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A Class of Functions Defined by Using Hadamard Product
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Abstract

We introduce a class P_{a}[\beta, \gamma] of functions defined by using Hadamard
product f*S_{a}(z) of f(z) and S_{a}(z)=z/(1-z)^{2(1-a)} . The object of the
present paper is to determine extreme points, coefficient inequalities,
distortion theorems, and radii of starlikeness and convexity for functions in
P_{a}[\beta, \gamma] . Further, we give distortion theorems for fractional calculus of
functions belonging to the class P_{a}[\beta, \gamma] .

1. Introduction

Let A denote the class of functions of the form

(1. 1) f(z)=z+ \sum_{n=2}^{\infty}a_{n}z^{n}

which are analytic in the unit disk U=\{z:|z|<1\} . And let S denote the
subclass of A consisting of analytic and univalent functions f(z) in the unit
disk U. A function f(z) in S is said to be starlike of order \alpha if

(1.2) Re \{\frac{zf’(z)}{f(z)}\}>\alpha (z\in U)

for some \alpha(0\leqq\alpha<1) . We denote by S^{*}(\alpha) the class of all starlike
functions of order \alpha . Further, a function f(z) in S is said to be convex of
order \alpha if

(1.3) {\rm Re} \{1+\frac{zf^{rr}(z)}{f’(z)}\}>\alpha (z\in U)

for some \alpha(0\leqq\alpha<1) . And we denote by K(\alpha) the class of all convex
functions of order \alpha . It is well-known that f(z)\in K(\alpha) if and only if zf’(z)
\in S^{*}(\alpha) , and that S^{*}(\alpha)\subseteq S^{*}(0)\equiv S^{*} . and K(\alpha)\subseteq K(0)\equiv K for 0\leqq\alpha<1 .

These classes S^{*}(\alpha) and K (\alpha) were first introduced by Rebertson [9],
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and later were studied by Schild [12], MacGregor [4] and Pinchuk [8].
Now, the function

(1. 4) S_{a}(z)= \frac{z}{(1-z)^{2(1-a)}}

is the well-known extremal function for the class S^{*}(\alpha) (see [9, p. 385],
[1] ) . Setting

\Pi n(k-2\alpha)

(1. 5) C( \alpha, n)=\frac{k=2}{(n-1)!} (n=2,3,4, \ldots) ,

S_{a}(z) can be written in the form

(1.6) S_{a}(z)=z+ \sum_{n=2}^{\infty}C(\alpha, n)z^{n} .

Then we note that C(\alpha, n) is decreasing in \alpha and satisfies

(1. 7) \lim_{narrow\infty}c(\alpha, n)=\{

\infty(\alpha<1/2)

1 (\alpha=1/2)

0 (\alpha>1/2) .

Let f*g(z) be the convolution or Hadamard product of two functions
f(z) and g(z) , that is, if f(z) is given by (1.1) and g(z) is given by

(1.8) g(z)=z+ \sum_{n=2}^{\infty}b_{n}z^{n},

then

(1.9) f*g(z)=z+ \sum_{n=2}^{\infty}a_{n}b_{n}z^{n} .

We say that a function f(z) defined by (1. 1) belongs to the class P_{a}(\beta, \gamma)

if f(z) satisfies the following condition

(1. 10) | \frac{(f*S_{a}(z))’-1}{(f*S_{a}(z))+(1-2\beta)},|<\gamma (z\in U)

for \beta(0\leqq\beta<1) and \gamma(0<\gamma\leqq 1) .
Let T denote the subclass of A consisting of functions f(z) whose

nonzero coefficients, from the second on, are negative. That is, an analytic
function f(z) is in the class T if it can be expressed as

(1. 11) f(z)=z- \sum_{n=2}^{\infty}a_{n}z^{n} (a_{n}\geqq 0) .
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And we denote by P_{a}[\beta, \gamma] the class obtained by taking intersection of
P_{a}(\beta, \gamma) with T, that is,

P_{a}[\beta, \gamma]=P_{a}(\beta, \gamma)\cap T .

The class P_{a}[\beta, \gamma] is the generalization of the c1assP^{*}(\beta, \gamma) which was
introduced by Gupta and Jain [3]. In particular, P_{1/2}[\beta, \gamma]=P^{*}(\beta, \gamma) when
\alpha=1/2 . Further we note that many classes defined by using the Hadamard
product f*S_{a}(z) of f(z) and S_{a}(z) were introduced by Sheil-Small,
Silverman and Silvia [13], Silverman and Silvia ([15], [16]), and Ahuja
and Silverman [1].

2. Coefficient Inequalities

THEOREM 1. Let the function f(z) be defifined by (1.11). Then f(z)
is in the class P_{a}[\beta, \gamma] if and only if

(2. 1) \sum_{n=2}^{\infty}n(1+\gamma)C(\alpha, n)a_{n}\leqq 2\gamma(1-\beta) .

The result is sharp.

PROOF. We employ the same technique as used by Ahuja and Silverman
[1]. Let f(z) be in the class P_{a}[\beta, \gamma] . Then we have

(2.2) | \frac{(f*S_{a}(z))’-1}{(f*S_{a}(z))+(1-2\beta)},|

=| \frac{-\sum_{n=2}^{\infty}nC(\alpha,n)a_{n}z^{n-1}}{2(1-\beta)-\sum_{n=2}^{\infty}nC(\alpha,n)a_{n}z^{n-1}}|<\gamma

for all z\in U . Since the denominator in (2. 2) is positive for small positive
values of z and, consequently, for all z(0<z<1) , we let zarrow 1^{-} to obtain

(2.3) \sum_{n=2}^{\infty}nC(\alpha, n)a_{n}\leqq\gamma\{2(1-\beta)-\sum_{n=2}^{\infty}nC(\alpha, n)a_{n}\} ,

which is equivalent to (2. 1).

For the converse, let the inequality (2. 1) hold. Then we obtain that
(2. 4) |(f*S_{a}(z))’-1|-\gamma|(f*S_{a}(z))’+(1-2\beta)|

=|- \sum_{n=2}^{\infty}nC(\alpha, n)a_{n}z^{n-1}|-\gamma|2(1-\beta)-\sum_{n=2}^{\infty}nC(\alpha, n)a_{n}z^{n-1}|

\leqq\sum_{n=2}^{\infty}n(1+\gamma)C(\alpha, n)a_{n}-2\gamma(1-\beta)\leqq 0 .
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Hence, by the maximum modulus theorem, we can see that f(z) is in the
class P_{a}[\beta, \gamma] .

Finally the result is sharp, with the extremal function being of the form

(2. 5) f(z)=z- \frac{2\gamma(1-\beta)}{n(1+\gamma)C(\alpha,n)}z^{n}

for some n\geqq 2 .

COROLLARY 1. Let the function f(z) defifined by (1. 11) be in the class
P_{a}[\beta, \gamma] . Then

(2.6) a_{n} \leqq\frac{2\gamma(1-\beta)}{n(1+\gamma)C(\alpha,n)}

for n\geqq 2 . The eqmlity is attained by the function f(z) in (2. 5).

In view of Theorem 1, it follows that P_{a}[\beta, \gamma] is closed under convex
linear combinations. We shall now show that the extreme points of the
closed convex hull of P_{a}[\beta, \gamma] are those that maximize the coefficients.

THEOREM 2. Let

(2. 7) f_{1}(z)=z

and

(2.8) f_{n}(z)=z- \frac{2\gamma(1-\beta)}{n(1+\gamma)C(\alpha,n)}z^{n} (n\geqq 2) .

Then f(z) is in the class P_{a}[\beta, \gamma] if and only if it can be expressed in the
form

(2.9) f(z)= \sum_{n=1}^{\infty}\lambda J_{n}(z) ,

where \lambda_{n}\geqq 0 for n\in N=\{1,2,3, \ldots\} and

(2. 10) \sum_{n=1}^{\infty}\lambda_{n}=1 .

PROOF. Assume that

(2. 11) f(z)= \sum_{n=1}^{\infty}\lambda,f_{n}(z)=z-\sum_{n=2}^{\infty}\frac{2\gamma(1-\beta)}{n(1+\gamma)C(\alpha,n)}\lambda_{n}z^{n}

=z- \sum_{n=2}^{\infty}a_{n}z^{n},

where
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(2. 12) a_{n}= \frac{2\gamma(1-\beta)}{n(1+\gamma)C(\alpha,n)}\lambda_{n} .

Then we observe that

(2. 13) \sum_{n=2}^{\infty}n(1+\gamma)C(\alpha, n)a_{n}=2\gamma(1-\beta)\sum_{n=2}^{\infty}\lambda_{n}

=2\gamma(1-\beta)(1-\lambda_{1})\leqq 2\gamma(1-\beta) .

This shows that f(z)\in P_{a}[\beta, \gamma] with the aid of Theorem 1.
Conversely, assume that f(z) is in the class P_{a}[\beta, \gamma] for 0\leqq\alpha<1 ,

0\leqq\beta<1 , and 0<\gamma\leqq 1 . Remembering the formula

\sum_{n=2}^{\infty}\frac{n(1+\gamma)C(\alpha,n)}{2\gamma(1-\beta)}a_{n}\leqq 1 ,

from Theorem 1, we may set

(2. 14) \lambda_{n}=\frac{n(1+\gamma)C(\alpha,n)}{2\gamma(1-\beta)}a_{n} (n\geqq 2)

and we have

\sum_{n=2}^{\infty}\lambda_{n}\leqq 1 .

Setting

(2. 15) \lambda_{1}=1-\sum_{n=2}^{\infty}\lambda_{n} ,

we have the representation (2. 9). Thus we have the theorem.

3. Distortion Theorems

With the aid of Theorem 2, we may now find bounds on the modulus of
f(z) and f’(z) for f(z)\in P_{a}[\beta, \gamma] .

THEOREM 3. If the function f(z) defifined by (1. 11) is in the class
P_{a}[\beta, \gamma] , 0\leqq\beta<1,0<\gamma\leqq 1 , and either 0\leqq\alpha\leqq 5/6 or |z|\leqq 3/4 , then

(3. 1) |f(z)| \geqq\max\{0 , |z|- \frac{\gamma(1-\beta)}{2(1-\alpha)(1+\gamma)}|z|^{2}\}

and

(3.2) f(z)| \leqq|z|+\frac{\gamma(1-\beta)}{2(1-\alpha)(1+\gamma)}|z|^{2} .

The bounds are sharp.
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PROOF. By virtue of Theorem 2, we note that

(3. 3) |f(z)| \geqq\max\{0 , |z|- \max_{n\in N-_{1}1},\frac{2\gamma(1-\beta)}{n(1+\gamma)C(\alpha,n)}|z|n\}

and

(3.4) |f(z)| \leqq|z|+\max_{n\in N-\{1}\frac{2\gamma(1-\beta)}{n(1+\gamma)C(\alpha,n)}|z|n

for z\in U. Hence it suffices to deduce that

(3. 5) G( \alpha, \beta, \gamma, |z|, n)=\frac{2\gamma(1-\beta)}{n(1+\gamma)C(\alpha,n)}|z|n

is a decreasing function of n(n\geqq 2) . Since

(3. 6) C( \alpha, n+1)=\frac{n+1-2\alpha}{n}C(\alpha, n) ,

we can see that, for |z|\neq 0 ,

(3. 7) G(\alpha, \beta, \gamma, |z|, n)\geqq G(\alpha, \beta, \gamma, |z|. n+1)

if and only if

(3.8) H(\alpha, |z| n)=(n+1)(n+1-2\alpha)-n^{2}|z|\geqq 0 .

It is easy to see that H(\alpha, |z|_{J}n) is a decreasing function of \alpha for fixed
|z| . Consequently it follows that

(3.9) H( \alpha, |z|, n)\geqq H(5/6, |z|, n)=n^{2}(1-|z|)+\frac{1}{3}(n-2)\geqq 0

for 0\leqq\alpha\leqq 5/6 , z\in U , and n\geqq 2 .
Further, since H(\alpha, |z|_{J}n) is decreasing in |z| and increasing in n,

we obtain that

(3. 10) H(\alpha, |z|. n)>H(1, |z|_{;}n)\geqq H(1, 3/4,2)=0

for 0\leqq\alpha<1 , |z|\leqq 3/4 , and n\geqq 2 . Thus

\max_{n\in N-_{1}1},,
G(\alpha, \beta, \gamma, |z|_{r}n)

is attained at n=2 , and the proof is complete.
Finally, since the functions f_{n}(z)(n\geqq 2) defined in Theorem 2 are the

extreme points of the class P_{a}[\beta, \gamma] , we can see that the bounds of the
theorem are attained by the function f_{2}(z) in (2. 8), i . e .
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(3. 11) f_{2}(z)=z- \frac{\gamma(1-\beta)}{2(1-\alpha)(1+\gamma)}z^{2} .

COROLLARY 2. Lef the function f(z) defifined by (1. 11) be in the class
P_{a}[\beta, \gamma] with 0\leqq\alpha\leqq 5/6,0\leqq\beta<1 , and 0<\gamma\leqq 1 . Then f(z) is included in
a disk with its center at the origin and radius r given by

(3. 12) r=1+ \frac{\gamma(1-\beta)}{2(1-\alpha)(1+\gamma)} .

REMARK 1. The extremal function f(z) given by (3. 11) is equal to
zero when z=2(1-\alpha)(1+\gamma)/\gamma(1-\beta) . Letting zarrow 1^{-} . it follows that
\alphaarrow(2+\gamma+\beta\gamma)/2(1+\gamma) . We thus have

(3. 13) |f(z)| \geqq|z|-\frac{\gamma(1-\beta)}{2(1-\alpha)(1+\gamma)}|z|^{2}

for all z\in U if and only if 0\leqq\alpha\leqq(2+\gamma+\beta\gamma)/2(1+\gamma) .
Theorem 3 leaves open the question of an upper bound for |f(z)| when

5/6<\alpha<1 and 3/4<|z|<1 . That is, given m fixed (n_{0}=3,4,5, \ldots) we are
interested to find the vaules of \alpha , \beta , \gamma and |z| for which |f_{n_{0}}(z)| gives the
extremal values of |f(z)| whenever f(z)\Leftarrowarrow P_{a}[\beta, \gamma] .

THEOREM 4. Let r(n_{0}, \alpha)=(n_{0}+1)(n_{0}+1-2\alpha)/n_{0}^{2} . Further let the
function f(z) defined by (1. 11) be in the classPa[fi,\gamma ] for
r(n_{0}, \alpha)<|z|<1 with 0\leqq\beta<1,0<\gamma\leqq 1 , and

(3. 14) \frac{2n_{0}+1}{2(n_{0}+1)}<\alpha\leqq\frac{2n_{0}+3}{2(n_{0}+2)} (n_{0}\geqq 2) .

Then

(3. 15) |f(z)| \leqq|z|+\frac{2\gamma(1-\beta)}{(n_{0}+1)(1+\gamma)C(\alpha,n_{0}+1)}|z|n_{0}+1 .

Equality holds for the function given by

(3. 17) f(z)=z- \frac{2\gamma(1-\beta)}{(n_{0}+1)(1+\gamma)C(\alpha,n_{0}+1)}z^{n_{0}+1} .

PROOF. Let us find a condition under which G(\alpha, \beta, \gamma, |z|. n) in (3. 5)

is maximized for n=m+1>2 . The maximum will occur if H (\alpha, |z| n) in
(3. 8) is negative for n=rh and positive for n=rh+1 . For fixed n_{0} , it
follows from (3. 8) that both conditions will be satisfied when

(3. 18) r(n_{0}, \alpha)<|z|<r(n_{0}+1, \alpha) .
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Here, r(n_{0}, \alpha)<1 if and only if \alpha>(2n_{0}+1)/2(n_{0}+1) and r(n_{0}+1, \alpha)\geqq 1

for \alpha\leqq(2n_{0}+3)/2(n_{0}+2) . Hence, the maximum of G(\alpha, \beta, \gamma, |z|_{5}n) in
(3. 5) occurs at n=m+1 for r(n_{0}, \alpha)<|z|<1 and \alpha as given by (3. 14).

This completes the proof of the theorem.

THEOREM 5. If the function f(z) defifined by (1. 11) is in the class
P_{a}[\beta, \gamma] , 0\leqq\beta<1,0<\gamma\leqq 1 , and either 0\leqq\alpha\leqq 1/2 or |z|\leqq 1/2 , then

(3. 19) 1- \frac{\gamma(1-\beta)}{(1-\alpha)(1+\gamma)}|z|\leqq|f’(z)|\leqq 1+\frac{\gamma(1-\beta)}{(1-\alpha)(1+\gamma)}|z| .

The bounds are sharp.

PROOF. By means of TheOrem2, we note that

(3.20) |f’(z)| \geqq 1-\max_{1n\in N-)},\frac{2\gamma(1-\beta)}{(1+\gamma)C(\alpha,n)}|z|^{n-1}

and

(3.21) |f’(z)|\leqq 1+ \max_{n\in N^{I}-|1},\frac{2\gamma(1-\beta)}{(1+\gamma)C(\alpha,n)}|z|^{n-1} .

It suffices to deduce that

(3. 22) G_{1}( \alpha, \beta, \gamma, |z|, n)=\frac{2\gamma(1-\beta)}{(1+\gamma)C(\alpha,n)}|z|n-1

is a decreasing function of n(n\geqq 2) . But we can see that, for |z|\neq 0 ,

(3.23) G_{1}(\alpha, \beta, \gamma, |z|, n)\geqq G_{1}(\alpha, \beta, \gamma, |z|, n+1)

if and only if

(3.24) H_{1}(\alpha, |z|, n)=n+1-2\alpha-n|z|\geqq 0 .

Since H_{1}(\alpha, |z|_{J}n) is decreasing in |z| , it follows that

(3.25) H_{1}(\alpha, |z|, n)\geqq H_{1}(\alpha, 1, n)=1-2\alpha\geqq 0

for 0\leqq\alpha\leqq 1/2 . Further, H_{1}(\alpha, |z|, n) is decreasing in \alpha , we have

(3.26) H_{1}(\alpha, |z|, n)\geqq H_{1}(1, |z|, n)=n-1-n|z|\geqq H_{1}(1,1/2, n)

\geqq H_{1}(1,1/2,2)=0

for |z|\leqq 1/2 .
Finally the bounds of the theorem are attained by the function f_{2}(z)

given by (3. 11).

REMARK 2. In order to see that |z|\leqq 1/2 is best possible, we note that
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(3.27) H_{1}(1, |z|, 2)=1-2|z|<0

for |z|>1/2 .

REMARK 3. The bound of \alpha for which (3. 19) still holds for all |z|

can’t be improved. To show this, let us find n\geqq 3 for which the maximum in
(3. 20) or (3. 21) attains. This means to show the inequality

(3.28) \max_{n\in N-\{1_{l}}\frac{2\gamma(1-\beta)}{(1+\gamma)C(\alpha,n)}|z|^{n-1}>\frac{\gamma(1-\beta)}{(1-\alpha)(1+\gamma)}|z|

for each \alpha(1/2<\alpha<1) . And this is equivalent to showing that there is an
n for which

(3.29) C(\alpha, n)<2(1-\alpha)|z|n-2 .

Putting |z|=1-1/(n-2) , the right hand side of (3. 29) approaches
2 (1-\alpha)e^{-1}>0 as narrow\infty . Further, for 1/2<\alpha<1 , we found in (1. 7) that

\lim_{narrow\infty}C(\alpha, n)=0 .

Consequently, for each \alpha(1/2<\alpha<1) , there exists surely an integer n and
a real number |z|<1 for which (3. 29) holds.

4. Radii of Starlikeness and Convexity

In this section, we determine the radii of starlikeness and convexity of
Functions f(z) in P_{a}[\beta, \gamma] .

We say that the function f(z) is starlike of order \alpha in the disk |z|<r
if it satisfies (1. 2) for |z|<r, and that the function f(z) is convex of order
\alpha in the disk |z|<r if it satisfies (1. 3) for |z|<r.

THEOREM 6. P_{a}[\beta, \gamma] is a subclass of S if and only if 0\leqq\alpha\leqq 1/2 .

PROOF. Note that the function f(z) defined by (1. 1) is in the class S
if

(4. 1) \sum_{n=2}^{\infty}n|a_{n}|\leqq 1 (cf. [14]).

Hence it suffices to prove that

(4. 2) (1+\gamma)C(\alpha, n)\geqq 2\gamma(1-\beta)

for 0\leqq\alpha\leqq 1/2 and n\geqq 2 by means of Theorem 1. Since C(\alpha, n)\geqq C(1/2 ,
n)=1 for 0\leqq\alpha\leqq 1/2 , we can see that, for 0\leqq\alpha\leqq 1/2,0\leqq\beta<1 , and 0<\gamma\leqq 1 ,

(4.3) (1+\gamma)C(\alpha, n)-2\gamma(1-\beta)\geqq 1-\gamma+2\beta\gamma\geqq 0 .
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Conversely, if we assume \alpha>1/2 , then

\lim_{narrow\infty}C(\alpha, n)=0 .

Taking the function f_{n}(z) given by (2. 8), we have

(4. 4) f_{\acute{n}}(z)=1- \frac{2\gamma(1-\beta)}{(1+\gamma)C(\alpha,n)}z^{n-1}=0

for

(4. 5) z^{n-1}= \frac{(1+\gamma)C(\alpha,n)}{2\gamma(1-\beta)} ,

which is less than one for n sufficiently large. Thus f_{n}(z) is not univalent
for \alpha>1/2 and n=n(\alpha) sufficiently large.

REMARK 4. Since a function f(z)\in T is starlike if and only if it is
univalent [14], and P_{a}[\beta, \gamma]\subset T , it follows from the above theorem that the
functions in P_{a}[\beta, \gamma] , 0\leqq\alpha\leqq 1/2 are all starlike.

In view of Remark 4, we now determine the largest disk in which
functions in P_{a}[\beta, \gamma] , 0\leqq\alpha\leqq 1/2 , are starlike of order \delta(0\leqq\delta<1) .

THEOREM 7. Let the function f(z) defifined by (1. 11) be in the class
P_{a}[\beta, \gamma] with 0\leqq\alpha\leqq 1/2,0\leqq\beta<1 , and 0<\gamma\leqq 1 . Then f(z) is starlike of
order \delta(0\leqq\delta<1) in the disk |z|<r_{1} , where

(4.6) r_{1}= \inf_{n\in N_{-\backslash }1},\{\frac{n(1+\gamma)(1-\delta)C(\alpha,n)}{2\gamma(1-\beta)(n-\delta)}\}1/(n-1)

PROOF. Note that

(4. 7) | \frac{zf’(z)}{f(z)}-1|\leqq\frac{\sum_{n=2}^{\infty}(n-1)a_{n}|z|n-}{1-\sum_{n=2}^{\infty}a_{n}|z|n-1}\leqq 1-\delta 1

if and only if

(4.8) \sum_{n=2}^{\infty}(\frac{n-\delta}{1-\delta})a_{n}|z|n-1\leqq 1 .

By virtue of Theorem 1, we need only to find values of |z| for which the
inequality

(4.9) ( \frac{n-\delta}{1-\delta})|z|^{n-1}\leqq\frac{n(1+\gamma)C(\alpha,n)}{2\gamma(1-\beta)}
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is valid for all n\geqq 2 , which will be true when |z|<r_{1} This completes the
proof of the theorem.

THEOREM 8. Let the function f(z) defifined by (1. 11) be in the class
P_{a}[\beta, \gamma] with 0\leqq\alpha\leqq 1/2,0\leqq\beta<1 , and 0<\gamma\leqq 1 . Then f(z) is convex of
order \delta(0\leqq\delta<1) in the disk |z|<r_{2} , where

(4. 10) r_{2}= \inf_{n\in N-\{1}\{\frac{(1+\gamma)(1-\delta)C(\alpha,n)}{2\gamma(1-\beta)(n-\delta)}\}1/(n-1)

PROOF. Since f(z) is convex of order \delta if and only if zf’(z) is starlike
of order \delta , we have the theorem by replacing a_{n} with na_{n} in Theorem 7.

5. Order of Starlikeness

In view of Remark 4, it is of interest to determine the order of
starlikeness for functions f(z) in the class P_{a}[\beta, \gamma] with 0\leqq\alpha\leqq 1/2 ,
0\leqq\beta<1 , and 0<\gamma\leqq 1 .

THEOREM 9. Let the function f(z) defifined by (1. 11) be in the class
P_{a}[\beta, \gamma] with 0\leqq\alpha\leqq 1/2,0\leqq\beta<1 , and 0<\gamma\leqq 1 . Then f(z) is starlike of
order \lambda , where

(5. 1) \lambda=\frac{2(1-\alpha)-2\gamma(\alpha-\beta)}{2(1-\alpha)+\gamma(1-2\alpha+\beta)} .

PROOF. It is known [14] that a function

f(z)=z- \sum_{n=2}^{\infty}a_{n}z^{n} (a_{n}\geqq 0)

in T is starlike of order \lambda if and only if

\sum_{n=2}^{\infty}(n-\lambda)a_{n}\leqq 1-\lambda .

Therefore, in view of Theorem 1, it suffices to show that

(5.2) \sum_{n=2}^{\infty}\frac{n(1+\gamma)C(\alpha,n)}{2\gamma(1-\beta)}a_{n}\leqq 1

implies that

(5.3) \sum_{n=2}^{\infty}(\frac{n-\lambda}{1-\lambda})a_{n}\leqq 1 .

This will be true if
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(5.4) G_{2}( \alpha, \beta, \gamma, n)=\frac{n(1+\gamma)C(\alpha,n)(1-\lambda)}{2\gamma(1-\beta)(n-\lambda)}\geqq 1

for n\geqq 2 . For \beta and \gamma fixed, G_{2}(\alpha, \beta, \gamma, n) can be shown to be a decreasing
function of \alpha(0\leqq\alpha\leqq 1/2) , and an increasing function of n(n\geqq 2) , so that

(5.5) G_{2}(\alpha, \beta, \gamma, n)\geqq G_{2}(1/2, \beta, \gamma, 2)=1

for 0\leqq\alpha\leqq 1/2 and n\geqq 2 . Thus we have the theorem.

6. Application of the Fractional Calculus

Many essentially equivalent definitions of the fractional calculus, that is,
the fractional derivatives and the fractional integrals, have been given in the
literature (cf., e . g. , [2, Chapter 13], [5], [6], [10], [11], and [17, p. 28 et
seq.]). We find it to be convenient to recall here the following definitions
which were used recently by Owa [7] (and by Srivastave and Owa [18]).

DEFINITION 1. The fractional integral of order \lambda is defined by

(6. 1) D_{z}^{-\lambda}f(z)= \frac{1}{\Gamma(\lambda)}\int_{0}^{z}\frac{f(\zeta)}{(z-\zeta)^{1-\lambda}}d\zeta,

where \lambda>0 , f(z) is an analytic function in a simply connected region of the
z -plane containing the origin and the multiplicity of (z-\zeta)^{\lambda-1} is removed
by requiring log (z-\zeta) to be real when (z-\zeta)>0 .

DEFINITION 2. The fractional derivative of order \lambda is defined by

(6.2) D_{z}^{\lambda}f(z)= \frac{1}{\Gamma(1-\lambda)}\frac{d}{dz}\int_{0}^{z}\frac{f(\zeta)}{(z-\zeta)^{\lambda}}d\zeta,

where 0\leqq\lambda<1 , f(z) is an analytic function in a simply connected region of
the z -plane containing the origin and the multiplicity of (z-\zeta)^{-\lambda} is removed
by requiring log (z-\zeta) to be real when (z-\zeta)>0 .

DEFINITION 3. Under the hypotheses of Definition 2, the fractional
derivative of order (n+\lambda) is defined by

(6. 3) D_{z}^{n+\lambda}f(z)= \frac{d^{n}}{dz^{n}}D_{z}^{\lambda}f(z) ,

where 0\leqq\lambda<1 and n\in N\cup\{0\} .

THEOREM 10. Let the function f(z) defifined by (1. 11) be in the class
P_{a}[\beta, \gamma] with 0\leqq\alpha\leqq 1/2,0\leqq\beta<1 , and 0<\gamma\leqq 1 . Then

(6.4) |D_{z}^{-\lambda}f(z)| \geqq\frac{|z|^{1+\lambda}}{\Gamma(2+\lambda)}\{1-\frac{\gamma(1-\beta)}{(2+\lambda)(1-\alpha)(1+\gamma)}|z|\}
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and

(6.5) |D_{z}^{-\lambda}f(z)| \leqq\frac{|z|^{1+\lambda}}{\Gamma(2+\lambda)}\{1+\frac{\gamma(1-\beta)}{(2+\lambda)(1-\alpha)(1+\gamma)}|z|\}

for \lambda>0 and z\in U . The bounds are sharp.

PROOF. For f(z)\in P_{a}[\beta, \gamma] , it is easily known that

D_{z}^{-\lambda}f(z)= \frac{1}{\Gamma(2+\lambda)}z^{\lambda}\{z-\sum_{n=2}^{\infty}\frac{\Gamma(n+1)\Gamma(2+\lambda)}{\Gamma(n+1+\lambda)}a_{n}z^{n}\}

Now, we consider the function

(6.6) F(z)=z- \sum_{n=2}^{\infty}\frac{\Gamma(n+1)\Gamma(2+\lambda)}{\Gamma(n+1+\lambda)}a_{n}z^{n}

for \lambda>0 . We note that

(6.7) 0< \frac{\Gamma(n+1)\Gamma(2+\lambda)}{\Gamma(n+1+\lambda)}\leqq\frac{2}{2+\lambda}

for \lambda>0 and n\geqq 2 , and C(\alpha, n+1)\geqq C(\alpha, n) for 0\leqq\alpha\leqq 1/2 and n\geqq 2 .
Hence, by using Theorem 1, we obtain that

(6.8) |F(z)| \geqq|z|-|z|^{2}\sum_{n=2}^{\infty}\frac{\Gamma(n+1)\Gamma(2+\lambda)}{\Gamma(n+1+\lambda)}a_{n}

\geqq|z|-(\frac{2}{2+\lambda})|z|^{2}\sum_{n=2}^{\infty}a_{n}

\geqq|z|-\frac{\gamma(1-\beta)}{(2+\lambda)(1-\alpha)(1+\gamma)}|z|^{2}

which gives (6. 4) and

(6.9) |F(z)| \leqq|z|+|z|^{2}\sum_{n=2}^{\infty}\frac{\Gamma(n+1)\Gamma(2+\lambda)}{\Gamma(n+1+\lambda)}a_{n}

\leqq|z|+(\frac{2}{2+\lambda})|z|^{2}\sum_{n=2}^{\infty}a_{n}

\geqq|z|+\frac{\gamma(1-\beta)}{(2+\lambda)(1-\alpha)(1+\gamma)}|z|^{2}

which gives (6. 5).

Further, taking the function f(z) defined by (3. 11), we can see that the
bounds of the theorem are sharp.

THEOREM 2. Let the function f(z) defifined by (1. 11) be in the class
P_{a}[\beta, \gamma] with 0\leqq\alpha<1,0\leqq\beta<1 , and 0<\gamma\leqq 1 . Then
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(6. 10) |D_{z}^{\lambda}f(z)| \geqq\frac{|z|^{1-\lambda}}{\Gamma(2-\lambda)}\{1-\frac{\gamma(1-\beta)}{(2-\lambda)(1-\alpha)(1+\gamma)}|z|\}

and

(6. 11) |D_{z}^{\lambda}f(z)| \leqq\frac{|z|1-\lambda}{\Gamma(2-\lambda)}\{1+\frac{\gamma(1-\beta)}{(2-\lambda)(1-\alpha)(1+\gamma)}|z|\}

for 0\leqq\lambda<1 and z\in U . The bounds are sharp.

PROOF. We consider the function

(6. 12) P(z)= \Gamma(2-\lambda)z^{\lambda}D_{z}^{\lambda}f(z)=z-\sum_{n=2}^{\infty}\frac{\Gamma(n+1)\Gamma(2-\lambda)}{\Gamma(n+1-\lambda)}a_{n}z^{n}

for 0\leqq\lambda<1 . In view of Theorem 1, we have

(6. 13) (1+ \gamma)C(\alpha, 2)\sum_{n=2}^{\infty}na_{n}\leqq\sum_{n=2}^{\infty}n(1+\gamma)C(\alpha, n)a_{n}\leqq 2\gamma(1-\beta)

which implies that

(6. 14) \sum_{n=2}^{\infty}na_{n}\leqq\frac{\gamma(1-\beta)}{(1-\alpha)(1+\gamma)} .

Further we note that

(6. 15) 1 \leqq\frac{\Gamma(n+1)\Gamma(2-\lambda)}{\Gamma(n+1-\lambda)}\leqq\frac{n}{2-\lambda}

for 0\leqq\lambda<1 and n\geqq 2 . Consequently we find that

(6. 16) |P(z)| \geqq|z|-|z|^{2}\sum_{n=2}^{\infty}\frac{\Gamma(n+1)\Gamma(2-\lambda)}{\Gamma(n+1-\lambda)}a_{n}

\geqq|z|-(\frac{1}{2-\lambda})|z|^{2}\sum_{n=2}^{\infty}na_{n}

\geqq|z|-\frac{\gamma(1-\beta)}{(2-\lambda)(1-\alpha)(1+\gamma)}|z|2

which implies (6. 10), and

(6. 17) |P(z)| \leqq|z|+|z|^{2}\sum_{n=2}^{\infty}\frac{\Gamma(n+1)\Gamma(2-\lambda)}{\Gamma(n+1-\lambda)}a_{n}

\leqq|z|+(\frac{1}{2-\lambda})|z|^{2}\sum_{n=2}^{\infty}na_{n}

\leqq|z|+\frac{\gamma(1-\beta)}{(2-\lambda)(1-\alpha)(1+\gamma)}|z|^{2}

which implies (6. 11).
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Finally we can see that the bounds of the theorem are sharp for the
function f(z) given by (3. 11). This completes the proof of the theorem.

THEOREM 12. Let the function f(z) defifined by (1. 11) be in the class
P_{a}[\beta, \gamma] with 0\leqq\alpha<1,0\leqq\beta<1 , and 0<\gamma\leqq 1 . Then

(6. 18) |D_{z}^{1-\lambda}f(z)| \leqq\frac{|z|^{\lambda}}{\Gamma(2+\lambda)}\{1+\lambda+\frac{\gamma(1-\beta)}{(1-\alpha)(1+\gamma)}|z|\}

for \lambda>0 and z\in U . The result is sharp.

PROOF. Let the function F(z) be defifined by (6. 6). Then, by using
(6. 7) and (6. 14), we prove that

(6. 19) |F’(z)| \leqq 1+|z|\sum_{n=2}^{\infty}\frac{\Gamma(n+1)\Gamma(2+\lambda)}{\Gamma(n+1+\lambda)}na_{n}

\leqq 1+(\frac{2}{2+\lambda})|z|\sum_{n=2}^{\infty}na_{n}

\leqq 1+\frac{2\gamma(1-\beta)}{(2+\lambda)(1-\alpha)(1+\gamma)}|z|

which implies that

(6.20) |\Gamma(2+\lambda)z^{-\lambda}D_{z}^{l-\lambda}f(z)|

\leqq\lambda\Gamma(2+\lambda)|z|-1-\lambda|D_{z}^{-\lambda}f(z)|+1

+ \frac{2\gamma(1-\beta)}{(2+\lambda)(1-\alpha)(1+\gamma)}|z| .

Hence we have the inequality (6. 18) with the aid of (6. 5). Further, taking

the function f(z) defined by (3. 11), we can show that the result of the
theorem is sharp.
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