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1. Introduction

If A is a group of automorphisms of a finite group G, we say that A4 acts
fixed-point-freely on G if C;(A)=1(C,(A) is the set of elements of G fixed
by every element of A). An important theorem of Thompson states that, in
this situation, if A has prime order then G is nilpotent. R. P. Martineau
has shown that G must be solvable if A is any elementary abelian group.
Mrs. E. W. Ralston has shown that G must be solvable if 4 is cyclic of order
rs, v and s distinct primes. Here we prove the following result without
using the Feit-Thompson theorem on the groups of odd order.

THEOREM. Let G be a finite group admitting a fixed-point-free group of
automorphisms A, where A is isomorphic to the symmetric group of degree 3
and (|G|,|A|)=1. Then G is solvable.

We now discuss the proof of the theorem. We assumed that the theorem
is false and take a counterexample G to the theorem of least order.

To fix ideas, set A=<o,7|6*=7*=1,7'cr=0"'>. By Lemma 2. 1(iv),
G has only one A-invariant Sylow p-subgroups of G for each prime p that
divides |G|. Let P be the A-invariant Sylow p-subgroup of G.

In section 4, we prove that if C,(¢)=1, then C.(z) has a normal p
-complement. This result is important in the proof of the theorem.

In section 5, 6, 7, and 8, we prove that if P, @ be the A-invariant Sylow
p-, g-subgroups, then PQ=QP. By P. Hall’'s characterization of solvable
groups, G is solvable. This shows that G does not exist.

All groups considered in this paper are assumed finite. OQOur notation
corresponds to that of Gorenstein [2]. For a prime p, we let Syl,(G)
denote the set of Sylow p-subgroups of G.

2. Some preliminary results

We first quote some frequently used results.
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LEMMA 2.1 Let G be a group admitting the coprime operator group V.
(i) If N is a normal V-invariant subgroup of G, then

Coyn(V)=C,(VIN/N,

(i) G=Cz(V)[G, V] where [G, V]=<gT¢’lgE G vEV> and
[[G V], V1=IG, V1AG. Furthermore, if G 1is abelian, then
G=C.(VOXI[G, V].

Gii) Let S be a subset of G, and set ¥={S¥|gEG}. If ¢ is
V-invariant, then theve exists SiEy such that S, is V-invariant.

(iv) For each pEn(G) there exists at least omne V-invariant Sylow
p-subgroup of G and any two such Sylow p-subgroups are conjugate
by an element of C,(V). Moreover, every V-invariant p-subgroup
of G is contained in at least one V-invariant Sylow p-subgroup of G.

(v) Suppose G is solvable, and let xCx(G). Then G possesses at least
one V-invarviant Hall z-subgroup and every V-invariant m-subgroup
of G is contained in some V-invariant Hall z-subgroup.

Proor. (i) and (iv) follow from Theorem 6. 2. 2 of [3], and (D
follows from (i) and Corollary 5. 2. 5 of [3]. (iii) is proved as
Corollary 1 of Theorem 4. Theorem 6. 4. 1 of and (iii) yield (v).

Lemma 2.2 [3,p.341]. Let G be a group of odd order which admits an
automorphism ¢ of order 2. Set F=Cy(¢) and I be the subset of elements
of G transformed into their inverses by ¢. Then the following conditions
hold -

(i) G=FI=IF, INF=1, and|I|=1G:F|.

(ii) I is invariant under F.

Gii) If H is a subset of F such that H*CF for x in I, then x centralizes
H.

Giv) If H is a subgroup of I, then H is abelian.

LeMMA 2.3.  (Clifford [2, Theorem 6.4.1]). Let U/F be an irredu-
cible G-module and let H be a novmal subgroup of G. Then U is the divect
sum of H-invariant subspaces U;, 1<1<7, which satisfy the following condit-
tons :

(i) U=Xu® ... ® X, where each Xi; is an irreducible H-submodule,
1<i<v7 t is independent of 1, and X, Xy are isomorphic
H-modules if and only if i=1".

(ii) For x in G, the mapping n(x) : U—Ux, 1= i<v, 1is a permutation
of the set S={U,, ..., U} and = induces a transitive permutation
representation of G on S.
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Lemma 2.4 (Shult [7, Theorem A}). Let G=NQP with N {1G, Qd
QP |Plis a prime,|Q|is an odd and (|Q|,|P|])=1, (|N|,|Q])=1.
Assume further that Cy(P)=1. Then [P, Q]S Co(N).

Lemma 2.5  [4]. A p-group which admits a fixed-point-free automor-
phism of order 3 has class at most 2.

LemMma 2.6  [2, p.218]. If G is solvable, then C.(F(G))CF(G). In
particular, if O0,(G)=1, then C,(O0x,(G))C 0:,(G).

Suppose p is an odd prime and P is an Sylow p-subgroup of G. A
normal subgroup T of P is said to control strong fusion in P if 7 has the
following property.

Whenever WCP, g&€G, and WECP, then there exists ceC,(W) and
nEN;(T) such that cn=g.

Define the quadratic group for the prime p to be the semi-direct product
Qd (p) of a two dimentional vector space V over GF(p) by the special
linear group SL(V) on V. Let F(p) be the normalizer of some Sylow
p-subgroup of Qd(p).

Lemma 2.7 (Glauberman [1]). If F(p) is not involved in
N(Z(J(P))), then Z(J(P)) controls strong fusion in P with respect to G.

3. Finite groups which admits a fixed-point-free group of
automorphisms which is isomorhic to the symmetric group S,

For the remainder of this paper, we are concerned with the following
situation.

HyprotHesis 3.1.  Let G be a finite group which admits a fixed-point-free
group of automorphisms A, where A is isomorphic to the symmetric group of
degree 3 and (|G|,|A|)=1.

We fix notation as in this hypothesis and set A=<g, 7|0=1=172
tlor=0"">
LemMa 3.1. 7, ot and o’z invert every element of C.(c). In particu-

lar Cs(o) is abelian and for each a=Cy(c), <a> is an A-invariant sub-
group of G.

ProorF. As A acts fixed-point-freely on C.(¢), 7, or and %z invert
every element of C;(o) and so C;(¢) is abelian and for each a=C.(0),
<a> is an A-invariant subgroup of G.
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Lemma 3.2.  If C.(o)=1, then G=C.(r)C.(0o7).

Proor. By B.1) of [8], | G|=|Cs(z)| | Cs(or)|. Since A acts
fixed-point-freely on G, C.(z)N C;(o7)=1 and so| C;(z)C;(o7) | =
|Co(r) ]| Celor)|=|G|. Hence G=C,(7)C;(07).

LemMma 3.3.  Let P be an A-invariant Sylow p-subgroup of G.

Then Co(7) is a Sylow p-subgroup of C.(7).

Proor. Let P* be a Sylow p-subgroup of C.(z). Since P is a z-invari-
ant Sylow p-subgroup of G, P**C P for some g=C.(r) by Lemma 2. 1(iv).
Hence P**CCy,(r). This implies that C,(z) is a Sylow p-subgroup of
Ce(1).

LEmMMA 3.4.  If Y is a subgroup of C.(c), then Y is an A-invariant
subgroup of G and N,(Y)=C.(Y). In particular, if G is a p-group and
[G, o]#1, then [C.(C(0)), 0]+1.

Proor. By Lemma 3. 1, Y is A-invariant. Since [o, Y, N,(Y)]=
[Y, N.(Y),o]=1, [N.(Y),0, Y]=1 by the three subgroup lemma.
Hence [N,(Y), 6]CC,(Y). Thensince N;(Y)=[N;(Y), o] (N (Y)N
C.(0)) and YCC.(o) is abelian by Lemma 3. 1, N, (Y)=C(Y).

If Gisa p-group and [G, o]+#1, N,(C.(6))2C.(0).

Since N (C,(0))=C(C;(0)), [C.(Cs(o)), o] +1.

LemMmA 3.5. Let P be an A-invariant Sylow p-subgroup of G.
If |P,o]=1, then G has a normal p-complement.

Proor. Let Y be asubgroup of P. By Lemma 3. 4, N,(Y)/C.(Y)=
1. Hence G has a normal p-complement.

LEmMMA 3.6.  If G is cyclic, then [G, o]=1.

Proor. By Lemma 2. 1(iii), there exists the A-invariant Sylow
p-subgroup of G for each pEx(G). Since the group of automorphisms of a
cyclic group is abelian, o centralizes a Sylow p-subgroup of G. Hence o
centralizes G.

LemMA 3.7.  If G is a p-group and C,(0)=1, then G'=C,(7)'C;(07)’".
In particular, if C,(t) is abelian, then G is abelian.

Proor. Let x, vy be elements of G. Since C.(o)=1, class G=2 by
Lemma 2. 5 and so »y ' =1=[x, ¥] [x ¥]°[» ¥]” by Lemma 1. 1, p. 334 of
[3]. Hence 1=[x yyy“1=[x y] [% »°] [x »°] and so [x ¥°] [x »”]=
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[x ¥1°[% ¥17 =[x 3°] [x*, ). Since [x7% y°] [x° y°]=[x""x° y°]
=1 and [x 7] [ y7] =[x, »7]1=1 [27°y°] [x y°]=[x", y°]
[x7%, y°]. Hence [x °x, y°]=[x"x"",y°]. Set z=x"%x then z” =x"'x°",
Hence [z ¥°]1=[z", y"1=[2 y]”. Since C.(¢)=1, every element of G
can be expressed in the form x°x for suitable x in G and so [z, y°]
=z, y]° for every element z of G.

Let aeC.(r) and beC,(o7). Since & €C.(1), [a b]=[a (& )°]=
[a, " 1" €C,(c?7)". Thisimplies [C,(z), C;(o7)]C C.(0?r)’. Similarly,
we have [C.(o7), C.(6%7)]C Cs(7z) and [C,(o?r), C(2)]CS Ci(or)'.

Let c€C.(z) and d€C.(67). Since C.(6)=1, ¢ =1 and so c=
(c™(¢™)°. Then, since class G<2 and G=C.(7)C.(or) by lemma 3. 2,
G'=C,()Cilor)[Ci(z), Ci(or)]. Hence G'=C,(z)'C;(o7)’.

If C.(r) is abelian, then C,(z)'=1=(Cs())°=(Co(x)")'=Cslor)".
Thus G’=1 and so G is abelian.

LemMma 3.8.  If G is solvable, then G’ is wnilpotent. Furthermore, let P
be a Sylow p-subgroup of G, then G=0,(G)N;(P).

Proor.  See Corollary 2. 1 of and Lemma 5. 4, p. 350 of [3].

LemMa 3.9.  Assume that G=HV D>V, where V is an A-invariant
elementary abelian p-group, p a prime, and H 1is an A-invariant abelian p’

-group. We consider V to be a vector space over the field Z, with p elements,
and so we rvegard V as a HA-module. Then C,(C,(z))CCy,(V).

Proor.  Suppose false. We may assume that C,(V)=1. Since
Cy(Cy, (7)) contains an element x of order » for some prime 7 distinct from

p, we may assumed that H is an elementary abelian »-group. Moreover,
since V is a completely reducible HA-module, there exists an irreducible
HA-submodule of V on which x acts non-trivially. Hence we may assume
that HA acts irreducibly on V.

Let W be a Wedderburn component of V' with respect to H. We now
consider three casesas V=W, V=We W~ and V=We W e W°.

Case 1. V=W

Since H is abelian, H is represented by scalor multiplication on V.
Then [A, H]=1 since C,(V)=1. Thus l#x€H =C,(A)=1, a contra-
diction.

Casell. V=WeWr"
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Let aeW. Since a+a €Cy (1), (a+a)*=a+a and so a=a* and
(@)*=a". Hence x&C,(V)=1, a contradiction.

Case II. V=WeW°aoW°

Since H/C,;(W) is cyclic, rank of H<3. Let 2€Cy (o) and beW.
Then, since b+&F+& €C.(0), (b+E+EF)*=b+F+ ¥ by Lemma 3.1,
and so b*=5, (F")*=¥ and (& )*=¥". Hence z&€C,(V)=1. Thus
Cy(o)=1. Since H=Cy(z)xCy(or) by Lemma 3.2 and C,(z) is
isomorphic to Cy(or), H is an elementary abelian »-group of order 72
Since A actsonaset S={W, W°, W}, rfixes an element of S. Hence we
may assume that W=W?=*. Then (W) *"=W =W =" =W andso l#x&
Cu(We@® W), Hence |Cu(W @ W) |=r or v2. If |C,(W @ W*)|
=72 then H=C4,(W°@® W) and so C,(H)+1. Since C,(H) is HA-
invariant, V=C,(H), a contradiction. Hence | C,(W°® W ) |=r.
Similarly, we obtain that |Cy(W ) |=|Cy(W )| =r. Hence C,(W°)=
Cy(WeeWo)=Cy(W°). Thus C,;(W?°) is A-invariant and cyclic and
so Cy(W)CCy,(0o)=1, a contradiction.

4. Properties of a minimal counterexample

For the remainder of this paper G denotes a counterexample of minimal
order to the theorem stated in Section 1.

LEMMA 4.1. G is a non-abelian simple group.

Proor. By Lemma 2.1(i), G does not possess any non-trivial proper
A-invariant normal subgroups. Hence G is the direct product of isomorphic
non-abelian simple groups by Theorem 2.1.4 of [3]. If G is not simple,
since A acts fixed-point-freely on G, G=G, X G X G¢* or G=G, X G5, where
G; are simple, 1=1, 2.

Suppose G=G X G{X GY'. Let F={xx°x"|x€G,}. As G=G X GIX G,
we deduce that FF =G, and FCC.(0). But C.(¢) is abelian by Lemma 3. 1,
in contradiction with the simplicity of G,.

Now suppose G=G,XG3. If C.(o)=1, then G is nilpotent, a contra-
diction. Hence C,(o)#1. Since G, and G} are o-invariant, we may
assume that C;(o)#1. Then 1+ C;(6)CSG:N G3=1 since 7 inverts every
element of C;(¢) by Lemma 3.1], a contradiction.

LEMMA 4.2. Let P be a unique A-invariant Sylow p-subgroup of G.
Then [P, o]+1.
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Proor. If [P, 0]=1, then G has a normal p-complement by Lemma 3. 4.
This contradicts Lemma 4. 1.

LeMMmA 4.3. Let P be the A-invariant Sylow p-subgroup of G, and set
N=N,(P). Then the following conditions hold.

(1) N=N(ZJWP)).

(ii) N'DP.

(iii) N is a maximal A-invariant subgroup of G.

Proor. By the focal subgroup theorem (see Theorem 7.3.4 of [3]),
PNG'=<xy'|x, yEP, x conjugate to y in G>. By Lemma 2.7, y=x" for
some nEN,(Z(J(P))). Hence PNG'=PNN,(Z(J(P)))'. Since G is
simple, P=P N G'=P N N,(Z(J(P))) and so P C N,(Z(J(P)))"
Moreover, PN ,(Z(J(P))) by Lemma 3.8. Thus N,(Z(J(P)))=
N.(P)=N and PCN".

Let M be a maximal A-invariant subgroup of G containing N. Then
M'DON'DP. By Lemma 3.8, P<]M, this implies M =N,

LemMMA 4.4. Let P be the A-invariant Sylow p-subgroup of G. Then
Z(P) is weakly closed in P.

Proor. If Z(P)CP, Z(P)¢=Z(P)" for some n&N . (Z(J(P))) by
Lemma 2.7. Since N.(Z(J(P)))=N.(P) by Lemma 4.3, Z(P)"=Z(P).
Thus Z(P) is weakly closed in P.

LemMMA 4.5. Let P be the A-invariant Sylow p-subgroup of G.
If N.(P)/C.,(P) is an v'-group for some prime r+p, then for any
p-subgroup By of G, No(Fy)/C.(B) is an v'-group.

Proor. We may assume that FCP. Let x be an 7-element of N, (F).
By Lemma 2.7 and 4.3, x=cn for some c=C,(F) and n€N,(P). Then
=7 in N;(P)/Co(B). Since N (P)/C,(P) is an r’-group, n*€C,(P)
for some integer k£ such that (k. r)=1, and so #*=1. Hence #*=1, this
implies ¥=1. Thus N (F)/C;(F) is an r’-group.

LemMA 4.6.  Suppose p and v arve distinct primes. For any p-subgroup
Py of G, N.(B)/C.(P) possesses an abelian Sylow r-subgroup.

Proor. Let P be the A-invariant Sylow p-subgroup of G. We may
assume that A,.CP. Set N =N, (F,). Since Z(P)C C,(R), N=C,(F)Ny(P)
by the Frattini argument and and 4.4. Let R, be a Sylow
r-subgroup of N such that N, (P) is a Sylow 7»-subgroup of Ny(P). Then
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Ry=(ReN Co(F)NR(P). By Lemma 3.8, N,(P)C C.(P)C C,(R).
Hence R;C (RoN C;(Ro)) N (P)'CC.(P). So N,(Ry/C.(P,) possesses an
abelian Sylow 7-subgroup.

LeMMA 4.7. Let M be a maximal A-invariant subgroup of G and P be
the A-invariant Sylow p-subgroup of G. If PN\ M is non-abelian, then M=
N.(P).

Proor. By Lemma 3.8, M=0,(M)N,,(PNM) and 1+(PNM)'C
O,(M). Hence [O,(M), (PNM)]=1and N.,(PNM)>(PNM)’, and so
(PNM)'AM. Thus M=N,((PNM)") by maximality of M. Hence
Np(PNM)CM and so N,(PNM)=PN M, this implies PN M =P. Hence
M=N,(P)=N,(P) by Lemma 4.3.

LEmMMA 4.8.  Let P be the A-invariant Sylow p-subgroup of G and set
P=Cp(z). If x is a p'-element of N.(P) and [x, P,]=1, then [x, P]=1.
Furthermore, C;(P)) has a normal p-complement.

Proor. Let H be the A-invariant Hall p’-subgroup of N (P) and set
C=C,(P). Then x=hy for some h&H and some ycP. Set P=P/®(P).
Then & acts on Pand [k P]=1 since [x, P]=1. By Lemma 3.9, [4, P
=1 and so [x, P]=1. Hence [x, P]=1.

Let P* be a Sylow p-subgroup of C containing Z(P). By Sylow’s
theorem, Z(P)‘C P**C P for some g&G. Since Z(P) is weakly closed in P
by Lemma 4.4, gN.(Z(P))=N.(P). Hence P*CP?'=P. Then, since
ZJP*)2Z(P), N(Z(J(P*)))SN(Z(P))=N,(P). By the argument
of the preceeding paragraph, N.(P) has a normal p-complement, and so
has N.(Z(J(P*))). Since p is odd, the Glauberman-Thompson normal

p-complement theorem (see Theorem 8. 3.1 of [3]) now yields that C has a
normal p-complement.

LEMMA 4.9. Let P be the A-invariant Sylow p-subgroup of G and set
P=P/P’. Assume Cs(o)=1. If x, yECp(r) with x conjugate to y in G,
then =3 in P. Moreover, there exists a normal subgroup K of C.(z) such
that KN Cp(z)CP'. In particular, if Co(c)=1, then C.(t) has a normal
p-complement.

Proor. Set =C,(z) and C=C.(7), then P, is a Sylow p-subgroup
of C by Lemma 3.3 Suppose x, x*P, for some #=G. By Lemmas 2.7
and 4.3, u=cn for some c€C.(x) and some nEN,(P). Let H be the
A-invariant Hall p’-subgroup of N (P). Since Cx(¢)=1, [H, c]CC, (P
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and so [H, 0] C,(P). Since H=Cy(o)[H, ] by Lemma 2. 1(i1), N;(P)
=C,(6)PC,(P). Hence n=ghk for some g&C;(P), h€P and k€Cy (o).
Then x¥=x"=x%*=x"_ Set N=N,(P)/P’, then x*=x"=#*=x#_ Now A
induces a group of automorphisms of N. Then (x)*=x%=# and (x¥"
= (&) =(k'2k)"=Fkxk'. Hence [£2 %] =1, it follows that [%, £] =1 since

| £|lis odd. Thus x*=#%*=4% and so x 'x*EP".

By the focal subgroup theorem, C'N P =<x"'x%x x’EP, vEC>.
Hence C'NP,CP’. Then there exists a normal subgroup K of C such that
C/K is isomorphic to P,/P.N C’ by Theorem 7.3.1 of [3]. Then PN C’is
a Sylow p-subgroup of K, and hence PN K =P NC'CP".

Suppose next that C,(¢)=1. Then P has class at most 2 by Lemma 2.5,
and so PNKCP'CZ(P). We shall argue that K has a normal p-comple-
ment. Set P=KNP,. Then K'NER=<y'p¥y y*’eh, wesK>. By
Lemmas 2.7 and B.3, w=dm for some d<C;(y) and some mEN;(P).
Moreover, since m=rst for some »r&C,(P), s€P and t&Cy(c). Then
yP=ym=yrt=yst=yt gince y€Z(P). Then a similar argument of the
preceding paragraph gives y“=y'=y. Hence K'NF=1, it follows that K
has a normal p-complement. Thus C has a normal p-complement.

For the remainder of this section, let @ and R be the A-invariant Sylow
g- and 7-subgroups of G, where q and » are distinct primes in z(G).

LemMa 4.10. If Cr(6)CN,(Q) and N be an A-invarant {q, v}
-subgroup of G, then [NNQ, c]C O, (N).

Proor. Set N=N/O,(N) and Q=[NNQ c]. Then [Cynz(o),
Q,JSNNRNNNQ=1. Hence § stabilizes NNRDCynz(e)@(NNR)2
®(NNR) by Lemma 2.4, and so @, centralizes NN R. This implies Q=1
by Lemma 2.6. Thus @=[NNQ, ]S O,(N).

For the remainder of this paper, if L is a solvable A-invariant subgroup
of G and 7 is a set of primes, let L, denote the A-invariant Hall z-subgroup
of L.

LEMMA 4.11. Let M be a maximal A-invariant {q, v}-subgroup of G
such that O,(M)=1. Then MCN,(Q).

Proor. By Lemma 3.8, M=0,,,(M). Hence M is g-closed. Since
(N;(O;(M)))g-=M by maximality of M, No(O(M))=0,(M). This
implies @=0,(M) and so MC N.(Q).

LEmMA 4.12.  Let R* be an A-invariant r-subgroup of G such that R* =
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[R*, c]CN,(Q). If N is an A-invariant subgroup of G containing < R*,
Co(o) >, then QD> [R*, Q]=[R*, O,(N)].

Proor. Let 1JO0,(N)<QQNN=Q<<...<,=Q be a normal
series of @, where Q.,=N,(Q) for i=1,2,...,n—1. Then each Q; is
R*A-invariant. Since Co(6)CQNN, o acts fixed-point-freely on Q/Q,-.,
and hence [R*, Q/Q,-1]=1 by Lemma 2.4 This implies [R*, Q]C Q...
Hence [Q, R*]=[Q R*, R*]=[Q.-., R*]. Repeating this argument, we
have [@Q R*]=[Q.-1, R*]=...=[Q, R*]. By Lemma 3.8, [Q, R*]CQ
N F(N)C O,(N). Hence [@, R*]=[&, R*, R*]=[0,(N), R*]. Thus
Q>[Q R*]1=[0,(N), R*] by Lemma 2. 1(ii).

LEMMA 4.13.  Set Ro=Cr(6)NNy(Q) and Q=Q/Q. If R+l and
Co(0) %1, then Co(Ry)2 Colo).

Proor. Let H be the A-invarianr Hall ¢’-subgroup of N,(Q).
Suppose that Cy(R,)=Cy(o). By Lemma 3.8, H/C,(Q) is abelian.
Hence, if h€H and aER,, then h~'ah=ab for some b&C,;(Q). Then Cy(a)
=Cy(a™, this implies C,(Ry) = C,(R,)" for each heH. Hence H acts on
Q/Cyo(o) and C,(c). Then, by Lemmas and 3.4, [H, o] stabilizes
Q2Co(0)21, andso [H, 6]CC.(Q). Then N.(Q)=C.(Q)QC,(s). Set
N=N;(@)/Q, then NN Q=[C,(0), Q] and Q=[C, (o), Q] X Co(Cy (o).
Since 1% Co(6)CSCq(Cy(o)) by Lemma 3.1, NN Qx Q. Thus N'N Qs Q,
this contradicts Lemma 4. 3.

LEMMA 4.14.  Let Q* be an A-invariant q-subgroup of G and let R, and
R, be A-invariant r-subgroups of G such that R,=[R, 6] and [R,, c]=1. If
RiXR,C N (Q*), then Q*=<Co(R), Cou(R)>. Furthermore, if R =
Z(R), then [R,, Q*]=1.

Proor. Set Q*=Q*/@(Q*). Then C,.(6)C C5(R,) by Lemma 3.1
Since R, acts on Q*/G5=(R;) and ¢ acts fixed-point-freely on Q*/ C5(R2), R,
acts trivially on Q*/Cg(R,) by Lemma 2.4, and so Q*= Coo(R) G (Ry).
Thus @*= < Co.(R), Cor(Ro)>.

Now suppose that R,=Z(R). Since Co.(Z(R))C N (Z(R))=N,(R)
by Lemma 4.3, [CQ‘<Z<R)>) R,]JCRNQ*=1. Hence [R., Q*]=1

Lemma 4.15.  Set Q=Cy(z) and Q=Q/Q". If Cx(o)=1, then there
exists a Sylow r-subgroup R, of C,(z) such that N, (R)=Q: in Q.

Proor. Set C=C(C,(r). By [Lemma 4.9, there exists a normal
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subgroup K of C such that KN QC Q. By the the Frattini argument, C =
KN (R*) for a Sylow r-subgroup R* of C. Let €, be a Sylow g¢-subgroup

of C such that Ny (R*) is a Sylow g-subgroup of N.(R*). Since Q¥= ), for
some x&C by Lemma 3.3, @ =(QNK)N, (R**). Setting R,=R**,
Ny (R =@, in @since QNKCQ".

Lemma 4.16.  Set Q=Q/Q, Q=Cy(z), and C=C,(z). Let @ bea

g-subgroup of C and let N be an A-invariant subgroup of G. Assume that
the following conditions hold :

( 1 ) CQ(G'> =1.

(i) Q=@ in Q.

(ili) QEC N for some z<C.
Then QC N.

Proor. Now NN is the A-invariant Sylow g¢-subgroup of N, in
particular NN @ is r-invariant. By Lemma 2. 1(iv), Q¥C N N Q for some y
eCy (7). Setting zy=x, x&C Since Qi=Q,=Q, by and (ii),
QCQFQ. Hence Q7C(QDN°Q. Since Cylo)=1, Q=Cyx7)Cxlor) by
and so Q=<@, Q7>. Hence Q=<@Q3, (QD°, Q>=<Q3,
(@H°>CN.

LEmMMA 4.17.  Set Q=Q/Q". If N(Q)/C.(Q) is an r'-group and
Colo) =1, then QT N, (R).

Proor.  Setting R,=Ci(z), C.(R,) has a normal complement by
Lemma 4.8 Hence Z(R) normalizes a Sylow g-subgroup @ of C.(R)).
Since N,(Q)/C,(Q) is an #»'-group, [Z(R), @]=1 by Lemma 4.5, and so
WCEN;(Z(R))=N;(R). By the Frattini argument, N,(R,)=
Ce (RO (N;(RDONNG(R)) by Lemmas and 4. 4.

Since QT C,(RONNL(R), | Co(R)| = |Co(RON Ny (R)| 4. Hence|N (Rl
=|C.(R) || No(RON Ng(R) o/ | Ce(RONNG(R) | g= | Ng(RDONNG(R)| 4.

Now, by Lemma 4.15, there exists a Sylow 7-subgroup R, of C.;(7)
such that N, (Ry) =@ in @ where @ =C,(z). BylLemma 3.3, R§=R, for
some xEC.(z). Then Ny (R)*C N (R)*CN;(R). Since |NG(RD|q=
| No(RDONNG(R) | and Ny (Rp)* is z-invariant g-subgroup of N;(R.),

N, (RO®C N;(R)N N;(R) for some yEC;(z)N Ng(R).  Setting z=uxy, 2
&C.(7) and Ny (R)*CN;(R). Then QCN;(R) by Lemma 4. 16.

LemMMma 4.18. Set Q=Q/Q and R=R/R’. Assume that Cylo)=1=
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Ce(0). Then if Cx(a)NNL(Q)*1, Cxla)*1 for some non-trivial element
asCr(o)NNL(Q).

Proor. Suppose false and the proof will be by contradiction. Set C=
C.(r) and @ =C,(7). Then we break the proof of into five
steps.

Ster 1.  QZ N (R).

Proor. Suppose QT N.(R). Then [Cr(c)NN;(Q), QICQNR=1,
a contradiction.

STEP 2. Ny(RDCCs(Ry) and Q=Ny(R.) in Q for some Sylow
r-subgroup R, of C.

Proor. By [Lemma 4.15, N,(R,) =@ in Qfor some Sylow 7-subgroup
of C. Set R,=C,(s) and N=N,(R,). By the Frattini argument, N =
C.(R)Ny(R) by Lemmas and 4. 4. Since Cy(o)=1, N.(R)=
C.(R)R(C;(6)NN;(R)). Then Ny(R)=Ci(R)R(Ce(e)NN(R)NN =
Co(RY(R(Co()NN;(R)NN) and so N=
Co(R)(R(Co(e)N N ,(R)ONN). Now R,=R?forsomey&C by Lemma
3.3.S0 Ny (RS Ny(Ry)=N>=Cs(R)(R(Ci(6)N Ng(R))N N)?. Then,
since = acts trivially on N, (R,), Ny (RS C,(Ry,) by Lemma 3. 1.

Step 3. If x be an r-element of N;(Q), then Co(x)=@Q or Cy(x)=1.

Proor. Since N,(Q)=C.(Q Q(C;(e)NNL(Q)), x€(C;(Q)Q(Cr(0o)
N N.(Q)), and so x=ghk for some g=C,(Q), heQ and k€ Cr(6) N N;(Q).
Then Cy(x)=Cy(k). If k+1, then Cy(k)=1. If k=1, then Cyo(k)=Q and
hence Cy,(x)=@Q.

STEP 4. N, (R)*CN;(R) for some z&C.

Proor. [Lemma 4.8, C.(R,) has a normal »-complement. Let @* bea
r-invariant Sylow g-subgroup of C.(R,) containing N,(R,). Then Q* is
normalizes by R*, where R* is a z-invariant Sylow 7-subgroup of C;(Ro).

Now we shall prove [R*, @*]=1. Suppose false. By Lemma 2. 1(iv),
Q**C Q for some u=C. Setting Q= Q** there exists an element yER*
such that [y, @]+1. By Lemmas 2.7 and 4.3, y=cn for some ¢cEC;()
and some #nEN,(Q). Let H be the A-invariant Hall ¢"-subgroup of N;(Q).
Then, since C,(0)=1, [H, o] centralizes @ by Lemma 2.4, and so [H, o]
CC(Q). Thus N(@)=C;(Q)QC, (o). Hence n=ghk for some geC.(Q),
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heQ and k=Cy(c). Moreover, since nEN,(Q,), hkEN,(Q), and so
k normalizes @ in Q. Since N, (R,)“C Q**=Q, for u<C, Q2 N, (R)*=
N,(R) =@ by and Step 2, and so QCQ Q. Now <k>Q and
Q" is rz-invariant. Since <k>QD QQ, <k>Q/QQ is rz-invariant.
Moreover, since @ CQQ’, 7 inverts <k>Q/QQ’, and so [~ Q] QQ by
Lemma 2. 2(iv). Hence @=C,(k)QQ".

If QQ'SQ then Cs(k)+1. Now k can be written uniquely in the form
k=Fhk,, where k is an r-element and % is an r’-element and [4, k] =1.
Then, since 1+ C4(k)SCy(k), Co(k)=Q by Step 3, and so [Q k]=1.
Since y=cghkik,, = hk, in N;(Q)/Cs(&). Moreover since hk,€Q< k>,
hk, is an 7’-element. Hence j is an 7-element and %%, is an »’-element, a
contradiction.

If QQ'=@Q then Q=6,. So we have R¥CC.(Q) for ucG. Setting
R,=Cg(z), R?=R, for some v&C by Lemma 3.3. Then R¥*CC,(Q) and
vueC. By Lemma 4.16, RCC.(Q). This contradicts Step 1. Hence
[@*, R*]=1, in particular [N, (R,), R*]=1.

Let R, be a z-invariant Sylow 7»-subgroup of G containing R*. Then
Z(R,)CR* since R*=Cyp(R,). Thus [Ny(Ry), Z(R,)]=1. By Lemma
2.1({v), R5=R for some z&C, and so [ Ng (Ro)? Z(R)]=1. Hence Ny (Ro)*?
C Co(Z(R)CTN,(Z(R))=N,(R) by Lemma 4.3.

STEP 5. We have a contradiction.

Proor. By Steps 2 and 4, N, (R)=Q: in Q and N, (R)*C N.(R) for
some z&€C. By Lemma 4.16, QC N.(R), This contradicts Step 1.

Lemma 4.19.  Set Ry=Cr(c)NN;(Q) and Q=Cy(c)NN;(R).
If Ry+1+Qh, then one of the following holds :

(1) There exists a non-trivial element aSR, such that Cola) 2C,(0),
or

(ii)  there exists a non-trivial element b&Qy such that Cr(b) 2 Cix(0o).

Proor. Suppose false. By Lemma 4.13, Co(0) =1=Cr(c), where
Q=Q/Q and R=R/R’. By Lemma 4.18, there exists a non-trivial element
a< R, such that Cgl@) #1. If Cy(a)=Cy(o), then Cyla) =Cy(a)=C,(0) =
Co(e) =1, a contradiction. Hence C,(a)22Cy(0), a contradiction.

LEmMA 4.20. Assume that QR+ RQ and Co(a)#1+Ci(o). Then

there exists a maximal A-invarviant {q, r}-subgroup H of G such that O,(H) +
1+ 0,(H) and <Cy(o), Cp(o)>CH.
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Proor. Suppose C,o,(c)*1. Let 1¥a€C(C, (c), and let H be a
maximal A-invariant {gq, » } -subgroup containing (C.(a))q,. Then < Cy(0o),
Q>C(C(@)q ~H. ByLemma3.8 H=0,,,(H). Hence, if O,(H)=1,
then H is r-closed and so RC H by maximality of H. Hence QR =H = RQ),
a contradiction. Hence O,(H)+1. If O,(H)+1, H satisfies the required
conditions. So we may assume that O,(H)=1. Then the argument of the
preceding paragraph gives H > @, and so Cr(c)C N,(Q).

Suppose next that C, o, (c)=1. Let 1+b6&C(Cy(0o), and let M be a
maximal A-invariant {g, 7 | -subgroup containing (C.(5)),,. Then <(Ci(o),
Z(Q), Cuolo)>C(Co(b))g, M. If O,(M)=1, then MDPR and so
<Z(Q), Co(6)>CN;(R). By Lemma 4.14, [R, C,(c)]=1. Hence 1+
Co(a)CCy(O,(M)HCO(M) by [Lemma 2.6, a contradiction. Hence
O, M)+1. If O,(M)+1, M satisfies the required conditions. So we may
assume that O,(M)=1 and so Cx(6)CM =N,(Q). Interchanging @ and R
and applying the argument of the preceding paragraph gives C,(0) S N;(R).

By Lemma 4. 19, one of the following holds:

(i) there exists a non-trivial element ¢ €R, such that Cy(c) 2Cy(0),

or
(ii) there exists a non-trivial element d € R, such that Cr(d) 2 (o).
Suppose first that (i) holds. Setting @*=[Cy(c), 0], Q*+1. Let N
be a maximal A-invariant {q, 7 }-subgroup of G containing (C.(¢))qr .
Then <Cy(0), Cp(o), Q*>C(Cp(c))erEN. By Lemma 4.10, [NNQ, o]
CO,(N) and [NNR, ¢]ZO,(N). Then we have 1+Q*C[NNQ o]C
O,(N). By Lemmas 3.4 and 4.2, [ C,(Cr(0)), c]#+1and so 1+[Cxr(c), o]

C[NNR, ¢]CO.(N). Thus N satisfies the required conditions. Suppose
next that (ii) holds. Then, similarly, we can show the existence of the
subgroup of G which satisfies the required conditions.

For the remainder of this section, H be a maximal A-invariant {g, 7}
-subgroup of G with O,(H)+#1+ O,(H).

LemMma 4.21.  If K is an A-invariant subgroup of F(H) with Oq(K)#t
1+ O,(K), then H is the only maximal {q, r}-subgroup of G to contain K.

Proor. See Lemma 4 of [4].
LEmma 4.22. RCH or Z(R)CN.(Q).

Proor. Since O,(H)+1, H=(N;(O0.(H)))q,2Z(R). Similarly
Z(QCH Then [Z(R),Z(Q)]<CO,(H)Z(R)YNF(H) by Lemmas 3.8
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and 4.4. If O,(H)Z(R)NF(H)=0,(H), then Z(R)CN,(Z(Q)O,(H))C
N (Z(Q))=N,(Q) by Lemmas 4.3 and 4.4. If O,(H)Z(R)NF(H) 32
O,(H), then Z(R)NO,(H)+1. Let K=(Z(R)NO,(H)X O,(H). Then
KCF(H) and O,(K)#1+ 0,(K). Since KC(C.(Z(R))NO,(H))qr,

(Ce (Z(R)N O,(H)))qrZH by Lemma 4. 21, and so RC(C.(Z(R)N
O,(H)))qr CH.

LEmMA 4.23. If Q& H, then [Nz, z(Q), 0]1C C,(Q), furthermore,
[RNH, c]CO.(H).

Proor. Setting R*=[Np,z(@),c], QD>[Q R*]=[0,(H), R*] by
Lemma 4.12. If QN H is non-abelian, QC H by Lemma 4.7, a contradic-
tion. Hence QN H is abelian. Moreover, (RNH)'CO,(H) by Lemma
3.8, and so (RNH)CC,(O,(H)). Thus H/C,(O,(H)) is an abelian
r-group. Let x€O,(H), y&R* and h&H. Then y*=ay for some
ac€Cy(O,(H)). Hence [x, y]"="D (") xtyh=(x") 'y la wtay =
My xty=[x" y]€[O0,(H), R*]. Thus we have QP>[O0,(H), R*]<{H.
Suppose [O,(H), R*]+1. Then, since H=(N,([O,(H), R*]))ar by
maximality of H, QC H, a contradiction. Hence [Q*, R]=[0,(H), R*]=
1. Thus [Npqz(@),0]C C.(Q). Now Z(QC H since H=
(Ng(Oq(H))gr. By Lemma 3.8, H=0,(H)N,(HN@Q). Since Z(Q)C
HNQ Ny,(HNQ=Ny(Z(@))=N,;(Q) by Lemmas 4.3 and 4.4. Set H
=H/O-(H). Then [RN H,c]=[N;, (@), 0]=R*. Since
[R*, QN H]=1, R*=1by Lemma 2.6. Hence [RNH, ¢]CO,(H).

Suppose p and g are distinct primes. Let P and @ be the A-invariant
Sylow p- and g-subgroups of G. Then we shall show that PQ = QP.
Now we can divide the A-invariant Sylow p-subgroups for pEz (G) into
three disjoint sets,
m={P*=P&Syl,(G)| C,(a)=1},
n={Q'=QeSy1,(G)|Cyle)+*1 and C, () =1},
m={R*=Re&Sy1,(G)| Cyip, (o) #1}.

5. The case P<x,.

In this section, P, @ be the A-invariant Sylow p- and g-subgroups of G
(where p, ¢q are distinct primes) such that P&nr,, ie., C,(0)=1.

LemMma 5.1.  If N,(Q)/C.(Q) is a p'-group, then PQ= QP.

Proor. Setting P=C,(7), P, is a Sylow p-subgroup of C.(z) by
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Lemma 3.3. By Lemma 4.9, P, normalizes some Sylow g-subgroup €. of
Cs(7). By hypothesis and Lemma 4.5, QCC,(P)2Z(P). Setting L=
C;(P), L has a normal p-complement by Lemma 4.8. Hence Z(P)

normalizes some z-invariant Sylow g-subgroup @* of L. By Lemma 2. 1(iv),
Q*C Q* for some x&C, (7). By hypothesis and Lemma 4.5, Q*C C.(Z(P))

C N, (Z(P))=N;(P). Moreover, by Lemma 2.1(¢v), @*C N,(P) for
some y EC;(z) N N;(P), in particular, @ CC;(z)N N,L(P). Since @ isa
Sylow g-subgroup of C.(7), @Q*=Co(r)CN;(P). Hence <Cy(7),
Co(or)>C N;(P). Now, Since QD>[Q, o] and 7, o7 invert every element
of Q/[Q o], <Cyo(r), Color)>C[Q, o]. Setting [Q o]=

[Q c]/®([Q o], [Q 0]=Co(z) Cylor) by Lemma 3.2. This implies
that <Cy(7), Cuxlor)>=<Cy(7), Coxlor), ®([Q c]D>=[Q o]. So
[Q 0c]CN,(P). Since Cp(o)=1, PCC,([Q c]) by Lemma 2.4. Since @
>[Q o] by Lemma 2.1(ii), <P, Q>CN,([® ¢]). This implies that
PQ=QP.

Lemma 5.2. PQ=QP.

Proor. Suppose false and the proof will be by contradiction. By
Lemmas 4.17 and 5.1, we may assume that p ‘l N.(Q)/C,(Q)] and
q|| No(P)/C4(P)|.  Setting Q=Co(6)NNy(P) and B=PNN;(Q), P+
1. Since N (P)=C,(P)P(C,(c)NN;(P)), @+1. Furthermore, we set
P=Cy(r) and L=C,(e)N N,(P). Now we divide the proof of Lemma
5. 2 into seven steps.

Step 1.  There exists a maximal A-invarviant subgroup of G contain-
ing <CG<G>) PO) Q>'

Proor. [R, Q]CSPNQ=1 Let M be a maximal A-invariant sub-
group of G containing C,(&). Then <C.(o), F, Z(Q)>CC(Q)CS M.
we subdivide the proof according to whether Z(Q)N O,(H)+1 or Z(Q)N
O,(H)=1.

Case 1. Z(QNO,M)+1

Since Z(QCTM, M=0,(M)N,,(Z(Q)) by Lemmas 3.8 and 4.4.
Furthermore, since [O,(M), Z(Q@N O,(M)]=1, M=0,(M)N,,(Z(Q))=
N (Z(Q)N O,(M)) by maximality of M. Hence QC M. Then M satisfies
the required conditions.

Case II. Z(@QNO,(M)=1
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Then [P, ZQICZQNFM)=Z(@QNO0,(M)=1. Set H=
(Ne(Fo))pg. Then Z(Q)CH and H = Ogpqe(H).

Suppose Cj. (6)=1. Setting H=H/O0,(H), [Z(Q), O,(A)]=1 by
Lemma 2.4. By Lemma 2.6, Z(Q)=1and so Z(Q)Z O,(H). By Lemmas
4.3 and 4.4, HCN,(Z(Q))=N,(Q). Hence N,(F)=F. This implies
P=PF,. Thus PCN,(Q) and so PQ=QP, a contradiction. Hence
Cr(o)+1.

Setting Z=C,o,(0), <R, Cs(0), Q>C(C,(Z). Let T be a maximal
A-invariant subgroup of G containing C,(Z). Then T satisfies the required
conditions.

Step 2. C,(e)CNL(Q).

Proor. If @ is non-abelian, then M =N.(Q) by Lemma 4.7. Thus
C;(0)C N, (Q). Hence we may assume that @ is abelian.

Set X =[C,(P), 0]. Suppose X #1. Let K be a maximal A-invariant
{p, g}-subgroup which contains (C,(F))pe. Then <Z(P), X>C
(Ce(P))peC K. Setting K=K /0,(K), XC Cx(0,(K))C O0,(K) by
Lemmas 2.4 and 2.6, and hence XC O,(K). Since € is abelian, QC
(N;(O4;(K)))pe= K by maximality of K. Suppose O,(K)N Z(P)=+1. Since
O (K)X (Op(K)NZ(P))C(Ce(O(KXNZ(P)))pqg and O(K) #1+ Op(K)N
Z(P), PC(C.(O(K)NZ(P)))peCK by Lemma 4.21. Hence<P, Q>CK
and so PQ=QP, a contradiction. Hence O,(K)NZ(P)=1. Then
(@, Z(P)|CZ(P)NF(K)=1. By Lemmas 4.3 and 4.4, K =
Oi(K) Ny (Z(P))=O,(K)Ny(P). Since QCK and [N,(P), ¢]CO, (K)
by Lemmas 2.4 and 2.6, Q@ =0,(K). Hence Z(P)CN,(Q). Thus Z(P)
CPFP,. Let U be a maximal A-invariant {p, q}-subgroup which contains
(Ce(Z(P)))pqe. Then <X, P>C(C,(Z(P)))p S U. Since 1+ XCO,(U)
by Lemmas 2.4 and 2.6, QC(N;(O,(N)))p,=U by maximality of N,
Hence <P, @Q>CU and so PQ=QP, a contradiction. Hence X =
[CQ<P0>, 6] =1

Since [P, QICSQNF(M)=0,(M), Q= Cy(F)O,(M). Since [Cy(P), 0]
=1, [Q c]CO,(M). Now C; (o) is abelian by Lemma 3.1 and so C.(¢)
normalizes Cy(0)O0,(M)=Cy(0)[Q, c]=Q by Lemma 2.1(ii). Thus
Ce(6)SN,(@).

Step 3. Z(P)NF(N(Q)=1.
Proor- oSet B=Z(P)NF(N;(Q)). If PB=*1, then <P, Q>C
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C.(P,) and so PQ=QP, a contradiction. Hence Z(P)N F (N (@))=1.
Ster 4. [L, B]+1 or RCP'.

Proor. Suppose [L, P,]#1 and B,EP. Set N=N,(P) and N=
N/P’. Since N=C,(P)PL by Lemma 2.4, NNP=[L, P]. Now since
P=[P. L]xCxL) and 1P, CCxL), P[P, L[]=NNP2N'NP. Hence
N'NPSEP. This contradicts Lemma 4. 3.

Step 5. P is non-abelian. In particular, P,’+1.

Proor. Suppose P is abelian. Since <P, C;(6)>CN,(Q), [L, R]
CPNF(N,(@)=1 by Step 3. This contradicts Step 4. Hence P is
non-abelian. By Lemma 3.7, P'+1.

STEP 6. Pon P1,:1.

Proor. Set P,=P,N P, and assume that P,+1. Since class P<2 by
Lemma 2.5, RC P'C Z(P). Then [L, B]1C Z(P)N F(N;(@)=1 by
Steps 2

and 3, where L=C.(c)N N (P). Hence RCZ(N;(P)). By Lemmas
2.7 and 4. 3, every element of P, is weakly closed in P with respectto G. By
Lemma 4.9, PCN,(Q) for some Sylow g-subgroup & of C;(z). By
Lemma 4.6, LCP,'CC.(@Q). Let Q* be a r-invariant Sylow g-subgroup of
G containing Q.. Then Z(Q*)@Q normalizes a z-invariant Sylow p-sub-
group P* by Lemma 4.8. By Lemma 2.1(iv), @**=@Q for some x&
C.(7). Then Z(Q*)*Q*=Z(Q)Cy(r) normalizes P**. Now since BC
C.(Q), P*CP* for some yeC,(Q) by Sylow’s theorem. Since P*C P**
and every element of P; is weakly closed, P*C C,(Z(Q)Cy(1))=
Co(Co(IN C(Z(@)) S Co(Co(x))N N(Q) by Lemma 4.3. By Lemma
4.8, P*"CC.(Q). Since Co(Q) is a Sylow p-subgroup of C.(Q), B™C
C,(Q) for some z&C,(Q) by Sylow’s theorem. Since P, is weakly closed
in P, B,=P"CCp(Q). Thus 1+PCC,p(Q). Setting Z=Cyp,(Q),
<P, Q>CC.(Z) and so PQ=QP, a contradiction. Hence 1=F=RNFA’,

Step 7. We have a contradiction.
Proor. By Step 2, [P, LICPNF(N,(Q)). Set PL=PNF(N;(Q)).
If P+#1, then Z(P)CN (P)=N,(Q). Hence P'CZ(P)CN,(Q=Fh.

Thus 1+ P,’'=P,NP,’. This contradicts Step 6. Hence 1=P.=[F, L]. By
Step 4, BRCP'. By Lemma 3.7, P’=Cpo(z)'Cp(or) and so Cp(z)=
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Cpo(z)'=P'. Since Cp(o)=1, B=C,(z)C,(0o7r) by Lemma 3.2 and so 1+
Co(r)SCp(r)=P’. Thus BNPF’+1. This contradicts Step 6.

6. The case Q, Rex,

LEMMA 6.1.  Suppose q and r are distinct primes. Let Q and R be the
A-invariant Sylow q- and r-subgroups of G such that Q, REmn,, te., Co(o)+
1+ Ci(0) and Cyo,(0)=1=C,x,(6). Then QR=RQ.

Proor. Suppose false. By Lemma 4.20, there exists a maximal
A-invariant {g, 7 }-subgroup H of G such that <C,(0), Cx(c)>CH and
O,(H)+1+0,(H). If Q¢ H, Z(Q)S N;(R) by Lemma 4. 22. Since C, (o)
=1=Cpy(0), [Z(Q), Z(R)]=1. Now Z(R)S(N;(O,(H)))¢,=H by
maximality of H. By Lemma 4.23, Z(R) =[Z(R),¢] < [RNH, o] C
O-(H). Since Z(R)X O,(H)C(Ci(Z(@)))gr and Z(R)XO,(H)CF(H),
(Ce(Z(@)))ar CH by Lemma 4.21. Thus QC(C,(Z(Q))).,CH. By

symmetry between Q and R, we also have RCH and so QR=RQ, a
contradiction.

7. The case Q, REx,

LEmMA 7.1.  Suppose q and v ave distinct primes. Let Q and R be the
A-invariant Sylow q- and r-subgroups of G such that Q, REmn,, ie.,
Cr(0)F1+Cypy(0). Then QR=RQ.

Proor.  Suppose false and the proof will be by contradiction. Now we
divide the proof of Lemma 71 into two steps.

STeEP 1. There exists a maximal A-invariant {q, r}-subgroup H of G
such that O,(H)+1+ O,(H), and <Q, Cx(6)>CH or <R, Cy(c)>CH.

Proor.  Suppose false. Let 1+¥a€C(C, o (6). Let H be a maximal
A-invariant {q, r {-subgroup of G containing (C,(a)),,. Then <Cg(o),
Q>C(Cel@))q.CH If O,(H)=1, then HCN.(R) by Lemma 4.11.
Thus QC N (R) and so QR=RQ, a contradiction. Hence O,(H)+1. If
O,(H)#1, then H satisfies the required conditions, a contradiction. Hence
O,(H)=1. Then HCN,() by Lemma 4.11. Thus Cr(c)CHCN,(Q).
By symmetry between € and R, we also have C,(¢)C N, (R).

Now suppose that Cgp(c¢) is non-cyclic. Then Q=<C,(x)|l#xe&
Cr(0)>=<Co0) | Co(x) 2C(0), 1+xECr(0)>. Let 1+x&Cyi(0) such
that Co(x) 2Co(0). Setting Q*=[C,(x), 6], Q*=[Q*, o]+1. Let K be
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a maximal A-invariant {q, }-subgroup of G containing (C.(x))qr.
Then <Cp(x), @*>C(Co(x))q,CK. By Lemma 4.10, 1+ Q*=[Q*, o]C
O,(K). By Lemmas 3.4 and 4.2, 1#[Cr(Cr(0)), 0] and so 1#[Cr(x), o].
Then [Cp(x), 0]CO,(K) by Lemma 4.10. Thus O,(K)#1+ O,(K).
If RN K isnon-abelian, RC K by Lemma 4. 7. Then K satisfies the required
conditions. Hence RN K 1is abelian. Then RNK=Cp(x)=Cr(Cr(0))
since xEC,(0) and Cr(o)CC,(x)CRNK. Setting R*=Cr(Cr(o)), 1+
[R*, 0]C O.(K) by Lemma 4.10. Suppose Cs.(c)N O,(K)+1.

Since (Cg.(6)NO-(K)) XO,(K)CF(K) and (Cyi.(o6)N O(K)) X O(K)HC
(Ce(Cli0)(0)))ar, RE(Ci(Cpiy(6)))q,SK by Lemma 4.21. Thus K
satisfies the required conditions, a contradiction. Hence Cg.(6)N O(K)=1
and so O.(K)=[R* o]. Hence Co(x)CKCN,(O(K))=N.([R* o).
Since Q=<Co,(x)| 1¥x € Crlo), Colx) R Colo)>, QT N;([R*, o).
Hence QC (N ([R*, 6]))¢r=(N;(O,(K)))q-=K by maximality of K, a
contradiction. Hence C,(o) is cyclic. By symmetry between ¢ and R,
Co(o) is cyclic.

By Lemma 4.19, we may assume that Cy(a) 2C,(c) for some 1+a&
Q,(Cr(e)). Since Cir(o) is cyclic and C, 4, (6)+1, a€Z(R). Setting
&=[Cy(a), 0], &+1. Let M be a maximal A-invariant {g, » }-subgroup
which contains (C.(a))q,. Then <R, @>C(C;(a))q, M. By Lemma
4.10, 1+ QCO,M). If O,(M)=1, then QCM by Lemma 4.11. Then
<Q R>CM and so QR=RQ, a contradiction. Hence O,(M)+1. Then

M satisfies the required conditions, a contradiction. This completes the
proof.

STEP 2. We have a contradiction.

Proor. By Step 1, we may assume that there exists a maximal
A-invariant {q, »}-subgroup H of G such that O,(H)+1+ O,(H) and <@,
Cr(0)>CH. Setting Ri=C;,(0) and R,=[Z(R), 0], Ri#+land Z(R)=
R, X R, by hypothesis and Lemma 2.1(ii). By Lemma 4.14, 1+ O,(H)=
<Comy (R, Cpppy(R)>, and hence C, 4 (RO*F1 or C, 4 (R)+1
Suppose that C,, ,,(R)+1. Since C, 4, (R) X O,(H)CF(H) and
Coiy (RO*1+ O,(H), Cpppy(ROXO,(H)CS(Ce(Ry))q,SH by Lemma
4.21. Thus R C(C,(R\))¢,< H. Then since <@, R>C H, QR=RQ, a
contradiction. Hence C, ,,(R.)#1. If R,+1, similarly, we have a contra-
diction. Hence R,=1and so [Z(R), o]=1.

If @ is non-abelian, QCH by Lemma 4.7. Since O,(H)X C,(0)C
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F(H) and O,(H)#1+Cy(0o), O-.(H)XCua(e)S(C,(Z(R)))erT H by
Lemma 4.21. Then <Q R>CH since RC(C,(Z(R)))q,CH, and so
@R =RQ), a contradiction. Hence @ is abelian.

By Lemma 4.22, Z(R)C N;(€). By Lemma 4.13, C,(Z(R))2C,(0).
Setting Q=[Co(Z(R)), o], @+1. Then QCC,(Z(R)CN,(R). By
Lemma 4.23, [Nyqy(R), 0]CC,(R) and so QCC,(R). Since @ is
abelian, <@, R>C C,(@) and so QR=RQ. Thus we have a contradiction
and the lemma is proved.

8. The case Q&x, and Rex,

LemMma 8.1.  Suppose q and v arve distinct primes. Let @ and R be the
A-invariant Sylow q- and v-subgroups of G such that QEn, and REn,, i.e.,
Colo) +1+Cyiy(0) and Cyh,(0)=1. Then QR=RQ.

Proor.  Suppose false and the proof will be by contradiction. Now we
divide the proof of Lemma 8.1 into eleven steps.

STEP 1.  There exists a maximal A-invariant {q, v}-subgroup H of G
such that O,(H)+1+ O,(H) and <Cy(o), Cx(e)>CH.

Proor. See Lemma 4. 20.
Step 2. RCH.

Proor. Suppose REH. Since O,(H)#1, Z(Q)CS (N (Oy(H)))g,=
H by maximality of H By Lemma 4.23, Z(Q)C[QNH, c]CO,(H).
Hence HC N, (Z(Q))=N,(Q) by Lemmas 4.3 and 4.4, and so Q<H.
Since Co(e)XO(H)CF(H) and Cy(o)+1+0.(H), Cylo)xO.(H)C
(Ce(Cyry(6)))q-SH by Lemma 4.21. Hence RC H, a contradiction.

SteEP 3. The following conditions hold.
(i) Culo)CC(R).

(ii) @ is non-abelian and QN H is abelian.
(iii) [R, o] O.(H).

Proor. By Lemma 4.23 and Step 2, [R, ¢]CO,(H) and so R=
O.(H)Cr(o). Since O(H)*1, Z(Q)S(N;(O,(H)))e,=H by
maximality of H. Then, since Z(&) X Cy(6)ZN;(O,(H)) and Z(Q)=
[Z(Q), ], [O,(H), Cy(o)]=1 by Lemma 4.14. Then

[Colo), O-(H) Cy (6)]=1 by Lemma 3.1, and hence [Cy(¢), R]=1.
Now, if @ is abelian, then Q=Z(Q)ZH. Hence <@, R>CH and so
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QR=RQ, a contradiction. Hence @ is non-abelian. Next, if QNH is
abelian, then QC H by Lemma 4.7, and so <@, R>CH, a contradiction.
Hence QN H is abelian.

Step 4. Co(QNH)=QNH.

Proor. Set @=C,(c). Then H=<R, QN H>C(C(&))q-=H by
Step 3. Hence Co(@)=@QN H, in particular, C,(QNH)=QNH.

Ster 5. [Z(Q), R]=0,(H).

Proor. By Lemma 4.22, Z(Q)S N;(R). Suppose C, 4, (Z(Q)+1.
Then, since O,(H) X Cy, 1, (Z(Q))CF(H) and O,(H)#1%+ Cp, g, (Z(Q)),
O,(H)X Co iy (Z(Q)) S (Co(Z(@))) oS H by Lemma 4.21. Thus QCH
and so <@, R>CH, a contradiction. Hence C,,,(Z(Q))=1 and so
[Z(Q), R]=[Z(Q), O,(H)]=0,(H) by Lemmas 2.1(ii) and 4. 12.

Step 6. R<H.

Proor. If R in non-abelian, then R<J{H by Lemma 4.7. Hence we
may assume that R is abelian. Let L be the A-invariant Hall »"-subgroup of
N.(R). Since N.(R)’ is nilpotent by Lemma 3.8, N,;(R)'CC;(R) and so
N.(R)/C.(R) is abelian. Letx€R, y&Z(Q) and h&N,(R). Then y"=
ay for some a&C,(R). Hence [x, y]"'=&") (D ary ="y x ay =
[x* y]€[R, Z(Q)]. Thuswehave O,(H)=[Z(Q), R]<IN,(R), and hence
L normalizes O,(H). Since [R, 6]C O,(H) by Lemma 4. 23, [R/O,(H), o]
=1. Hence L centralizes R/O,(H) by Lemma 3.4. Then R=RN N (R)’
=[L, R1CO,(H) by Lemma 4.3. Thus R=0,(H)<H.

STEP 7. r)(l N.(Q)/C.(@)].

Proor. By Lemma 4. 23, [Ny(Q), 6]C Cr(Q). Hence N,(Q) =(C;(0)
NNL(Q)Cr(@). Setting Ry=C,(6)NN;(Q), [Ry, QNH]CQNR since
HPR. Since (QNH)XR, normalizes @ and Co(QNH)=QNH by Step
4, [R,, QN H]=1 by AXB-theorem (see [3], Theorem 5.3.4). Hence
NR(Q>:CR(Q>

Step 8. Cylo)+1, where Q=Q/Q".
Proor. See Lemma 4. 17.

STEP 9. For some prime pErn(N(Q))—1{q, 7}, theve exists the
A-invariant Sylow p-subgroup Py of Ng(Q) such that [F, 0]1¢ Co(Q).
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Proor. Suppose false. Let U be the A-invariant Hall g’-subgroup of
N.(Q). Then N (@) =C,(@QC,(c) by Step 7. Set N=N;(Q) and
N=N/Q. Then NN Q=[C,(s), Q). Since Q=[C, (o), Q] X C5(C,(c))

and 1 Cx(6) S Cy(Cy(0)), Q2[Cy(0), QI=N'NQ, andso N'N QG Q.
This contradicts Lemma 4. 3.

Step 10.  Let P be the A-invariant Sylow p-subgroup of G. Then PR+
RP.

Proor.  Suppose false. Setting T=PR=RP and Q=C,(0), [, R]
=1 by Step 3. Hence <C,(0), Z(Q), R>CC;(). Setting K=C.(&,
R=[Z(Q), RICF(K) by Lemma 3.8 and Steps 5 and 6. Hence O.(K)=
R and so C,(6)CKCN.(R).

Now 1#[R, 6] O,(T) by Lemmas 4.2 and 4.10. Setting
M=N,(OT)), <P @>CM Moreover, setting P=[F,oc], 1+
[P, Q1=[P, O,(M)] by Lemma 4.12. Since [F, Q]<4Q Z(N
[P, O,(M)])+1. Setting Q=Z(@@N[A,0,(M)], &«<O,(M), and so
[Q, O.(M)]=1. Since O,(T)CO,(M), [, O.(T)]=1.

Now, since O,(H)XO,(T)CF(H) and O,(H)*1+0,(T), O,(H)X
O,(T)C(C,(Q))q-C"H by Lemma 4.21. Thus QCH andso <@, R>CH,
a contradiction.

Step 11.  We have a contradiction.

Proor. By Step 10, PR=RP. By Lemmas 5.2 and 7.1 and Step 3,
Cp(6)+1=C,p,(0) and P is non-abelian. Then PQ= QP by Lemma 6. 1.
Since P and @ are non-abelian by Step 3, PQ> P and PQD> @ by Lemma
4.7. Thus [P, Q]=1. Hence p/IN,(Q)/Cs(@)|. This contradicts Step
9.

By Lemma 5.2, 6.1, and 7.1, 8.1, if P, Q are the A-invariant Squw p-
and g-subgroups of G for p, ¢ in z(G) (p+¢q), then PQ=QP. By P. Hall’s
characterization of solvable groups, G is solvable. Thus we have a final
contradiction. Hence no minimal counterexample to the theorem can exist,
and the theorem is proved.

Additional Comment. After I submitted this paper for publication, I
was informed that the same result was also obtained by B. Dolman in his
unpublished Ph. D. Thesis at the University of Adelaide.
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