot\exp(x+y)=\exp(x(t)+y(t))\cdot b(t)\cdot\exp Y(t) ,



310 N. Tanaka

whence

Ad(a(t))Ad(\exp(x+y))E_{\mathfrak{A}}=Ad (\exp(x(t)+y ( t)))Ad ( b (t)) Ad(exp Y
(t))E_{?1}\backslash \cdot

Clearly we have

x(0)=x, y(O)=y, x’(0)=\delta_{X}x, y’(0)=\delta_{X}y, b(0)=e, Y(0)=0,

where x’(0) , etc. denote the derivatives of x(t) , etc. at t=0. Therefore,
differentiating the equality above with respect to the variable t at t=0 , we
obtain

ad (X)Ad (exp (x+y) ) E_{\mathfrak{A}}=ad(\delta_{X}x+\delta_{X}y)E_{\mathfrak{A}}+Ad(\exp(x+y))ad( Y’(0))E_{\mathfrak{A}} ,

whence

\delta_{X}x+\delta_{X}y=X_{-2}+X_{-1}^{+}+[X_{-1}^{-}+X_{0}+X_{1}^{+}, x+y]

+ \frac{1}{2}[x+y, [x+y, X_{1}^{-}+X_{2}]] .

From this equality combined with Lemma 3. 3 we can easily obtain the ex-
pressions for \delta_{X}x and \delta_{X}y. Similarly we obtain the expressions for \delta_{X}u and
\delta_{X}v .

Consider the map \Phi of 0_{-1}\cross b_{-1} to \mathfrak{g}_{-2}- , which may be regarded as a \mathfrak{g}_{-2} -

valued function on 0_{-1}\cross b_{-1} . In terms of the canonical coordinate system (x,
y, u, v) of 0_{-1}\cross b_{-1} , the function \Phi may be expressed as follows:

\Phi=u-x+[v, y] .

LEMMA 3. 13. For any X\in g there is a\mathfrak{g}_{0} -valued function F_{X} on 0_{-1}\cross

b_{-1} such that

\delta_{X}\Phi=[F_{X\prime}\Phi] .

PROOF. We have

\delta_{X}\Phi=\delta_{X}u-\delta_{X}x+[\delta_{X}v, y]+[v, \delta_{X}y] .

Using Lemma 3. 12, we calculate the right-hand side. Then we obtain
\delta_{X}\Phi=[F_{X}, \Phi]+G_{X},

where F_{X} and G_{X} are respectively given by

F_{X}=X_{0}-[v, X_{1}^{+}]-[y, X_{1}^{-}]- \frac{1}{2}[\Phi, X_{2}]-[x-[v, y], X_{2}]-[[v, X_{2}] , y] ,

G_{X}= \frac{1}{2}[[v, y], [[v, y], X_{2}]]-[[[v, y] , [ v, X_{2}]] , y] .
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We assert that G_{X}=0 . Indeed, take any elements Y and Z of \mathfrak{g}_{1} . Then
we have

\delta_{\iota YZl},\Phi=-\delta\beta_{Z}\Phi+\delta_{Z}\delta_{Y}\Phi .

Clearly we have G_{Y}=G_{Z}=0 , and hence

\delta_{Y}\Phi=[F_{Y}, \Phi] , \delta_{Z}\Phi=[F_{Z}, \Phi] .

Therefore it follows that

\delta_{\ddagger YZ3},\Phi=[-\delta_{Y}F_{Z}+\delta_{Z}F_{Y}+[F_{Y}, F_{Z}], \Phi] .

Since \mathfrak{g}_{2}=[\mathfrak{g}_{1}, \mathfrak{g}_{1}] by Lemma 3. 3, we have therefore shown that, for any X
\in \mathfrak{g}_{2} , there is a \mathfrak{g}_{0}-valued function F_{X}’ on 0_{-1}\cross b_{-1} such that \delta_{X}\Phi=[F_{X}’, \Phi] .
Consequently we get

[F_{X}, \Phi]+G_{X}=[F_{X}’, \Phi] , X\in \mathfrak{g}_{2} .

Here, we note that G_{X} is a function of the variables y and v only. Hence,
putting \Phi=0 , i . e. , u=x-[v, y] in the equality above, we obtain G_{X}=0 for
all X\in \mathfrak{g}_{2} . Therefore we have G_{X}=G_{X_{2}}=0 for all X\in \mathfrak{g} , proving our asser-
tion.

LEMMA 3. 14. Let \Omega_{1}’ be any T\cdot G_{0} -Orbit, and let \Omega_{1} be the G-Orbit
containing \Omega_{1}’ . Then dim \Omega_{1}=\dim\Omega_{1}’ .

PROOF. By Lemma 3. 10 we know that there is a unique \tilde{G}_{0} -0rbit V_{1}

such that \Omega_{1}’=\Phi^{-1}(V_{1}) . Now, take any point w of \Omega_{1}’ . By Lemma 3. 13 we
have \Phi_{*}(\tilde{X}_{w})=(\delta_{X}\Phi)(w)=[F_{X}(w), \Phi(w)] for all X\in \mathfrak{g} . We have
T(\Omega_{1})_{w}=\{\tilde{X}_{w}|X\in \mathfrak{g}\} and T(V_{1})_{\Phi(w)}=[\mathfrak{g}_{0}, \Phi(w)] . Therefore it follows
that

\Phi_{*w}(T(\Omega_{1})_{w})\subset T(V_{1})_{\Phi(w)} .

Since 0_{-1}\cross b_{-1} is a fibred manifold over the base space \mathfrak{g}_{-2} whth projection \Phi ,

we have

Ker \Phi_{*w}\subset T(\Omega_{1}’)_{w}\subset T(\Omega_{1})_{w} ,

\Phi_{*w}(T(\Omega_{1}’)_{w})=T(V_{1})_{\Phi(w)} .

From these facts it follows immediately that T(\Omega_{1})_{w}=T(\Omega_{1}’)_{w} . Hence we
obtain dim \Omega_{1}=\dim\Omega_{1}’ , proving the lemma.

Lemma 3. 15. For any point w\in M\cross N, there is an element a of G

such that aw\in t1_{-1}\cross b_{-1} . In other words, any G-Orbit \Omega_{1} intersects the subset
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0_{-1}\cross b_{-1} of M\cross N.

PROOF. Put w=(p, q) . Then there is a\in G such that ap=0_{M}, and
hence aw=(0_{M}, aq) , where 0_{M} denotes the origin of M=G/A^{(0)} . Thus we
may assume that w is of the form (0_{M}, q) . Since 0_{M}\in t1_{-1} , and since t1_{-1} is
an open set of M, there is a neighborhood U of e such that U\cdot 0_{M}\subset \mathfrak{a}_{-1} .
Since b_{-1} is a dense subset of N, we have U\cdot q\cap b_{-1}\neq\phi . Therefore we can
find a\in G such that a\cdot 0_{M}\in()_{-1} and aq\in b_{-1} , and hence aw=(ao_{M}, aq)\in \mathfrak{a}_{-1}\cross

b_{-1} , which proves the lemma.

3. 3. Condition (II. 1) . From now on we assume the following con-
dition:

(II. 1) There is an element g of G such that g^{2}=e and such that
Ad (g)E=-E and Ad (g)J=J.

Clearly this condition implies that Ad(g)E_{\mathfrak{A}}=-E_{\mathfrak{B}} . Let A_{-1} and B_{-1} be
the Lie subgroups of G generated by the abelian subalgebras 0_{-1} and b_{-1} of
\mathfrak{g} respectively. Then we easily have the following

LEMMA 3. 16. (1) Ad (g) \mathfrak{g}_{-2}=\mathfrak{g}_{2} , Ad (g) \mathfrak{g}_{-1}^{+}=\mathfrak{g}_{1}^{+} , Ad (g) \mathfrak{g}_{-1}^{-}=\mathfrak{g}_{1}^{-} ,

Ad (g)_{\backslash }q_{0}=\mathfrak{g}_{0} .

(2) Ad (g) b_{-1}=0_{1} , Ad (g) \mathfrak{y}_{0}=0_{0} , Ad (g) b_{1}=0_{-1} .
(3) gB_{0}g=A_{0} , gB^{(0)}g=A_{-1}\cdot A_{0} , gA^{(0)}g=B_{-1}\cdot R .
In particular it follows from this fact that dim \mathfrak{g}_{-1}^{+}=\dim \mathfrak{g}_{-1}^{-}=\dim \mathfrak{g}_{1}^{+}=

dim \mathfrak{g}_{1}^{-} and dim 0_{-1}^{\cdot}=\dim t1_{1}=\dim b_{-1}=\dim b_{1} .
We shall study open orbits under the action of G on M\cross N.
Let 0_{M} and 0_{N} be the origins of M=G/A^{(0)} and N=G/B^{(0)} respectively.

Let \Omega_{\mathfrak{A}} be the G-0rbit through the point (0_{M}, go_{N}) . Clearly the isotropy
group of G at (0_{M}, go_{N}) is given by A^{(0)}\cap gB^{(0\rangle}g . By Lemmas 1. 10 and 3. 16
we have A^{(0)}\cap gB^{(0)}g=A_{0}\cdot A_{1}\cap A_{-1}\cdot A_{0}=A_{0} . Hence \Omega_{\mathfrak{A}} may be represented
by the homogeneous space G/A_{0} . We have dim G/A_{0}=\dim(0_{-1}+0_{1})=\dim

(M\cross N) , meaning that \Omega_{\mathfrak{A}} is an open orbit. Similarly, let \Omega_{\mathfrak{B}} be the G-0rbit
through the point (go_{M}, 0_{N}) . As above it is shown that the isotropy group of
G at (go_{M}, 0_{N}) is given by gA^{(0)}g\cap B^{(0)}=R , and hence \Omega_{\mathfrak{B}} may be repre-
sented by the homogeneous space G/B_{0} . It is also shown that \Omega_{\mathfrak{B}} is an open
orbit.

We want to show that \Omega_{\mathfrak{A}} is dense in M\cross N. For this purpose we define
a map \varpi of G\cross G to M\cross N by

\varpi(a, b)=(\pi_{M}(a), \pi_{N}(bg))=(ao_{M}, bgo_{N}) ,
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where (a, b)\in G\cross G. Clearly G\cross G is a fibred manifold over the base space
M\cross N with projection \varpi . We also define a map \eta of G\cross G to G by

\eta(a, b)=b^{-1}a for all (0, b)\in G\cross G.

Clearly G\cross G is a fibred manifold over the base space G with projection \eta .
Moreover we consider the subset of G :

S=A_{-1}\cdot A_{0}\cdot A_{1} .

In view of the fact that gB^{(0)}g=A_{-1}\cdot A_{0} , we can easily verify the fol-
lowing

LEMMA 3. 17. \varpi^{-1}(\Omega_{\mathfrak{A}})=\eta^{-1}(S) .
By Corollary 1 to Lemma 1. 11 we know that S is dense in G. It follows

that \varpi^{-1}(\Omega_{\mathfrak{A}})=\eta^{-1}(S) is dense in G\cross G, and in turn that \Omega_{\mathfrak{A}} is dense in M\cross

N. Consequently we find that \Omega_{\mathfrak{A}} is a single open G-0rbit. Especially we
have \Omega_{\mathfrak{B}}=\Omega_{\mathfrak{A}} .

We have therefore proved the following

Lemma 3. 18. The action of G on M\cross N has a single open orbit \Omega .
Furthermore, 1) (0_{M}, go_{N})\in\Omega , and the isotropy group of G at (0_{M}, go_{N}) is

given by A_{0} ; 2) (go_{M}, 0_{N})\in\Omega , and the isotropy group of G at (so_{M}, 0_{N}) is

given by R. Hence \Omega may be represented by the homogeneous space G/A_{0} or
G/B_{0} .

REMARK. The open G orbit \Omega is not contained in the open, dense subset
o_{-1}\cross b_{-1} of M\cross N. Indeed, suppose that (0_{M}, go_{N})\in()_{-1}\cross b_{-1} , i . e. , go_{N}\in

b_{-1} . Clearly this means that g\in B_{-1}\cdot B_{0}\cdot B_{1} . On the other hand, we have
Ad(g)b_{1}=0_{-1}\subset b_{-1}+b_{0} by Lemma 3. 16. Therefore it follows from Lemma 1.
11 that g\not\in B_{-1}\cdot B_{0}\cdot B_{1} , which is a contradiction.

We know from Lemmas 3. 14 and 3. 18 that the intersection \Omega’=\Omega\cap

(t1_{-1}Xb_{-1}) is the union of all open T\cdot G_{0}-0rbits, and from Lemma 3. 10 that
\Omega’ may be expressed as follows: \Omega’=\Phi^{-1}(V) , where V is the union of all
open \tilde{G}_{0}-0rbits. Therefore it follows that the boundary \partial\Omega of \Omega in M\cross N is
the union of all singular G-0rbits, that the boundary \partial’\Omega’ of \Omega’ in tl-1\cross b_{-1} is
the union of all singular T\cdot G_{0}-0rbits, and that the boundary a V of V in \mathfrak{g}_{-2}

is the union of all singular \tilde{G}_{0} orbits. Clearly we have

\partial\Omega\cap(o_{-1}Xb_{-1})=\partial’\Omega’=\Phi^{-1}(\partial V) .

Let \rho_{M} (resp. \rho_{N}) be the projection of \Omega to M (resp. of \Omega to N).

Lemma 3. 19. \Omega is a fifibred manifold over the base space M (resp. over
N) with projection \rho_{M} (resp. with \rho_{N}), and its fifibres are all connected.
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PROOF. Clearly both the maps \rho_{M} and \rho_{N} are G-equivariant,and we
have \rho_{M}((0_{M}, go_{N}))=0_{M} and \rho_{N}((go_{M}, 0_{N}))=0_{N}. By Lemma 3. 18 we know
that the isotropy group of G at (0_{M}, go_{N}) (resp. at (go_{M}, 0_{N})) is A_{0} (resp.
B_{0}) , and hence \Omega may be represented by the homogeneous space G/A_{0} (resp.
G/B_{0}) . Furthermore we know that G/A_{0} (resp. G/B_{0}) is naturally a fibred
manifold over the base space G/A^{(0)} (resp. over G/B^{(0\rangle}), and its fibres are
all connected (see 2. 4). Now the lemma follows from these facts.

We shall finally study minimal dimensional orbits under the action of G
on M\cross N.

LEMMA 3. 20. The action of G on M\cross N has a single minimal dimen-
sional orbit R. Furthermore, (0_{M}, 0_{N})\in R, and the isotropy group of G at
(0_{M}, 0_{N}) is given by G^{(0)} . Hence R may be represented by the homogeneous
space G/G^{(0\rangle} .

PROOF. Let R be the G-0rbit through the point (0_{M}, 0_{N}) . Clearly the
isotropy group of G at (0_{M}, 0_{N}) is given by A^{(0)}\cap B^{(0)} . By Lemma 3. 4 we
have A^{(0\rangle}\cap B^{(0)}=G^{(0)} . Hence R may be represented by the homogeneous
space G/G^{(0)} . Now, consider the subset \Phi^{-1}(0) of 0_{-1}\cross b_{-1} , which is the T .
G_{0} -0rbit through the zero of the vector space or the point (0_{M}, 0_{N}) . We
assert that \Phi^{-1}(0) is a single minimal dimensional T\cdot G_{0} -0rbit. Indeed, let

V_{1} be any \tilde{G}_{0}-0rbit. Clearly we have dim \Phi^{-1}(V_{1})\geqq\dim\Phi^{-1}(0) . Suppose
that dim \Phi^{-1}( V_{1})=\dim\Phi^{-1}(0) . Then we have dim V_{1}=0 . Since the natural
representation of \mathfrak{g}_{0} on \mathfrak{g}_{-2} is irreducible (Lemma 5, Appendix in [11]), this
means that V_{1}=\{0\} , proving our assertion. Therefore it follows from
Lemmas 3. 14 and 3. 15 that R is a single minimal dimensional G-0rbit. We
have thus proved the lemma.

From the proof above we know that R\cap(\mathfrak{a}_{-1}\cross b_{-1})=\Phi^{-1}(0) .

3. 4. Condition (II. 2) . Let us consider the single open orbit \Omega under
the action of G on M\cross N (Lemma 3. 18). We know that the isotropy group
of G at the point (0_{M}, go_{N})\in\Omega is A^{(0)}\cap gB^{(0)}g=A_{0} , and hence \Omega may be
represented by the homogeneous space G/A_{0} . Now, let \overline{G}/\overline{A}_{0} be the stan-
dard affine symmetric space associated with \mathfrak{A} . Recall that the groups \overline{A}_{0}

and \overline{G} are defined respectively as follows: \overline{A}_{0}=Aut(\mathfrak{A}) and \overline{G}=Aut(\mathfrak{g})^{0}\cdot\overline{A}_{0} .
Clearly we have \overline{G}=G\cdot\overline{A}_{0} and A_{0}=\overline{A}_{0}\cap G. Hence \overline{G}/\overline{A}_{0}=G/A_{0} . Thus we
have the following identifications:

\Omega=G/A_{0}=\overline{G}/\overline{A}_{0} .

We claim that the product structure (E_{\Omega}, F_{\Omega}) of \Omega as an open submanifold
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of M\cross N coincides with the invariant product structure of \overline{G}/\overline{A}_{0} which is
induced from the abelian subalgebras 0_{-1} and t1_{1} of \mathfrak{g} . In fact, this can be
easily verified by using the following fact:

(t1_{-1}+\mathfrak{a}_{1})\cap Ad(g)b^{(0)}=t1_{-1} , (\mathfrak{l}1_{-1}+t1_{1})\cap 0^{(0)}=t1_{1} .

Let us now consider the single minimal dimensional orbit R under the
action of G on M\cross N (Lemma 3. 20). We know that the isotropy group of
G at the point (0_{M}, 0_{N})\in R is A^{(0)}\cap B^{(0)}=G^{(0)} , and hence R may be repre-

sented by the homogeneous space G/G^{(0)} . We claim that the pseud0-product
structure (E_{R}, F_{R}) of R as a submanifold of M\cross N coincides with the
invariant pseud0-product structure of G/G^{(0)} which is induced from the
subalgebras o and b^{(0)} of \mathfrak{g} . In fact, this can be easily verified by using the
followin facts:

t\cap b^{(0)}=\mathfrak{g}_{-1\prime}^{+}t\cap tl^{(0)}=\mathfrak{g}_{-1}^{-} .

We shall study the automorphism group Aut (\Omega) of the product manifold
\Omega via the automorphism group Aut(R) of the pseud0-product manifold R.

First of all we have natural injective homomorphisms i_{\Omega} and i_{R} of G to
Aut(Q) and of G to Aut(R) respectively:

i_{\Omega}(a)=a_{\Omega} , a(0)=a_{R}, a\in G,

where a_{\Omega} and a_{R} are respectively the transformations of \Omega and R induced by
a .

Next we see from Lemma 3. 19 that every \phi\in Aut(\Omega) naturally induces
diffeomorphisms \phi_{M} and \phi_{N} of M and N respectively: \rho_{M}\circ\phi=\phi_{M}\circ\rho_{M} and
\rho_{N}\circ\phi=\phi_{N}\circ\rho_{N}. Thus we have the product transformation \phi_{M\cross N}=\phi_{M}\cross\phi_{N}

of M\cross N. Clearly the restriction of \phi_{M\cross N} to \Omega coincides with the given \phi ,

and the assignment \phiarrow\phi_{M\cross N} gives an injective homomorphism of Aut (\Omega) to
Aut (M\cross N) , the automorphism group of the product manifold M\cross N.

Let \phi\in Aut(\Omega) . Then it is clear that \phi_{M\cross N} leaves the domain \Omega

invariant, from which follows that \phi_{M\cross N} leaves the boundary \partial\Omega of \Omega

invariant as well. We want to show that \phi_{M\cross N} furhter leaves the submani-
fold R(\subset\phi\Omega) invariant.

Here, we prepare some notations and terminologies for our later
arguments. Let U be a finite dimensional vector space over R. Then P ( U)
denotes the algebra of (complex valued) polynomial functions on U. For
any non-negative integer m, P ( U)_{m} denotes the subspace of P ( U) consist-
ing of all polynomial functions of degree m and the zero polynomial function:
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P (^{U)}= \sum_{m\geqq 0}P (^{U)_{m}} (direct sum). Now, let W be an algebraic variety over
R of U. By the (complexified) ideal I ( W) of the variety W we mean the
ideal of P(U) consisting of all polynomial functions which vanish on W.
The ideal I(W) is said to be homogeneous, if I(W)= \sum_{m\geqq 0}I(W)_{m} with

I ( W)_{m}=I ( W)\cap P(U)_{m} . Note that I ( W) is homogeneous, if and only if
tX\in W for all X\in W and t\in R . When I ( W) is homogeneous, l(W)
denotes the smallest non-negative integer l such that I ( W)_{l}\neq\{0\} .

Now, consider the union a V of all singular \tilde{G}_{0} -0rbits, which is a proper
algebraic variety over R of \mathfrak{g}_{-2} . By Lemma 3. 11 we see that the ideal
I(\partial V) of the variety a V is homogeneous. Note that the integer l(\partial V) is
positive.

From now on we assume the following condition:
(II. 2) For every X\in\partial V-\{0\} there is a polynomial function f\in I(\partial V)

such that j_{X}^{l-1}([)\neq 0 , where l=l(\partial V) .
We shall prove the following

LEMMA 3. 21. For every \phi\in Aut(\Omega) , \phi_{M\cross N} leaves R invariant.
For this purpose we first prove the following

Lemma 3. 22. Let f be a C^{\infty} function defifined on a neighborhood of 0 in
\mathfrak{g}_{-2} . If f vanishes on a neighborhood of 0 in a V, then j_{0}^{t-1}(f)=0 .

PROOF. For any non-negative integer s, we define a polynomial
function f^{(S)}\in P( _{\iota}q_{-2})_{s} by

f^{ts)}(X)= \frac{d^{s}}{dt^{s}}f(tX)_{t=0} for all X\in \mathfrak{g}_{-2} .

Since tX\in\partial V for all X\in\partial V and t\in R, it follows that f^{(S)}(X)=0 for all X
\in\partial V, i . e. , f^{(S)}\in I(\partial V)_{s} . Hence we obtain f^{(S)}=0 for all s\leqq l-1 , meaning
that j_{0}^{t-1}(f)=0 . This proves the lemma.

As we have remarked, 0_{-1}\cross b_{-1} is a fibred menifold over the base space
\mathfrak{g}_{-2} with projection \Phi . Therefore the next lemma follows immediately from
Lemma 3. 22 and condition (II. 2) .

LEMMA 3. 23. (1) Let f be a C^{\infty} function defifined on a neighborhood of
0=(0,0) in Q-1\cross b_{-1} . It f vanishes on a neighborhood of 0 in \Phi^{-1}(\partial V) ,

then j_{0}^{t-1}(f)=0 .
(2) For every w\in\Phi^{-1}(\partial V)-\Phi^{-1}(0) there is a polynomial function f\in

I(\partial V) such that j_{w}^{l-1}(f\circ\Phi)\neq 0 .
Put 0=(0_{M}, 0_{N}) , which may be identified with the zero of ()-1\cross \mathfrak{h}_{-1} .
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LEMMA 3. 24. Let \phi\in Aut(\Omega) . If \phi_{M\cross N}(0)\in tI-1\cross b-1 , then \phi_{M\cross N}(0)

\in R .

PROOF. We first recall that \phi_{M\cross N} leaves the boundary \partial\Omega of \Omega

invariant. Therefore, putting w=\phi_{M\cross N}(0) , we have w\in\partial\Omega\cap(_{t1-1} \cross b_{-1})

=\Phi^{-1}(\partial V) . Suppose that w\not\in\Phi^{-1}(0) . By (2) of Lemma 3. 23 there is a
polynomial function f\in I(\partial V) such that j_{\overline{w}}^{l1}(f\circ\Phi)\neq 0 . Since \phi_{M\cross N} maps a
neighborhood of 0 in \Phi^{-1}(\partial V) onto a neighborhood of w in \Phi^{-1}(\partial V) , we see
that the function f\circ\Phi\circ\phi_{M\cross N} vanishes on a neighborhood of 0 in \Phi^{-1}(\partial V) . It
follows from (1) of Lemma 3. 23 that j_{0}^{t-1}(f\circ\Phi\circ\phi_{M\cross N})=0 , whence j_{w}^{t-1}(f\circ\Phi)

=0. This is a contradiction. Consequently we have shown that w\in\Phi^{-1}(0)

\subset R, proving the lemma.
Now, Lemma 3. 21 can be derived from Lemma 3. 24 in the following

manner: Let \phi\in Aut(\Omega) and w\in R . We take a\in G such that w=ao, and
then take b\in G such that b\cdot\phi_{M\cross N}(w)\in_{11_{-1}}\cross \mathfrak{h}_{-1} (Lemma 3. 15). If we put
\psi=b_{\Omega}\cdot\phi\cdot a_{\Omega} , it is clear that \psi\in Aut(\Omega) , \psi_{M\cross N}(0)\in t1_{-1}X\mathfrak{h}_{-1} , and
\phi_{M\cross N}(w)=b^{-1}\cdot\psi_{M\cross N}(0) . Therefore it follows from Lemma 3. 24 that
\phi_{M\cross N}(w)\in R, proving Lemma 3. 21.

REMARK. The proof above of Lemma 3. 21 does not use the property
that \phi_{M\cross N} is a product transformation. Accordingly we have obtained the
stronger result: Let \psi be a diffeomorphism of M\cross N. If \psi leaves \Omega

invariant, then it leaves the submanifold R invariant as well.
For \phi\in Aut(\Omega) we denote by \phi_{R} the restriction of \phi_{M\cross N} to R, which is

an automorphism of the pseud0-product manifold R by Lemma 3. 21. Then
we see that the assignment \phiarrow\phi_{R} gives an injective homomorphism j of
Aut(O) to Aut(R), where the injectivity follows from the fact that the
projections of R to M and N are both surjective.

In this way we have obtained the following commutative diagram:

Garrow Aut(\Omega)i_{\Omega}

i_{R}\backslash \downarrow j

Aut(Q).

Here the homomorphisms i_{\Omega} , i_{R} and j are all injective.
By Lemma 1. 15 we know that the homomorphism i_{R} gives an isomor-

phism of G onto Aut(R). If follows immediately that the homomorphism j
gives an isomorphism of Aut(\Omega ) onto Aut(R), and in turn the homomor-
phism i_{\Omega} an isomorphism of G onto Aut(\Omega ).
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LEMMA 3. 25. A_{0}=Aut(\mathfrak{A}) , and B_{0}=Aut(\mathfrak{B}) .

PROOF. Consider the standard affine symmetric space \overline{G}/\overline{A}_{0} associated
with \mathfrak{A} . Since \Omega=\overline{G}/\overline{A}_{0} as product manifolds, and since the homomorphism
i_{\Omega} gives an isomorphism of G onto Aut(fl), it follows that \overline{G}=G. Hence we
obtain A_{0}=G\cap Aut(\mathfrak{A})=Aut(\mathfrak{A}) . Furthermore it follows by Lemma 3. 16
that B_{0}=gA_{0}g=gAut(\mathfrak{A})g=Aut(\mathfrak{B}) , proving the lemma.

From this fact we find that G/A_{0} and G/B_{0} are the standard affine
symmetric spaces associated with \mathfrak{A} and \mathfrak{B} respectively.

We have thereby proved the following

PROPOSITION 3. 26. Lel\mathfrak{G} be a pseudO-product SGLA of the second kind
over R. Assume that \mathfrak{G} satisfifies conditions (II. 1) and (II. 2) . Then \Omega=G/A_{0}

is the standard affine symmetric space associated with \mathfrak{A} , and the homomor-
phism i_{\Omega} gives an isomorphism of G onto Aut(\Omega ).

\S 4. Some studies on simple graded Lie algebras of the first kind

4. 1. The action of the group G on the product manifold G/G^{(0)}\cross G/G^{(0)} .
As is easily observed, most of the results in the previous section, especially
Lemmas 3. 5–3. 24 there, hold true, even in the degenerate case when \mathfrak{g}_{-1}=

\mathfrak{g}_{1}=\{0^{(}, . (Suppose this, which indeed makes sense. Then the graded Lie
algebra \mathfrak{G} may be naturally regarded as a SGLA of the first kind, so that \mathfrak{A}=

\mathfrak{B}=\mathfrak{G} . It follows that A_{0}=B_{0}=G_{0} , A^{(0)}=B^{(0)}=G^{(0)} , and hence G/A_{0}=

G/B_{0}=G/G_{0} , G/A^{(0)}=G/B^{(0)}=G/G^{(0)}.)

In the present section, we study a SGLA of the first kind, which just
corresponds to the study of this degenerate case. The counterparts of the
relevant lemmas in that section will be stated without proof in principle.

Let \mathfrak{G}=\{\mathfrak{g}, (\mathfrak{g}_{p})\} be a simple graded Lie algebra of the first kind. Let G_{0} ,
G^{(0)} and G be the groups associated with \mathfrak{G} :

G_{0}=Aut(\mathfrak{G}) , G^{(0)}=G_{0}\cdot G_{1} , G=Aut(\mathfrak{g})^{0}\cdot G_{0} ,

where G_{1} denotes the Lie subgroup of Aut(\mathfrak{g})^{0} generated by the abelian
subalgebra \mathfrak{g}_{1} of \mathfrak{g} .

Set M=G/G^{(0)} . Then the group G naturally acts on the product
manifold M\cross M :

a\cdot(p, q)=(ap, aq) , a\in G, (p, q)\in M\cross M.

Let us consider the natural imbedding \iota_{M} of \mathfrak{g}_{-1} into M :

\iota_{M}(X)=\pi_{M} (exp X), X\in \mathfrak{g}_{-1} ,
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where \pi_{M} denotes the projection of G onto M. Then the product map \iota=

\iota_{M}\cross\iota_{M} gives an imbedding of \mathfrak{g}_{-1}\cross \mathfrak{g}_{-1} into M\cross M. We know that the image
\iota_{M}(\mathfrak{g}_{-1}) of \mathfrak{g}_{-1} by \iota_{M} is an open, dense subset of M. It follows that the image
\iota

(\mathfrak{g}_{-1}\cross \mathfrak{g}_{-1}) of \mathfrak{g}_{-1}\cross \mathfrak{g}_{-1} by \iota is an open, dense subset of M\cross M as well.
Let G_{-1} be the Lie subgroup of G generated by the abelian subalgebra .q_{-1}

of \mathfrak{g} . Then the product G_{-1}\cdot G_{0} of G_{-1} and G_{0} gives a (closed) subgroup of
G, which acts on M\cross M as a subgroup of G. Then it is shown that the
group G_{-1}\cdot G_{0} leaves the subset \iota

(\mathfrak{g}_{-1}\cross \mathfrak{g}_{-1}) of M\cross M invariant. Therefore
the group G_{-1}\cdot G_{0} acts on \mathfrak{g}_{-1}\cross \mathfrak{g}_{-1} in such a way that the imbedding \iota becomes
equivariant:

\iota (aw)=a\iota(w) , a\in G_{-1}\cdot G_{0} , w\in \mathfrak{g}_{-1}\cross \mathfrak{g}_{-1} .

For any a\in G_{-1}\cdot G_{0} and (x, u)\in \mathfrak{g}_{-1}\cross \mathfrak{g}_{-1} , set a\cdot(x, u)=(x’. u0 .
Express a as follows: a=\exp X\cdot b, where X\in \mathfrak{g}_{-1} and b\in G_{0} . Then we
have

x’=Ad(b)x+X, u’=Ad(b)u+X.

We define a map \Phi of \mathfrak{g}_{-1}\cross \mathfrak{g}_{-1} to \mathfrak{g}_{-1} by

\Phi(w)=u-x for all w=(x, u)\in \mathfrak{g}_{-1}\cross \mathfrak{g}_{-1} .

Let \rho_{-1} be the natural representation of G_{0} on \mathfrak{g}_{-1} , which is faithful (Lemma
1. 7). Then we denote by \tilde{G}_{0} the image of G_{0} by \rho_{-1} , which is nothing but the
linear isotropy group associated with the homogeneous space M=G/G^{(0)} .
Hereafter G_{-1}\cdot G_{0} willl be exclusively considered as a transformation group
on \mathfrak{g}_{-1}\cross \mathfrak{g}_{-1} .

LEMMA 4. 1. If V_{1} is a \tilde{G}_{0} -Orbit, then the inverse image \Phi^{-1}(V_{1}) of V_{1}

by \Phi is a G_{-1}\cdot G_{0} -Orbit, and the assignmcnt V_{1}arrow\Phi^{-1}( V_{1}) gives a one-tO-One
correspondence between the \tilde{G}_{0} -Orbils and the G_{-1}\cdot G_{0} -Orbits.

LEMMA 4. 2. Let V_{1} be any \tilde{G}_{0} -Orbit. If X\in V_{1} and if t is a non-zero
real number, then tX\in V_{1} .

PROOF. Let \lambda be any non-zero real number. Then we define a linear
transformation a=a(\lambda) of \mathfrak{g} by

aX=\lambda^{p}X for all X\in \mathfrak{g}_{p} and all p.

It is easy to see that a is an automorphism of \mathfrak{G} , i . e. , a\in Aut(\mathfrak{G})=G_{0} .
Accordingly the lemma follows.

In what follows (until the end of 4. 3), we shall identify \mathfrak{g}_{-1} with an open,
dense subset of M by the imbedding \iota_{M} , so that \mathfrak{g}_{-1}\cross \mathfrak{g}_{-1} will be identified
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with an open, dense subset of M\cross M by the imbedding \iota .

LEMMA 4. 3. Let \Omega_{1}’ be any G_{-1}\cdot G_{0} -Orbit, and let \Omega_{1} be the G-Orbit
containg \Omega_{1}’ . Then dim \Omega_{1}=\dim\Omega_{1}’ .

LEMMA 4. 4. Any G-Orbit, \Omega_{1} , intersects the subset \mathfrak{g}_{-1}\cross \mathfrak{g}_{-1} of M\cross M.

4. 2. Condition (I. 1). Let E be the characteristic element of G.
From now on we assume the following condition:

(I. 1) There is an element g of G such that g^{2}=e and such that
Ad(g) E=-E.

Clearly this condition implies the following:

Ad(g) \mathfrak{g}_{-1}=\mathfrak{g}_{1} , g\cdot G_{0}\cdot g=G_{0} , g\cdot G^{(0)}\cdot g=G_{-1}\cdot G_{0} .

Let 0_{M} be the origin of M=G/G^{(0)} .

LEMMA 4. 5. The action of G on M\cross M has a single open orbit \Omega .
Furthermore, (0_{M}, g0_{M}) , (go_{M}, 0_{M})\in\Omega , and the isotropy groups of G at these
points are both given by G_{0} . Hence \Omega may be represented in two ways by the
homogeneous space G/G_{0} .

We know from Lemmas 4. 3 and 4. 5 that the intersection \Omega’=\Omega\cap(\mathfrak{g}_{-1}\cross

.q_{-1}) is the union of all open G_{-1}\cdot G_{0} -0rbits, and from Lemma 4. 1 that \Omega’ may
be expressed as follows: \Omega’=\Phi^{-1} ( V) , where V is the union of all open \tilde{G}_{0}-

orbits. Therefore it follows that the boundary \partial\Omega of \Omega in M\cross M is the
union of all singular G-0rbits, that the boundary \partial’\Omega’ of \Omega’ in \mathfrak{g}_{-1}\cross \mathfrak{g}_{-1} is the
union of all singular G_{-1}\cdot G_{0} -0rbits, and that the boundary a V of V in \mathfrak{g}_{-1} is
the union of all singular \tilde{G}_{0} -0rbits. We have

\partial\Omega\cap(\mathfrak{g}_{-1}\cross \mathfrak{g}_{-1})=\partial’\Omega’=\Phi^{-1}(\partial V) .

Let \rho_{M,1} and \rho_{M,2} be the two kinds of projections of \Omega to M :

\rho_{M,1}(w)=p, \rho_{M,2}(w)=q , w=(p, q)\in\Omega .

LEMMA 4. 6. \Omega is a fifibred manifold over the base space M with
projection \rho_{M,1} or \rho_{M.2} , and its fifibres are all connected.

LEMMA 4. 7. The action of G on M\cross M has a single minimal
dimensional orbit, which is given by the diagonal R of M\cross M.

Clearly we have R\cap(\mathfrak{g}_{-1}\cross \mathfrak{g}_{-1})=\Phi^{-1}(0) .

4. 3. Condition (I. 2). Let us consider the single open orbit \Omega under
the action of G on M\cross M (Lemma 4. 5). We know that the isotropy group
of G at the point (0_{M}, go_{M})\in\Omega is G_{0} , and hence \Omega may be represented by the
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homogeneous space G/G_{0} . We note that G/G_{0} is just the standard affine
symmetric space associated with \mathfrak{G} . We also note that the product structure
(E_{\Omega}, F_{\Omega}) of f) as an open submanif of M\cross M coincides with the invariant
product structure of G/G_{0} .

We shall study the automorphism group Aut(Q) of the product manifold
\Omega .

First of all we have a natural injective homomorphism i_{\Omega} of G to Aut(O):

i_{\Omega}(a)=a_{\Omega} , a\in G,

where a_{\Omega} is the transformation of \Omega induced by a.
Next we see from Lemma 4. 6 that every \phi\in Aut(\Omega) naturally induces

diffeomorphisms \phi_{M,1} and \phi_{M.2} of M : \rho_{M.i}\circ\phi=\phi_{M,i}\circ\rho_{M,i}(i=1,2) . Thus we
have the product transformation \phi_{M\cross M}=\phi_{M,1}\cross\phi_{M.2} of M\cross M. Clearly the
restriction of \phi_{M\cross M} to \Omega is the given \phi , and the assignmet \phiarrow\phi_{M\cross M} gives
an injective homomorphism of Aut(O) to Aut(Q)xM), the automorphism
group of the product manifold M\cross M.

Now, let us consider the union a V of all singular \tilde{G}_{0} -0rbits, which is a
proper algebraic variety of \mathfrak{g}_{-1} . Note that the (complexified) ideal I(\partial V)

of the variety a V is homogeneous (Lemma 4. 2), and that the integer
l(\partial V) is positive.

From now on we assume the following condition:

(I. 2) For every X\in\partial V-\{0\} there is a polynomial function f\in I(\partial V)

such that j_{X}^{l-1}(f)\neq 0 , where l=l(\partial V) .

LEMMA 4. 8. For every \phi\in Aut(\Omega),\phi_{M\cross M} leaves the diagonal R of M\cross

M invariant.
Therefore it follows that \phi_{M,1}=\phi_{M,2} . Denote this by \phi_{M} . Then we

have

\phi_{M\cross M}=\phi_{M}\cross\phi_{M\prime}

and see that the assignment \phiarrow\phi_{M} gives an injective homomorphism j of
Aut(fl) to Diff(M), the diffeomorphism group of M.

PROPOSITION 4. 9. Assume that a V=\{0\} . Then the homomorphism j
gives an isomorphism of Aut(Q) onto Diff(M).

PROOF. We have \partial\Omega\cap (\mathfrak{g}_{-1}\cross \mathfrak{g}_{-1})=\Phi^{-1}(\partial V)=\Phi^{-1}(0)=R\cap(\mathfrak{g}_{-1}\cross \mathfrak{g}_{-1}) ,
from which follows that \partial\Omega=R (cf. Lemmas 4. 4). It is now clear that the
proposition is true.
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4. 4. Condition (I. 3). We define a subgroup GL(\partial V) of GL(\mathfrak{g}_{-1})

by

GL(\partial V)=\{a\in GL(\mathfrak{g}_{-1})|a(\partial V)=\partial V\} .

We have identified \mathfrak{g}_{-1} with an open, dense subset of M by the imbedding
\iota_{M} , which we call off from now on.

Let \phi\in Aut(\Omega) . We define an open set U(\phi) of \mathfrak{g}_{-1} by the requirement
that

\iota_{M}(U(\phi))=\iota_{M}(\mathfrak{g}_{-1})\cap\phi_{M}^{-1}(\iota_{M}(\mathfrak{g}_{-1})) .

Clearly we have

\phi_{M}(\iota_{M}(U(\phi)))=\phi_{M}(\iota_{M}(\mathfrak{g}_{-1}))\cap\iota_{M}(\mathfrak{g}_{-1})=\iota_{M}(U(\phi^{-1})) .

This being said, we then define a diffeomorphism \phi_{M}’ of U(\phi) onto U(\phi^{-1})

by the requirement that

\phi_{M}\circ\iota_{M}=\iota_{M}\circ\phi_{M}’ .

Now, let X\in U(\phi) . We define a linear transformation a (\phi, X) of \mathfrak{g}_{-1}

by

a ( \phi, X)Y=\lim_{tarrow 0}\frac{1}{t}(\phi_{M}’(X+tY)-\phi_{M}’(X)) , Y\in \mathfrak{g}_{-1} ,

which may be identified with the differential of \phi_{M}’ at X.

LEMMA 4. 10. a (\phi, X)\in GL(\partial V) .

PROOF. Take any Y\in\partial V, and let t\in R be such that X+tY\in U(\phi) .
By Lemma 4. 2 we have tY\in\partial V, meaning that (X, X+tY)\in\Phi^{-1}(\partial V) .
Since \phi_{M\cross M}(\partial\Omega)=\partial\Omega , and since \partial\Omega\cap\iota(\mathfrak{g}_{-1}\cross \mathfrak{g}_{-1})=\iota(\Phi^{-1}(\partial V)) , it follows
that (\phi_{M}’(X), \phi_{M}’(X+tY))\in\Phi^{-1}(\partial V) , that is, \phi_{M}’(X+tY)-\phi_{M}’(X)\in

\partial V. Therefore, again by Lemma 4. 2 we have

\frac{1}{t}(\phi_{M}’(X+tY)-\phi_{M}’(X))\in\partial V(t\neq 0) .

It follows immediately that a (\phi, X)Y\in\partial V, and hence a (\phi, X)(\partial V)\subset\partial V.
Similarly we obtain a (\phi^{-1}. Z)(\partial V)\subset\partial V, where Z=\phi_{M}’(X) . Since
a (\phi^{-1}, Z)\circ\partial(\phi, X)=1 , we have thereby shown that a (\phi, X)(\partial V)=\partial V,

which proves the lemma.
Let us now consider the \tilde{G}_{0} -structure Q associated with the homogeneous

space M=G/G^{(0)} , which is a \tilde{G}_{0} -subbundle of F(M) , the frame bundle of M
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(see 1. 4). Recall that every diffeomorphism \phi of M naturally gives rise to
a bundle automorphism \overline{\phi} of F(M) , and that, by definition, \phi is an
automorphism of Q, if \overline{\phi}(Q)=Q.

Our task from now on is to study Aut(O) via Aut(Q), the automor-
phism group of the \tilde{G}_{0} -structure Q.

First of all we have a natural injective homomorphism i_{M} of G to Aut(Q):

i_{M}(a)=a_{M\prime}a\in G,

where a_{M} is the transformation of M induced by a.
Clearly we have \tilde{G}_{0}\subset GL(\partial V) . Hereafter we assume the following

condition:
(I. 3) GL(\partial V)=\tilde{G}_{0} .

LEMMA 4. 11. If \phi\in Aut(\Omega) , then \phi_{M}\in Aut(Q) .

PROOF. Consider the point z_{0} of Q (see 1. 4). Then we have: For any
z\in Q there is a\in G such that z=\overline{a}_{M}(z_{0}) , and in turn there is b\in G such that
b\cdot \phi_{M} (a\cdot 0_{M})=0_{M} . If we put \psi=b_{\Omega}\cdot \phi\cdot a_{\Omega} , we see that \phi_{M}(0_{M})=0_{M}, and
\overline{\psi}_{M}(z_{0})=\overline{b}_{M}(\overline{\phi}_{M}(z)) . Therefore to prove the lemma, it suffices to show that
\overline{\phi}_{M}(z_{0})\in Q under the condition that \phi_{M}(0_{M})=0_{M} . Accordingly assume this
condition. Then we may consider the linear transformation a=\partial(\phi, 0) of
\mathfrak{g}_{-1} , because 0 of \mathfrak{g}_{-1} is in U(\phi) . By Lemma 4. 10 and condition (I. 3) we
have a\in GL(\partial V)=\tilde{G}_{0} . For any Y\in \mathfrak{g}_{-1} we clearly have

\phi_{M} ( \pi_{M} (exp tY) ) =\pi_{M} (exp \phi_{M}’(tY) ),

provided |t| is sufficiently small. Since \phi_{M}’(tY)=taY+O(t^{2}) , it follows
that (\phi_{M})_{*}(z_{0}\cdot Y)=z_{0} (a Y). Hence we obtain \overline{\phi}_{M}(z_{0})=z_{0}\cdot a\in Q, proving
the lemma.

By Lemma 4. 11 we see that the homomorphism j, \phiarrow\phi_{M}, maps Aut(O)
to Aut(Q). In this way we have obtained the following commutative
diagram:

i_{\Omega}

G— Aut(\Omega)

i_{M}\backslash \downarrow j

Aut(Q).

Here the homomorphisms i_{\Omega} , i_{M} and j are all injective.
Let us consider the definite M\"obius algebra of degree 1, \mathfrak{M}_{0}(1) , which

satisfies conditions (I. 1)–(I. 3) as well as the condition that a V=\{0\} .
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LEMMA 4. 12. If \mathfrak{G} is not isomorphic with \mathfrak{M}_{0}(1) , then \mathfrak{G} is the prolonga-

tion of the pair (\mathfrak{g}_{-1}, \mathfrak{g}_{0}) .

PROOF. Suppose that \mathfrak{G} is not the prolongation of the pair (\mathfrak{g}_{-1}, \mathfrak{g}_{0}) .
By Lemma 1. 12, this means that \mathfrak{G}\cong \mathfrak{G}(1, n;K) , where n\geqq 1 , and K=R or
C . As is easily verified, \mathfrak{G}(1, n;K) does not satisfy condition (I. 1) if n>
1 , and \mathfrak{G}(1,1jC) satisfies conditions (I. 1) and (I. 2), but does not satisfy

condition (I. 3), because a V=\{0\} . Therefore we have \mathfrak{G}\cong \mathfrak{G}(1,1 : ^{R})\cong

\mathfrak{M}_{0}(1) , which proves the lemma.
Assume the condition in Lemma 4. 12. By Lemmas 1. 13 and 4. 12 we

know that the homomorphism i_{M} gives an isomorphism of G onto Aut(Q).

It follows that the homomorphism j gives an isomorphism of Aut(\Omega ) onto
Aut(Q), and in turn the homomorphism i_{\Omega} an isomorphism of G onto

Aut (\Omega) .
We have thereby proved the following

PROPOSITION 4. 13. Let \mathfrak{G} be a simple graded Lie algebra of the fifirst
kind. Assume that \mathfrak{G} satisfifies conditions (I. 1)–(I. 3), and that \mathfrak{G} is not
isomorphic with \mathfrak{M}_{0}(1) . Then \Omega=G/G_{0} is the standard affine symmetric
space associated with \mathfrak{G} , and the homomorphism i_{\Omega} gives an isomorphism of G

onto Aut(Q).

\S 5. Simple graded Lie algebras of the first and the second classes

5. 1. Spaces of matrices. Let Q be the skew field of quaternions. Let
x be any element of Q , which may be expressed as follows: x=x_{0}+x_{1}e_{1}+

x_{2}e_{2}+x_{3}e_{3} with x_{0} , x_{1} , x_{2} , x_{3}\in R . Here the elements e_{1} , e_{2} and e_{3} which are
usually denoted by i, j and k respectively, satisfy the well known relations.
Then we define elements {}^{t}x,\overline{x} and x^{*} of Q respectively as follows:

{}^{t}x=x_{1}+x_{1}e_{1}-x_{2}e_{2}+x_{3}e_{3\prime}\overline{x}=x_{)}-x_{1}e_{1}+x_{2}e_{2}-x_{3}e_{3} ,

x^{*t}=\overline{x}=x_{0}-x_{1}e_{1}-x_{2}e_{2}-x_{3}e_{3} .

It should be noted that \overline{x} is not the ordinary conjugate of the quaternion x,

but is x^{*} . We have the natural inclusions: RaCaQ. If x\in C , we have
{}^{t}x=x and x-=x^{*} . the latter being the ordinary conjugate of the complex

number x. If x\in R , we have {}^{t}x=\overline{x}=x^{*}=x.
Let K be one of the fields: R, C and Q. As before M_{n}(K) denotes the

space of matrices of degree n over K. Let X=(x_{ij}) be any matrix of
M_{n}(K) . Then we define matrices {}^{t}X,\overline{X} and X^{*} respectively as follows:
{}^{t}X=(Y_{ij}) with y_{ij}={}^{t}x_{ji},\overline{X}=(\overline{x}_{ij}) and X^{*}={}^{t}\overline{X}.

Let us now give representations of Q and M_{n}(Q) by matrices over C.
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For this purpose we define a matrix of degree 2n, I_{(n)} , by

I_{(n)}=(\begin{array}{lllll}I_{1} o 00 o Q I_{1}\end{array}) with I_{1}=(\begin{array}{ll}0 1-1 0\end{array}) ,

and define a subspace over R,\tilde{M}_{n} , of M_{2n}(C) by

\tilde{M}_{n}=\{Y\in M_{2n}(C)|I_{(n)}Y=\overline{Y}I_{(n)}\} .

As is well known, there is a unique isomorphism \mu of Q onto \tilde{M}_{1} as division

algebras over R such that \mu(1)=(\begin{array}{ll}1 00 1\end{array}) . \mu(e_{1})=(\sqrt{-1}00-\sqrt{-1})

\mu(e_{2})=(\begin{array}{ll}0 1-1 0\end{array}) and \mu(e_{3})=(\sqrt{-1}00\sqrt{-1}) Clearly we have \mu(^{t}x)=

{}^{t}\mu(x)\mu(x3=\overline{\mu(x)} and \mu(x^{*})=\mu(x)^{*} where x\in Q .
Every matrix Y\in\tilde{M}_{n} can be expressed as follows: Y=(Y_{ij}) , where Y_{ij}

\in\tilde{M}_{1} . Consequently we see that the isomorphism \mu of Q onto \tilde{M}_{1} naturally
gives rise to an isomorphism of M_{n}(Q) onto \tilde{M}_{n} as associative algebras over
R, which we denote by the same letter \mu . Clearly we have \mu(^{t}X)={}^{t}\mu(X) ,

\mu(\overline{X})=\overline{\mu(X)} and \mu(X^{*})=\mu(X)_{r}^{*} where X\in M_{n}(Q) .
For X\in M_{n}(Q) , \det^{Q}(X) denotes the determinant of \mu(X) , and

Tr^{Q}(X) the trace of \mu(X) :

\det^{Q}(X)=\det(\mu(X)) , Tr^{Q}(X)=Tr(\mu(X)) .

Note that both \det^{Q}(X) and Tr^{Q}(X) are real numbers.
Now, the space M_{n}(K) naturally becomes a Lie algebra over R, which

we denote by \mathfrak{g}\mathfrak{l}(n, K) . We define an ideal e_{\backslash }\mathfrak{l}\sim(n, K) of \mathfrak{g}\mathfrak{l}(n, K) by

e_{\backslash }\mathfrak{l}\backslash (n, K)=\{X\in \mathfrak{g}\mathfrak{l}(n, K)|Tr^{K}(X)=0\} ,

which is a simple Lie algebra. Here Tr^{K}(X) stands for Tr(X) if K=R or
C . We denote by GL(n, K) the general linear group of degree n over K,

and by SL(n, K) the special linear group of degree n over K :

GL(n, K)=\{A\in M_{n}(K)|\det^{K}(A)\neq 0\} ,
SL(n, K)=\{A\in M_{n}(K)|\det^{K}(A)=1^{(},

’

where \det^{K}(A) stands for \det(A) if K=R or C .
Furthermore we define subspaces S_{n}(K) , S_{\acute{n}}(K) and H_{\acute{n}}(K) of M_{n}(K)

respectively as follows:

S_{n}(K)=\{K\in M_{n}(K)|{}^{t}X=X\} ,

S_{\acute{n}}(K)=\{X\in M_{n}(K)|{}^{t}X=-X\} ,

H_{\acute{n}}(K)=\{X\in M_{n}(K)|X^{*}=-X\} .
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Note that the product group GL(n, K)\cross GL(n, K) naturally acts on the
space M_{n}(K) , and the group GL(n, K) on each of the spaces S_{n}(K) , S_{\acute{n}}(K)

and H_{\acute{n}}(K) .

REMARK. We have M_{2n}(C)=\mu(M_{n}(Q))+\sqrt{-1}\mu(M_{n}(Q)) and
\mu(M_{n}(Q))\cap\sqrt{-1}\mu(M_{n}(Q))=\{0\} . Moreover we have S_{2n}(C)=
\mu (S_{n}(Q))+\sqrt{-1}\mu(S_{n}(Q)) and S_{2n}’(C)=\mu(S_{\acute{n}}(Q))+\sqrt{-1}\mu(S_{\acute{n}}(Q)) .
Accordingly we find that the complexifications of M_{n}(Q) , S_{n}(Q) and S_{\acute{n}}(Q)

(or of \mu(M_{n}(Q)) , \mu(S_{n}(Q)) and \mu(S_{\acute{n}}(Q)) ) may be regarded as M_{2n}(C) ,
S_{2n}(C) and S_{2n}’(C) respectively.

5. 2. The graded Lie algebrat \mathfrak{S}\mathfrak{O}(n, n;K) and \mathfrak{S}\mathfrak{p}(n, K) . For any
positive integer n we define matrices of degree 2n, J_{n} and I_{n} , respectively by

J_{n}=(\begin{array}{ll}0 1_{n}1_{n} 0\end{array}) I_{n}=(\begin{array}{ll}0 1_{n}-1_{n} 0\end{array})
r

where 1_{n} denotes the unit matrix of degree n. Let K be one of the fields: R,
C and Q. Then we define subalgebras \mathfrak{s}0(n, n;K) , \mathfrak{s}\mathfrak{U}(n, n;K) and
i_{\sim}i\mathfrak{p}(n, K) of \overline{a}\mathfrak{l}\sim(2n, K) respectively as follows:

\mathfrak{s}0 (n, n,\cdot K)=\{X\in \mathfrak{s}\mathfrak{l}(2n, K)|{}^{t}Xf_{n}+f_{n}X=0\} ,
\mathfrak{s}t1 (n, n;K)= \{X\in \mathfrak{s}\mathfrak{l}(2n, K)|X^{*}\int_{n}+\int_{n}X=0\} ,
\mathfrak{s}\mathfrak{p}(n, K)=\{X\in \mathfrak{s}\mathfrak{l}(2n, K)|{}^{t}XI_{n}+I_{n}X\{0\} .

Note that these Lie algebras are all simple except for \mathfrak{s}0 ( 1, 1; R)=
\epsilon_{\sim}\iota\iota( 1, 1: R) , \mathfrak{s}0(1, 1jC) , \mathfrak{s}0(1,1; Q) , \mathfrak{s}o(2,2: R) and \mathfrak{s}0(2, 2; C) .

Every element X of \mathfrak{s}1(2n, K) can be expressed as follows: X=
(X_{ij})_{1\leqq i.j\leqq 2} , where X_{ij} are n\cross n-matrices. Then \mathfrak{s}0(n, n;K) is defined by
the equations

{}^{t}X_{21}+X_{21}=0,{}^{t}X_{11}+X_{22}=0,{}^{t}X_{12}+X_{12}=0 ,

’,u\backslash (n, n,\cdot K) by the equations

X_{21}^{*}+X_{21}=0 , X_{11}^{*}+X_{22}=0 , X_{12}^{*}+X_{12}=0 ,

and \mathfrak{s}\mathfrak{p}(n, K) by the equations

{}^{t}X_{21}-X_{21}=0,{}^{t}X_{11}+X_{22}=0,{}^{t}X_{12}-X_{12}=0 .

Now, let \mathfrak{g} be one of the Lie algebras: \overline{6_{\sim}}0(n, n;K) , \mathfrak{s}\mathfrak{U}(n, n;K) and
e_{\backslash }\mathfrak{p}(n, K) . For any integer p we define a subspace g_{p} of \mathfrak{g} by \mathfrak{g}_{p}=\mathfrak{g}\cap \mathfrak{g}_{p}(n,
n,\cdot K) = { X\in \mathfrak{g}|X_{ij}=0 if j-i\neq p }. Then we see that \mathfrak{G}=\{\mathfrak{g}, (\mathfrak{g}_{p})\} becomes
a graded subalgebra of \mathfrak{G}(n, n;K) , which will be denoted by \mathfrak{S}\mathfrak{O}(n, n;K)
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or \mathfrak{S}\mathfrak{U}(n, n;K) or \mathfrak{S}\mathfrak{p}(n, K) , according as \mathfrak{g} is \mathfrak{s}o(n, n;K) or
\mathfrak{s}\mathfrak{U}(n, n;K) or \mathfrak{s}\mathfrak{p}(n, K) .

REMARK. If \mathfrak{G} is simple, its characteristic element E is expressed as

follows: E= \frac{1}{2} (\begin{array}{ll}1_{n} 00 -1_{n}\end{array}) Furthermore, according as \mathfrak{G} is \mathfrak{S}\mathfrak{O}(n, n;^{K)}

or \mathfrak{S}\mathfrak{U}(n, n ; K) or \mathfrak{S}\mathfrak{p}(n, K) , the subspace \mathfrak{g}_{-1} of \mathfrak{g} may be naturally
regarded as S_{\acute{n}}(K) or H_{\acute{n}}(K) or S_{n}(K) .

5. 3. Simple graded Lie algebras of the first and the second classes.
Hereafter a SGLA of the first kind will always mean that of the classical
type. For the classification of SGLA’s of the first kind over R, we refer to
Kobayashi-Nagano [3], I , though it was first done by Berger [3].

A SGLA, \mathfrak{G} , of the first kind over R is called of the second class, if it is
isomorphic with one of the SGLA’s of the first kind in the following table
(TABLE 1). Otherwise, \mathfrak{G} is called of the first class.

TABLE 1

Here is a table of the SGLA’s of the first class.

TABLE 2
\mathfrak{G} (n, n; R)

(n\geqq 3)

\mathfrak{G}(n, n; C)

(n\geqq 3)

\mathfrak{G}(n, n; Q)

(n\geqq 2)

\mathfrak{S}\mathfrak{U}(n, n; C)

(n\geqq 3)

\mathfrak{M}_{r}(n)

(1\leqq 2r\leqq nr=0,n\geqq

,
1orn\geqq 3)

\mathfrak{M}(n, C)

(n\geqq 3)

\mathfrak{S}\mathfrak{O}(n, n j R)

( n even, n\geqq 6 )

\mathfrak{S}_{\grave{J}}^{\zeta}(n, n; C)

( n even, n\geqq 6 )

\mathfrak{S}\mathfrak{O}(n, n; Q)

(n\geqq 3)

\mathfrak{S}\mathfrak{p}(n, R)

(n\geqq 3)

\mathfrak{S}\mathfrak{p}(n, C)

(n\geqq 3)

\mathfrak{S}\mathfrak{p}(n, Q)

(n\geqq 2)

REMARK 1. \mathfrak{S}\mathfrak{U} (n, n ; R)=\mathfrak{S}\mathfrak{O}(n, n : R) . \mathfrak{S}11 ( n, n-. Q) \cong \mathfrak{S}\mathfrak{p} ( n, Q)
(cf. [3], I). \mathfrak{G}(1,1 : R)\cong \mathfrak{S}\mathfrak{U}(1,1 ; C)\cong \mathfrak{S}\vee(1, R)\cong \mathfrak{M}_{0}(1) . \mathfrak{G}(1,1 ; C)\cong

\mathfrak{S}\mathfrak{p}(1, C)\cong \mathfrak{M}(1, C) . \mathfrak{G}(1,1 ; Q)\cong \mathfrak{M}_{0}(4) . \mathfrak{G}(2,2 ; R)\cong \mathfrak{M}_{2}(4) . \mathfrak{G}(2,2 ; C)\cong

\mathfrak{M}(4, C) . \mathfrak{S}\mathfrak{U}(2,2 ; C)\cong \mathfrak{M}_{1}(4) , \mathfrak{S}\mathfrak{O}(2,2 ; Q)\cong \mathfrak{M}_{1}(6) . \mathfrak{S}\mathfrak{O}(3,3;R)\cong
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\mathfrak{G}(1,3;R) . \mathfrak{S}^{s}\mathfrak{O}(3,3;C)\cong \mathfrak{G}(1,3:C) . \mathfrak{S}\mathfrak{O}(4,4;R)\cong \mathfrak{M}_{3}(6) . \mathfrak{S}\mathfrak{O}(4,4 ; C)

\cong\backslash _{JJl(6,C)} . \mathfrak{S}\mathfrak{p}(1, Q)\cong \mathfrak{M}_{0}(3) . \mathfrak{S}\mathfrak{p}(2, R)\cong \mathfrak{M}_{1}(3) . \mathfrak{S}\mathfrak{p}(2, C)\cong \mathfrak{M}(3, C) .

REMARK 2 (cf. Remark in 5. 1). The complexifications of \mathfrak{G}(n, k;Q)

(k\geqq n) , \mathfrak{S}\mathfrak{O}(n, n : Q) and \mathfrak{S}\mathfrak{p}(n, Q) may be regarded as \mathfrak{G}(2n, 2k : C) ,
\mathfrak{S}\mathfrak{O}(2n, 2n ; C) and \mathfrak{S}\mathfrak{p}(2n, C) respectively.

\S 6. Relevant algebraic varieties of the spaces M_{n}(C) , S_{n}(C) and S_{n}’(C)

6. 1. Preliminaries. Let U be a finite dimensional vector space
over C . Given vectors X_{1} , \ldots

X_{k} of U, \mathscr{L}\nearrow (X_{1}, \ldots.X_{k}) benotes the
subspace of U spanned (over C) by X_{1} , \ldots-X_{k} . GL_{C}(U) denotes the
general linear group of U (as a vector space over C).

P_{c}(U) denotes the algebra of polynomial functions on U (as a vector
space over C). For any non-negative integer m, P_{C}(U)_{m} denotes the
subspace of P_{c}(U) consisting of all polynomial functions of degree m and
the zero polynomial function: P_{c}(U)= \sum_{m\geqq 0}P_{c}(U)_{m} (direct sum).

Let W be an algebraic variety over C of U. I_{c}(W) denotes the ideal
of the variety W, that is, the ideal of P_{c}(U) consisting of all polynomial
functions which vanish on W. GL_{c}(W) denotes the subgroup of GL_{c}(U)

defined by

GL_{C}(W)=\{A\in GL_{C}(U)|AW=W\} .

Now, let U be one of the spaces: M_{n}(K) , S_{n}(K) , S_{\acute{n}}(K) and H_{\acute{n}}(K) ,

where K=R or C or Q . For any integer 0\leqq r\leqq n, we define subsets V_{r}(U)

and W_{r}(U) of U respectively as follows:

V_{r}(U)=\{X\in U|rank(X)=r\} ,

W_{r}(U)=\{X\in U|rank(X)\leqq r\} ,

where rank(X) stands for the rank of the matrix X. (Note that rank(X)

= \frac{1}{2}rank (\mu(X)) if X\in M_{n}(Q).)

Clearly we have W_{r}(U)=V_{0}( U)\cup\ldots\cup V_{r}(U) . We remark that, if U is
S_{\acute{n}}(R) or S_{\acute{n}}(C) , then V_{r}(U)=\phi for any odd integer 0\leqq r\leqq n . We also
remark that, if U is M_{n}(C) or S_{n}(C) or S_{\acute{n}}(C) , then W_{r}(U) is an algebraic
variety over C of U, and its ideal I_{c}(W_{r}(U)) is homogeneous:

I_{C}(W_{r}(U))= \sum_{m\geqq 0}I_{C}(W_{r}(U))_{m} with I_{C}(W_{r}(U))_{m}=I_{C}(W_{r}(U))\cap P_{C}(U)_{m} .

In the present section we study the algebraic varieties: W_{n-1}(M_{n}(C)) ,
W_{n-2}(M_{n}(C)) , W_{n-1}(S_{n}(C)) , W_{n-2}(S_{n}(C)) , and W_{n-2}(S_{\acute{n}}(C)) ( n even). In



On affine symmetric spaces and the automorphism groups of product manifolds 329

the subsequent sections the results here will be applied to the study of the
algebraic varieties over R, W_{n-1}(M_{n}(R)) , W_{n-1}(M_{n}(Q)) , W_{n-2}(S_{\acute{n}}(R))(n

even), W_{n-1}(S_{\acute{n}}(Q)) , etc., through the method of complexification.

6. 2. The varieties W_{n-1}(M_{n}(C)) and W_{n-2}(M_{n}(C)) . For any integer
0\leqq r\leqq n, set V_{r}=V_{r}(M_{n}(C)) and W_{r}=W_{r}(M_{n}(C)) . As is well known, V_{0} ,

V_{n} are all the orbits under the natural action of GL(n, C)\cross GL(n, C)

on M_{n}(C) . In particular V_{n} is a single open orbit, and hence W_{n-1}=V_{0}\cup\ldots

\cup V_{n-1} is the union of singular orbits. Clearly the function \det(X) on
M_{n}(C) is a homogeneous polynomial function of degree n, and W_{n-1} is the
zeros of \det(X) .

LEMMA 6. 1 (cf. [4])^{1)}. The ideal I_{C}(W_{n-1}) of W_{n-1} is generated by

\det(X) .

Lemma 6. 2. Let 0\leqq r\leqq n, and let X\in V_{r} . Then

j_{X}^{n-r-1}(\det)=0 , and j_{X}^{n-r}(\det)\neq 0 .

PROOF. Clearly we may assume that X is of the form: (\begin{array}{ll}1_{r} 00 0\end{array}) Let

X(t)(|t|<\epsilon) be any (C^{\infty}) curve of M_{n}(C) such that X(O)=X. Then

X(t) may be expressed as (A(t)C(t) B(t)D(t)) . where A(t)\in M_{r}(C) . Since

A(0)=1_{r} and B(O)=C(O)=D(0)=0 , it follows that

\det(X(t))=t^{n-r} det (D’(0))+O(t^{n-r+1})

where D’(0) denotes the derivative of D(t) at t=0. Accordingly the
lemma follows.

LEMMA 6. 3. Let F be an endomorphism of M_{n}(C) as a vector space
over C. Then the following statements (1)-(3) are mutually equivalent:

(1) F\in GL_{C}(W_{n-1}) .
(2) \det(F(X))=c\det(X) , X\in M_{n}(C) , where c is a non-zero

constant.
(3) F\in GL_{C}(M_{n}(C)) , and F ( V_{r})=V_{r}(0\leqq r\leqq n) .

PROOF. (3)\Rightarrow(1) is clear.
(1)\supset(2) . We have det (F(X))\in I(cW_{n-1})_{n} . Therefore it follows

from Lemma 6. 1 that \det(F(X))=c\det(X) for some c. Clearly we have
c\neq 0 .

1) This lemma and also Lemmas 6. 10 and 6. 15 below can be given elementary proofs, which are
left to the readers as exercises.
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(2)\Rightarrow(3) . We first show that F\in GL_{C}(M_{n}(C)) . Let X\in M_{n}(C) and
Y\in V_{n} . We have det (F( Y))=c det ( Y)\neq 0 , and det (F(\lambda Y+X))=

c\det(\lambda Y+X) for all \lambda\in C . Consequently it follows that

\det(\lambda 1_{n}+F( Y)^{-1}F(X))=\det(\lambda 1_{n}+Y^{-1}X) ,

whence Tr(F( Y)^{-1}F(X))=Tr(Y^{-1}X) . Now, assume that F(X)=0,
implying that Tr(Y^{-1}X)=0 . Since V_{\overline{n}}^{1}=V_{n} , and since V_{n} is open and
dense in M_{n}(C) , we see that Tr(ZY) =0 for all Z\in M_{n}(C) , whence X=0.
We have thus shown that F\in GL_{C}(M_{n}(C)) . We next show that F( V_{r})=V_{r}

(0\leqq r\leqq n) . We prove this by induction on the integer r. Accordingly
assume that F(V_{s})=V_{s}(0\leqq s\leqq r-1) for some integer 1\leqq r\leqq n-1 . Take
any X\in V_{r} . Suppose that F(X)\in V_{r} , for some integer r+1\leqq r’\leqq n . By
Lemma 6. 2 we have j_{F(X)}^{n-r’}(\det)\neq 0 , whence j_{X}^{n-r’}(\det\circ F)\neq 0 . Since \det\circ F=

cdet, it follows from Lemma 6. 2 that j_{X}^{n-r-1}(\det)=0 . This is a contradic-
tion, because n-r’\leqq n-r-1 . Therefore we have F(X)\in V_{r} , and hence
F(Vr)CVr . Similarly we have F^{-1}(V_{r})\subset V_{r} . We have thus shown that
F( V_{r})=V_{r} , completing the proof of Lemma 6. 3.

By the use of Lemma 6. 3 we shall prove the following

LEMMA 6. 4. The group GL_{C}(W_{n-1}) consists of all transformations F of
M_{n}(C) of the following form :

F(X)=AXB^{-1} or F(X)=A^{t}XB^{-1} , X\in M_{n}(C) ,

where A, B\in GL(n, C) .
Clearly the transformations of the form above form a subgroup \Psi of

GL_{C}(W_{n-1}) .
Let \{ e_{ij}\}_{1\leqq i.j\leqq n} be the canonical basis of M_{n}(C) : The (i, j) -component

of e_{ij} is 1, and the other components of e_{ij} are all zero. Clearly we have e_{ij}

\in V_{1} . Let T_{ij} be the (holomorphic) tangent space to the submanifold V_{1} of
M_{n}(C) at the point e_{ij} , which may be naturally regarded as a subspace of the
vector space M_{n}(C) . Then we easily have

T_{ij}=\mathscr{L}\nearrow (e_{i1\prime}\ldots-e_{in}, e_{1j}, \ldots e_{nj}) .

Let us now show that GL_{C}(W_{n-1})\subset\Psi . Clearly it suffices to deal with the
case where n\geqq 2 . Let F\in GL_{c}(W_{n-1}) . Our task from now on is to show
that there are A, B\in GL(n, C) such that either AF(X)B=X for all X or
AF(X)B=X for all X, where F’ is an element of GL_{C}(W_{n-1}) defined by
F’(X)={}^{t}(F(X)) . By Lemma 6. 3 we have F(V_{1})=V_{1} and F(V_{2})=

V_{2} . Hence it follows that F(e_{ij})\in V_{1} , and that F(T_{ij})=Ti5 , if F(e_{ij})=eijf
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Since F(e_{11})\in V_{1} , we can find A, B \^AGL(n,C) such that AF(e_{11})B=

e_{11} . Thus we may assume that F(e_{11})=e_{11} .
Therefore we have F(T_{11})=T_{11} . Since e_{21}\in T_{11}=\mathscr{L}\nearrow(e_{11} , ... - e_{1n} , e_{21} ,

... - e_{n1} ), it follows that F(e_{21})\in \mathscr{L}\nearrow(e_{11}, \ldots\wedge e_{1n}, e_{21}, .... e_{n1}) . Since
rank(F(e_{21}))=rank(e_{21})=1 , we easily see that either F(e_{21})\in \mathscr{L}_{\nearrow}(e_{11} , \ldots .

e_{n1}) or F(e_{21})\in \mathscr{L}_{\nearrow 1}(e_{11} , ... e_{1n}) . Clearly we may assume that F(e_{21})\in

\mathscr{L}\nearrow(e_{11}, \ldots e_{n1}) , by replacing F with F’ if necessary. This being said, we
can find A\in GL(n, C) such that AF(e_{11})=e_{11} and AF(e_{21})=e_{21} . Thus we
may assume that F(e_{11})=e_{11} and F(e_{21})=e_{21} .

Therefore we have F ( T_{11}\cap T_{21})=F( T_{11})\cap F( T_{21})=T_{11}\cap T_{21} . Since T_{11}

\cap T_{21}=\mathscr{L}_{\nearrow} (e_{11}, \ldots e_{n1}) , it follows that F(e_{i1})\in \mathscr{L}_{\nearrow}(e_{11} , ... -
e_{n1})(3\leqq i\leqq n) .

Consequently we can find \^A GL(n, C) such that AF(e_{i1})=e_{i1}(1\leqq i\leqq n) .
Thus we may assume that F(e_{i1})=e_{i1}(1\leqq i\leqq n) .

Lemma 6. 5. F(e_{ij})\in \mathscr{L}_{\nearrow}(e_{i1} , .. -
e_{in})(1\leqq i\leqq n, 2\leqq j\leqq n) .

PROOF. Take any integers 1\leqq i\leqq n and 2\leqq j\leqq n . We have F(T_{i1})=

T_{i1} , T_{i1}=\mathscr{L}\nearrow (e_{i1}, \ldots e_{in}, e_{11}, \ldots-e_{n1}) and rank (F(e_{ij}))=1 . From these
facts it follows that either F(e_{ij})\in \mathscr{L}\nearrow(e_{i1}, \ldots e_{in}) or F(e_{ij})\in \mathscr{L}\nearrow(e_{11} , ..
e_{n1}) . Suppose that F(e_{ij})\in \mathscr{L}\nearrow(e_{11} , .. e_{n1}) . Fix an integer k such that 1\leqq

k\leqq n and k\neq i. Then we have rank(F(e_{k1}+eij)=rank(e_{k1}+e_{ij})=2 . On
the other hand, we have F(e_{k1}+e_{ij})=e_{k1}+F(e_{ij})\in \mathscr{L}\nearrow(e_{11} , ... . e_{n1}) , whence
rank(F(e_{k1}+eij)=1 . This is a contradiction. We have thereby shown
that F(e_{ij})\in \mathscr{L}\nearrow(e_{i1} , ... e_{in}) , proving Lemma 6. 5.

In particular, by Lemma 6. 5 we have F(e_{1j})\in \mathscr{L}\nearrow(e_{11} , ... e_{1n})(2\leqq j\leqq n) .
This being said, we can find B\in GL(n, C) such that F(e_{i1})B=e_{i1} and
F(e_{1j})B=e_{1j}(1\leqq i, j\leqq n) . In this way we may eventually assume that
F(e_{i1})=e_{i1} and F(e_{1j})=e_{1j}(1\leqq i, j\leqq n) .

In the same manner as in the proof of Lemma 6. 5, we can therefore show
that F(e_{ij})\in \mathscr{L}\nearrow(e_{1j}, \ldots e_{nj})(2\leqq i\leqq n, 1\leqq j\leqq n) . From this fact combined
with Lemma 6. 5, we easily obtain F(e_{ij})\in \mathscr{L}\nearrow(e_{ij})(2\leqq i, j\leqq n) . Now, take
any integers 2\leqq i, j\leqq n . If we put M_{2}=\mathscr{L}\nearrow(e_{11}, e_{i1}, e_{1j}, e_{ij}) , we have
F(M_{2})=M_{2} , and we have a natural isomorphism, say Xarrow X’- of M_{2} onto
M_{2}(C) . Since rank(F(X))=rank(X) for all X\in M_{2} , we have
rank(X) (X)’) = rank(X’). By Lemma 6. 3 (applied for n=2), we therefore
see that \det(F(X)\gamma=\det(X’) , from which follows easily that F(e_{ij})=e_{ij} .
We have thereby shown that F(X)=X for all X\in M_{n}(C) , completing the
proof of Lemma 6. 4.

We shall now study the variety W_{n-2}=V_{0}\cup\ldots\cup V_{n-2} . Let X be any
matrix of M_{n}(C) , and let (i, j) be any pair of integers 1\leqq i, j\leqq n . We
denote by \Delta_{ij}(X) the (i, j) -minor of X : \Delta_{ij}(X)=\det(X_{(i.j)}) , where X_{(i.j)} )
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is the matrix of degree n-1 which is obtained from X by extracting the i-th
row and the j-th column. Clearly the function \Delta_{ij}(X) on M_{n}(C) is a
homogeneous polynomial function of degree n-1 , and W_{n-2} is the common
zeros of the polynomial functions \Delta_{ij}(X) .

LEMMA 6. 6 (cf. [4] )^{2)}. The ideal I_{C}(W_{n-2}) of W_{n-2} is generated by
\Delta_{ij}(X) .

LEMMA 6. 7. Let 0\leqq r\leqq n-2 , and let X\in V_{r} .
(1) j_{X}^{n-r-2}(\Delta_{ij})=0 for any (i, j) .
(2) j_{X}^{n-r-1}(\Delta_{ij})\neq 0 for some (i, j) .

PROOF. The notations being as in the proof of Lemma 6. 2, we have

\Delta_{ij}(X(t))=t^{n-r-1}\Delta_{i-r,j-r}(D’(0))+O(t^{n-r}) if r+1\leqq i, j\leqq n+1 ,
=O(t^{n-r}) otherwise.

Consequently the lemma follows.

LEMMA 6. 8. If F\in GL_{C}( W_{n-2}) , then F( V_{r})=V_{r}(0\leqq r\leqq n-2) .
We can prove this fact by using Lemmas 6. 6 and 6. 7, and by reasoning

in the same manner as in the proof of Lemma 6. 3.
Here, we recall that the proof of Lemma 6. 4 uses only the fact that every

F\in GL_{C}(W_{n-1}) satisfies F(V_{1})=V_{1} and F(V_{2})=V_{2} . In view of Lemma
6. 8 we therefore obtain

LEMMA 6. 9. Assume that n\geqq 4 . Then the group GL_{C}(W_{n-2})consists of
all transformations F of M_{n}(C) of the following form:

F(X)=AXB^{-1} or F(X)=A^{t}XB^{-1} , X\in M_{n}(C) ,

where A, B GL(n, C) .

6. 3. The varieties W_{n-1}(S_{n}(C)) and W_{n-2}(S_{n}(C)) . For any integer
0\leqq r\leqq n, set V_{r}=V_{r}(S_{n}(C)) and W_{r}=W_{r}(S_{n}(C)) . As is well known,

V_{0} , , .. V_{n} are all the orbits under the natural action of GL(n, C) on S_{n}(C) .
In particular V_{n} is a single open orbit, and hence W_{n-1}=V_{0}\cup\ldots\cup V_{n-1} is the
union of singular orbits. Clearly W_{n-1} is the zeros of the polynomial function
\det(X) , restricted to S_{n}(C) .

2) We shall only use the fact that I_{C}(W_{n-z})_{m}=\{0,
( for 0\leqq m\leqq n-2 , and I_{C}(W_{n-2})_{n-1} is spanned

by \Delta_{\iota j}.(X) , which can be given an elementary proof. The same remark holds for Lemma 6.
13 below.
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LEMMA 6. 10 (cf. [1]). The ideal I_{C}(W_{n-1}) of W_{n-1} is generated by
\det(X) .

Lemma 6. 11. Let F be an endomorphism of S_{n}(C) as a vector space
over C. Then the following statements (1)-(3) are mutually equivalent.

(1) F\in GL_{C}(W_{n-1}) .
(2) \det(F(X))=c\det(X) , X\in S_{n}(C) , where c is a non-zero constant.
(3) F eGLc(Sn(C)), and F( V_{r})=V_{r}(0\leqq r\leqq n) .
The proof of this fact is quite similar to that of Lemma 6. 3. (Note that

Lemma 6. 2 holds true in our present situation.)
By the use of Lemma 6. 11 we shall prove the following

LEMMA 6. 12. The group GL_{C}(W_{n-1}) consists of all transformations F
of S_{n}(C) of the following form :

F(X)=AX^{t}A , X\in S_{n}(C) ,

where A\in GL(n, C) .
Clearly the transformations of the form above form a subgroup \Psi of

GL_{C}(W_{n-1}) .
Using the canonical basis \{ e_{ij}\} of M_{n}(C) , we put \epsilon_{ii}=e_{ii} and \epsilon_{ij}=e_{ij}+e_{ji}

(i\neq j) . Then we have \epsilon_{ij}\in S_{n}(C) for all i, j, and \epsilon_{ij}(1\leqq i\leqq j\leqq n) form a
basis of S_{n}(C) . Clearly we have \epsilon_{ii}\in V_{1} . If we denote by T_{ii} the tangent
space to V_{1} at \epsilon_{ii} , we have

T_{ii}=\mathscr{L}\nearrow (\epsilon_{i1} , ... , \epsilon_{in}) .

Now, let i\neq j. Clearly we have \epsilon_{ij}\in V_{2} . If we denote by T_{ij} the tangent
space to V_{2} at \epsilon_{ij} , we have

T_{ij}=\mathscr{L}\nearrow (\epsilon_{i1} , .... \epsilon_{in}, \epsilon_{j1}, \ldots. \epsilon_{jn}) .

Let us now show that GL_{C}(W_{n-1})\subset\Psi . Clearly it suffices to deal with the
case where n\geqq 2 . Let F\in GL_{C}(W_{n-1}) . By Lemma 6. 11 we have F(V_{1})=

V_{1} and F(V_{2})=V_{2} . Hence it follows that F(\epsilon_{ii})\in V_{1} , F(\epsilon_{ij})\in V_{2} if i\neq j,

and that F( T_{ij})=T_{ij} if F(\epsilon_{ij})=\epsilon_{ij} .
Since F(\epsilon_{11})\in V_{1} , we can find A\in GL(n, C) such that AF(\epsilon_{11}){}^{t}A=\epsilon_{11} .

Thus we may assume that F(\epsilon_{11})=\epsilon_{11} .
We have F( T_{11})=T_{11} , and T_{11}=\mathscr{L}\nearrow(\epsilon_{11} , ... . \epsilon_{1n}) , whence F(\epsilon_{1i})\in

\mathscr{L}\nearrow (\epsilon_{11}, \ldots, \epsilon_{1n})(2\leqq i\leqq n) . This being said, we can find A\in GL(n, C) such
that AF(\epsilon_{1i}){}^{t}A=\epsilon_{1i}(1\leqq i\leqq n) . Thus we may assume that F(\epsilon_{1i})=\epsilon_{1i}(1\leqq

i\leqq n) .
Take any integer 2\leqq i\leqq n . Then we have F(T_{1i})=T_{1i} , \epsilon_{ii}\in T_{1i}=
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\mathscr{L}\nearrow (\epsilon_{11}, \ldots. \epsilon_{1n}, \epsilon_{i1}, \ldots, \epsilon_{in}) , and rank (F(\epsilon_{ii}))=1 . From these facts it
follows that F(\epsilon_{ii})\in \mathscr{L}\nearrow(\epsilon_{11}, \epsilon_{1i}, \epsilon_{ii}) . If we put S=\mathscr{L}\nearrow(\epsilon_{11}, \epsilon_{1i}, \epsilon_{ii}) , we have
F(S)=S , and we have a natural isomorphism, say Xarrow X’. of S_{2} onto
S (C) . As before we then obtain \det(F(X)’)=c det (X’) for all X\in S ,

from which follows that F(\epsilon_{ii})=\epsilon_{ii} .
Let us consider the case where n\geqq 3 . Take any integers 2\leqq i<j\leqq n .

Then we have F( T_{ii}\cap T_{jj})=T_{ii}\cap T_{jj} , \epsilon_{ij}\in T_{ii}\cap T_{jj}=\mathscr{L}\nearrow(\epsilon_{ii}, \epsilon_{jj}, \epsilon_{ij}) , whence
F(\epsilon_{ij})\in \mathscr{L}\nearrow(\epsilon_{ii}, \epsilon_{jj}, \epsilon_{ij}) . If we put S_{2}=\mathscr{L}\nearrow(\epsilon_{ii}, \epsilon_{jj}, \epsilon_{ij}) , we have F(S)=S ,

and we have a natural isomorphism, say Xarrow X’ of S onto S(C) . As
before we then obtain \det(F(X)’)=c\det(X’) for all X\in S , from which
follows that F(\epsilon_{ij})\in \mathscr{L}\nearrow(\epsilon_{ij}) . Furthermore, if we put S=\mathscr{L}\nearrow(\epsilon_{11},

\epsilon_{ii} , \epsilon_{jj} , \epsilon_{1i} ,

\epsilon_{1j} , \epsilon_{ij}) , we have F(S)=S , and we have a natural isomorphism, say Xarrow

X’ of S_{3} onto S_{3}(C) . As before we then obtain \det(F(X)’)=c\det(X’) for
all X\in S , from which follows that F(\epsilon_{ij})=\epsilon_{ij} . We have thus shown that
F(X)=X for all X\in S_{n}(C) , completing the proof of Lemma 6. 12.

We shall now consider the variety W_{n-2}=V_{0}\cup\ldots\cup V_{n-2} , which is the
common zeros of the polynomial functions \Delta_{ij}(X) , restricted to S_{n}(C) .

LEMMA 6. 13 (cf. [1]). The ideal I_{C}(W_{n-2}) of W_{n-2} is generated by
\Delta_{ij}(X) .

Lemma 6. 14. Assume that n\geqq 4 . Then the group GL_{C}(W_{n-2}) consists
of all tramformations F of S_{n}(C) of the following form:

F(X)=AX^{t}A , X\in S_{n}(C) ,

where A\in GL(n, C) .
The proof of this fact is quite similar to that of Lemma 6. 9. (Note that

Lemmas 6. 7 and 6. 8 hold true in our present situation.)

6. 4. The varieties W_{n-2}(S_{\acute{n}}(C)) ( n even). Set m= \frac{n}{2} . For any

integer 0\leqq r\leqq m, set V_{2\Gamma}=V_{2r}(S_{\acute{n}}(C)) and W_{2\Gamma}=W_{2r}(S_{\acute{n}}(C)) . As is well
known, V_{0} , V_{2} , .. V_{2m} are all the orbits under the action of GL(n, C) on
S_{\acute{n}}(C) . In particular V_{2m} is a single open orbit, and hence W_{2(m-1)}=V_{0}\cup V_{2}

\cup\ldots\cup V_{2(m-1)} is the union of singular orbits.
Let \{ e_{1}, \ldots-e_{n}\} be the canonical basis of C^{n}. For any matrix X=(x_{ij})

of S_{\acute{n}}(C) , we define a 2-vector \omega_{X} on C^{n} by

\omega_{X}=\frac{1}{2}\sum_{i.j}x_{ij}e_{i}\wedge e_{j} ,

and define a complex number \det^{z^{1}}-(X) by
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\omega_{X}\wedge\ldots\wedge\omega_{X}=\det^{\frac{1}{2}}(X)e_{1}\wedge\ldots\wedge e_{n} ( \omega_{X}m times).

As is well known, we have

(\det^{1}-\tau(X))^{2}=\det(X) , \det^{-}2^{-(AX^{t}A)}1=\det(A)\det^{1}-\tau(X) ,

where A\in GL(n, C) .

Clearly the function \det^{\frac{1}{2}}(X) on S_{\acute{n}}(C) is a homogeneous polynomial

function of degree m, and W_{2(m-1)} is the zeros of \det^{\tau^{1}}(X) .

LEMMA 6. 15 (cf. [2]). The ideal I_{C}(W_{2(m-1)}) of W_{2(m-1)} is generated

by \det^{\tau^{1}-}(X) .

LEMMA 6. 16. Let 0\leqq r\leqq m, and let X\in V_{2r} . Then

j_{X}^{m-r-1}(\det^{\tau^{1}})=0 , and j_{X}^{m-r}(\det^{\tau^{1}-})\neq 0 .

PROOF. Clearly we may assume that X is of the form: ( I0^{r}(\rangle, o_{0})

Let X(t)(|t|<\epsilon) be any curve of S_{\acute{n}}(C) such that X(0)=X. Then X(t)
may be expressed as (\begin{array}{ll}A(t) B(t)C(t) D(t)\end{array})- where A(t)\in S_{2\gamma}’(C) . Since A(0)=
I_{(\gamma)} , and B(O)=C(O)=D(0)=0 , it follows that

\det^{z^{1}-}(X(t))=t^{m-r}\det^{1}-z-(D’(0))+O(t^{m-r+1}) .

Accordingly the lemma follows.

Lemma 6. 17. Let F be an endomorphism of S_{\acute{n}}(C) as a vector space
over C. Then the following statements (1)-(3) are mutually equivalent:

(1) F\in GL_{C}(W_{2(m-1)}) .

(2) \det^{\tau^{1}}(F(X))=cd^{1}et^{-2^{-}}(X) , X\in S_{\acute{n}}(C) , where c is a nonzero cons-
tant.

(3) F\in GL_{C}(S_{\acute{n}}(C)) , and F( V_{2r})=V_{2r}(0\leqq r\leqq m) .
This fact can be proved in the same manner as in the proof of Lemma 6.

3, based on Lemmas 6. 15 and 6. 16. Note that (2) implies \det(F(X))=
c^{2}\det(X) .

By the use of Lemma 6. 17, we shall prove the following

Lemma 6. 18. Assume that n=2m\geqq 6 . Then the group GL_{C}(W_{2(m-1)})

consists of all transformations F of S_{\acute{n}}(C) of the following form:
F(X)=AX^{t}A , X\in S_{\acute{n}}(C) ,
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where \^A GL(n, C) .
Clearly the transformations of the form above form a subgroup \Psi of

GL_{C}(W_{2(m-1)}) .
Using the canonical basis \{ e_{ij}\} of M_{n}(C) , we put \epsilon_{ij}=e_{ij}-e_{ji} . Then

we have \epsilon_{ij}\in S_{\acute{n}}(C) , and \epsilon_{ij}(1\leqq i<j\leqq n) form a basis of S_{\acute{n}}(C) . Now, let
i\neq j. Clearly we have \epsilon_{ij}\in V_{2} . If we denote by T_{ij} the tangent space to V_{2}

at \epsilon_{ij} , we have
T_{ij}=\mathscr{L}\nearrow (\epsilon_{i1} , .... \epsilon_{in}, \epsilon_{j1,\ldots-}\epsilon_{jn}) .

Let us now show that GL_{C}(W_{2(m-1)})\subset\Psi . Let F\in GL_{C}(W_{2(m-1)}) . By
Lemma 6. 17 we have F(V_{2})=V_{2} and F(V_{4})=V_{4} . Hence it follows that
F(\epsilon_{ij})\in V_{2} if i\neq j, and that F(T_{ij})=T_{ij} if i\neq j and if F(\epsilon_{ij})=\epsilon_{ij} or more
generally F(\epsilon_{ij})\in \mathscr{L}\nearrow(\epsilon_{ij}) .

Since F(\epsilon_{12})\in V_{2} , we can find \^A GL(n, C) such that AF(\epsilon_{12}){}^{t}A=\epsilon_{12} .
Thus we may assume that F(\epsilon_{12})=\epsilon_{12} .

We have F(T_{12})=T_{12} , and \epsilon_{13}\in T_{12}=\mathscr{L}\nearrow(\epsilon_{12} , ... \epsilon_{1n}, \epsilon_{23}, \ldots \epsilon_{2n}) ,
whence F(\epsilon_{13})\in \mathscr{L}_{\nearrow}(\epsilon_{12}, \ldots, \epsilon_{1n}, \epsilon_{23}, \ldots. \epsilon_{2n}) . Define a 2\cross(n-2) matrix
(z_{ij}) by F( \epsilon_{13})\equiv\sum_{i=1}^{2}\sum_{j=3}^{n}z_{ij}\epsilon_{ij} (mod \epsilon_{12}). Since F(\epsilon_{12})=\epsilon_{12} and

rank (\epsilon_{13})) =2 , we see that the rank of the matrix (z_{ij}) is 1. This being
said, we can find A\in GL(n, C) such that AF(\epsilon_{12}){}^{t}A=\epsilon_{12} and AF(\epsilon_{13}){}^{t}A=\epsilon_{13} .
Thus we may assume that F(\epsilon_{12})=\epsilon_{12} and F(\epsilon_{13})=\epsilon_{13} .

LEMMA 6. 19. F(\epsilon_{23})\in \mathscr{L}\nearrow(\epsilon_{12}, \epsilon_{13}, \epsilon_{23}) , and F(\epsilon_{1j})\in \mathscr{L}\nearrow(\epsilon_{12} , ... \epsilon_{1n})

(4\leqq j\leqq n) .

PROOF. Take any integer 4\leqq j\leqq n . We have F(T_{12}\cap T_{13})=T_{12}\cap T_{13} ,

and \epsilon_{23} , \epsilon_{1j}\in T_{12}\cap T_{13}=\mathscr{L}\nearrow (\epsilon_{12}, \ldots, \epsilon_{1n}, \epsilon_{23}) , whence F(\epsilon_{23}) , F(\epsilon_{1j})\in \mathscr{L}\nearrow(\epsilon_{12} ,

... ’
\epsilon_{1n} , \epsilon_{23} ). Since rank (F(\epsilon_{23}))=2 , it follows that either F(\epsilon_{23})\in \mathscr{L}\nearrow(\epsilon_{12} ,

... , \epsilon_{1n}) or F(\epsilon_{23})\in \mathscr{L}\nearrow(\epsilon_{12}, \epsilon_{13}, \epsilon_{23}) . Similarly, since rank (F(\epsilon_{1j}))=2 , it
follows that either F(\epsilon_{1j})\in \mathscr{L}\nearrow(\epsilon_{12}, \ldots \epsilon_{1n}) or F(\epsilon_{1j})\in \mathscr{L}\nearrow(\epsilon_{12}, \epsilon_{13}, \epsilon_{23}) .
Now, suppose that F(\epsilon_{23})\in \mathscr{L}\nearrow(\epsilon_{12}, \ldots \epsilon_{1n}) . Since rank (F(\epsilon_{1j}+\epsilon_{23}))=

rank(\epsilon_{1j}+\epsilon_{23})=4 , we then see that F(\epsilon_{1j})\in \mathscr{L}\nearrow(\epsilon_{12}, \epsilon_{13} , \epsilon_{23}) . Hence we
obtain F(\mathscr{L}\nearrow (\epsilon_{14}, \ldots \epsilon_{1n}))\subset \mathscr{L}\nearrow(\epsilon_{12}, \epsilon_{13}, \epsilon_{23}) . Clearly this is a contradiction,
if n\geqq 8 . If n=6 , we have F(\mathscr{L}\nearrow(\epsilon_{14}, \epsilon_{15}, \epsilon_{16}))=\mathscr{L}_{\nearrow}(\epsilon_{12}, \epsilon_{13}, \epsilon_{23}) , and hence
\epsilon_{12}=F^{-1}(\epsilon_{12})\in \mathscr{L}_{\nearrow}(\epsilon_{14}, \epsilon_{15}, \epsilon_{16}) , which is a contradiction. Consequently we
have shown that F(\epsilon_{23})\in \mathscr{L}\nearrow(\epsilon_{12}, \epsilon_{13}, \epsilon_{23}) . Moreover, we easily see that
F(\epsilon_{1j})\in \mathscr{L}\nearrow(\epsilon_{12}, \ldots. \epsilon_{1n})(4\leqq j\leqq n) , because rank (F(\epsilon_{1j}+\epsilon_{23}))=4 .

In view of Lemma 6. 19, we can find \^A GL(n, C) such that
AF(\epsilon_{1j}){}^{t}A=\epsilon_{1j}(2\leqq j\leqq n) , and AF(\epsilon_{23}){}^{t}A=\epsilon_{23} . Thus we may assume
that F(\epsilon_{1j})=\epsilon_{1j}(2\leqq j\leqq n) , and F(\epsilon_{23})=\epsilon_{23} .
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Take any integer 4\leqq j\leqq n . Then we have F ( T_{1j}\cap T_{12}\cap T_{23})=T_{1j}\cap T_{12}\cap

T_{23} and \epsilon_{2j}\in T_{1j}\cap T_{12}\cap T_{23}=\mathscr{L}\nearrow(\epsilon_{12}, \epsilon_{13}, \epsilon_{2j}) , whence F(\epsilon_{2j})\in \mathscr{L}\nearrow(\epsilon_{12},
\epsilon_{13} ,

\epsilon_{2j}) . Since rank (F(\epsilon_{2j}))=2 , it follows that F(\epsilon_{2j})\in \mathscr{L}_{\nearrow}(\epsilon_{12}, \epsilon_{2j}) . This
being said, we can find A\in GL(n, C) such that AF(\epsilon_{1i}){}^{t}A=\epsilon_{1i}(2\leqq i\leqq n) ,
AF(\epsilon_{23}){}^{t}A=\epsilon_{23} , and AF(\epsilon_{2j}){}^{t}A\in \mathscr{L}\nearrow(\epsilon_{2j})(4\leqq j\leqq n) . In this way we may
eventually assume that F(\epsilon_{1i})=\epsilon_{1i}(2\leqq i\leqq n) , F(\epsilon_{23})=\epsilon_{23} and F(\epsilon_{2j})\in

\mathscr{L}_{\nearrow 1}(\epsilon_{2j})(4\leqq j\leqq n) .
Take any integers 3\leqq i<j\leqq n . Then we have F(T_{1i}\cap T_{1j}\cap T_{2i}\cap T_{2j})=

T_{1i}\cap T_{1j}\cap T_{2i}\cap T_{2j} , and \epsilon_{ij}\in T_{1i}\cap T_{1j}\cap T_{2i}\cap T_{2j}=\mathscr{L}\nearrow(\epsilon_{ij}, \epsilon_{12}) , whence F(\epsilon_{ij})

\in \mathscr{L}\nearrow(\epsilon_{ij}, \epsilon_{12}) . Since rank(F (\epsilon_{ij}) ) =2 , it follows that F(\epsilon_{ij})\in \mathscr{L}\nearrow(\epsilon_{ij}) .
We have thus shown that F(\epsilon_{ij})\in \mathscr{L}\nearrow(\epsilon_{ij})(2\leqq i<j\leqq n) . Fix such

integers i and j. If we put S_{4}’=\mathscr{L}_{\nearrow}(\epsilon_{12}, \epsilon_{1i}, \epsilon_{1j}, \epsilon_{2i}, \epsilon_{2j}, \epsilon_{ij}) , we have F(S_{4}’)=
S_{4}’ , and we have a natural isomorphism, say Xarrow X’ of S_{4}’ onto S_{4}’(C) . As
before we then obtain rank(F (X)’) = rank(X’) for all X\in S_{4}’ . By Lemma
6. 17 (applied for n=4) we therefore see that \det^{\tau^{1}}(F(X)’)=c\det^{\frac{1}{2}}(X’) ,
from which follows that F(\epsilon_{ij})=\epsilon_{ij} . We have thereby shown that F(X)=
X for all X\in S_{\acute{n}}(C) , completing the proof of Lemma 6. 18.

\S 7. Proof of Theorem 2. 8: The case where \mathfrak{H} is a simple graded
Lie algebra of the second class.

At the outset we prepare some notations for our later arguments. Let
n_{1} , \ldots n_{k} be positive integers, and put n=n_{1}+\ldots+n_{k} . Every matrix A of
GL(n, K) may be expressed as follows: A=(A_{ij})_{1\leqq i.j\leqq n} , where A_{ij} are n_{i}\cross

n_{j} -matrices. Then G_{0}(n_{1}, \ldots n_{k} ; K) denotes the subgroup of GL(n, K)
defined by

G_{0}(n_{1}, \ldots n_{k},\cdot K)= { A\in GL(n, K)|A_{ij}=0 if i\neq j }.

Given a Lie group L, C(L) denotes the centre of L.

7. 1. The case where \mathfrak{H}=\mathfrak{G}(n, k:K) ( k>n\geqq 1 , K=R or C or Q).
Set m=k-n, and let us consider the simple graded Lie algebra \mathfrak{G}=

\mathfrak{G}(n, m, n;K) of the second kind. Let \mathfrak{G}=\{\mathfrak{g},\cdot(\mathfrak{g}_{p})\} . If we put n_{1}=n_{3}=n

and n_{2}=m, every matrix X of 9=e_{\backslash }\mathfrak{l}\backslash (2n+m, K) may be expressed as
follows: X=(X_{ij})_{1\leqq i.j\leqq 3} , where X_{ij} are n_{i}\cross n_{j} -matrices. Then we recall
that the subspaces \mathfrak{g}_{p} of 9t are defined by \mathfrak{g}_{p}= { X\in 9\iota|X_{ij}=0 if j-i\neq p }.

Now, define subspaces e and f of \mathfrak{g}_{-1} respectively as follows:
e =\{X\in \mathfrak{g}_{-1}|X_{32}=0\} , f =\{X\in \mathfrak{g}_{-1}|X_{21}=0\} .

It is easy to see that \mathfrak{G} is pseud0-product with respect to the subspaces 1’ and
\mathfrak{s} of \mathfrak{g}_{-1} . We shall apply the arguments in \S 3 to the pseud0-product SGLA,
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\mathfrak{G} , of the second class.
We easily see that the elements E and J in the centre of \mathfrak{g}_{0} are given

respectively by

E=(\begin{array}{lll}1_{n} 0 00 0 00 0 -1_{n}\end{array}) , J=(\begin{array}{lll}\alpha 1_{n} 0 00 \beta 1_{n} 00 0 \alpha 1_{n}\end{array}) .

where \alpha=-m/(2n+m) , and \beta=2n/(2n+m) . It follows that \mathfrak{A}=

\mathfrak{G}(n, m+n ; K)=\mathfrak{H} , and \mathfrak{B}=\mathfrak{G}(n+m, n;K) .
Let us now verify that \mathfrak{G} satisfies condition (II. 1) and (II. 2) . Set L=

GL(2n m, K) , and define a subgroup L_{0} of L by

L_{0}=G_{0}(n, m, n:K)=\{A\in L|AEL^{-1}=E, AJA^{-1}=J\} .

Furthermore set G’=L/C(L) , and G_{\acute{0}}=L_{0}/C(L) , which may be naturally

identified with subgroups of Aut(\mathfrak{g}) and Aut(S) respectively.

LEMMA 7. 1 (1) If K=R or Q, then G_{0}=G_{\acute{0}} and G=G’
(2) If K=C, then G_{\acute{0}} and G’ are open, normal subgroups of G_{0} and G

respectively, and G_{0}=G_{\acute{0}}\cup\tau\cdot G_{\acute{0}} , and G=G’\cup\tau\cdot G’\wedge where \tau denotes the
conjugation of \underline{\mathfrak{g}}=e\mathfrak{l}arrow(2n+m, C) ; \tau(X)=\overline{X}, X\in \mathfrak{g} .

Now, define an element g of G’ by

g=(\begin{array}{lll}0 0 l_{n}0 1_{m} 01_{n} 0 0\end{array}) (mod C(L) ).

Then we easily see that g^{2}=e, Ad(g)E =-E and Ad(g)J =J, showing that \mathfrak{G}

satisfies condition (II. 1) .

LEMMA 7. 2. The space \mathfrak{g}_{-2} may be naturally identifified with M_{n}(K) ,

and the subgroup \tilde{G}_{0} of GL(\mathfrak{g}_{-2}) consists of all transformations F of M_{n}(K)

of the following form :
1) If K=R or Q, F(X)=AXB^{-1} .
2) If K=C, F(X)=AXB^{-1} or F(X)=A\overline{X}B^{-1} .

where A, B\in GL(n, K) , and X\in M_{n}(K) .
For any integer 0\leqq r\leqq n, set V_{r}=V_{r}(M_{n}(K)) . Then we see from

Lemma 7. 2 that V_{0} , \ldots . V_{n} are all the \tilde{G}_{0} -0rbits, and especially V_{n} is a
single open orbit. Therefore we have V=V_{n} , and \partial V=V_{0}\cup\ldots\cup V_{n-1} .

If K=R or C, it is clear that 8 V is the zeros of the polynomial function
\det(X) on M_{n}(K) . For any pair (f, j) of integers 1\leqq i, j\leqq 2n, we now
define a function X_{ij}(X) on M_{n}(Q) by
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\mathcal{X}_{ij}(X)=\Delta_{ij}(\mu(X)) , X\in M_{n}(Q) ,

which is a homogeneous polynomial function of degree 2n-1 . Since rank
(X)= \frac{1}{2} rank (\mu(X)) , we then see that, if K=Q, a V is the common zeros

of the polynomial functions X_{ij}(X) . Note that a V is also the zeros of the
polynomial function \det^{Q}(X) on M_{n}(Q) .

Now, consider the (complexified) dieal I(\partial V) of the variety a V.

LEMMA 7. 3. (1) If K=R, then I(\partial V) is generated by \det(X) .
(2) If K=C, then I(\partial V) is generated by \det(X) and \det(\overline{X}) .
(3) If K=Q, then I(\partial V) is generated by X_{ij}(X) .

PROOF. (1) Take any polynomial function f(X) of I(\partial V) , which
may be naturally regarded as a polynomial function of P_{c}(M_{n}(C)) . Put
\tilde{V}_{n-1}=V_{n-1}(M_{n}(C)) , and \tilde{W}_{n-1}=W_{n-1}(M_{n}(C)) . Since V_{n-1} is a real part of
\tilde{V}_{n-1} , we see that f(X) is in I_{c}(\tilde{W}_{n-1}) . Therefore it follows from Lemma
6. 1 that f(X) is in the ideal of P_{C}(M_{n}(C)) generated by \det(X) , and hence
f(X) is in the ideal of P(M_{n}(R)) generated by \det(X) .

(2) Take any polynomial function f(X) of I(\partial V) . We first remark
that there is a unique polynomial function \tilde{f}(X, Y) of P_{C}(M_{n}(C)\cross M_{n}(C))

such that \tilde{f}(X,\overline{X})=f(X) . Since \{(X,\overline{X})|X\in V_{n-1}\} is a real part of
V_{n-1}\cross V_{n-1} , it follows that \tilde{f}(X, Y) is in I_{C}(\partial V\cross\partial V) . Using Lemma 6.
1 twice, we therefore see that \tilde{f}(X, Y) is in the ideal of P_{C}(M_{n}(C)\cross

M_{n}(C)) generated by \det(X) and \det(Y) , and hence f(X) is in the ideal
of P(M_{n}(C)) generated by \det(X) and \det(\overline{X}) .

(3) Take any polynomial function f(X) of I(\partial V) . We know that
\mu(M_{n}(Q)) is a real part of M_{2n}(C) (see Remark in 5. 1). Hence there is a
unique polynomial function \tilde{f}(Y) of P_{C}(M_{2n}(C)) such that f(X)=

\tilde{f}(\mu(X)) . Put \tilde{V}_{2n-2}=V_{2n-2}(M_{2n}(C)) , and \tilde{W}_{2n-2}=W_{2n-2}(M_{2n}(C)) . Since
\mu ( ^{V_{n-1}}) is a real part of \tilde{V}_{2n-2} , it follows that \tilde{f}(Y) is in I_{C}(\tilde{W}_{2n-2}) . By
Lemma 6. 6 we therefore see that \tilde{f}(Y) is in the ideal of P_{C}(M_{2n}(C))

generated by \Delta_{ij}(Y) , and hence f(X) is in the ideal of P(M_{n}(Q))

generated by X_{ij}(X) .
We have thus proved Lemma 7. 3.
We see from Lemma 7. 3 that l(\partial V)=n if K=R or C and l(\partial V)=2n-

1 if K=Q, and therefore from Lemma 6. 2 that \mathfrak{G} satisfies condtion (II. 2) .
Consequently we know by Proposition 3. 26 that \Omega=G/A_{0} is the standard
affine symmetric space associated with \mathfrak{A}=\mathfrak{H} , and that Aut(O) is naturally
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isomorphic with G, proving Theorem 2. 3 for \mathfrak{H} .

7. 2. The case where \mathfrak{H}=\mathfrak{S}\mathfrak{O}(n+1, n+1;K)(n even, n\geqq 4 , K=R or
C) . We defin a matrix \tilde{J}_{n+1} of degree 2n+2 by

\tilde{J}_{n+1}=(\begin{array}{lll}0 0 l_{n}0 J_{1} 01_{n} 0 0\end{array}) ,

where J_{1}=(\begin{array}{ll}0 l1 0\end{array}) as before. We then define a subalgebra \mathfrak{g} of

.q1(2n+2, K) by

\mathfrak{g}=\{X\in \mathfrak{g}\mathfrak{l}(2n+2, K)|{}^{t}X\tilde{J}_{n+1}+\tilde{J}_{n+1}X=0\} ,

which is isomorphic with the simple Lie algebra \mathfrak{s}o(n+1, n+1;K) . If we
put n_{1}=n_{3}=n and n_{2}=2 , every matrix X of \mathfrak{g}\mathfrak{l}(2n+2, K) may be expressed

as follows: X=(X_{ij})_{1\leqq i,j\leqq 3} , where X_{ij} are n_{i}\cross n_{j} -matrices. Then \mathfrak{g} is
defined by the equations

{}^{t}X_{31}+X_{31}=0,{}^{t}X_{32}+J_{1}X_{21}=0,{}^{t}X_{11}+X_{33}=0 ,
{}^{t}X_{2}J_{1}+J_{1}X_{22}=0,{}^{t}X_{12}+J_{1}X_{23}=0,{}^{t}X_{13}+X_{13}=0 .

Here, we remark that the equation for X_{22} means X_{22} is of the form: \alpha T_{1}

with \alpha\in K, where T_{1}=(\begin{array}{ll}-1 00 1\end{array})

For any integer p, we now define a subspace \mathfrak{g}_{p} of \mathfrak{g} by \mathfrak{g}_{p}=\mathfrak{g}\cap \mathfrak{g}_{p}(n, 2 ,

n;K)= { X\in \mathfrak{g}|X_{ij}=0 if j-i\neq p }. Then we see that \mathfrak{G}=\{\mathfrak{g}, (\mathfrak{g}_{p})\} is a
graded subalgebra of \mathfrak{G}(n, 2, n;K) , which is even a simple graded Lie
algebra of the second kind. Note that the characteristic element E of \mathfrak{G} is
represented by the same matrix as in the preceding paragraph.

Moreover let us define an element J of \mathfrak{g} by

J=(\begin{array}{lll}0 0 00 T_{1} 00 0 0\end{array}) .

It is easy to see that J is in the centre of \mathfrak{g}_{0} , and that [J, \mathfrak{g}_{-2}]=\{0\} and
[J, [J, X]]=X for all X\in \mathfrak{g}_{-1} , showing that \mathfrak{G} is pseud0-product (see

Remark in 3. 1). We shall apply the arguments in \S 3 to the pseud0-product
SGLA, \mathfrak{G} , of the second kind.

We assert that \mathfrak{A}\cong \mathfrak{H} . Indeed, the characteristic elements E_{\mathfrak{A}} and E_{\mathfrak{H}} of

\mathfrak{A} and \mathfrak{H} respectively are represented by the same matrix \frac{1}{2} (\begin{array}{ll}1_{n+1} 00 -1_{n+1}\end{array})
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Now, define a matrix P of degree n+1 by P=(\begin{array}{ll}0 1_{n}1 0\end{array}).\cdot and a matrix \tilde{P} of

degree 2n+2 by \tilde{P}=(\begin{array}{ll}1_{n+1} 00 P\end{array}) Then we see that {}^{t}\tilde{P}J_{n+1}\tilde{P}=(\begin{array}{ll}0 P{}^{t}P 0\end{array}) =

\tilde{J}_{n+1} and \tilde{P}E_{\mathfrak{A}}\tilde{F}^{1}=E_{\mathfrak{H}} . Hence it follows that \tilde{P}X\tilde{F}^{1}\in\sim\S \mathfrak{o}(n+1, n+1;K) for

all X\in \mathfrak{g} , and that the assignment Xarrow\tilde{P}X\tilde{F}^{1} gives an isomorphism of \mathfrak{A}

onto \mathfrak{H} , proving our assertion.
Let us now verify that \mathfrak{G} satisfies conditions (II. 1) and (II.2) . Define a

subgroup L of GL(2n+2, K) by

L= { A\in GL (2n+2, K) |\det(A)=\epsilon,{}^{t}A\tilde{f}_{n+1}A=\epsilon\tilde{f}_{n+1} with \epsilon=1 or -1},

and a subgroup L_{0} of L by

L_{0}=L\cap G_{0}(n, 2, n ; K)=\{A\in L|AEA^{-1}=E, AJA^{-1}=J\} .

Set G’=L/C(L) , and G_{\acute{0}}=L_{0}/C(L) , which may be naturally identified with
subgroups of Aut (\mathfrak{g}) and Aut (\mathfrak{L}) respectively.

LEMMA 7. 4. (1) If K=R, then G_{0}=G_{\acute{0}} and G=G’.
(2) If K=C, then G_{\acute{0}} and G’ are open, normal subgroups of G_{0} and G

respectively, and G_{0}=G_{\acute{0}}\cup\tau\cdot G_{\acute{0}} and G=G’\cup\tau\cdot G’

where \tau is the conjugation of \mathfrak{g} .
Clearly the matrix

(\begin{array}{lll}0 0 1_{n}0 1_{2} 01_{n} 0 0\end{array})

is in the group L, and hence it defines an element g of G’- Then we see that
\mathfrak{G} satisfies condition (II. 1) with respect to the element g .

LEMMA 7. 5. The space \mathfrak{g}_{-2} may be naturally identifified with S_{\acute{n}}(K) ,

and the group \tilde{G}_{0} consists of all transformations F of S_{\acute{n}}(K) of the following

form :
1) If K=R, F(X)=\epsilon AX^{t}A ,

2) If K=C, F(X)=AX^{t}A or F(X)=A\overline{X}^{t}A ,

where A\in GL(n, K) , \epsilon=1 or -1, and X\in S_{\acute{n}}(K) .
Set n=2m. For any integer 0\leqq r\leqq m, set V_{2r}=V_{2r}(S_{\acute{n}}(K)) . Then we

see from Lemma 7. 5 that V_{0} , V_{2} , \ldots-V_{2m} are all the \tilde{G}_{0} -0rbits, and especial-
ly V_{2m} is a single open orbit. Therefore we have V=V_{2m} , and a V=V_{0}\cup V_{2}

\cup\ldots\cup V_{2(m-1)} . Clearly a V is the zeros of the polynomial function \det^{1}-z-(X)

on S_{\acute{n}}(K) .



M2 N. Tanaka

LEMMA 7. 6. (1) If K=R, then I(\partial V) is generated by \det^{\frac{1}{2}}(X) .
(2) If K=C, then I(\partial V) is generated by \det^{\frac{1}{2}}(X) and \det^{\tau^{1}}(\overline{X}) .
This fact follows from Lemma 6. 15 (cf. the proofs of (1) and (2) of

Lemma 7. 3).

We see from Lemma 7. 6 that l(\partial V)=m, and therefore from Lemma 6.
16 that \mathfrak{G} satisfies condition (II. 2) . Since \mathfrak{A}\cong \mathfrak{H} , we have thus proved
Theorem 2. 8 for \mathfrak{H} .

\S 8. Proof of Theorem 2. 8: The case where \mathfrak{H} is a simple graded
Lie algebra of the first class

Let \mathfrak{G} be one of the simple graded Lie algebras of the first class in TABLE
2. The main aim of the present section is to apply the arguments in \S 4 to \mathfrak{G} ,
and is to prove the following

PROPOSITION 8. 1. (1) If \mathfrak{G} is a defifinite M\"obius algebra, then \mathfrak{G} satisfifies
conditions (I. 1), (I. 2) and the condition that a V=\{0\} .

(2) Otherwise, \mathfrak{G} satisfifies conditions (I. 1) – (I 3).
Consider the standard affine symmetric space \Omega=G/G_{0} associated with

G. By Propositions 4. 9 and 4. 13 we therefore have the following: If \mathfrak{G} is a
definite M\"obius algebra, then Aut(Q) is naturally isomorphic with Diff ;
Otherwise, Aut(fl) is naturally isomorphic with G. Thus Proposition 8. 1
combined with the results in the preceding section accomplishes the proof of
Theorem 2. 8.

8. 1. The case where \mathfrak{G}=\mathfrak{G}(n, n;K)(n\geqq 3 if K=R or C:n\geqq 2 if K=
Q) . Set L=GL(2n, K) , and define its subgroup L_{0} by

L_{0}=G_{0}(n, n ; K)=\{A\in L|AEA^{-1}=E\} .

Set G’=L/C(L) , and G_{\acute{0}}=L_{0}/C(L) , which may be naturally identified with
subgroups of Aut(\mathfrak{g}) and Aut(G) respectively.

Now, define an element g of G’ by

g=J_{n} (mod C(L) ),

and an automorphism \theta of the Lie algebra \mathfrak{g}=\mathfrak{s}\mathfrak{l}(2n, K) by

\theta(X)=Ad(g)(-{}^{t}X) , X\in \mathfrak{g} .

It is easy to see that \theta\in Aut(\mathfrak{G}) .

LEMMA 8. 2. G_{\acute{0}} and G’ are open, normal subgroups of G_{0} and G respec-
tively, and
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(1) If K=R or Q, then G_{0}=G_{\acute{0}}\cup\theta\cdot G_{\acute{0}} and G=G’\cup\theta\cdot G’

(2) If K=C, then G_{0}=G_{\acute{0}}\cup\theta\cdot G_{\acute{0}}\cup\tau\cdot G_{\acute{0}}\cup\theta\tau\cdot G_{\acute{0}} , and G=G’\cup\theta\cdot G’\cup

\tau\cdot G’\cup\theta\tau\cdot G’ . where \tau denotes the conjugation of \mathfrak{g}=\mathfrak{s}\mathfrak{l}(2n, C) .
Note that \theta^{2}=\tau^{2}=(\theta\tau)^{2}=e .
Clearly the element g of G’ satisfies g^{2}=e and Ad(g)E =-E, showing

that \mathfrak{G} satisfies condition (I. 2).

Lemma 8. 3. The space \mathfrak{g}_{-1} may be naturally identifified with M_{n}(K) ,

and the subgroup \tilde{G}_{0} of GL(\mathfrak{g}_{-1}) consists of all transformations F of M_{n}(K)

of the following form :
1) If K=R or Q, F(X)=AXB^{-1} or F(X)=A^{t}XB^{-1} .

2) If K=C, F(X)=AXB^{-1} or F(X)=A^{t}XB^{-1} or F(X)=A\overline{X}B^{-1} or
F(X)=AX^{*}B^{-1} ,

where A, B\in GL(n, K) , and X\in M_{n}(K) .
For any integer 0\leqq r\leqq n, set V_{r}=V_{r}(M_{n}(K)) . As before we see from

Lemma 8. 3 that V=V_{n} , and a V=V_{0}\cup\ldots\cup V_{n-1} . Clearly Lemma 7. 3
holds true in our present situation. Accordingly we know that \mathfrak{G} satisfies
condition (I. 2).

We shall now show that \mathfrak{G} satisfies condition (I. 3). Take any element
F of GL(\partial V) . Our task from now on is to show that F\in\tilde{G}_{0} .

The case where \mathfrak{G}=\mathfrak{G}(n, n\cdot, R) . By Lemma 7. 3 we have

LEMMA 8. 4. det (F(X))=c \det(X) , X\in M_{n}(R) ,

where c is a constant.
Since M_{n}(R) is a real part of M_{n}(C) , there is a unique \tilde{F}\in GL_{C}(M_{n}(C))

such that \tilde{F}(X)=F(X) . By Lemma 8. 4 we then have

\det(\tilde{F}(Y))=c\det(Y) , Y\in M_{n}(C) .

Therefore it follows from Lemmas 6. 3 and 6. 4 that there are A, B\in

GL(n, C) such that either \tilde{F}(Y)=AYB^{-1} or \tilde{F}(Y)=A^{t}YB^{-1} . For our
purpose it clearly suffices to deal with the case where \tilde{F}(Y)=AYB^{-1} . Put
A_{1}={\rm Re} A , A_{2}={\rm Im} A , B_{1}={\rm Re} B and a={\rm Im} B. Then there is t\in R such
that \det(A_{1}+tA_{2})\neq 0 and \det(B_{1}+tR)\neq 0 . Since F(X)B_{1}=A_{1}X and
F(X)R=A_{2}X, it follows that F(X)(B_{1}+tfk)=(A_{1}+tA_{2})X, and hence
F(X)=(A_{1}+tA_{2})X(B_{1}+tR)^{-1} . This implies that F\in\tilde{G}_{0} .

The case where \mathfrak{G}=\mathfrak{G}(n, n;C) . By Lemma 7. 3 we have

Lemma 8. 5. det(F(X))=a det(X)+b det (\overline{X}) , X\in M_{n}(C) ,

where a and b are constants.

Lemma 8. 6. Either F or F\circ\tau is in GL_{C}(M_{n}(C)) , where \tau denotes the

conjugation of M_{n}(C) .
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PROOF. We first notice that there are unique endomorphisms F_{1} and F_{2}

of M_{n}(C) as a vector space over C such that F(X)=F_{1}(X)+F_{2}(\overline{X}) . Since
\{(X,\overline{X})|X\in M_{n}(C)\} is a real part of M_{n}(C)\cross M_{n}(C) , it follows from
Lemma 8. 5 that

det (F_{1}(X)+F_{2}( Y))=a det(X)+b\det(Y) , X, Y\in M_{n}(C) .
Clearly we have either a\neq 00 or b\neq 0 . For our purpose it clearly suffices to
show that F_{1}\in GL_{C}(M_{n}(C)) , and F_{2}=0 , assuming that a\neq 0 . Accordingly
assume this condition. By the equality above we have \det(F_{1}(X))=

a \det(X) . Consequently we see from Lemma 6. 3 that F_{1}\in GL_{C}(M_{n}(C)) ,

and F_{1} ( V_{n})=V_{n} . Now, let X\in V_{n} , and Y\in M_{n}(C) . We have
\det(F_{1}(X))=a\det(X) , and \det(F_{1}(\lambda X)+F_{2}( Y))=a\det(\lambda X)+b\det(Y)

for all \lambda\in C . It follows that

\det(\lambda 1_{n}+F_{1}(X)^{-1}F_{2}( Y))=\lambda^{n}+a^{-1}b\det(X^{-1}Y) ,

whence Tr(F_{1}(X)^{-1}F_{2}(Y))=0 . Since V_{n}^{-1}=V_{n} , and V_{n} is open and dense
in M_{n}(C) , we therefore see that Tr(ZF_{2}(Y))=0 for all Y, Z\in M_{n}(C) ,

whence F_{2}=0 . We have thus prove Lemma 8. 6.
By Lemmas 8. 5 and 8. 6 we have: If F\in GL_{C}(M_{n}(C)) , then

det (F(X))=a \det(X) ,\cdot If F\circ\tau\in GL_{C}(M_{n}(C)) , then det (F(\overline{X}))=b \det(X) .
Therefore we see from Lemmas 6. 3 and 6. 4 that F\in\tilde{G}_{0} .

The case where \mathfrak{G}=\mathfrak{G}(n, n;Q) . By Lemma 7. 3 we have

Lemma 8. 7. \chi_{ij}(F(X))=\sum_{k,l}c_{ij}^{kl}\chi_{kl}(X) , X\in M_{n}(Q) , where c_{ij}^{kl} are con-
stants.

Since \mu(M_{n}(Q)) is a real part of M_{2n}(C) , there is a unique \tilde{F}\in

GL_{C}(M_{2n}(C)) such that \tilde{F}(\mu(X))=\mu(F(X)) . Since X_{ij}(X)=\Delta_{ij}(\mu(X)) ,

it follows from Lemma 8. 7 that

\Delta_{ij}(\tilde{F}(Y))=\sum_{k,l}c_{ij}^{kl}\Delta_{kt}(Y) , Y\in M_{2n}(C) .

Putting \tilde{W}_{2n-2}=W_{2n-2}(M_{2n}(C)) , we therefore obtain \tilde{F}(\tilde{W}_{2n-2})\subset\tilde{W}_{2n-2} .
Considering the inverse F^{-1} of F, we similarly obtain \tilde{W}_{2n-2}\subset\tilde{F}(\tilde{W}_{2n-2}) .
Hence \tilde{F}(\tilde{W}_{2n-2})=W_{2n-2} or \tilde{F}\in GL_{C}(\tilde{W}_{2n-2}) . By Lemma 6. 9 we can thereby
find A, B\in GL(2n, C) such that either \tilde{F}(Y)=AYB^{-1} or \tilde{F}(Y)=A^{t}YB^{-1} .
Consequently it follows that F\in\tilde{G}_{0} (cf. the case where \mathfrak{G}=\mathfrak{G} ( n, n,\cdot R)).

We have thus shown that GL(\partial V)=\tilde{G}_{0} , meaning that \mathfrak{G} satisfies condi-
tion (I. 3).
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8. 2. The case where \mathfrak{G}=\mathfrak{S}\mathfrak{U}(n, n;C)(n\geqq 3) . Define a subgroup L of
GL(2n, C) by

L= { GL(2 n, C) |A^{*}J_{n}A=\epsilon J_{n} with \epsilon=1 or -1},

and its subgroup L_{0} by

L_{0}=L\cap G_{0}(n, n ; C) .

Set G’=L/C(L) , and G_{\acute{0}}=L_{0}/C(L) , which may be naturally identified with
subgroups of Aut (\mathfrak{g}) and Aut (\mathfrak{G}) respectively.

As before define an element g of G’ by

g=J_{n} (mod C(L) ),

and an automorphism \theta of the Lie algebra \mathfrak{g}=\mathfrak{s}u(n, n;C) by

\theta(X)=\overline{X}=Ad(g)(-{}^{t}X) , X\in \mathfrak{g} .

LEMMA 8. 8. G_{\acute{0}} and G’ are open, normal subgroups of G_{0} and G respec-
tively, and G_{0}=G_{\acute{0}}\cup\theta\cdot G_{\acute{0}} and G=G’\cup\theta\cdot G’

Then we see that \mathfrak{G} satisfies condition (I. 1) with respect to the element
g of G’

LEMMA 8. 9. The space \mathfrak{g}_{-1}rmy be naturally identifified with H_{\acute{n}}(C) ,

and the group \tilde{G}_{0} consists of all transformations F of H_{\acute{n}}(C) of the following

form :

F(X)=\epsilon AXA^{*} or F(X)=\epsilon A\overline{X}A_{2}^{*}

where A\in GL(n, C) , \epsilon=1 or -1, and X\in H_{\acute{n}}(C) .
For any integer 0\leqq r\leqq n, set V_{r}=V_{r}(H_{\acute{n}}(C)) . Then we see from

Lemma 8. 9 that each V_{r} is the union of all \tilde{G}_{0} -0rbits of the same dimension,

and especially V_{n} is the union of all open orbits. Therefore we have V=V_{n} ,

and a V=V_{0}\cup\ldots\cup V_{n-1} . Clearly a V is the zeros of the polynomial function
\det(X) on H_{\acute{n}}(C) .

Lemma 8. 10. I(\partial V) is generated by \det(X) .
Clearly H_{\acute{n}}(C) is a real part of M_{n}(C) , and correspondingly V_{n-1} is a

real part of \tilde{V}_{n-1}=V_{n-1}(M_{n}(C)) . Accordingly Lemma 8. 10 follows from
Lemma 6. 1 (cf. the proof of (1) of Lemma 7. 3).

We see from Lemma 8. 10 that l(\partial V)=n, and therefore from Lemma 6.
2 that \mathfrak{G} satisfies condition (I. 2).

Let us now show that \mathfrak{G} satisfies condition (I. 3). Take any element F
of GL(\partial V) . By Lemma 8. 10 we have
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LEMMA 8. 11. det (F(X))=c \det(X) , X\in H_{\acute{n}}(C) ,

where c is a constant.
Since H_{\acute{n}}(C) is a real part of M_{n}(C) , there is a unique \tilde{F}\in GL_{C}(M_{n}(C))

such that \tilde{F}(X)=F(X) . By Lemma 8. 11 we then have

det (\tilde{F}(Y))=c det ( Y) , Y\in M_{n}(C) .

Therefore it follows from Lemmas 6. 3 and 6. 4 that there are A, B\in

GL(n, C) such that either \tilde{F}(Y)=AYB or \tilde{F}(Y)=A^{t}YB. For our purpose,
it clearly suffices to deal with the case where \tilde{F}(Y)=AYB. If X\in H_{\acute{n}}(C) , we
have X^{*}=-X and F(X)^{*}=-F(X) , whence B^{*}XA^{*}=AXB. From this
fact it follows that B=\lambda A^{*} with some \lambda\in R. Hence we obtain F(X)=
\lambda AXA^{*} . implying that F\in\tilde{G}_{0} .

8. 3. The case where \mathfrak{G}=\mathfrak{S}\mathfrak{O}(n, n;K)(n even, n\geqq 6 if K=R or C,\cdot

n\geqq 3 if K=Q). Define a subgroup L of SL(2n, K) by

L= { A\in SL (2 n, K) |{}^{t}AJ_{n}A=\epsilon J_{n} with \epsilon=1 or -1},

and its subgroup L_{0} by

L_{0}=L\cap G_{0}(n, n;K) .

Set G’=L/C(L) , and G_{\acute{0}}=L_{0}/C(L) , which may be naturally identified with
subgroups of Aut(g) and Aut (\mathfrak{G}) respectively.

LEMMA 8. 12. (1) If K=R or Q, then G_{0}=G_{\acute{0}} and G=G’
(2) If K=C, then G_{\acute{0}} and G’ are open, normal subgroups of G_{0} and G

respectively, and G_{0}=G_{\acute{0}}\cup\tau\cdot G_{\acute{0}} and G=G’\cup\tau\cdot G_{J}’ where \tau denotes the
conjugation of \mathfrak{g}=e\mathfrak{o}\sim (n, n ; C) .

As before define an element g of G’ by

g=J_{n} (mod C(L) ).

Then we see that \mathfrak{G} satisfies condition (I. 1) with respect to the element g.

LEMMA 8. 13. The space \mathfrak{g}_{-1}rmy be naturally identifified with S_{\acute{n}}(K) ,

and the group \tilde{G}_{0} consitst of all transformations F of S_{\acute{n}}(K) of the following
form :

1) If K=R or Q, F(X)=\epsilon AX^{t}A ,
2) If K=C, F(X)=AX^{t}A or F(X)=A\overline{X}^{t}A ,

where A\in GL(n, K) , \epsilon=1 or -1, and X\in S_{\acute{n}}(K) .
We shall show that \mathfrak{G} satisfies condition (I. 2). We first consider the

case where K=R or C. Set n=2m. For any integer 0\leqq r\leqq m, set V_{2\Gamma}=

V_{2\gamma}(S_{\acute{n}}(K)) . As before we see from Lemma 8. 13 that V=V_{2m} , and a V=
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V_{0}\cup V_{2}\cup\ldots\cup V_{2(m-1)} . Clearly Lemma 7. 6 holds true in our present situa-
tion. Accordingly we know that \mathfrak{G} satisfies condition (I. 2).

We next consider the case where K=Q. For any integer 0\leqq r\leqq n, set
V_{r}=V_{r}(S_{\acute{n}}(Q)) . Then we see from Lemma 8. 13 and Remark below that
each V_{r} is the union of all \tilde{G}_{0} -0rbits of the same dimension, and especially V_{n}

is the union of all open orbits. Therefore we have V=V_{n} , and a V=V_{0}\cup

...\cup V_{n-1} .

REMARK (cf. Sylvester’s law of inertia). For every matrix X\in S_{n}’(Q)

there is a matrix \^A GL(n, C) such that the matrix AX{}^{t}A may be
represented by a diagonal matrix whose diagonal vector is of the form:
(-e_{2}, \ldots. - e_{2}, e_{2}, \ldots e_{2},0, \ldots. 0) . Furthermore the multiplicity of -

e_{2}

as well as e_{2} does not depend on the choice of A, and hence is uniquely

determined by X.
We know that \mu(S_{\acute{n}}(Q)) is a real part of S_{2n}’(C) (see Remark in 5. 1).

This being said, we define a function \chi(X) on S_{\acute{n}}(Q) by

\mathcal{X}(X)=\det^{\tau^{1}}(\mu(X)) , X\in S_{\acute{n}}(Q) ,

which is a homogeneous polynomial function of degree n. Clearly a V is the

zeros of \chi(X) .

LEMMA 8. 14. I(\partial V) is generated by \chi(X) .
This fact follows from Lemma 6. 15 (cf. the proof of (1) or (3) of

Lemma 7. 3). Note that \mu
( V_{n-1}) is a real part of \tilde{V}_{2(n-1\rangle}=V_{2(n-1)(S_{2n}’(C))} .

We see from Lemma 8. 14 that l(\partial V)=n, and therefore from Lemma 6.
16 that \mathfrak{G} satisfies condition (I. 2).

We shall now show that \mathfrak{G} satisfies condition (I. 3). Take any element
F of GL(\partial V) .

The case where \mathfrak{G}=\mathfrak{S}\mathfrak{O}(n, n;R) . By Lemma 7. 6 we have

LEMMA 8. 15. \det^{-}2^{-(F(X))=c}1\det^{z^{1}-}(X) , X\in S_{\acute{n}}(R) ,

where c is a constant.
Since S_{\acute{n}}(R) is a real part of S_{\acute{n}}(C) , there is a unique \tilde{F}\in GL_{C}(S_{\acute{n}}(C))

such that \tilde{F}(X)=F(X) . By Lemma 8. 15 we then have

\det^{11}\tau(\tilde{F}(Y))=c\det^{-2^{-}}(Y) , Y\in S_{\acute{n}}(C) .

Therefore we see from Lemmas 6. 17 and 6. 18 that there is A\in GL(n, C)

such that \tilde{F}(Y)=AY^{t}A . Consequently it follows that there are A_{0} , B_{0}\in

GL(n, R) such that F(X)=A_{0}XB_{0} (cf. the case of \mathfrak{G} ( n, n;R)), and in turn
it follows that R=\lambda {}^{t}A_{0} with some \lambda\in R (cf. the case of \mathfrak{S}\mathfrak{l}1 ( n, n;C)).
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Hence we obtain F(X)=\lambda A_{0}X^{t}A_{0} , implying that F\in\tilde{G}_{0} .
The case where \mathfrak{G}=\mathfrak{S}\mathfrak{O}(n, n;C) . By Lemma 7. 6 we have

LEMMA 8. 16. \det^{\tau^{1}}(F(X))=a\det^{-2^{-}}(X)1+b\det^{-}2^{-(\overline{X})}1 , X\in S_{\acute{n}}(C) ,

where a and b are constants.
By virtue of Lemmas 6. 17 and 8. 16 it can be shown that either F or

F\circ\tau is in GL_{C}(S_{\acute{n}}(C)) , where \tau denotes the conjugation of S_{\acute{n}}(C) (cf.

Lemma 8. 6). (Note that Lemma 8. 16 implies \det(F(X))=a^{2}\det(X)+

2ab\det^{\tau^{1}}(X)\det^{\tau^{1}}(\overline{X})+b^{2}\det(\overline{X}).) Consequently it follows from Lemmas
6. 17 and 6. 18 that F\in\tilde{G}_{0} .

The case where \mathfrak{G}=\mathfrak{S}\mathfrak{O}(n, n;Q) . By Lemma 8. 14 we have

LEMMA 8. 17. \chi(F(X))=c\mathcal{X}(X) , X\in S_{\acute{n}}(Q) , where c is a comtant.

Since \mu(S_{\acute{n}}(Q)) is a real part of S_{2n}’(C) , there is a unique \tilde{F}\in

GL_{C}(S_{2n}’(C)) such that \tilde{F}(\mu(X))=\mu(F(X)) . Since \chi(X)=\det^{\frac{1}{2}}(\mu(X)) ,

it follows from Lemma 8. 17 that

\det^{\frac{1}{2}}(\tilde{F}(Y))=c\det^{\frac{1}{2}}( _{Y}) , Y\in S_{2n}’(C) .

Therefore we see from Lemmas 6. 17 and 6. 18 that there is A\in GL(2n, C)

such that \tilde{F}(Y)=AY^{t}A . As above, it follows that there are A_{0} , B_{0}\in

GL(n, Q) such that F(X)=A_{0}XR , and in turn it follows that R=\lambda {}^{t}A_{0} with
some \lambda\in R . Hence we obtain F\in\tilde{G}_{0} .

8. 4. The case where \mathfrak{G}=\mathfrak{S}\mathfrak{p}(n, K)(n\geqq 3 if K=R or C;n\geqq 2 if K=
Q) . The discussions from now on are similar to the cases of \mathfrak{G}(n, njK) and

\mathfrak{S}\mathfrak{O}(n, n ; K) .
Define a subgroup L\vee\backslash fGL(2n, K) by

L= { A\in GL (2 n, K) |{}^{t}AI_{n}A=\epsilon I_{n} with \epsilon=1 or -1},

and its subgroup L_{0} by

L_{0}=L\cap G_{0}(n, n,\cdot K) .

Set G’=L/C(L) , and G_{\acute{0}}=L_{0}/C(L) , which may be naturally identified with
subgroups of Aut (\mathfrak{g}) and Aut (\mathfrak{G}) respectively.

We notice that Lemmas 8. 12 and 8. 13 hold true in our present situation,
where \overline{\sigma\backslash }0(n, n;C) and S_{\acute{n}}(K) sholuld be of course replaced by \mathfrak{S}\mathfrak{p}(n, C) and
S_{n}(K) respectively.

Now, define an element g of G’ by
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g=I_{n} (mod C(L) ).

Then we see that \mathfrak{G} satisfies condition (I. 1) with respect to the element g.
We shall show that \mathfrak{G} satisfies condition (I. 2) and (I. 3). For any

integer 0\leqq r\leqq n, set V_{r}=V_{r}(S_{n}(K)) . If K=C, we see that V_{0} , \ldots
V_{n} are

all the \tilde{G}_{0} -0rbits, and especially V_{n} is a single open orbit. If K=R or Q, we
see that each V_{r} is the union of all \tilde{G}_{0} -0rbits of the same dimension, and
especially V_{n} is the union of all open orbits. In any cases we therefore have
V=V_{n} , and a V=V_{0}\cup\ldots\cup V_{n-1} .

Furthermore if K=R or C, a V is the zeros of the polynomial function
\det(X) on S_{n}(K) ; If K=Q_{d} , a V is the common zeros of the polynomial

functions X_{ij}(X) on S_{n}(Q) , which is also the zeros of the polynomial func-
tion \det^{Q}(X) on S_{n}(Q) .

Here, we notice that Lemma 7. 3 holds true in addition. (This fact
follows from Lemmas 6. 10 and 6. 13, together with the fact that S_{n}(R) and
\mu(S_{n}(Q)) are real parts of S_{n}(C) and S_{n}(C) respectively.) We also recall
that there is an anlogous fact concerning the polynomial function \det(X) on
S_{n}(C) , which corresponds to Lemma 6. 2. Accordingly we find that
l(\partial V)=n if K=R or C and l(\partial V)=2n-1 if K=Q , and that \mathfrak{G} satisfies
condition (I. 2).

Finally we can show that \mathfrak{G} satisfies condition (I. 3), by the use of
Lemmas 6. 11, 6. 12 and 6. 14 combined with the fact corresponding to Lemma
7. 3.

8. 5. The case where \mathfrak{G}=\mathfrak{M}_{r}(n) ( r=0, n\geqq 1 or 1\leqq 2r\leqq n, n\geqq 3) or \mathfrak{G}=

\mathfrak{M}(n, C)(n\geqq 3) . We first consider the case where \mathfrak{G}=\mathfrak{M}_{r}(n) . Define a
subgroup L of GL(n R) by

L= { A\in GL ( n+2, R) |{}^{t}A\tilde{T}_{r_{k}r}A=\epsilon\tilde{T}_{n.r} with \epsilon=1 or -1},

and its subgroup L_{0} by

L_{0}=L\cap G_{0}(1, n, 1 ; R) .

Lemma 8. 18. The groups G_{0} and G may be naturally identifified with the
factor groups h/C(L) and L/C(L) respectively.

Now, define an element g of G by

g=\tilde{T}_{n.r} (mod C(L) ).

Then we see that \mathfrak{G} satisfies condition (I. 2).

Lemma 8. 19. The space \mathfrak{g}_{-1} may be naturally identifified with R^{n}, and
the group \tilde{G}_{0} consists of all transformations F of R^{n} of the following form:
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F(x)=Ax, x\in R^{n} .

where A\in GL(n, R) , and {}^{t}A\tilde{T}_{n.r}A=\lambda T_{nr} with some \lambda\in R .
Let us define a quadratic form q(x) on R^{n} by

q(x)= \sum_{i=1}^{n}\epsilon_{i}x_{i}^{2} , x=(x_{1} , .. . x_{n})\in R^{n},

where \epsilon_{i}=-1 if 1\leqq i\leqq r, and \epsilon_{i}=1 otherwise. Let us also define subsets V_{0} ,
V_{1} and V_{2} of R^{n} respectively as follows:

V_{0}=\{0\} , V_{1}=\{x|x\neq 0, q(x)=0\} , V_{2}=\{x|q(x)\neq 0\} .

The case where r=0 : Clearly we have V_{1}=\phi , and we see from Lemma
8. 19 that V_{2} is an open \tilde{G}_{0} orbit. Hence V=V_{2} and a V=V_{0}=\{0\} . Clearly
G satisfies condition (I. 2).

The case where r\geqq 1 : We see from Lemma 8. 19 that V_{0} , V_{1} , V_{2} are all
the \tilde{G}_{0} -0rbits, and especially V_{2} is a single open orbit. Hence V=V_{2} , and
a V=V_{0}\cup V_{1} . Moreover it is easy to see that \mathfrak{G} satisfies conditions (I. 2)

and (I. 3).

It remains to consider the case where \mathfrak{G}=\mathfrak{M}(n, C) . However this case
can be similarly dealt with to the case of an indefinite M\"obius algebra, and
it is shown that \mathfrak{G} satisfies conditions (I. 1)–(I. 3). We only remark the
following

LEMMA 8. 20. The space \mathfrak{g}_{-1} may be naturally identifified with C^{n}, and
the group \tilde{G}_{0} consists of all transformations F of C^{n} of the following form:

F(x)=Ax or F(x)=A\overline{x}, x\in C^{n},

where A\in GL(n, C) , and {}^{t}AA=\lambda 1_{n} with some \lambda\in C .
We have thereby completed the proof of Proposition 8. 1.
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