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1. Introduction

Let G be a finite group and R [ G] be a group ring over a commutative
ring R with the identity element 1_{R} . This group ring is one of the main
objects in the representation theory of finite groups, and it is interesting to
study two sided ideals of R[G] , for example, Jacobson radical is an
important object in modular representation theory. In the case that R is a
field of characteristic zero, R[G] is a semi-simple ring by Maschke’s
theorem, and Wedderburn’s theorem implies that any two sided ideal of R

[G] is a direct product of minimal two sided ideals of R[G] with
multiplicity one. But in the case that R is a field of characteristic p(p>0)
or, more generally, R is a p-adic complete discrete valuation ring with a
maximal ideal (\pi) , it is a complicated problem to determine two sided ideals
of R [ G] . Throughout this paper, the commutative ring R is a splitting field
of characteristic p for G or a complete discrete valuation ring satisfying the
residue field k=R/(\pi) is a splitting field of characteristic p for G , and all
ideals of R [ G] means that R -free two sided ideals of R [ G] .

For an ideal I of R [ G] we set A_{I} the quotient ring R [ G]/I Then let
\rho_{I} be the canonical map of R [ G] to A_{I} , then the map \rho_{I} is an epimorphism

as R-algebra. So for a finite R -rank R-algebra A (we call simply it an
R-algebra) and an epimorphism \rho of R [ G] to A the pair (A, \rho) is the dual
case of two sided ideals of R [ G] , and we call the pair (A, \rho) an epimorphic
interior G-algebra. See [9]. In order to study ideals I of R [ G] or interior
G-algebras (A, \rho) the R-module I or A becomes an R [ G\cross G] -module as
following, respectively:

(g, h)x=gxh^{-1} , where x in an element of I and (g, h) is an element of
the direct product G\cross G.

(g, h)a=\rho(g)\varphi(h^{-1}) , where a is an element of A and (g, h) is an
element of G\cross G.

By corollary 2 in [9], for an epimorphic interior G-algebra (A, \rho) the R
[G\cross G] -module A is indecomposable if and only if the center Z(A) of the
R -algebra A is a local ring. In this case, we call (A, p) an epimorphic
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local interior G-algebra.
On the other hand, in [8], J. A. Green studied Brauer’s definition of

defect groups of blocks in block theory, and defined the concept of
G-algebras and its defect groups. After, M. Brou\’e and L. Puig defined
interior G-algebras, which is a special case of G-algebras, and its defect
groups. See [3], [8] and [14]. Our epimorphic interior G-algebras are
naturally interior G-algebras, and so we can define defect groups for an
epimorphic local interior G-algebra.

As stated above, a defect group is an invariant of an epimorphic local
interior G-algebra, but this group is too large subgroup of G . See section 2.
In this paper, we define another invariant p-subgroup, which is a normal
subgroup of a defect group, for an epimorphic interior G-algebra. We shall
study some properties of this p-subgroup.

In section 2, we shall define epimorphic local interior G-algebras and
defect groups, and present some properties of them. In section 3, we shall
define a normal subgroup (vtx_{G\cross G}A)_{1} of a defect group of an epimorphic
local interior G-algebra and give its elementary properties. In section 4, we
shall give the relation the subgroup (vtx_{G\cross G}A)_{1} and a factor group of G . In
section 5, we shall give another proof of Michler’s theorem for embedding of
group ring of defect group in block theory. In section 6, we shall present
some finiteness condition of epimorphic local interior G-algebra using
(vtx_{G\cross G}A)_{1} . The theory of epimorphic local interior G-algebra is simple
(but essential) in the case that G is a p-group. So we shall give some
examples and facts in this case, in this case, in section 7.

Notation. Let A, B and C be sets and f and g maps of A to B and of
B to C , respectively. We denote by g\circ f the composition of f and g. For a
subset D of A we denote by f|D the restriction. In this paper, all R[G]
-modules are R-free left R [ G] -modules with finite R ranks. All G-algebras
are assumed to have the identity element and be R-free modules with finite
ranks. Whenever H is a subgroup of G, V is an R [ G] -module and W is an
R[H] -module, the R[H] -module V\downarrow H is a restricted module and the R [ G]

-module W\uparrow^{G} is an induced module.

2. Epimorphic interior G-algebras

We give definitions of an interior G-algebra and an epimorphic interior
G-algebra.

DEFINITION 2. 1. For R-algebra A with the identity element 1_{A} and
R-algebra homomorphism \rho of R[G] to A such that \rho(1)=1_{A} , the pair (A,
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\rho) is called an interior G-algebra. Furthermore if R-algebra homomorphism
\rho is epimorphic, we call (A, \rho) an epimorphic interior G-algebra.

For an interior G-algebra (A, \rho) the R-algebra A becomes a R [ G\cross G]

-module as stated in section 1.
Let (A, \rho) be an interior G-algebra and H be a subgroup of G . A

subring A^{H} of A consists of the fixed points of A under the conjugate action
of H . Whenever H’ is a subgroup of G such that H\leq H’ the trace map
Tr_{H}^{H’} : A^{H}arrow A^{H’} is defined by aarrow\Sigma\rho(g)\varphi(g^{-1}) , where g runs over a
complete set of representatives in H’ of H’/H_{rightarrow} We denote by A_{H}^{H’} the image
Tr_{H}^{H’}(A^{H}) . Then A_{H}^{H’} is a two sided ideal in A^{H’} If A^{G} is a local ring, we
call the interior G-algebra (A, \rho) a local interior G-algebra. For a local
interior G-algebra (A, \rho) a defect qroup of (A, \rho) is the minimal subgroup

of the family of subgroups H satisfying A_{H}^{G}=A^{G} . The defect group is
determined uniquely up to conjugation in G and is a p subgroup of G .

DEFINITION 2. 2. An epimorphic interior G-algebra (A, \rho) is an
epimorphic local interior G-algebra if the subring A^{G}=Z(A) is local.

LEMMA 2. 3. ([9] Corollary 2) An epimorphic interior G-algebra (A,

\rho) is an epimorphic local interior G-algdbra if and only if an R[G\cross G]

-module A is an indecomposable R[G\cross G] -module

Let End_{R}( V) be the R-endomorphism ring of V and \rho_{V} the representa-

tion of R[G] introduced by V Then the pair (End_{R}(V), \rho_{V}) is an
interior G-algebra. If the R [ G] -module V is indecomposable if and only if
the corresponding interior G-algebra EndR(V),\rho_{V}) is local. The R[G]
-module V is H-projective for a subgroup H of G , it the R [ G] -module V is
isomorphic to the direct summand of the R[G] -module V\downarrow H\uparrow G . By

Higman’s criteria for relative projectivity, V is H -projective if and only if
End_{R}(V)^{G} equals to End_{R}(V)_{H}^{G} . For an indecomposable R [ G] -module V

the minimal subgroup of the family of H satisfying V is H-projective is
called the vertex of V. and denoted by vtxG V . The defect group of the

above local interior G-algebra EndR(V),\rho_{V}) equals the vertex vtx_{G}V

We present some examples of epimorphic local interior G-algebras.

EXAMPLE 2. 4. In case that R=k, for a simple k[G] -module V, its
k-endomorphism ring End_{k}(V) and the representation \rho_{V} of k[G]
introduced by V the pair (End_{k}(V), \rho_{V}) is an epimorphic local interior
G-algebra. Then the defect group D of this interior G-algebra is the vertex of
the simple module V.
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EXAMKLE 2. 5. Let e be an central primitive idempotent of R [ G] , and
B=R[G]e be the corresponding block of R[G] . Then (B, \rho_{B}) becomes an
epimorphic local interior G-algebra by the R-algebra homomorphism \rho_{B} : x
arrow xe for the element x of R[G] . We call this interior G-algebra a block
interior G-algebra. The defect group of this interior G-algebra equals the
defect group of B as classical case.

We define morphisms between interior G-algebras.

DEFINITION 2. 6. Let (A, \rho) and (A’, p0 be interior G-algebras. The
R-algebra homomorphism \varphi such that \varphi(1_{A})=1_{A} , is a morphism of (A, \rho)

to (A”, \rho) , if \rho’=\varphi\circ\rho is hold. If the above homomorphism is an
isomorphism, then we call (A, \rho) and (A”, \rho) is isomorphic by \varphi .

A local interior G-algebra (A, \rho) belongs to a block B=R[G]e , if
there exists a morphism of the block interior G-algebra to the interior
G-algebra (A, \rho) . This means that the image \rho(B) is non-zero.

Let (A, \rho) be an epimorphic local interior G-algebra belonging a block
B and I=\{x\in R[G] ; \rho(x)=0\} the kernel of \rho . Then we obtain an
epimorphic interior G-algebra (R [ G]/I, \rho_{I}) , where \rho_{I} is the canonical
R-algebra homomorphism of R[G] to R[G]/I , which is isomorphic to the
interior G-algebra (A, \rho) . Furthermore the interior G-algebra (B/I\cap B,
(\rho_{I})|B) , where (\rho_{I})|_{B} is the restriction, is isomorphic to (A, \rho) .
Conversely let I be a two sided ideal of a block algebra B . Then the interior
G-algebra (B/I, \rho_{I}) , where \rho_{I} is the restriction the canonical R-algebra
homomorphism to B , is an epimorphic interior G-algebra. For a primitive
idempotent f of the subring (B/I)^{G} we set a R-algebra epimorphism \rho f of R
[G] to the R-algebra (B/I)f defined by x–>\rho_{I}(x)f , and have an
epimorphic local interior G-algebra ((B/I)_{f}, \rho_{f}) belonging to the block B .

Let id_{R[G]} be the identity map. Then the pair (R[G], id_{R[G]}) is an
interior G-algebra, and R[G] becomes a R[G\cross G] -module. Since this R
[G\cross G] -module is a permutation module the dual module R[G]^{*} is
isomorphic to R [ G] . Therefore for an epimorpic interior G-algebra (A, \rho)

the R [ G\cross G] module A is isomorphic to some two sided ideal I^{*} of R [ G] .
Therefore as R [ G\cross G] -module, the discussion of epimorphic interior
G-algebras is equivalent to that of two sided ideals of R [ G] .

Let (A, \rho) be an epimorphic interior G-algebra, \overline{A}=A/(\pi) and \overline{\rho} a
k-algebra epimorphism of k[G] to A introduced by \rho . Since (A, \rho) is an
epimorphic interior G-algebra the subring A^{G} is the center of A , and (\overline{A}, \rho 3

is local if and only if so is (A, \rho) . Furthermore the defect qroup of (\overline{A}, \rho^{-})
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equals the defect group of (A, \rho) . See [7] Ch. 1 lemma 17, 4.

LEMMA 2. 7. Let (A, \rho) and (A’, \rho\gamma be local interior G-algebras,
and assume that there exists a morphism of (A, \rho) to (A’, \rho)’ . Then the

defect group of (A, \rho) contains the defect group of ( A_{p}’\rho 0 up to
G-conjugate.

PROOF. Let \varphi be a morphism of (A, \rho) to (A’\eta p O- Since the image
\varphi(A_{H}^{G}) is contained in A_{H}^{rG} for a subgroup of G the lemma is immediately

from the definition.

LEMMA 2. 8. Let (A, \rho) be an epimorphic local interior G-algebra
belonging to a block B with defect group D. Then there exists a simple k[G]
-module V such that the defect group of (A, \rho) contains the vertex of V and
is contained in D up to G-conjugate.

PROOF. We may prove this in the case R=k equals a field of
characteristic p . Since (A, \rho) belongs to B the defect group of (A, \rho) is
contained in D by lemma 2. 7. Since (A, \rho) be an epimorphic local interior
G-algebra there exist a two sided ideal I of B such that {A,\rho) is isomorphic

to (B/L\rho_{I}) . On the other hand, for the maximal ideal I’ containing I the
canonical homomorphism of B/I to B/I’ introduces a morphism of (A, \rho)

to (B/I’\rho_{I’}) . By Wedderburn’s structure theorem, there exists a simple k

[G] -module V such that the interior G-algebra (End_{k}(V), \rho_{V}) is isomor-
phic to the interior G-algebra (B/I’, \rho_{I’}) . Thus we obtain a morphism of
(A, \rho) to (End_{k}(V), \rho_{V}) . Therefore the defect group of (A, \rho) contains
the defect group of (End_{k}(V), \rho_{V}) , which equals the vertex of V

THEOREM 2. 9. Let B be a block of G with defect group D. Then all
epimorphic local interior G-algebras belonging to B have defect group D if
and noly if all simple k[G] -modules belonging to B have vertex D. In
particular, if the defect group D of the block B is an abelian group, then all
epimorphic local interior G-algebras have defect groups D.

PROOF The first statement of theorem is immediately from lemma 2. 8.
The second statement is implies from Kn\"orr’s theorem in [10].

COROLLARY 2. 10. Let (A, \rho) be an epimorphic local interior G-algebra

and P a normal p-subgroup of G. Then P is contained in the defect group
of (A, \rho) .

PROOF. Since vertices of any simple k[G] -modules contains P lemma
2. 8. implies corollary.
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3. The invariant (vtx_{G\cross G}A)_{1} .
In this section, we define a invariant (vtx_{G\cross G}A)_{1} of an epimorphic

interior G-algebra (A, \rho) , which is a normal subgroup of a defect group of
(A, \rho) .

For an epimorphic local interior G-algebra (A, \rho) lemma 2. 2 implies
that the R[G\cross G] -module A is an indecomposable R [ G\cross G] -module. The
following theorem is concerned with a vertex of the R[G\cross G] -module A .

THEOREM 3. 1. ([9] Theorem) Let (A, \rho) be an eqimorphic local
interior G-algebra with defect group D. Then the vertex vtx_{G\cross G}A contains
D^{\Delta}=\{(g, g)\in G\cross G:g\in D\} and is contained in D\cross D up to G\cross

G-conjugate.

By this theorem, there occurs the vertex vtx_{G\cross G}A contains D^{\Delta} and is
contained in D\cross D , where D is a defect group of (A, \rho) . From this fact,
we can determine a normal subgroup of D as following. Let D be a
subgroup of G and L a subgroup of G\cross G such that L contains D^{\Delta} and is
contained in D\cross D . For the group L we define a subgroup L_{1} by L_{1}=\{g\in
G : (g, 1)\in L\} . Then L_{1} is a normal subgroup of D . Then we have the
following lemma.

LEMMA 3. 2. For a subgroup L of G\cross G such that L contains D^{\Delta} and
is contained in D\cross D, the correspondence Larrow L_{1} of the family of subgroups
of G\cross G which contain D^{\Delta} and is contained in D\cross D to the family of normal
subgroups of D is bijective.

PROOF. Let Q be a normal subgroup of D . We define a subgroup Q_{-1}=

\{(gh, g): g\in Q, h\in D\} of G\cross G . Then we easily check (L_{1})_{-1}=L and
(Q_{-1})_{1}=Q , and obtain lemma.

The next theorem give another invariant p-subgroup of epimorphic
interior G-algebras, and this is a main object in this paper.

THEOREM 3. 3. Let (A, \rho) be an epimorphic local interior G-algebra
with fixed defect group D. Then there exists vertex vtx_{G\cross G}A which contains
D^{\Delta} and is contained in D\cross D. Furthermore (vtx_{G\cross G}A)_{1} is a normal
subgroup of D and is unique up to N_{G}(D) -conjugate.

PROOF. By the definition of vertex, there exists vtx_{G\cross G}A containing D^{\Delta} .
By Theorem 3. 1, there exists the elements g and h of G such that vtx_{G\cross G}A is
contained in D^{g}\cross\Pi . and so D^{\Delta} is contained in D^{g}\cross\Pi . Therefore D=D^{g}

and D=l\mathcal{Y} . This fact and lemma 3. 2 implies theorem.
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The determined normal subgroup (vtx_{G\cross G}A)_{1} is seen an interesting

object in order to study epimorphic local interior G-algebras or two sided
ideals of a block algebra.

EXAMPLE 3. 4. For an epimorphic local interior G-algebra (End_{k}(V) ,

\rho_{V}) with defect group D in example 2. 4 the subgroup (vtx_{G\cross G}(End_{k}(V)))_{1}

equals D. For an epimorphic local interior G-algebra (B, \rho_{B}) with defect
group D in example 2. 5 the subgroup (vtx_{G\cross G}B)_{1} is \langle 1\rangle .

The following theorem, in [9], give a characterization in the case that
(vtx_{G\cross G}A)_{1} is \langle 1\rangle .

THEOREM 3. 5. ([9] theorem) Let (A, \rho) be an epimorphic local
interior G-algebra with defect group Dbe\grave{l}onging to a block B. Then the
following are equivalent.

(1) The normal subgroup (vtx_{G\cross G}A)_{1} of D equals \langle 1\rangle .
(2) The restriction A\downarrow G\cross\langle 1\rangle is a projective R [ G\cross\langle 1\rangle] -module.
(3) The restriction \rho|_{B} : Barrow A is an R-algebra isomorphism.

Furthermome in this case, D equals the defect group of the block B.

PROOF. Since (vtx_{G\cross G}A)_{1} equals \langle 1\rangle is equivalent that vtx_{G\cross G}A equals
D^{\Delta} the Mackey decomposition theorem implies (1) to (2). By lemma 4 in
[9], we have (2) to (3). (3) to (1) from Theorem 8. 9 ch. 3 [7].

This theorem gives similar result to R-free two sided ideals of R[G] ,

which is a dual case of local interior G-algebra. Then we obtain the
following corollary.

COROLLARY 3. 6. ([9] Corollary 5) Let I be an R-free indecomposable
two sided ideal of R [ G] . If the vertex vtx_{G\cross G}I is contained in G, then I
is a block ideal of R[G] .

Next we study the relation between (vtx_{G\cross G}A)_{1} and some group

determined by an epimorphic interior G-algebra (A, \rho) . For (A, \rho) the
R -algebra A becomes a left R [ G] -module through \rho , and for an in-
decomposable direct summand V of this left R [ G] -module A we have a
vertex vtx_{G}V On the other hand, K is a kernel of the left R [ ^{G}] -module A .

Then we have the following.

PROPOSITION 3. 7. Let (A, \rho) be an epimorphic interior G-algebra, and
V and K as above. If P is a p-sylow subgroup of K, then (vtx_{G\cross G}A)_{1}

contains vtx_{G}V up to G-conjugate and P is contained in vtx_{G}V up to

G-conjugate. In particular P is contained in (vtx_{G\cross G}A)_{1} up to G-conjugate.
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PROOF. We can see left R [ ^{G}] -module A the restriction A\downarrow G\cross\langle 1\rangle

’ where
A is a R [ G\cross G] -module, and V is an indecomposable direct summand of A
\downarrow G\cross\langle 1\rangle . The first statement from this. Let S be a p-Sylow subgroup of G
containing P and W an indecomposable direct summand of V\downarrow s satisfying
vtx_{G}V equals vtx_{S}W Because K is a kernel of A\downarrow G\cross\langle 1\rangle

’ the subgroup P is
contained in the kernel of W This implies that P is contained in vtx_{S}W=
vtx_{G}V

The above normal subgroup K appears in the theory of dimension
subgroups in integral representation theory.

4. Reduction by normal subgroup.

In this section, we discuss the case of a reduction by a normal subgroup
of G . Let N be a normal subgroup of G and G^{0} a factor group G/N and for
a subgroup of G containing N we use the same notation. Let (A, \rho^{0}) be an
epimorphic interior G^{0}-algebra. Then we have an epimorphic interior
G-algebra (A, \rho) , where \rho is the composition of \rho^{0} and the homomorphism
of R[G] to R[G^{0}] introduced by the canonical map Garrow G^{0} . Similarly
any R[G^{0}] -module becomes an R[G] -module. For an epimorphic local
interior G^{0}-algebra (A, \rho^{0}) the introduced interior G-algebra (A, \rho) is an
epimorphic local interior G-algebra. We determine the defect group of (A,
\rho) and the normal subgroup (vtx_{G\cross G}A)_{1} .

LEMMA 4. 1. Let N be a normal subgroup of G whose p-Sylow subgroup
S and H be a subgroup of G containing N such that the factor group H/N
is p-group. If QN=H for a p subgroup Q of H containing S, then Q is a
p-Sylow subgroup of H.

PROOF. Let P be a p-Sylow subgroup of H containing Q. Since H/N
\simeq QN/N\simeq Q/N\cap Q is a p-group the index |Q:N\cap Q| is equal to the index
|P : S| . On the other hand, the p subgroup N\cap Q contains S and is
contained in N , and so N\cap Q equals S. Thus the order of P equals that of
Q. Therefore P equals Q.

LEMMA 4. 2. Let N be a normal subgroup of G and K a subgroup of G
containing N. Let (A, \rho^{0}) is an interior G^{0} -algebra. Then for the intrO-
duced interior G-algebra (A, \rho) , A^{G}=A_{K}^{G} if and only if A^{G^{0}}=(A_{k^{0}})^{G^{0}}

PROOF. Immediately from the definition of A_{K}^{G} .

LEMMA 4. 3. Let N be a normal subgroup of G and H a subgroup of
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G containing N. Whenever (A, \rho)0 is a local interior G^{0} -algebra with defect
group H^{0} . a defect qroup of the introduced interior G-algebra (A, \rho) equals
a p-Sylow subgroup of H. Similarly whenever V is an indecomposable R [ G^{0}]

-module with vertex H^{0} . the vertex of the introduced R [ G] -module V equals
a p-Sylow subgroup of H.

PROOF. Let P be an p-Sylow subgroup of H . Since the defect group of
(A, \rho)0 is H^{0} lemma 4. 2 and the definition of defect group implies that the
defect group of (A, \rho) is contained in H . Therefore the defect group of
(A, \rho) is contained in P up to G-conjugate. Next we assume that the defect
group of (A, \rho) is a proper subgroup of P . Let Q be the defect group of
(A, \rho) and S a p-Sylow subgroup of N . Since S is contained in N and for
an element g of N the element \rho(g) equals 1_{A} the p subgroup S is contained
in Q, and so we may assume that Q contains S and is contained in P . By
assumption, the p subgroup Q is a proper subgroup of P , lemma 4. 1 implies
that QN is a proper subgroup of H . Therefore the factor group QN/N is
a proper subgroup of H . Since the defect group Q of {A,\rho) is contained in
QN the defect group of the interior G^{0}-algebra (A, \rho)0 is contained in QN/

N by lemma 4. 2. This is contradiction to the definition H^{0} and the defect
group of (A, \rho) equals P. Since (End_{R}(V), \rho_{V}) is a local interior G^{0}

-algebra the second statement is proved by the first statement.

THEOREM 4. 4. Let N be a normal subgroup of G and K\leq H subgroups

of G containing N. Whenever (A, \rho)0 is an epimorphic local interior G^{0}

-algebra which has defect group H^{0} and the normal subgroup (vtx_{G^{0}\cross G^{0}}(A))_{1}=

K^{0} of H^{0} , then the defect group of the introduced interior G-algebra (A, \rho)

equals a p-Sylow subgroup of H and the normal subgroup (vtx_{G\cross G}A)_{1} equals

a p-Sylow subgroup of K.

PROOF. The first statement is immediately from lemma 4. 3. Before
proving the second statement, we determine the vertex vtxG xGA . Let the
vertex vtx_{G^{0}\cross G^{0}}(A) be L/N\cross N , where L is a subgroup of G\cross G containing
N\cross N . By the second statement of lemma 4. 3, the vertex vtx_{G\cross G}A is a
p-Sylow subgroup of L . Let P be a p-Sylow subgroup of H and Q a p-Sylow
subgroup of K . Since K is a normal subgroup of H we may assume that Q

is a normal subgroup of P . Therefore the set \{(gh, h):g\in Q, h\in P\}=Q_{-1}

becomes a p-subgroup of L of order |Q|\cdot|P| . On the other hand, since
(L/N\cross N)_{1}=K^{0} the order of L equals |H|\cdot|K| , and Q_{-1} is a p-Sylow
subgroup of L . Thus by lemma 4. 2, (vtx_{G\cross G}A)_{1} equals Q.

We apply this theorem to the kernel of a block of G . Let B be a block
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of G . The kernel of B is the intersection of all indecomposable R[G]
-modules belonging to B . It is well-known that the kernel of B is a normal
p^{r}-subgroup of G . But in [13], H . Pahling proves the kernel of B is equal
to the set \{g\in G:\rho_{B}(g)=1\} , and We prove that \{g\in G:\rho_{B}(g)=1\} becomes
a p’-group using theorem 3. 5.

COROLLARY 4. 5. Let B be a block of G. Then the kernel of B is a

normal p^{r} -subgroup.

PROOF. Let (B, \rho_{B}) be the corresponding block interior G-algebra.

We may prove that \{g\in G:\rho_{B}(g)=1\}=N is a p^{r}-subgroup of G . Let G^{0} be
a factor group G/N . For a element gN of G^{0} we define the element \rho^{0}(g

N)=\rho_{B}(g) in B . Then \rho^{0} is an R-algebra epimorphism of R [ G^{0}] to B , and
obtain an epimorphic local interior G^{0}-algebra (B^{0}, \rho) . It is easy to check
that the interior G-algebra introduced from (B, \rho)0 is isomorphic to the
interior G-algebra (B, \rho_{B}) . Since the vertex vtx_{G\cross G}B equal D by theorem 3.
5, theorem 4. 4 implies that N is p^{r}-subgroup.

5. Embedding of defect groups.

In [11], G. Michler prove the
theory.

following theorem using character

THEOREM 5. 1. Let B=R [ G]e be a block with defect group D, and (B,

\rho_{B}) the corresponding block interior G-algebra. Then the restriction (\rho_{B})

|_{R[D]} : R[D]arrow B is a monomorphism.

In this section, we prove this theorem using interior G-algebra theory, in
particular, we remark that the fact (vtx_{G\cross G}B)_{1}=\langle 1\rangle is essential to prove
this.

To prove theorem we present the following lemma.

LEMMA 5. 2. Let V be an indecomposable R[G] -module which has
vertex D and source W. Then for a subgroup of G containing D there exists
an indecomposable direct summand U of the restriction V\downarrow H such that vertex
of U equals D and source of U is W.

PROOF. Since H contains D the R [ G] -module V is H-projective, and
V is a direct summand of V\downarrow_{H}\uparrow^{G} . So there exists direct summand U such
that V is a direct summand of U\uparrow^{G} . Since vtx_{G}V equals D the subgroup D
is contained in vtx_{H}U up to H-conjugate. On the other hand, V is a direct
summand of W\uparrow^{G} , and Mackey decomposition theorem implies that U is a



Some properties of interior G-algebras 463

direct summand of Wg\downarrow_{(gDg\cap H)}1\uparrow^{H} for an element g of G . Therefore the
vertex vtx_{H}U is contained in gDg^{-1}\cap H , and vtx_{H}U is contained in D up to
G-conjugate. Thus vtx_{H}U equals D up to G-conjugate.

Next we prove that source of U is W Since W is a direct summand of
U\downarrow D and vtx_{D}W is D the definition of source implies that W is a source of
U .

PROOF 0F THE0REM 5. 1. First we present a general definition concerned
with the trace map. Let V be an R[D\cross D] module H an subgroup of D\cross

D and V^{H} the R-submdule of V consists from the fixed elements by the a
ction of H . The R-linear map Tr_{D};D\cross D \Psi^{)}arrow\psi) \cross D defined by v— (d,

1)v , where d runs over the element of D .
By example 3. 4, vtx_{G\cross G}B equals D^{\Delta} . Let W be a source of A. W is an

R[D^{\Delta}] module Lemma 5. 2 implies that there exists an indecomposable
direct summand U of A\downarrow D\cross D such that vtx_{D\cross D}U equals D^{\Delta} and the source of
U equals W Since U is an indecomposable direct summand of W\uparrow D\cross D

Green’s theorem for indecomposability of induced module implies that U is
isomorphic to w^{D\cross D} . The R[D^{\Delta}] -module have the trivial module R_{D} and
the induced module R_{D}\uparrow D\cross D is isomorphic to R[D\cross D] module R[D] .
Therefore the R[D\cross D] module U have a submodule which is isomorphic to
R[D] .

Since Tr_{D}(D\cross DR[D]^{D}) is non zero Tr_{D}(D\cross DH)) is non zero.
We assume that the restriction \rho|R[D] ; R[D]arrow B is not injective.

Then the ideal I=\{x\in R[D];\beta(x)\}=0 is non zero. We denote t by the
element \sum d , where d runs over the elements of D . Since R[D] has an
unique minimal ideal (t) the element t is contained in I . Therefore the
image \rho(t) is zero in A . For an element x in H)

Tr_{D}(D\cross Dx)=\rho(t)x=0 ,

and Tr_{D}(D\cross DH)) equals 0. This is contradiction.

6. The case of (vtx_{G\cross G}A)_{1} a cyclic group.

In section 7, we shall see it occurs that the group algebra R[G] has
infinite may isomorphism classes of interior G-algebra. In this section, we
discuss the finite case using (vtx_{G\cross G}A)_{1} . This fact impresses us that the
subgroup (vtx_{G\cross G}A)_{1} of an epimorphic interior G-algebra is similar to the
vertex of an indecomposable R [ G] module

Throughout this section D is a p-subgroup of G and Q is a normal
subgroup of D . Let \mathfrak{A}(D, Q) be a family of isomorphism classes of
epimorphic local interior G algebra (A, \rho) satisfying that the defect group
of (A, \rho) is D and the subgroup (vtx_{G\cross G}A)_{1} is Q up to N_{G}(D) -conjugate.
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Then we have the following theorem.

THEOREM 6. 1. Let D, Q and \mathfrak{A}(D, Q) be as above. If the subgroup Q

is a cyclic p-group, then the family of the isomorphism classes of R-algebra A
satisfying the interior G-algebra (A, \rho) is in \mathfrak{A}(D_{J}Q) has finite many
elements.

PROOF. By proposition 3. 7, an indecomposable direct summand of the
left R [ G] -module A is Q-projective. Since Q is a cyclic group there exists
finite many isomorphism classes of these indecomposable direst summands.
On the other hand, the R-rank of A is smaller or equal than the order of G .
Hence for the epimorphic local interior G-algebra (A, \rho) in \mathfrak{A}(D, Q) the
isomorphism classes of the left R [ G] -modules A are finite.

For two epimorphic local interior G-algebras (A, \rho) and (A’, \rho 9 we
may prove whenever the left R [ G] -modules A and A’ are isomorphic, then
the R-algebras A and A’ are isomorphic. Of course, the R-algebra A is a
left A-module as regular module. Since \rho and \rho’ are epimorphisms we
obtain the following isomorphisms.

End_{G}(A)\simeq End_{A}(A)\simeq A

and
End_{G}(A’)\simeq A’

By assumption, A and A’ are isomorphic as left R[G] -module, and the
endomorphism rings End_{G}(A) and End_{A’}(A’) are isomorphic as R-algebra.

This implies the theorem.

7. Examples (p-groups)

In this section, we give some properties of an interior P-algebra, where
P is a p-group. This is a special case of interior G-algebras, but give us
implicit facts in general case. In particular, it is remarkable that this case
is similar to the principal block interior G-algebra.

LEMMA 7. 1. Let P be a p-group and (A, \rho) an epimorphic interior
P-algebra. Then the following assertions are hold.

(1) The epimorphic interior P-algebra (A, \rho) is local.
(2) The defect group of (A, \rho) is P.
(3) The vertex vtx_{P\cross}\not\simeq contains P^{\Delta} and is contained in P\cross P.

PROOF. (1). Since the algebra A is isomorphic to a quotient algebra of
R[P] and the group ring R[P] is local the algebra A^{P}= (the center of A) is
local. (2). By theorem 2. 9, the defect group of (A, \rho) contains the vertex
of the trivial R[P] -module, and this implies (2). (3). This is from theorem
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3. 1 and (2).

By lemma 7. 1, the subgroup (vtx_{P\cross}\not\simeq)_{1} is a normal subgroup of P .

We list some examples of this subgroup.

EXAMPLE 7. 2. Let P=\langle g\rangle be a cyclic p-group of order p^{n} and R=k.
Then the group ring k[P] is uniserial and for 1\leq l\leq p^{n} there is an unique
interior

P-algebra (A_{1} , \rho_{1}) such that dim_{k}A_{l}=l . The set (A_{l}, \rho_{l}) : l=1,2,\cdots ,

p^{n} is the set of all epimorphic interior P-algebras. Let P_{l} be the subgroup of
P with index |P : P_{l}| is p^{l} .

(vtx_{P\cross P}A_{l})_{1}=\{

P_{1} if l=p^{n} .
P_{2} if p^{n-1} exactly divides l .
P_{3} if p^{n-2} exactly divides I.

.\cdot. .\cdot.
P_{n-1} if p exactly divides l.
P otherwise.

EXAMPLE 7. 3. Let P=\langle g\rangle\cross\langle h\rangle be a Klein ’s four group, R=k a field
of characteristic 2 such that |k|>2 . Then all left (two sided) ideals of k

[P] are isomorphic to the k[P] -modules introduced by the following represen-
tations.

2(\gamma) : g\mapsto(\begin{array}{ll}1 10 1\end{array}) h-(\begin{array}{ll}1 \gamma 0 1\end{array})

2 (\infty) : g\mapsto(\begin{array}{ll}1 00 1\end{array}) . h\mapsto(\begin{array}{ll}1 10 1\end{array})

3: g ->(\begin{array}{l}1l0010001\end{array}) , h ->(\begin{array}{l}101010001\end{array}) .

1: g\mapsto 1 , h\mapsto 1 .

where \gamma is an element of k. See [4]. According to the above representa-
tions, we set interior P-algebras (A_{2(\gamma)}, \rho_{2(\gamma)}) , (A_{2(\infty)}) , \rho_{2(\infty)}) , (A_{3}, \rho_{3}) and
(A_{1}, \rho_{1}) respectively. Then

(vtx_{P\cross P}A_{2(\gamma)})_{1}=\{

P if \gamma\neq 0,1 , \infty .
\langle g\rangle if \gamma=\infty .
\langle h\rangle if \gamma=0 .
\langle gh\rangle if \gamma=1 .

(vtx_{P\cross P}A_{3})_{1}=P

(vtx_{P\cross P}A_{1})_{1}=P.
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Example 7. 2 and 7. 3 implies the following proposition.

PROPOSITION 7. 4. Let P be a p-group and R=k. Then the number of
the isomorphic classes of epimorphic interior P-algebras is finite if and only if
the group P is a cyclic group.

PROOF. If P is cyclic, by example 7. 2, the number of the isomorphic
classes of epimorphic interior P-algebras is finite.

Assume that P is not cyclic. Then there exists a normal subgroup Q of
P such that the factor group P/Q is the elementary p-group of order p^{2} . So
we may prove that the number of isomorphic classes of epimorphic interior
P-algebras is infinite in the case that P=\langle g\rangle\cross\langle h\rangle is an elementary p-group
of order p^{2} . But we obtain the representation

garrow(\begin{array}{ll}1 10 1\end{array}) harrow(\begin{array}{ll}1 \gamma 0 1\end{array}) ,

where \gamma is the element of the unit of k , and have the corresponding
epimorphic interior P-ablebra (A_{2(\gamma)}, \rho_{2(\gamma)}) . Since (A_{2(\gamma)}, \rho_{2(\gamma)}) is isomor-
phic to (A_{2(\gamma 0}, \rho_{2(_{7}\gamma}) if and only if \gamma=\gamma’ proposition is hold.

The following proposition is concerned with the existence of two sided
ideals of R[P] .

PROPOSITION 7. 5. Let Q be a normal subgroup of P. Then there exists
an epimorphic interior P-algebra (A, \rho) such that (vtx_{P\cross P}A)_{1} equals Q.

PROOF. By proposition 4. 4, for the epimorphic interior P-algebra (R
[P/Q] , \rho_{Q}) , where \rho_{Q} is the R-algebra homomorphism introduced by the
canonical homomorphism Parrow P/Q, the normal subgroup (vtx_{P\cross P}R[P/Q])_{1}

equals Q. This implies proposition.

Finally, we give the relation between the epimorphic interior P-algebra
with (vtx_{P\cross}\not\simeq)_{1}=Q and the epimorphic interior P-algebra (R[P/Q], \rho_{Q}) .

PROPOSITION 7. 6. Let (A, \rho) be as above. Then there exists an
(unique) morphism of (A, \rho) onto (R[P/Q], \rho_{Q}) .

PROOF. Since (vtx_{P\cross}A)_{1} equals Q the vertex vtx_{P\cross P}A equals L=Q_{-1}

and a source W Let R_{L} be the trivial R[L] -module, then the R[P\cross P]

-module R[P/Q] is isomorphic to R_{L}\uparrow P\cross P Because P is p-group, there
exists a surjective homomorphism of W to R_{L} , and so there exists a
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surjective homomorphism W\uparrow^{PxP} to R_{L}\uparrow^{P\cross P} The Green’s theorem and the
above remark implies that there exists a surjective homomorphism \varphi of the
R[P\cross P] module A to the R[P\cross P] module R[P/Q] .

Obviously, the image \varphi(1_{A}) is in the center Z(R[P/Q]) . Since \varphi is
epimorphism and an R[P\cross P] -homomorphism we have

\varphi(A)=\varphi(\rho(R[P])1_{A})=R[P/Q]\varphi(1_{A})=R[P/Q] . Therefore \varphi

(1_{A})=x is an unit of R[P/Q] . Now we define a map \varphi_{0} of A to R[P/Q] as
following.

\varphi_{0} ; aarrow x^{-1}\varphi(a) .

Then \varphi_{0}(1_{A}) equals 1 in R[P/Q] . It is easyly checked that \varphi_{0} is a morphism

of (A, \rho) onto (R[P/Q], \rho_{Q}) . The uniqueness is from the definition of
morphism.
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