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\S 1. Introduction

In his paper [5] Kwapien has shown that the following: Let E be a
Banach space, 1<p<\infty and 1/p+1/p^{r}=1 . Then E is isomorphic with a
subspace of L_{p} if and only if every dual p-absolutely summing operator from
l_{p} , into E is p-absolutely summing: E is isomorphic with a quotient of L_{p} if

and only if every dual p-integral operator from l_{p’} into E is p-integral \cdot, and
E is isomorphic with a subspace of a quotient of L_{p} if and only if every dual
p-integral operator from l_{p’} into E is p-absolutely summing. In this paper,
we shall extend his results. Let X be a Banach space whose dual X’ is a
closed subspace of l_{p}. Let f_{n} be the projection of X’ onto the n-th coordinate.
Then we have f_{n}\in X=X’ The sequence \{f_{n}\} is called that of unit vectors
in X. In particular, we denote by \{ e_{n}\} the sequence of unit vectors in l_{p’} .
Then the main results of this paper are the following:

(1) E is isomorphic with a subspace of L_{p} if and only if for each Banach
space X with X’\subset l_{p} and each operator u:Xarrow E, \Sigma||uCf_{n}) ||^{p}<\infty implies u is
p-absolutely summing.

(2) E is isomorphic with a quotient of L_{p} if and only if for each
operator u:l_{p}arrow E, \sum||u(e_{n})||^{p}<\infty implies u is p integral

(3) E is isomorphic with a subspace of a quotient of L_{p} if and only if for
each operator u:l_{p}arrow E, \sum||u(e_{n})||^{p}<\infty implies u is p-absolutely summing.

REMARK. Similar characterizations of subspaces of L_{p} were given by

Holub [2], Kalton and Ruckle [3], and Lindenstrauss and Pelczynski [6]

(see also Cohen [1] and Kwapien [4] for the case p=2.) Let us recall that
an operator u:l_{p}arrow E is called dual p-decomposed if \sum||u(e_{n})||^{p}<\infty . From
(1) it follows that E is isomorphic with a subspace of L_{p} if and only if every
dual sub-p-nuclear operator from l_{p’} into E is dual p decomposed. This

extends the results of [2] and [5]. Note that sub-p-nuclear operators are
always p-absolutely summing, but in general, the converse is not true (see

Persson [7] ) . On the other hand, (2) and (3) extend the results of
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Kwapien [5] since every dual p decomposed operator from l_{p’} into E is dual
p integral. Finally, we note that E is isomorphic with a subspace of a
quotient of L_{p} if and only if every dual p integral (or p-nuclear) operator
from l_{p’} into E is dual p decomposed

\S 2. Definitions and notations

Let E be a Banach space with the dual E’p be a real number such that
1\leqq p<\infty and 1/p+1/p^{r}=1 . Denote by L(E, F) the set of all continuous
linear operators from E into a Banach space F. For an operator u in L(E,
F) , the adjoint of u will be denoted by u’.

DEFINITION 2. 1. An operator u in L(E, F) is called p-nuclear if it has
a factorization of the form

Earrow l_{\infty}l_{\vec{p}}F\underline{(\alpha)}

where (\alpha) is multiplication by an element \alpha in l_{p}.
The set of all p nuclear operators from E into F will be denoted by

N_{p}(E, F) : N_{p}(E, F) is clearly a linear space. For p=1 the class
N_{1}(E, F) coincides with the space of all nuclear operators from E into F.

Similarly, we can define “ sub-/)-nuclear operator” by introducing a
sub-factorization in the obvious way.

DEFINITION 2. 2. An operator u in L(E, F) is called p-integral if it has
a factorization of the form

i
Earrow L_{\infty}(\Omega, \mu)arrow L_{p}(\Omega, \mu)arrow F

where (\Omega, \mu) is a probability space and i is the natural injection.
The set of all p-integral operators from E into F will be denoted by

I_{p}(E, F) ; I_{p^{1}}(E, F) is clearly a linear space. Of course the inclusion
N_{p}(E, F)\subset I_{p}(E, F) always holds, but in general, the converse inclusion
does not holds. It is known that if E is reflexive or E’ is separable, then for
each Banach space F the inclusion I_{p}(E, F)\subset N_{p}(E, F) holds (see Persson
[7], Corollary 1 and Theorem 5).

DEFINITION 2. 3. An operator u in L(E, F) is called p-absolutely
summing if there exists a constant C>0 such that for each x_{1} , &, \ldots , x_{n} in
E the inequality

( \Sigma_{i=1}^{n}||u(x_{i})||^{p})^{1/p}\leqq C\sup\{(\Sigma_{i=1}^{n}|<x_{i}, x’>|^{p})^{1/p} ; x’\in E’. ||x’||\leqq 1\}

holds.
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The set of all p absolutely summing operators from E into F will be
denoted by \Pi_{p}(E, F) . It is known that \Pi_{p}(E, F) is a linear space and in fact
a Banach space when equipped with the norm \Pi_{p}(u)=\inf C.

Let us recall that a sequence { x_{n}\rangle in E is called weakly p-summable if
\sum|<x_{n} , x’>|^{p}<\infty for all x’\in E’ and it is also called absolutely p-summable
if \Sigma||x_{n}||^{p}<\infty . It is easy to see that an operator u in L(E, F) is
p absolutely summing if and only if it takes each weakly p-summable
sequence { x_{n}\rangle in E into an absolutely p-summable sequence \{ u(x_{n})\} in F.
(For the details of p absolutely summing operators; see Pietsch [8] and
[9].)

\S 3. Main results

We shall say that a Banach space E is of S_{p} type, resp. Q_{p} type, resp.
SQ_{p} type, resp. QS_{p} type if it is isomorphic with a subspace of L_{p} , resp. with
a quotient of L_{p} , resp. with a subspace of a quotient of L_{p} , resp. with a
quotient of a subspace of L_{p} . Let us mention that every Banach space is of
Q_{1} type, of SQ_{1} type and of QS_{1} type. As mentioned in Section 1, if X is a
Banach space whose dual X’ is a closed subspace of l_{p} , 1<p<\infty , then we
denote by \{f_{n}\} the sequence of unit vectors in X. In prticular, we also
denote by \{ e_{n}\} the sequence of unit vectors in l_{p},, where 1/p+1/p^{\gamma}=1 .

We shall first give characterizations of Banach spaces of SQ_{p} type and
QS_{p} type, which extend the results of Kwapien [5]. From now on let us
assume that 1<p<\infty and 1/p+1/p^{r}=1 .

THEOREM 3. 1. For a Banach space E, the following statements are
equivalent.

(1) E is of QS_{p} type.
(2) E is of SQ_{p} type.
(3) For an operator u in L(l_{p},, E) , u\in\Pi_{p}(l_{p},, E) if and only if

\Sigma||u(e_{n})||^{p}<\infty .
(4) For an operator u in L(l_{p},, E) , u’\in N_{p}(E’l_{p}) if and only if

\Sigma||u(e_{n})||^{p}<\infty .

PROOF. We shall first show the equivalence of (1) and (2). Suppose
(1) holds. Then there are a Banach space F of S_{p} type and a quotient map
\phi from F onto E. For each Banach space G if u\in I_{p’}(E, G) , then u\phi\in I_{p}’(F,

G) , so that \phi’u’\in\Pi_{p’}(G_{j}’F\gamma by Kwapien [5], Corollary 8. Hence we have
u’\in\Pi_{p},(G’. E’) since \phi’ : E’arrow F’ is isomorphism. Using Kwapien [5],
Corollary 8, it follows that E is of SQ_{p} type. On the other hand, suppose
(2) holds. Since E’ is of QS_{p’} type, by the first proof (1)\Rightarrow(2) it is also of
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SQ_{p’} type, so that E is of QS_{p} type.
We shall next show the implication (1)\supset(4) . Suppose (1) holds.

In order to prove (4), it is enough to show that u’\in N_{p}(E’l_{p}) implies \sum||u

(e_{n})||^{p}<\infty . However this follows from Kwapien [5], Corollary 8 and the
fact that E’ is of SQ_{p’} type and every p-nuclear operator is also p-integral.

Finally, we shall show the implications (4)\Rightarrow(3)\Rightarrow(2) .
(4)\supset(3) Of course we only have to prove one implication. Suppose

(4) is satisfied and let \Sigma||u(e_{n})||^{p}<\infty , where u\in L(l_{p’}, E) . Then the
operator u’ : E’arrow l_{p} is clearly p-nuclear. Let \{x_{n}\} be an weakly p-summable
sequence in l_{p} ,. If we define the operator v in L(l_{p’}, l_{p’}) by v(e_{n})=x_{n} for n=
1,2 , \ldots , then v’u’\in N_{p}(E’. l_{p}) , so that by the assumption (4) we get

\Sigma||u(x_{n})||^{p}=\Sigma||uv(e_{n})||^{p}<\infty ,

which means u\in\Pi_{p}(l_{p’}, E) .
(3)\Rightarrow(2) If we put

\Lambda_{p}(l_{p’}, E)=\{u\in L(l_{p’}, E) : |||u|||=(\Sigma||u(e_{n})||^{p})^{1/p}<\infty\} ,

then it is easy to see that \Lambda_{p}(l_{p’}, E) is a Banach space with the norm
|||\circ||| Suppose now (3) is satisfied. Since the identity map: \Pi_{p}(l_{p’}, E)arrow

\Lambda_{p}(l_{p}’, E) is clearly continuous, by the closed graph theorem there is a
constant C>0 such that for each u\in\Lambda_{p}(l_{p’}, E) there holds

(*) \Pi_{p}(u)\leqq C|||u|||

Let { x_{i/}^{\iota} be an absolutely p-summable sequence in E, and let (a_{ij}) be a
matrix defining an operator v in L(l_{p}, l_{p}) . Define the operator w in L(l_{p’}, E)

by w(e_{i})=x_{i} for i=1,2 , \ldots Since w\in\Lambda_{p}(l_{p’}, E) , by the assumption (3) w
\in\Pi_{p}(l_{p}’, E) , and so we get wv’\in\Pi_{p}(l_{p’}, E) . It follows from (*) that the
estimations

( \sum||wv’(e_{i})||^{p})^{1/p}\leqq\Pi_{p}(wv9\leqq||v’||\Pi_{p}(w)

\leqq C||v||\circ|||w|||=C||v||(\sum||x_{i}||^{p})^{1/p}

hold. Since v’(e_{i})= \sum_{j}a_{ij}e_{j} for i=1,2 , \ldots . we get

\sum_{i}||wv’(e_{i})||^{p}=\sum_{i}||\sum_{j}a_{ij}x_{j}||^{p} .

Thus using Kwapien [5], Theorem 2’, it follows that E is of SQ_{p} type.
This completes the proof.

COROLLARY 3. 2. For a Banach space E, the following statements are
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equivalent.
(1) E is of SQ_{p} type.
(2) For each absolutely p-summable sequence \{x_{n}\} in E, there exists a

Banach subspace G of E which is of SQ_{p} type such that the sequence \{x_{n}\} is
contained in G and it is absolutely p-summable in G. {Here “ Banach
subspace ” means that G is a linear subspace of E and itself is a Banach space
such that the inclusion rmp : Garrow E is continuous.}

(3) Every separable subspace of E is of SQ_{p} type.

PROOF. Of course we only have to prove the implication (2)\supset(1) .
Suppose (2) is satisfied and let \Sigma||u(e_{n})||^{p}<\infty , where u\in L(l_{p’}, E) . If we
can show u\in\Pi_{p}(l_{p},, E) , then the assertion follows from Theorem 3. 1. In
fact, let x_{n}=u(e_{n}) . Since the sequence \{x_{n}\} in E is absolutely p-summable,
by the assumption there exists a Banach subspace G of E as in (2). Since
G is of SQ_{p} type and u may be regarded as a continuous linear operator from
l_{p’} into G, using Theorem 3. 1 it follows that u\in\Pi_{p}(l_{p’}, G) , and so we get u

\in\Pi_{p}(l_{p’}, E) .
This completes the proof.
Next we shall give characterizations of Banach spaces of Q_{p} type, which

extend a result of Kwapien [5].

THEOREM 3. 3. For a Banach space E, the following statements are
equivalent.

(1) E is of Q_{p} type.
(2) For an operator u in L(l_{p’}, E) , u\in I_{p}(l_{p’}, E) if and only if

\Sigma||u(e_{n})||^{p}<\infty .
(3) For an operator u in L(l_{p’}, E) , u\in I_{p}(l_{p’}, E) if and only if u’\in

N_{p}(E’l_{p}) .

PROOF. First we shall show (1)\Rightarrow(3) . Suppose (1) holds. Then
E’ is of S_{p} , type. Hence the assertion follows from Kwapien [5], Corollary
4, since N_{p}(E’. l_{p})\subset I_{p}(E’. l_{p}) .

(3)\supset(2) is clear.
Finally, we shall show (2)\supset(1) . Suppose (2) holds. Since

I_{p}(l_{p’}, E)\subset\Pi_{p}(l_{p’}, E) , by Theorem 3. 1 E is of SQ_{p} type, and hence it is
reflexive. To prove (1), it is enough to see that E’ is of S_{p’} type. Let G be
a Banach space and u\in I_{p}(E’G) . Since E is reflexive, by Persson [7],
Corollary 1, u\in N_{p}(E’. G) so that it has a factorization of the form

E’arrow l_{\infty}arrow l_{p}Gv(\alpha)\vec{w}
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where u=w(\alpha)v and (\alpha) is multiplication by an element \alpha\in l_{p} . It is easy
to see that v’(\alpha)’\in L(l_{p},, E) and \Sigma||v’(\alpha)’(e_{n})||^{p}<\infty . Hence from the
assumption (2) it follows that v’(\alpha)’\in I_{p}(l_{p},, E) , and so we get u’=v’(\alpha)’w’

\in I_{p}(G’E) . Thus using Kwapien [5], Corollary 4, E’ is of S_{p’} type.
This completes the proof.

COROLLARY 3. 4. For a Banach space E, the following statements are
equivalent.

(1) E is of Q_{p} type.
(2) For each absolutely p-summable sequence \{x_{n}\} in E, there exists a

Banach subspace G of E which is of Q_{p} type such that the sequence \{x_{n}\} is
contained in G and it is absolutely p-sumrmble in G.

(3) Every separable subspace of E is of Q_{p} type.
Using Theorem 3. 3, the proof can be done by the same way as in that of

Corollary 3. 2, and so we omit it.
Finally, we shall give characterizations of Banach spaces of S_{p} type,

which extend the results of Holub [2], Kalton and Ruckle [3] and Kwapien
[5]. In particular, taking p=2, we get characterizations of Banach spaces
isomorphic with Hilbert spaces, which extend the results of Cohen [1] and
Kwapien [4].

THEOREM 3. 5. For a Banach space E, the following statements are
equivalent.

(1) E is of S_{p} type.
(2) For each Banach space X with X’\subset l_{p} and each operator u in L(X,

E) , u\in\Pi_{p}(X, E) if and only if \Sigma||u(f_{n})||^{p}<\infty .
(3) For an operator u in L(l_{p’}, E) , \Sigma||u(e_{n})||^{p}<\infty if and only if u’ : E’

arrow l_{p} is sub-p-nuclear.
(4) For a sequence \{x_{i}\} in E, if

\sum_{i}\sum_{j}|<x_{i} , x_{j}’>|^{p}<\infty

for every weakly p-sumrmble sequence \{x_{j}’\} in E’ then \sum||x_{i}||^{p}<\infty .
(5) For a sequence \{x_{i}\} in E, if \Sigma||u(x_{i})||^{p}<\infty for every u in L(E, l_{p}) ,

then \Sigma||x_{i}||^{p}<\infty .

PROOF. (1)\supset(5) Let \{x_{i}\} be a sequence in E satisfying that
\Sigma||u(x_{i})||^{p}<\infty for every u\in L(E, l_{p}) .

Then for each u in L(E, l_{p}) and each sequence \{\alpha_{i}\} of complex numbers
such that \Sigma|\alpha_{i}|^{p’}<\infty , there holds
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\Sigma||u(\alpha_{i}x_{i})||\leqq(\Sigma||u(x_{i})||^{p})^{1/p}(\Sigma|\alpha_{i}|^{p’})^{1/p’}<\infty .

Since E is of S_{p} type, using Kalton and Ruckle [3], Theorem, it follows that
\Sigma||\alpha_{i}x_{i}||<\infty , and so we get \Sigma||x_{i}||^{p}<\infty since the sequence \{\alpha_{i}\} is arbitrary.

(5)\supset(4) Let \{x_{i}\} be a sequence in E satisfying that

\sum_{i}\sum_{j}|<x_{i} , x_{j}’>|^{p}<\infty

for every weakly p-summable sequence \{x_{j}’\} in E’ Then for each u in
L(E, l_{p}) , we get

\sum_{i}||u(x_{i})||^{p}=\sum_{i}\sum_{j}|<u(x_{i}) , e_{j}>|^{p}

= \sum_{i}\sum_{j}|<x_{i} , u’(e_{j})>|^{p}<\infty

since the sequence { u’(e_{j})/\backslash in E’ is weakly p-summable.
Hence by the assumption (5) we get \sum||x_{i}||^{p}<\infty .

(4)\Rightarrow(3) Of course it is enough to show that for an operator u in
L(l_{p},, E) , if u’ : E’arrow l_{p} is sub-p-nuclear, then \Sigma||u(e_{n})||^{p}<\infty . Suppose that
u’ is sub-p-nuclear. Then u’ is clearly p-absolutely summing. Hence for
each weakly p-summable sequence \{x_{j}’\} in E’. there holds

\sum_{i}\sum_{j}|<u(e_{i}) , x_{j}’>|^{p}= \sum_{i}\sum_{j}|<e_{i} , u’(x_{j}’)>|^{p}

= \sum_{j}||u’(x_{j}’)||^{p}<\infty .

Thus by the assumption (4) we get \Sigma||u(e_{i})||^{p}<\infty .
(3)\supset(2) Let X be a Banach space whose dual X’ is a closed subspace

of l_{p} . Suppose that \Sigma||u(f_{n})||^{p}<\infty , where \^u L\{X,E). Then it is easy to
see that u’ : E’arrow X’ is sub-p-nuclear. Now we shall prove that u:Xarrow E is
p-absolutely summing. Let \{x_{n}\} be an weakly p-summable sequence in X.
If we define the operator v:l_{p}arrow X by v(e_{n})=x_{n} for n=1,2 , \ldots \neg then v’u’ : E’
arrow l_{p} is sub-P-nuclear since u’ is sub-p-nuclear. Hence by the assumption (3)

we get

\Sigma||uv(e_{n})||^{p}=\Sigma||u(x_{n})||^{p}<\infty ,

which shows u:Xarrow E is p-absolutely summing.
(2)\supset(1) For the proof, we use the Lindenstrauss-Pelczynski

criterion [6] embedding of a Banach space into L_{p} . Let \{x_{n}\} and \{y_{n}\} be
two sequences in E satisfying the following conditions

\Sigma|<y_{n} , x’>|^{p}\leqq\Sigma|<x_{n} , x’>|^{p} for all x’\in E’-
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and

\Sigma||x_{n}||^{p}<\infty .

Consider the operator u:E’arrow l_{p} defined by

u(x\gamma=(<x_{n}, x’>) for x’\in E’

If we put G=u(E0 , then G is a normed space when equipped with the
induced topology by l_{p} . Denote by X the dual of G. Evidently, X is a
reflexive Banach space whose dual X’ is a closed subspace of l_{p} , and u may
be regarded as a continuous linear operator from E’ into X’ Note that u
has a dense range in X’ Hence we can define the operator v:X’arrow l_{p} by

v : (<x_{n}, x’>)-arrow(<y_{n}, x’>) for x’\in E’

Here we may assume that E is reflexive and in fact by the assumption (2)

and Theorem 3, 1 it is of SQ_{p} type. Thus u’\in L(X, E) . Since
\Sigma||u’(f_{n})||^{p}=\Sigma||x_{n}||^{p}<\infty ,

from the assumption (2) it follows that u’\in\Pi_{p}(X, E) , and so u’v’\in

\Pi_{p}(l_{p’}, E) . Consequently, we get

\Sigma||y_{n}||^{p}=\Sigma||u’v’(e_{n})||^{p}<\infty .

Using Lindenstrauss-Pelczynski criterion [6] it follows that E is S_{p} type.
This completes the proof.

REMARK. In the statement (3) of Theorem 3. 5, “ sub-p-nuclear ” can
be replaced by “ p-absolutely summing” but it can not be replaced by
“ p-nuclear ” or “ p-integral ” (see, Theorem 3. 1.) For the case p=1 , we
consider the following statements (20 and (30 instead of (2) and (3) :

(20 For each Banach space X isomorphic with a quotient of c_{0} and
each operator u in L(X, E) , u\in\Pi_{1}(X, E) if and only if \Sigma||u(f_{n})||<\infty . (In

this case, the sequence { f_{n/}^{1} is defined by f_{n}=\phi(e_{n}) for n=1,2 , \ldotsarrow where
{ e_{n/}^{1} is the sequence of unit vectors \overline{1}nc_{0} and \phi is a quotient map from c_{0} onto
X.)

(3’) For an operator u in L(c_{0}, E) , \Sigma||u(e_{n})||<\infty if and only if u’ : E’
arrow l_{1} is sub-l-nuclear.

Then for 1\leqq p<\infty , Theorem 3. 5 is also true.
By Theorem 3. 5 and the Remark we get

COROLLARY 3. 6. Let E be a Banach space and 1\leqq p<\infty . Then the
following statements are equivalent.

(1) E is of S_{p} type.
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(2) For each absolutely p-summable sequence { x_{n/}^{(} in E, there exists a

Banach subspace G of E which is of S_{p} type such that the sequence { x_{n/}^{\mathfrak{l}} is
contained in G and it is absolutely p-sumrmble in G.

(3) Every separable subspace of E is of S_{p} type.
In particular, taking p=2, we get

COROLLARY 3. 7 For a Banach space E, the following statements are
equivalent.

(1) E is isomorphic with a Hilbert space.
(2) For an operator u in L(l_{2}, E) , u\in\Pi_{2}(l_{2}, E) if and only if

\Sigma||u(e_{n})||^{2}<\infty .
(3) For an operator u in L(l_{2}, E) , u’\in N_{2}(E’l_{2}) if and only if

\Sigma||u(e_{n})||^{2}<\infty .
(4) For a sequence { x_{n/}^{\iota} in E, if \sum||u(x_{n})||^{2}<\infty for every u in

L(E, l_{2}) , then \Sigma||x_{n}||^{2}<\infty .
(5) For each absolutely 2-summable sequence \{x_{n}\} in E, there exists a

Hilbert subspace H such that the sequence { x_{n/}^{1} is contained in H and it is
absolutely 2-summable in H.

(6) Every separable subspace of E is isomorphic with l_{2} .
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