# SOLVABILITY OF FINITE GROUPS ADMITTING S<sub>3</sub> AS A FIXED-POINT-FREE GROUP OF OPERATORS

By Hiroshi Fukushima (Received November 13, 1984)

#### 1. Introduction

If A is a group of automorphisms of a finite group G, we say that A acts fixed-point-freely on G if  $C_G(A) = 1(C_G(A))$  is the set of elements of G fixed by every element of A). An important theorem of Thompson states that, in this situation, if A has prime order then G is nilpotent. G is nilpoten

THEOREM. Let G be a finite group admitting a fixed-point-free group of automorphisms A, where A is isomorphic to the symmetric group of degree 3 and (|G|, |A|) = 1. Then G is solvable.

We now discuss the proof of the theorem. We assumed that the theorem is false and take a counterexample G to the theorem of least order.

To fix ideas, set  $A = \langle \sigma, \tau | \sigma^3 = \tau^2 = 1, \tau^{-1} \sigma \tau = \sigma^{-1} \rangle$ . By Lemma 2. 1(iv), G has only one A-invariant Sylow p-subgroups of G for each prime p that divides |G|. Let P be the A-invariant Sylow p-subgroup of G.

In section 4, we prove that if  $C_P(\sigma)=1$ , then  $C_G(\tau)$  has a normal p-complement. This result is important in the proof of the theorem.

In section 5, 6, 7, and 8, we prove that if P, Q be the A-invariant Sylow p-, q-subgroups, then PQ = QP. By P. Hall's characterization of solvable groups, G is solvable. This shows that G does not exist.

All groups considered in this paper are assumed finite. Our notation corresponds to that of Gorenstein [2]. For a prime p, we let  $Syl_p(G)$  denote the set of Sylow p-subgroups of G.

### 2. Some preliminary results

We first quote some frequently used results.

- Lemma 2.1 Let G be a group admitting the coprime operator group V.
- (i) If N is a normal V-invariant subgroup of G, then  $C_{G/N}(V) = C_G(V)N/N.$
- (ii)  $G = C_G(V)[G, V]$  where  $[G, V] = \langle g^{-1}g^v | g \in G, v \in V \rangle$  and  $[[G, V], V] = [G, V] \triangleleft G$ . Furthermore, if G is abelian, then  $G = C_G(V) \times [G, V]$ .
- (iii) Let S be a subset of G, and set  $\psi = \{S^g | g \in G\}$ . If  $\psi$  is V-invariant, then there exists  $S_1 \in \psi$  such that  $S_1$  is V-invariant.
- (iv) For each  $p \in \pi(G)$  there exists at least one V-invariant Sylow p-subgroup of G and any two such Sylow p-subgroups are conjugate by an element of  $C_G(V)$ . Moreover, every V-invariant p-subgroup of G is contained in at least one V-invariant Sylow p-subgroup of G.
- (V) Suppose G is solvable, and let  $\pi \subseteq \pi(G)$ . Then G possesses at least one V-invariant Hall  $\pi$ -subgroup and every V-invariant  $\pi$ -subgroup of G is contained in some V-invariant Hall  $\pi$ -subgroup.
- PROOF. (i) and (iv) follow from Theorem 6. 2. 2 of [3], and (ii) follows from (i) and Corollary 5. 2. 5 of [3]. (iii) is proved as [2] Corollary 1 of Theorem 4. Theorem 6. 4. 1 of [3] and (iii) yield (v).
- Lemma 2.2 [3, p. 341]. Let G be a group of odd order which admits an automorphism  $\phi$  of order 2. Set  $F = C_G(\phi)$  and I be the subset of elements of G transformed into their inverses by  $\phi$ . Then the following conditions hold:
  - (i) G = FI = IF,  $I \cap F = 1$ , and |I| = |G:F|.
  - (ii) I is invariant under F.
  - (iii) If H is a subset of F such that  $H^x \subseteq F$  for x in I, then x centralizes H.
  - (iv) If H is a subgroup of I, then H is abelian.
- LEMMA 2.3. (Clifford [2, Theorem 6.4.1]). Let U/F be an irreducible G-module and let H be a normal subgroup of G. Then U is the direct sum of H-invariant subspaces  $U_i$ ,  $1 \le i \le r$ , which satisfy the following conditions:
  - (i)  $U_i = X_{i1} \oplus ... \oplus X_{it}$ , where each  $X_{ij}$  is an irreducible H-submodule,  $1 \le i \le r$ , t is independent of i, and  $X_{ij}$ ,  $X_{i'j'}$  are isomorphic H-modules if and only if i = i'.
  - (ii) For x in G, the mapping  $\pi(x): U_i \rightarrow U_i x$ ,  $1 \le i \le r$ , is a permutation of the set  $S = \{U_1, \ldots, U_r\}$  and  $\pi$  induces a transitive permutation representation of G on S.

- Lemma 2.4 (Shult [7, Theorem A]). Let G = NQP with  $N \triangleleft G$ ,  $Q \triangleleft QP$ , |P| is a prime, |Q| is an odd and (|Q|, |P|) = 1, (|N|, |Q|) = 1. Assume further that  $C_N(P) = 1$ . Then  $[P, Q] \subseteq C_Q(N)$ .
- Lemma 2.5 [4]. A p-group which admits a fixed-point-free automorphism of order 3 has class at most 2.
- LEMMA 2.6 [2, p. 218]. If G is solvable, then  $C_G(F(G)) \subseteq F(G)$ . In particular, if  $O_{p'}(G) = 1$ , then  $C_G(O_p(G)) \subseteq O_p(G)$ .

Suppose p is an odd prime and P is an Sylow p-subgroup of G. A normal subgroup T of P is said to control strong fusion in P if T has the following property.

Whenever  $W \subseteq P$ ,  $g \in G$ , and  $W^g \subseteq P$ , then there exists  $c \in C_G(W)$  and  $n \in N_G(T)$  such that cn = g.

Define the quadratic group for the prime p to be the semi-direct product Qd(p) of a two dimentional vector space V over GF(p) by the special linear group SL(V) on V. Let F(p) be the normalizer of some Sylow p-subgroup of Qd(p).

Lemma 2.7 (Glauberman [1]). If F(p) is not involved in  $N_G(Z(J(P)))$ , then Z(J(P)) controls strong fusion in P with respect to G.

# 3. Finite groups which admits a fixed-point-free group of automorphisms which is isomorphic to the symmetric group $S_3$

For the remainder of this paper, we are concerned with the following situation.

Hypothesis 3.1. Let G be a finite group which admits a fixed-point-free group of automorphisms A, where A is isomorphic to the symmetric group of degree 3 and (|G|, |A|) = 1.

We fix notation as in this hypothesis and set  $A = \langle \sigma, \tau | \sigma^3 = 1 = \tau^2, \tau^{-1} \sigma \tau = \sigma^{-1} \rangle$ 

Lemma 3.1.  $\tau$ ,  $\sigma \tau$  and  $\sigma^2 \tau$  invert every element of  $C_G(\sigma)$ . In particular  $C_G(\sigma)$  is abelian and for each  $a \in C_G(\sigma)$ ,  $\langle a \rangle$  is an A-invariant subgroup of G.

PROOF. As A acts fixed-point-freely on  $C_G(\sigma)$ ,  $\tau$ ,  $\sigma\tau$  and  $\sigma^2\tau$  invert every element of  $C_G(\sigma)$  and so  $C_G(\sigma)$  is abelian and for each  $a \in C_G(\sigma)$ , < a > is an A-invariant subgroup of G.

Lemma 3.2. If  $C_G(\sigma) = 1$ , then  $G = C_G(\tau) C_G(\sigma \tau)$ .

Proof. By (3.1) of [8],  $|G| = |C_G(\tau)| |C_G(\sigma \tau)|$ . Since A acts fixed-point-freely on G,  $C_G(\tau) \cap C_G(\sigma \tau) = 1$  and so  $|C_G(\tau) \cap C_G(\sigma \tau)| = |C_G(\tau)| |C_G(\sigma \tau)| = |G|$ . Hence  $G = C_G(\tau) C_G(\sigma \tau)$ .

Lemma 3.3. Let P be an A-invariant Sylow p-subgroup of G. Then  $C_P(\tau)$  is a Sylow p-subgroup of  $C_G(\tau)$ .

PROOF. Let  $P^*$  be a Sylow p-subgroup of  $C_G(\tau)$ . Since P is a  $\tau$ -invariant Sylow p-subgroup of G,  $P^{*g} \subseteq P$  for some  $g \in C_G(\tau)$  by Lemma 2. 1(iv). Hence  $P^{*g} \subseteq C_P(\tau)$ . This implies that  $C_P(\tau)$  is a Sylow p-subgroup of  $C_G(\tau)$ .

Lemma 3.4. If Y is a subgroup of  $C_G(\sigma)$ , then Y is an A-invariant subgroup of G and  $N_G(Y) = C_G(Y)$ . In particular, if G is a p-group and  $[G, \sigma] \neq 1$ , then  $[C_G(C_G(\sigma)), \sigma] \neq 1$ .

PROOF. By Lemma 3. 1, Y is A-invariant. Since  $[\sigma, Y, N_G(Y)] = [Y, N_G(Y), \sigma] = 1$ ,  $[N_G(Y), \sigma, Y] = 1$  by the three subgroup lemma. Hence  $[N_G(Y), \sigma] \subseteq C_G(Y)$ . Then since  $N_G(Y) = [N_G(Y), \sigma]$   $(N_G(Y) \cap C_G(\sigma))$  and  $Y \subseteq C_G(\sigma)$  is abelian by Lemma 3. 1,  $N_G(Y) = C_G(Y)$ .

If G is a p-group and  $[G, \sigma] \neq 1$ ,  $N_G(C_G(\sigma)) \supseteq C_G(\sigma)$ . Since  $N_G(C_G(\sigma)) = C_G(C_G(\sigma))$ ,  $[C_G(C_G(\sigma)), \sigma] \neq 1$ .

Lemma 3.5. Let P be an A-invariant Sylow p-subgroup of G. If  $[P, \sigma] = 1$ , then G has a normal p-complement.

PROOF. Let Y be a subgroup of P. By Lemma 3. 4,  $N_G(Y)/C_G(Y) = 1$ . Hence G has a normal p-complement.

LEMMA 3.6. If G is cyclic, then  $[G, \sigma] = 1$ .

PROOF. By Lemma 2. 1(iii), there exists the A-invariant Sylow p-subgroup of G for each  $p \in \pi(G)$ . Since the group of automorphisms of a cyclic group is abelian,  $\sigma$  centralizes a Sylow p-subgroup of G. Hence  $\sigma$  centralizes G.

Lemma 3.7. If G is a p-group and  $C_G(\sigma)=1$ , then  $G'=C_G(\tau)'C_G(\sigma\tau)'$ . In particular, if  $C_G(\tau)$  is abelian, then G is abelian.

PROOF. Let x, y be elements of G. Since  $C_G(\sigma) = 1$ , class  $G \le 2$  by Lemma 2. 5 and so  $yy^{\sigma}y^{\sigma^2} = 1 = [x, y] [x, y]^{\sigma}[x, y]^{\sigma^2}$  by Lemma 1. 1, p. 334 of [3]. Hence  $1 = [x, yy^{\sigma}y^{\sigma^2}] = [x, y] [x, y^{\sigma}] [x, y^{\sigma^2}]$  and so  $[x, y^{\sigma}] [x, y^{\sigma^2}] = [x, y] [x, y^{\sigma^2}]$ 

 $[x,y]^{\sigma}[x,y]^{\sigma^2}=[x^{\sigma},y^{\sigma}]$   $[x^{\sigma^2},y^{\sigma^2}].$  Since  $[x^{-\sigma},y^{\sigma}]$   $[x^{\sigma},y^{\sigma}]=[x^{-\sigma}x^{\sigma},y^{\sigma}]$  =1 and  $[x,y^{\sigma^2}]$   $[x^{-1},y^{\sigma^2}]=[xx^{-1},y^{\sigma^2}]=1$ ,  $[x^{-\sigma},y^{\sigma}]$   $[x,y^{\sigma}]=[x^{\sigma^2},y^{\sigma^2}]$   $[x^{-1},y^{\sigma^2}].$  Hence  $[x^{-\sigma}x,y^{\sigma}]=[x^{\sigma^2}x^{-1},y^{\sigma^2}].$  Set  $z=x^{-\sigma}x$ , then  $z^{\sigma^2}=x^{-1}x^{\sigma^2}.$  Hence  $[z,y^{\sigma}]=[z^{\sigma^2},y^{\sigma^2}]=[z,y]^{\sigma^2}.$  Since  $C_G(\sigma)=1$ , every element of G can be expressed in the form  $x^{-\sigma}x$  for suitable x in G and so  $[z,y^{\sigma}]=[z,y]^{\sigma^2}$  for every element z of G.

Let  $a \in C_G(\tau)$  and  $b \in C_G(\sigma \tau)$ . Since  $b^{\sigma^{-1}} \in C_G(\tau)$ ,  $[a, b] = [a, (b^{\sigma^{-1}})^{\sigma}] = [a, b^{\sigma^{-1}}]^{\sigma^2} \in C_G(\sigma^2 \tau)'$ . This implies  $[C_G(\tau), C_G(\sigma \tau)] \subseteq C_G(\sigma^2 \tau)'$ . Similarly, we have  $[C_G(\sigma \tau), C_G(\sigma^2 \tau)] \subseteq C_G(\tau)'$  and  $[C_G(\sigma^2 \tau), C_G(\tau)] \subseteq C_G(\sigma \tau)'$ .

Let  $c \in C_G(\tau)$  and  $d \in C_G(\sigma \tau)$ . Since  $C_G(\sigma) = 1$ ,  $cc^{\sigma}c^{\sigma^2} = 1$  and so  $c = (c^{-1})^{\sigma^2}(c^{-1})^{\sigma}$ . Then, since class  $G \le 2$  and  $G = C_G(\tau)C_G(\sigma \tau)$  by lemma 3. 2,  $G' = C_G(\tau)'C_G(\sigma \tau)'[C_G(\sigma \tau)'[C_G(\sigma \tau)]$ . Hence  $G' = C_G(\tau)'C_G(\sigma \tau)'$ .

If  $C_G(\tau)$  is abelian, then  $C_G(\tau)'=1=(C_G(\tau)')^{\sigma}=(C_G(\tau)^{\sigma})'=C_G(\sigma\tau)'$ . Thus G'=1 and so G is abelian.

Lemma 3.8. If G is solvable, then G' is nilpotent. Furthermore, let P be a Sylow p-subgroup of G, then  $G = O_{b'}(G)N_G(P)$ .

Proof. See Corollary 2. 1 of [7] and Lemma 5. 4, p. 350 of [3].

Lemma 3.9. Assume that  $G = HV \triangleright V$ , where V is an A-invariant elementary abelian p-group, p a prime, and H is an A-invariant abelian p'-group. We consider V to be a vector space over the field  $Z_p$  with p elements, and so we regard V as a HA-module. Then  $C_H(C_V(\tau)) \subseteq C_H(V)$ .

PROOF. Suppose false. We may assume that  $C_H(V)=1$ . Since  $C_H(C_V(\tau))$  contains an element x of order r for some prime r distinct from p, we may assumed that H is an elementary abelian r-group. Moreover, since V is a completely reducible HA-module, there exists an irreducible HA-submodule of V on which x acts non-trivially. Hence we may assume that HA acts irreducibly on V.

Let W be a Wedderburn component of V with respect to H. We now consider three cases as V = W,  $V = W \oplus W^{\tau}$  and  $V = W \oplus W^{\sigma} \oplus W^{\sigma^2}$ .

Case I. V = W

Since H is abelian, H is represented by scalor multiplication on V. Then [A, H] = 1 since  $C_H(V) = 1$ . Thus  $1 \neq x \in H = C_H(A) = 1$ , a contradiction.

Case II.  $V = W \oplus W^{\tau}$ 

Let  $a \in W$ . Since  $a + a^{\tau} \in C_V(\tau)$ ,  $(a + a^{\tau})^x = a + a^{\tau}$  and so  $a = a^x$  and  $(a^{\tau})^x = a^{\tau}$ . Hence  $x \in C_H(V) = 1$ , a contradiction.

Case III.  $V = W \oplus W^{\sigma} \oplus W^{\sigma^2}$ 

Since  $H/C_H(W)$  is cyclic, rank of  $H \leq 3$ . Let  $z \in C_H(\sigma)$  and  $b \in W$ . Then, since  $b+b^\sigma+b^{\sigma^2} \in C_G(\sigma)$ ,  $(b+b^\sigma+b^{\sigma^2})^z=b+b^\sigma+b^{\sigma^2}$  by Lemma 3.1, and so  $b^z=b$ ,  $(b^\sigma)^z=b^\sigma$  and  $(b^{\sigma^2})^z=b^{\sigma^2}$ . Hence  $z \in C_H(V)=1$ . Thus  $C_H(\sigma)=1$ . Since  $H=C_H(\tau)\times C_H(\sigma\tau)$  by Lemma 3.2 and  $C_H(\tau)$  is isomorphic to  $C_H(\sigma\tau)$ , H is an elementary abelian r-group of order  $r^2$ . Since A acts on a set  $S=\{W,W^\sigma,W^{\sigma^2}\}$ ,  $\tau$  fixes an element of S. Hence we may assume that  $W=W^\tau$ . Then  $(W^\sigma)^\tau=W^{\sigma\tau}=W^{\tau\sigma^2}=W^{\sigma^2}$  and so  $1\neq x\in C_H(W^\sigma\oplus W^{\sigma^2})$ . Hence  $|C_H(W^\sigma\oplus W^{\sigma^2})|=r$  or  $r^2$ . If  $|C_H(W^\sigma\oplus W^{\sigma^2})|=r^2$ , then  $H=C_H(W^\sigma\oplus W^{\sigma^2})$  and so  $C_V(H)\neq 1$ . Since  $C_V(H)$  is HA-invariant,  $V=C_V(H)$ , a contradiction. Hence  $|C_H(W^\sigma\oplus W^{\sigma^2})|=r$ . Similarly, we obtain that  $|C_H(W^\sigma)|=|C_H(W^\sigma)|=r$ . Hence  $C_H(W^\sigma)=C_H(W^\sigma\oplus W^{\sigma^2})=C_H(W^\sigma)$ . Thus  $C_H(W^\sigma)$  is A-invariant and cyclic and so  $C_H(W^\sigma)\subseteq C_H(\sigma)=1$ , a contradiction.

## 4. Properties of a minimal counterexample

For the remainder of this paper G denotes a counterexample of minimal order to the theorem stated in Section 1.

LEMMA 4.1. G is a non-abelian simple group.

PROOF. By Lemma 2.1(i), G does not possess any non-trivial proper A-invariant normal subgroups. Hence G is the direct product of isomorphic non-abelian simple groups by Theorem 2.1.4 of [3]. If G is not simple, since A acts fixed-point-freely on G,  $G = G_1 \times G_1^{\sigma} \times G_1^{\sigma^2}$  or  $G = G_2 \times G_2^{\tau}$ , where  $G_i$  are simple, i = 1, 2.

Suppose  $G = G_1 \times G_1^{\sigma} \times G_1^{\sigma^2}$ . Let  $F = \{xx^{\sigma}x^{\sigma^2} | x \in G_1\}$ . As  $G = G_1 \times G_1^{\sigma} \times G_1^{\sigma^2}$ , we deduce that  $F \simeq G_1$  and  $F \subseteq C_G(\sigma)$ . But  $C_G(\sigma)$  is abelian by Lemma 3.1, in contradiction with the simplicity of  $G_1$ .

Now suppose  $G = G_2 \times G_2^{\tau}$ . If  $C_G(\sigma) = 1$ , then G is nilpotent, a contradiction. Hence  $C_G(\sigma) \neq 1$ . Since  $G_2$  and  $G_2^{\tau}$  are  $\sigma$ -invariant, we may assume that  $C_{G_2}(\sigma) \neq 1$ . Then  $1 \neq C_{G_2}(\sigma) \subseteq G_2 \cap G_2^{\tau} = 1$  since  $\tau$  inverts every element of  $C_G(\sigma)$  by Lemma 3.1, a contradiction.

LEMMA 4.2. Let P be a unique A-invariant Sylow p-subgroup of G. Then  $[P, \sigma] \neq 1$ .

PROOF. If  $[P, \sigma] = 1$ , then G has a normal p-complement by Lemma 3. 4. This contradicts Lemma 4. 1.

Lemma 4.3. Let P be the A-invariant Sylow p-subgroup of G, and set  $N = N_G(P)$ . Then the following conditions hold.

- $(i) N = N_G(Z(J(P))).$
- (ii)  $N'\supseteq P$ .
- (iii) N is a maximal A-invariant subgroup of G.

PROOF. By the focal subgroup theorem (see Theorem 7. 3. 4 of [3]),  $P \cap G' = \langle xy^{-1} | x, y \in P, x$  conjugate to y in G >. By Lemma 2. 7,  $y = x^n$  for some  $n \in N_G(Z(J(P)))$ . Hence  $P \cap G' = P \cap N_G(Z(J(P)))'$ . Since G is simple,  $P = P \cap G' = P \cap N_G(Z(J(P)))'$  and so  $P \subseteq N_G(Z(J(P)))'$ . Moreover,  $P \triangleleft N_G(Z(J(P)))$  by Lemma 3. 8. Thus  $N_G(Z(J(P))) = N_G(P) = N$  and  $P \subseteq N'$ .

Let M be a maximal A-invariant subgroup of G containing N. Then  $M'\supseteq N'\supseteq P$ . By Lemma 3.8,  $P\triangleleft M$ , this implies M=N.

Lemma 4.4. Let P be the A-invariant Sylow p-subgroup of G. Then Z(P) is weakly closed in P.

PROOF. If  $Z(P)^g \subseteq P$ ,  $Z(P)^g = Z(P)^n$  for some  $n \in N_G(Z(J(P)))$  by Lemma 2.7. Since  $N_G(Z(J(P))) = N_G(P)$  by Lemma 4.3,  $Z(P)^n = Z(P)$ . Thus Z(P) is weakly closed in P.

Lemma 4.5. Let P be the A-invariant Sylow p-subgroup of G. If  $N_G(P)/C_G(P)$  is an r'-group for some prime  $r \neq p$ , then for any p-subgroup  $P_0$  of G,  $N_G(P_0)/C_G(P_0)$  is an r'-group.

PROOF. We may assume that  $P_0 \subseteq P$ . Let x be an r-element of  $N_G(P_0)$ . By Lemma 2.7 and 4.3, x = cn for some  $c \in C_G(P_0)$  and  $n \in N_G(P)$ . Then  $\bar{x} = \bar{n}$  in  $N_G(P_0)/C_G(P_0)$ . Since  $N_G(P)/C_G(P)$  is an r'-group,  $n^k \in C_G(P)$  for some integer k such that (k, r) = 1, and so  $\bar{n}^k = 1$ . Hence  $\bar{x}^k = 1$ , this implies  $\bar{x} = 1$ . Thus  $N_G(P_0)/C_G(P_0)$  is an r'-group.

Lemma 4.6. Suppose p and r are distinct primes. For any p-subgroup  $P_0$  of G,  $N_G(P_0)/C_G(P_0)$  possesses an abelian Sylow r-subgroup.

PROOF. Let P be the A-invariant Sylow p-subgroup of G. We may assume that  $P_0 \subseteq P$ . Set  $N = N_G(P_0)$ . Since  $Z(P) \subseteq C_G(P_0)$ ,  $N = C_G(P_0)N_N(P)$  by the Frattini argument and Lemma 4.3 and 4.4. Let  $R_0$  be a Sylow r-subgroup of N such that  $N_{R_0}(P)$  is a Sylow r-subgroup of  $N_N(P)$ . Then

 $R_0 = (R_0 \cap C_G(P_0))N_{R_0}(P)$ . By Lemma 3.8,  $N_{R_0}(P)' \subseteq C_G(P) \subseteq C_G(P_0)$ . Hence  $R_0' \subseteq (R_0 \cap C_G(R_0))N_{R_0}(P)' \subseteq C_G(P_0)$ . So  $N_G(R_0)/C_G(P_0)$  possesses an abelian Sylow r-subgroup.

Lemma 4.7. Let M be a maximal A-invariant subgroup of G and P be the A-invariant Sylow p-subgroup of G. If  $P \cap M$  is non-abelian, then  $M = N_G(P)$ .

PROOF. By Lemma 3. 8,  $M = O_{p'}(M) N_M(P \cap M)$  and  $1 \neq (P \cap M)' \subseteq O_p(M)$ . Hence  $[O_{p'}(M), (P \cap M)'] = 1$  and  $N_P(P \cap M) \triangleright (P \cap M)'$ , and so  $(P \cap M)' \triangleleft M$ . Thus  $M = N_G((P \cap M)')$  by maximality of M. Hence  $N_P(P \cap M) \subseteq M$  and so  $N_P(P \cap M) = P \cap M$ , this implies  $P \cap M = P$ . Hence  $M = N_G(P') = N_G(P)$  by Lemma 4. 3.

Lemma 4.8. Let P be the A-invariant Sylow p-subgroup of G and set  $P_1 = C_P(\tau)$ . If x is a p'-element of  $N_G(P)$  and  $[x, P_1] = 1$ , then [x, P] = 1. Furthermore,  $C_G(P_1)$  has a normal p-complement.

PROOF. Let H be the A-invariant Hall p'-subgroup of  $N_G(P)$  and set  $C = C_G(P_1)$ . Then x = hy for some  $h \in H$  and some  $y \in P$ . Set  $\bar{P} = P/\Phi(P)$ . Then h acts on  $\bar{P}$  and  $[h, \bar{P}_1] = 1$  since  $[x, P_1] = 1$ . By Lemma 3. 9,  $[h, \bar{P}] = 1$  and so  $[x, \bar{P}] = 1$ . Hence [x, P] = 1.

Let  $P^*$  be a Sylow p-subgroup of C containing Z(P). By Sylow's theorem,  $Z(P)^g \subseteq P^{*g} \subseteq P$  for some  $g \in G$ . Since Z(P) is weakly closed in P by Lemma 4. 4,  $g \in N_G(Z(P)) = N_G(P)$ . Hence  $P^* \subseteq P^{g^{-1}} = P$ . Then, since  $Z(J(P^*)) \supseteq Z(P)$ ,  $N_C(Z(J(P^*))) \subseteq N_C(Z(P)) = N_C(P)$ . By the argument of the preceding paragraph,  $N_C(P)$  has a normal p-complement, and so has  $N_C(Z(J(P^*)))$ . Since p is odd, the Glauberman-Thompson normal p-complement theorem (see Theorem 8. 3. 1 of [3]) now yields that C has a normal p-complement.

Lemma 4.9. Let P be the A-invariant Sylow p-subgroup of G and set  $\bar{P} = P/P'$ . Assume  $C_{\bar{P}}(\sigma) = 1$ . If  $x, y \in C_P(\tau)$  with x conjugate to y in G, then  $\bar{x} = \bar{y}$  in  $\bar{P}$ . Moreover, there exists a normal subgroup K of  $C_G(\tau)$  such that  $K \cap C_P(\tau) \subseteq P'$ . In particular, if  $C_P(\sigma) = 1$ , then  $C_G(\tau)$  has a normal p-complement.

PROOF. Set  $P_1 = C_P(\tau)$  and  $C = C_G(\tau)$ , then  $P_1$  is a Sylow p-subgroup of C by Lemma 3.3. Suppose x,  $x^u \in P_1$  for some  $u \in G$ . By Lemmas 2.7 and 4.3, u = cn for some  $c \in C_G(x)$  and some  $n \in N_G(P)$ . Let H be the A-invariant Hall p'-subgroup of  $N_G(P)$ . Since  $C_{\bar{P}}(\sigma) = 1$ ,  $[H, \sigma] \subseteq C_H(\bar{P})$ 

and so  $[H, \sigma] \subseteq C_H(P)$ . Since  $H = C_H(\sigma)[H, \sigma]$  by Lemma 2.1(ii),  $N_G(P) = C_H(\sigma)PC_G(P)$ . Hence n = ghk for some  $g \in C_G(P)$ ,  $h \in P$  and  $k \in C_H(\sigma)$ . Then  $x^u = x^n = x^{ghk} = x^{hk}$ . Set  $\bar{N} = N_G(P)/P'$ , then  $\bar{x}^{\bar{u}} = \bar{x}^{h\bar{k}} = \bar{x}^{h\bar{k}} = \bar{x}^{\bar{k}}$ . Now A induces a group of automorphisms of  $\bar{N}$ . Then  $(\bar{x}^{\bar{u}})^{\tau} = \bar{x}^{\bar{u}} = \bar{x}^{\bar{k}}$  and  $(\bar{x}^{\bar{u}})^{\tau} = (\bar{x}^{\bar{k}})^{\tau} = (\bar{k}^{-1}\bar{x}\bar{k})^{\tau} = \bar{k}\bar{x}\bar{k}^{-1}$ . Hence  $[\bar{k}^2, \bar{x}] = 1$ , it follows that  $[\bar{k}, \bar{x}] = 1$  since  $|\bar{k}|$  is odd. Thus  $\bar{x}^{\bar{u}} = \bar{x}^{\bar{k}} = \bar{x}$ , and so  $x^{-1}x^{\bar{u}} \in P'$ .

By the focal subgroup theorem,  $C' \cap P_1 = \langle x^{-1}x^v | x, x^v \in P_1, v \in C \rangle$ . Hence  $C' \cap P_1 \subseteq P'$ . Then there exists a normal subgroup K of C such that C/K is isomorphic to  $P_1/P_1 \cap C'$  by Theorem 7. 3. 1 of [3]. Then  $P_1 \cap C'$  is a Sylow p-subgroup of K, and hence  $P_1 \cap K = P_1 \cap C' \subseteq P'$ .

Suppose next that  $C_P(\sigma)=1$ . Then P has class at most 2 by Lemma 2.5, and so  $P_1 \cap K \subseteq P' \subseteq Z(P)$ . We shall argue that K has a normal p-complement. Set  $P_0 = K \cap P_1$ . Then  $K' \cap P_0 = \langle y^{-1}y^w | y, y^w \in P_0, w \in K \rangle$ . By Lemmas 2.7 and 4.3, w = dm for some  $d \in C_G(y)$  and some  $m \in N_G(P)$ . Moreover, since m = rst for some  $r \in C_G(P)$ ,  $s \in P$  and  $t \in C_H(\sigma)$ . Then  $y^w = y^m = y^{rst} = y^s = y^t$  since  $y \in Z(P)$ . Then a similar argument of the preceding paragraph gives  $y^w = y^t = y$ . Hence  $K' \cap P_0 = 1$ , it follows that K has a normal p-complement. Thus C has a normal p-complement.

For the remainder of this section, let Q and R be the A-invariant Sylow q- and r-subgroups of G, where q and r are distinct primes in  $\pi(G)$ .

Lemma 4.10. If  $C_R(\sigma) \subseteq N_G(Q)$  and N be an A-invariant  $\{q, r\}$ -subgroup of G, then  $[N \cap Q, \sigma] \subseteq O_q(N)$ .

PROOF. Set  $\bar{N}=N/O_q(N)$  and  $Q_0=[N\cap Q,\sigma]$ . Then  $[\overline{C_{N\cap R}(\sigma)},\overline{Q_0}]\subseteq \overline{N\cap R}\cap \overline{N\cap Q}=1$ . Hence  $\bar{Q}_0$  stabilizes  $\overline{N\cap R}\supseteq \overline{C_{N\cap R}(\sigma)\Phi(N\cap R)}\supseteq \overline{\Phi(N\cap R)}$  by Lemma 2. 4, and so  $\bar{Q}_0$  centralizes  $\overline{N\cap R}$ . This implies  $\bar{Q}_0=1$  by Lemma 2. 6. Thus  $Q_0=[N\cap Q,\sigma]\subseteq O_q(N)$ .

For the remainder of this paper, if L is a solvable A-invariant subgroup of G and  $\pi$  is a set of primes, let  $L_{\pi}$  denote the A-invariant Hall  $\pi$ -subgroup of L.

LEMMA 4.11. Let M be a maximal A-invariant  $\{q, r\}$ -subgroup of G such that  $O_r(M) = 1$ . Then  $M \subseteq N_G(Q)$ .

PROOF. By Lemma 3.8,  $M = O_{r,q,r}(M)$ . Hence M is q-closed. Since  $(N_G(O_q(M)))_{q,r} = M$  by maximality of M,  $N_Q(O_q(M)) = O_q(M)$ . This implies  $Q = O_q(M)$  and so  $M \subseteq N_G(Q)$ .

Lemma 4.12. Let  $R^*$  be an A-invariant r-subgroup of G such that  $R^* =$ 

 $[R^*, \sigma] \subseteq N_G(Q)$ . If N is an A-invariant subgroup of G containing  $\langle R^*, C_Q(\sigma) \rangle$ , then  $Q \triangleright [R^*, Q] = [R^*, O_q(N)]$ .

PROOF. Let  $1 \triangleleft O_q(N) \triangleleft Q \cap N = Q_1 \triangleleft Q_2 \triangleleft \ldots \triangleleft Q_n = Q$  be a normal series of Q, where  $Q_{i+1} = N_Q(Q_i)$  for  $i = 1, 2, \ldots, n-1$ . Then each  $Q_i$  is  $R^*A$ -invariant. Since  $C_Q(\sigma) \subseteq Q \cap N$ ,  $\sigma$  acts fixed-point-freely on  $Q/Q_{n-1}$ , and hence  $[R^*, Q/Q_{n-1}] = 1$  by Lemma 2.4. This implies  $[R^*, Q] \subseteq Q_{n-1}$ . Hence  $[Q, R^*] = [Q, R^*, R^*] = [Q_{n-1}, R^*]$ . Repeating this argument, we have  $[Q, R^*] = [Q_{n-1}, R^*] = \ldots = [Q_1, R^*]$ . By Lemma 3.8,  $[Q_1, R^*] \subseteq Q_1 \cap F(N) \subseteq Q_1(N)$ . Hence  $[Q_1, R^*] = [Q_1, R^*, R^*] = [Q_1(N), R^*]$ . Thus  $Q \triangleright [Q, R^*] = [Q_1(N), R^*]$  by Lemma 2.1(ii).

Lemma 4.13. Set  $R_0 = C_R(\sigma) \cap N_G(Q)$  and  $\bar{Q} = Q/Q'$ . If  $R_0 \neq 1$  and  $C_Q(\sigma) \neq 1$ , then  $C_Q(R_0) \supsetneq C_Q(\sigma)$ .

PROOF. Let H be the A-invariant Hall q'-subgroup of  $N_G(Q)$ . Suppose that  $C_Q(R_0) = C_Q(\sigma)$ . By Lemma 3.8,  $H/C_H(Q)$  is abelian. Hence, if  $h \in H$  and  $a \in R_0$ , then  $h^{-1}ah = ab$  for some  $b \in C_H(Q)$ . Then  $C_Q(a) = C_Q(a^h)$ , this implies  $C_Q(R_0) = C_Q(R_0)^h$  for each  $h \in H$ . Hence H acts on  $Q/\overline{C_Q(\sigma)}$  and  $Q/\overline{C_Q(\sigma)}$ . Then, by Lemmas 2.4 and 3.4,  $Q/\overline{C_Q(\sigma)}$  stabilizes  $Q/\overline{C_Q(\sigma)} = Q/\overline{C_Q(\sigma)}$ , and so  $Q/\overline{C_Q(\sigma)} = Q/\overline{C_Q(\sigma)}$ . Then  $Q/\overline{C_Q(\sigma)} = Q/\overline{C_Q(\sigma)}$ , then  $Q/\overline{C_Q(\sigma)} = Q/\overline{C_Q(\sigma)}$ , and  $Q/\overline{C_Q(\sigma)} = Q/\overline{C_Q(\sigma)}$ . Set  $Q/\overline{C_Q(\sigma)} = Q/\overline{C_Q(\sigma)} = Q/\overline{C_Q(\sigma)}$ , then  $Q/\overline{C_Q(\sigma)} = Q/\overline{C_Q(\sigma)}$ ,  $Q/\overline{C_Q(\sigma)} = Q/\overline{C_Q(\sigma)}$ . Since  $Q/\overline{C_Q(\sigma)} = Q/\overline{C_Q(\sigma)}$  by Lemma 3.1,  $Q/\overline{C_Q(\sigma)} = Q/\overline{C_Q(\sigma)}$ . Thus  $Q/\overline{C_Q(\sigma)} = Q/\overline{C_Q(\sigma)}$  this contradicts Lemma 4.3.

LEMMA 4.14. Let  $Q^*$  be an A-invariant q-subgroup of G and let  $R_1$  and  $R_2$  be A-invariant r-subgroups of G such that  $R_1 = [R, \sigma]$  and  $[R_2, \sigma] = 1$ . If  $R_1 \times R_2 \subseteq N_G(Q^*)$ , then  $Q^* = \langle C_{Q^*}(R_1), C_{Q^*}(R_2) \rangle$ . Furthermore, if  $R_1 = Z(R)$ , then  $[R_2, Q^*] = 1$ .

PROOF. Set  $\overline{Q^*} = Q^*/\Phi(Q^*)$ . Then  $\overline{C_{Q^*}(\sigma)} \subseteq C_{\overline{Q^*}}(R_2)$  by Lemma 3.1. Since  $R_1$  acts on  $\overline{Q^*}/C_{\overline{Q^*}}(R_2)$  and  $\sigma$  acts fixed-point-freely on  $\overline{Q^*}/C_{\overline{Q^*}}(R_2)$ ,  $R_1$  acts trivially on  $\overline{Q^*}/C_{\overline{Q^*}}(R_2)$  by Lemma 2.4, and so  $\overline{Q^*} = C_{\overline{Q^*}}(R_1)C_{\overline{Q^*}}(R_2)$ . Thus  $Q^* = C_{Q^*}(R_1)$ ,  $C_{Q^*}(R_2)$ .

Now suppose that  $R_1 = Z(R)$ . Since  $C_{Q^*}(Z(R)) \subseteq N_G(Z(R)) = N_G(R)$  by Lemma 4.3,  $[C_{Q^*}(Z(R)), R_2] \subseteq R \cap Q^* = 1$ . Hence  $[R_2, Q^*] = 1$ .

Lemma 4.15. Set  $Q_1 = C_Q(\tau)$  and  $\bar{Q} = Q/Q'$ . If  $C_{\bar{Q}}(\sigma) = 1$ , then there exists a Sylow r-subgroup  $R_0$  of  $C_G(\tau)$  such that  $\overline{N_{Q_1}(R_0)} = \bar{Q}_1$  in  $\bar{Q}$ .

Proof. Set  $C = C_G(\tau)$ . By Lemma 4.9, there exists a normal

subgroup K of C such that  $K \cap Q_1 \subseteq Q'$ . By the the Frattini argument,  $C = KN_C(R^*)$  for a Sylow r-subgroup  $R^*$  of C. Let  $Q_0$  be a Sylow q-subgroup of C such that  $N_{Q_0}(R^*)$  is a Sylow q-subgroup of  $N_C(R^*)$ . Since  $Q_0^x = Q_1$  for some  $x \in C$  by Lemma 3. 3,  $Q_1 = (Q_1 \cap K) N_{Q_1}(R^{*x})$ . Setting  $R_0 = R^{*x}$ ,  $\overline{N_{Q_1}(R_0)} = \overline{Q_1}$  in  $\overline{Q}$  since  $Q_1 \cap K \subseteq Q'$ .

Lemma 4.16. Set  $\bar{Q}=Q/Q'$ ,  $Q_1=C_Q(\tau)$ , and  $C=C_G(\tau)$ . Let  $Q_0$  be a q-subgroup of C and let N be an A-invariant subgroup of G. Assume that the following conditions hold:

- (i)  $C_{\bar{Q}}(\sigma)=1.$
- (ii)  $\bar{Q}_0 = \bar{Q}_1 \ in \ \bar{Q}.$
- (iii)  $Q_0^z \subseteq N$  for some  $z \in C$ . Then  $Q \subseteq N$ .

PROOF. Now  $N \cap Q$  is the A-invariant Sylow q-subgroup of N, in particular  $N \cap Q$  is  $\tau$ -invariant. By Lemma 2.  $1(\mathrm{iv})$ ,  $Q_0^{zy} \subseteq N \cap Q$  for some  $y \in C_N(\tau)$ . Setting zy = x,  $x \in C$  Since  $\overline{Q_0^x} = \overline{Q_0} = \overline{Q_1}$  by Lemma 4. 9 and (ii),  $Q_1 \subseteq Q_0^x Q'$ . Hence  $Q_1^\sigma \subseteq (Q_0^x)^\sigma Q'$ . Since  $C_{\overline{Q}}(\sigma) = 1$ ,  $\overline{Q} = C_{\overline{Q}}(\tau) C_{\overline{Q}}(\sigma \tau)$  by Lemma 3. 2 and so  $Q = \langle Q_1, Q_1^\sigma \rangle$ . Hence  $Q = \langle Q_0^x, (Q_0^x)^\sigma, Q' \rangle = \langle Q_0^x, (Q_0^x)^\sigma \rangle \subseteq N$ .

Lemma 4.17. Set  $\bar{Q}=Q/Q'$ . If  $N_G(Q)/C_G(Q)$  is an r'-group and  $C_{\bar{Q}}(\sigma)=1$ , then  $Q\subseteq N_G(R)$ .

PROOF. Setting  $R_1=C_R(\tau)$ ,  $C_G(R_1)$  has a normal complement by Lemma 4.8. Hence Z(R) normalizes a Sylow q-subgroup  $Q_0$  of  $C_G(R_1)$ . Since  $N_G(Q)/C_G(Q)$  is an r'-group,  $[Z(R),Q_0]=1$  by Lemma 4.5, and so  $Q_0\subseteq N_G(Z(R))=N_G(R)$ . By the Frattini argument,  $N_G(R_1)=C_G(R_1)(N_G(R_1)\cap N_G(R))$  by Lemmas 4.3 and 4.4. Since  $Q_0\subseteq C_G(R_1)\cap N_G(R)$ ,  $|C_G(R_1)|_q=|C_G(R_1)\cap N_G(R)|_q$ . Hence  $|N_G(R_1)|_q=|C_G(R_1)|_q|N_G(R_1)\cap N_G(R)|_q$ .

Now, by Lemma 4.15, there exists a Sylow r-subgroup  $R_0$  of  $C_G(\tau)$  such that  $\overline{N_{Q_1}(R_0)} = \overline{Q}_1$  in  $\overline{Q}$ , where  $Q_1 = C_Q(\tau)$ . By Lemma 3.3,  $R_0^x = R_1$  for some  $x \in C_G(\tau)$ . Then  $N_{Q_1}(R_0)^x \subseteq N_G(R_0)^x \subseteq N_G(R_1)$ . Since  $|N_G(R_1)|_q = |N_G(R_1) \cap N_G(R)|_q$  and  $N_{Q_1}(R_0)^x$  is  $\tau$ -invariant q-subgroup of  $N_G(R_1)$ ,  $N_{Q_1}(R_1)^{xy} \subseteq N_G(R_1) \cap N_G(R)$  for some  $y \in C_G(\tau) \cap N_G(R_1)$ . Setting z = xy,  $z \in C_G(\tau)$  and  $N_{Q_1}(R_0)^z \subseteq N_G(R)$ . Then  $Q \subseteq N_G(R)$  by Lemma 4.16.

LEMMA 4.18. Set  $\bar{Q}=Q/Q'$  and  $\bar{R}=R/R'$ . Assume that  $C_{\bar{Q}}(\sigma)=1=$ 

 $C_{\bar{R}}(\sigma)$ . Then if  $C_R(\sigma) \cap N_G(Q) \neq 1$ ,  $C_{\bar{Q}}(a) \neq 1$  for some non-trivial element  $a \in C_R(\sigma) \cap N_G(Q)$ .

PROOF. Suppose false and the proof will be by contradiction. Set  $C = C_G(\tau)$  and  $Q_1 = C_Q(\tau)$ . Then we break the proof of Lemma 4.8 into five steps.

STEP 1.  $Q \nsubseteq N_G(R)$ .

PROOF. Suppose  $Q \subseteq N_G(R)$ . Then  $[C_R(\sigma) \cap N_G(Q), Q] \subseteq Q \cap R = 1$ , a contradiction.

STEP 2.  $N_{Q_1}(R_0) \subseteq C_G(R_0)$  and  $\bar{Q}_1 = \overline{N_{Q_1}(R_0)}$  in  $\bar{Q}$  for some Sylow r-subgroup  $R_0$  of C.

PROOF. By Lemma 4. 15,  $\overline{N_{Q_i}(R_0)} = \overline{Q}_1$  in  $\overline{Q}$  for some Sylow r-subgroup of C. Set  $R_1 = C_R(\sigma)$  and  $N = N_G(R_1)$ . By the Frattini argument,  $N = C_G(R_1)N_N(R)$  by Lemmas 4. 3 and 4. 4. Since  $C_{\overline{R}}(\sigma) = 1$ ,  $N_G(R) = C_G(R)R(C_G(\sigma)\cap N_G(R))$ . Then  $N_N(R) = C_G(R)R(C_G(\sigma)\cap N_G(R))\cap N = C_G(R)(R(C_G(\sigma)\cap N_G(R))\cap N)$  and so  $N = C_G(R_1)(R(C_G(\sigma)\cap N_G(R))\cap N)$ . Now  $R_0 = R_1^{\gamma}$  for some  $\gamma \in C$  by Lemma 3. 3. So  $N_{Q_i}(R_0) \subseteq N_G(R_0) = N^{\gamma} = C_G(R_0)(R(C_G(\sigma)\cap N_G(R))\cap N)^{\gamma}$ . Then, since  $\gamma$  acts trivially on  $N_{Q_i}(R_0)$ ,  $N_{Q_i}(R_0) \subseteq C_G(R_0)$  by Lemma 3. 1.

Step 3. If x be an r-element of  $N_G(Q)$ , then  $C_Q(x) = Q$  or  $C_{\overline{Q}}(x) = 1$ .

PROOF. Since  $N_G(Q) = C_G(Q) \, Q(C_G(\sigma) \cap N_G(Q))$ ,  $x \in C_G(Q) \, Q(C_R(\sigma) \cap N_G(Q))$ , and so x = ghk for some  $g \in C_G(Q)$ ,  $h \in Q$  and  $k \in C_R(\sigma) \cap N_G(Q)$ . Then  $C_{\bar{Q}}(x) = C_{\bar{Q}}(k)$ . If  $k \neq 1$ , then  $C_{\bar{Q}}(k) = 1$ . If k = 1, then  $C_{\bar{Q}}(k) = \bar{Q}$  and hence  $C_Q(x) = Q$ .

Step 4.  $N_{Q_1}(R_0)^z \subseteq N_G(R)$  for some  $z \in C$ .

PROOF. Lemma 4. 8,  $C_G(R_0)$  has a normal r-complement. Let  $Q^*$  be a  $\tau$ -invariant Sylow q-subgroup of  $C_G(R_0)$  containing  $N_{Q_1}(R_0)$ . Then  $Q^*$  is normalizes by  $R^*$ , where  $R^*$  is a  $\tau$ -invariant Sylow r-subgroup of  $C_G(R_0)$ .

Now we shall prove  $[R^*, Q^*]=1$ . Suppose false. By Lemma 2.1(iv),  $Q^{*u}\subseteq Q$  for some  $u\in C$ . Setting  $Q_0=Q^{*u}$ , there exists an element  $y\in R^{*u}$  such that  $[y,Q_0]\neq 1$ . By Lemmas 2.7 and 4.3, y=cn for some  $c\in C_G(Q_0)$  and some  $n\in N_G(Q)$ . Let H be the A-invariant Hall q'-subgroup of  $N_G(Q)$ . Then, since  $C_Q(\sigma)=1$ ,  $[H,\sigma]$  centralizes Q by Lemma 2.4, and so  $[H,\sigma]\subseteq C_G(Q)$ . Thus  $N_G(Q)=C_G(Q)QC_H(\sigma)$ . Hence n=ghk for some  $g\in C_G(Q)$ ,

 $h{\in}Q$  and  $k{\in}C_H(\sigma)$ . Moreover, since  $n{\in}N_G(Q_0)$ ,  $hk{\in}N_G(Q_0)$ , and so k normalizes  $\bar{Q}_0$  in  $\bar{Q}$ . Since  $N_{Q_1}(R_0)^u{\subseteq}Q^{*u}{=}Q_0$  for  $u{\in}C$ ,  $\bar{Q}_0{\supseteq}\overline{N_{Q_1}(R_0)^u}{=}\overline{N_{Q_1}(R_0)}{=}\bar{Q}_1$  by Lemma 4. 9 and Step 2, and so  $Q_1{\subseteq}Q_0Q'$ . Now < k>Q and  $Q_0Q'$  is  $\tau$ -invariant. Since  $< k>Q{\triangleright}Q_0Q'$ ,  $< k>Q/Q_0Q'$  is  $\tau$ -invariant. Moreover, since  $Q_1{\subseteq}Q_0Q'$ ,  $\tau$  inverts  $< k>Q/Q_0Q'$ , and so  $[k,Q]{\subseteq}Q_0Q'$  by Lemma 2. 2(iv). Hence  $Q=C_Q(k)Q_0Q'$ .

If  $Q_0Q'\subsetneq Q$ , then  $C_{\bar{Q}}(k)\neq 1$ . Now k can be written uniquely in the form  $k=k_1k_2$ , where  $k_1$  is an r-element and  $k_2$  is an r'-element and  $[k_1,k_2]=1$ . Then, since  $1\neq C_{\bar{Q}}(k)\subseteq C_{\bar{Q}}(k_1)$ ,  $C_{\bar{Q}}(k_1)=\bar{Q}$  by Step 3, and so  $[Q,k_1]=1$ . Since  $y=cghk_1k_2$ ,  $\bar{y}=\overline{hk_2}$  in  $N_G(Q_0)/C_G(Q_0)$ . Moreover since  $hk_2\in Q< k_2>$ ,  $hk_2$  is an r'-element. Hence  $\bar{y}$  is an r-element and  $\overline{hk_2}$  is an r'-element, a contradiction.

If  $Q_0Q'=Q$ , then  $Q=Q_0$ . So we have  $R_0^u\subseteq C_G(Q)$  for  $u\in G$ . Setting  $R_1=C_R(\tau)$ ,  $R_1^v=R_0$  for some  $v\in C$  by Lemma 3.3. Then  $R_1^{vu}\subseteq C_G(Q)$  and  $vu\in C$ . By Lemma 4.16,  $R\subseteq C_G(Q)$ . This contradicts Step 1. Hence  $[Q^*,R^*]=1$ , in particular  $[N_Q(R_0),R^*]=1$ .

Let  $R_2$  be a  $\tau$ -invariant Sylow r-subgroup of G containing  $R^*$ . Then  $Z(R_2)\subseteq R^*$  since  $R^*=C_{R_2}(R_0)$ . Thus  $[N_{Q_1}(R_0),Z(R_2)]=1$ . By Lemma  $[N_{Q_1}(R_0),Z(R_2)]=1$ . Hence  $[N_{Q_1}(R_0),Z(R_0)]=1$ . Hence  $[N_{Q_1}(R_0),Z(R_0)]=1$ . Hence  $[N_{Q_1}(R_0),Z(R_0)]=1$ .

Step 5. We have a contradiction.

PROOF. By Steps 2 and 4,  $\overline{N_Q(R_0)} = \overline{Q}_1$  in  $\overline{Q}$  and  $N_Q(R_0)^z \subseteq N_G(R)$  for some  $z \in C$ . By Lemma 4.16,  $Q \subseteq N_G(R)$ , This contradicts Step 1.

Lemma 4.19. Set  $R_0 = C_R(\sigma) \cap N_G(Q)$  and  $Q_0 = C_Q(\sigma) \cap N_G(R)$ . If  $R_0 \neq 1 \neq Q_0$ , then one of the following holds:

- (i) There exists a non-trivial element  $a \in R_0$  such that  $C_Q(a) \supseteq C_Q(\sigma)$ , or
  - (ii) there exists a non-trivial element  $b \in Q_0$  such that  $C_R(b) \supseteq C_R(\sigma)$ .

PROOF. Suppose false. By Lemma 4.13,  $C_{\bar{Q}}(\sigma) = 1 = C_{\bar{R}}(\sigma)$ , where  $\bar{Q} = Q/Q'$  and  $\bar{R} = R/R'$ . By Lemma 4.18, there exists a non-trivial element  $a \in R_0$  such that  $C_{\bar{Q}}(a) \neq 1$ . If  $C_Q(a) = C_Q(\sigma)$ , then  $C_{\bar{Q}}(a) = \overline{C_Q(\sigma)} = \overline{C_Q(\sigma)} = C_{\bar{Q}}(\sigma)$  a contradiction. Hence  $C_Q(a) \supsetneq C_Q(\sigma)$ , a contradiction.

LEMMA 4.20. Assume that  $QR \neq RQ$  and  $C_Q(\sigma) \neq 1 \neq C_R(\sigma)$ . Then there exists a maximal A-invariant  $\{q, r\}$ -subgroup H of G such that  $O_q(H) \neq 1 \neq O_r(H)$  and  $\langle C_Q(\sigma), C_R(\sigma) \rangle \subseteq H$ .

PROOF. Suppose  $C_{Z(Q)}(\sigma) \neq 1$ . Let  $1 \neq a \in C_{Z(Q)}(\sigma)$ , and let H be a maximal A-invariant  $\{q,r\}$ -subgroup containing  $(C_G(a))_{q,r}$ . Then  $< C_R(\sigma)$ ,  $Q>\subseteq (C_G(a))_{q,r}\subseteq H$ . By Lemma 3. 8,  $H=O_{q,r,q}(H)$ . Hence, if  $O_q(H)=1$ , then H is r-closed and so  $R\subseteq H$  by maximality of H. Hence QR=H=RQ, a contradiction. Hence  $O_q(H)\neq 1$ . If  $O_r(H)\neq 1$ , H satisfies the required conditions. So we may assume that  $O_r(H)=1$ . Then the argument of the preceding paragraph gives  $H\triangleright Q$ , and so  $C_R(\sigma)\subseteq N_G(Q)$ .

Suppose next that  $C_{Z(Q)}(\sigma)=1$ . Let  $1\neq b\in C_Q(\sigma)$ , and let M be a maximal A-invariant  $\{q,r\}$ -subgroup containing  $(C_G(b))_{q,r}$ . Then  $< C_R(\sigma)$ , Z(Q),  $C_Q(\sigma)>\subseteq (C_G(b))_{q,r}\subseteq M$ . If  $O_q(M)=1$ , then  $M\triangleright R$  and so < Z(Q),  $C_Q(\sigma)>\subseteq N_G(R)$ . By Lemma 4.14,  $[R,C_Q(\sigma)]=1$ . Hence  $1\neq C_Q(\sigma)\subseteq C_M(O_r(M))\subseteq O_r(M)$  by Lemma 2.6, a contradiction. Hence  $O_q(M)\neq 1$ . If  $O_r(M)\neq 1$ , M satisfies the required conditions. So we may assume that  $O_r(M)=1$  and so  $C_R(\sigma)\subseteq M=N_G(Q)$ . Interchanging Q and Q and applying the argument of the preceding paragraph gives  $C_Q(\sigma)\subseteq N_G(R)$ .

By Lemma 4. 19, one of the following holds:

- ( i ) there exists a non-trivial element  $c\!\in\!R_{\rm 0}$  such that  $C_Q(c)\!\ni\!C_Q(\sigma)$ , or
- (ii) there exists a non-trivial element  $d \in R_0$  such that  $C_R(d) \not\supseteq C_R(\sigma)$ . Suppose first that (i) holds. Setting  $Q^* = [C_Q(c), \sigma]$ ,  $Q^* \ne 1$ . Let N be a maximal A-invariant  $\{q, r\}$ -subgroup of G containing  $(C_G(c))_{q,r}$ . Then  $< C_Q(\sigma)$ ,  $C_R(\sigma)$ ,  $Q^* > \subseteq (C_G(c))_{q,r} \subseteq N$ . By Lemma 4.10,  $[N \cap Q, \sigma] \subseteq O_q(N)$  and  $[N \cap R, \sigma] \subseteq O_r(N)$ . Then we have  $1 \ne Q^* \subseteq [N \cap Q, \sigma] \subseteq O_q(N)$ . By Lemmas 3.4 and 4.2,  $[C_R(C_R(\sigma)), \sigma] \ne 1$  and so  $1 \ne [C_R(c), \sigma] \subseteq [N \cap R, \sigma] \subseteq O_r(N)$ . Thus N satisfies the required conditions. Suppose next that (ii) holds. Then, similarly, we can show the existence of the subgroup of G which satisfies the required conditions.

For the remainder of this section, H be a maximal A-invariant  $\{q, r\}$ -subgroup of G with  $O_q(H) \neq 1 \neq O_r(H)$ .

Lemma 4.21. If K is an A-invariant subgroup of F(H) with  $O_q(K) \neq 1 \neq O_r(K)$ , then H is the only maximal  $\{q, r\}$ -subgroup of G to contain K.

PROOF. See Lemma 4 of [4].

Lemma 4.22.  $R \subseteq H$  or  $Z(R) \subseteq N_G(Q)$ .

PROOF. Since  $O_r(H) \neq 1$ ,  $H = (N_G(O_r(H)))_{q,r} \supseteq Z(R)$ . Similarly  $Z(Q) \subseteq H$ . Then  $[Z(R), Z(Q)] \subseteq O_q(H)Z(R) \cap F(H)$  by Lemmas 3.8

and 4. 4. If  $O_q(H)Z(R)\cap F(H)=O_q(H)$ , then  $Z(R)\subseteq N_G(Z(Q)O_q(H))\subseteq N_G(Z(Q))=N_G(Q)$  by Lemmas 4.3 and 4.4. If  $O_q(H)Z(R)\cap F(H)\supsetneq O_q(H)$ , then  $Z(R)\cap O_r(H)\ne 1$ . Let  $K=(Z(R)\cap O_r(H)\times O_q(H))$ . Then  $K\subseteq F(H)$  and  $O_q(K)\ne 1\ne O_r(K)$ . Since  $K\subseteq (C_G(Z(R))\cap O_r(H))_{q,r}$ ,  $(C_G(Z(R)\cap O_r(H)))_{q,r}\subseteq H$  by Lemma 4.21, and so  $R\subseteq (C_G(Z(R)\cap O_r(H)))_{q,r}\subseteq H$ .

Lemma 4.23. If  $Q \not\subseteq H$ , then  $[N_{R \cap H}(Q), \sigma] \subseteq C_G(Q)$ , furthermore,  $[R \cap H, \sigma] \subseteq O_r(H)$ .

PROOF. Setting  $R^* = [N_{R \cap H}(Q), \sigma]$ ,  $Q \triangleright [Q, R^*] = [O_q(H), R^*]$  by Lemma 4.12. If  $Q \cap H$  is non-abelian,  $Q \subseteq H$  by Lemma 4.7, a contradiction. Hence  $Q \cap H$  is abelian. Moreover,  $(R \cap H)' \subseteq O_r(H)$  by Lemma 3.8, and so  $(R \cap H)' \subseteq C_H(O_q(H))$ . Thus  $H/C_H(O_q(H))$  is an abelian r-group. Let  $x \in O_q(H)$ ,  $y \in R^*$  and  $h \in H$ . Then  $y^h = ay$  for some  $a \in C_H(O_q(H))$ . Hence  $[x, y]^h = (x^h)^{-1}(y^h)^{-1}x^hy^h = (x^h)^{-1}y^{-1}a^{-1}x^hay = (x^h)^{-1}y^{-1}x^hy = [x^h, y] \in [O_q(H), R^*]$ . Thus we have  $Q \triangleright [O_q(H), R^*] \triangleleft H$ . Suppose  $[O_q(H), R^*] \neq 1$ . Then, since  $H = (N_G([O_q(H), R^*]))_{q,r}$  by maximality of H,  $Q \subseteq H$ , a contradiction. Hence  $[Q^*, R] = [O_q(H), R^*] = 1$ . Thus  $[N_{R \cap H}(Q), \sigma] \subseteq C_G(Q)$ . Now  $Z(Q) \subseteq H$  since  $H = (N_G(O_q(H))_{q,r})$ . By Lemma 3.8,  $H = O_r(H)N_H(H \cap Q)$ . Since  $Z(Q) \subseteq H \cap Q$ ,  $N_H(H \cap Q) = N_H(Z(Q)) = N_H(Q)$  by Lemmas 4.3 and 4.4. Set  $H = H/O_r(H)$ . Then  $[R \cap H, \sigma] = [N_{R \cap H}(Q), \sigma] = R^*$ . Since  $[R^*, Q \cap H] = 1$ ,  $R^* = 1$  by Lemma 2.6. Hence  $[R \cap H, \sigma] \subseteq O_r(H)$ .

Suppose p and q are distinct primes. Let P and Q be the A-invariant Sylow p- and q-subgroups of G. Then we shall show that PQ = QP.

Now we can divide the A-invariant Sylow p-subgroups for  $p \in \pi(G)$  into three disjoint sets,

$$\begin{split} &\pi_1 = \{ P^A = P \in Sy1_p(G) \mid C_p(\sigma) = 1 \}, \\ &\pi_2 = \{ Q^A = Q \in Sy1_q(G) \mid C_Q(\sigma) \neq 1 \text{ and } C_{Z(Q)}(\sigma) = 1 \}, \\ &\pi_3 = \{ R^A = R \in Sy1_r(G) \mid C_{Z(R)}(\sigma) \neq 1 \}. \end{split}$$

#### 5. The case $P \in \pi_1$ .

In this section, P, Q be the A-invariant Sylow p- and q-subgroups of G (where p, q are distinct primes) such that  $P \in \pi_1$ , ie.,  $C_p(\sigma) = 1$ .

Lemma 5.1. If  $N_G(Q)/C_G(Q)$  is a p'-group, then PQ = QP.

Proof. Setting  $P_1 = C_P(\tau)$ ,  $P_1$  is a Sylow p-subgroup of  $C_G(\tau)$  by

Lemma 3.3. By Lemma 4.9,  $P_1$  normalizes some Sylow q-subgroup  $Q_1$  of  $C_G(\tau)$ . By hypothesis and Lemma 4.5,  $Q_1 \subseteq C_G(P_1) \supseteq Z(P)$ . Setting L = $C_G(P_1)$ , L has a normal p-complement by Lemma 4.8. Hence Z(P)normalizes some  $\tau$ -invariant Sylow q-subgroup  $Q^*$  of L. By Lemma 2.1(iv),  $Q_1 \subseteq Q^*$  for some  $x \in C_L(\tau)$ . By hypothesis and Lemma 4. 5,  $Q^* \subseteq C_G(Z(P))$  $\subseteq N_G(Z(P)) = N_G(P)$ . Moreover, by Lemma 2.1(iv),  $Q^{*y} \subseteq N_O(P)$  for some  $y \in C_G(\tau) \cap N_G(P)$ , in particular,  $Q_1^{xy} \subseteq C_G(\tau) \cap N_Q(P)$ . Since  $Q_1$  is a Sylow q-subgroup of  $C_G(\tau)$ ,  $Q_1^{xy} = C_Q(\tau) \subseteq N_G(P)$ . Hence  $< C_Q(\tau)$ ,  $C_Q(\sigma\tau) > \subseteq N_G(P)$ . Now, Since  $Q \triangleright [Q, \sigma]$  and  $\tau$ ,  $\sigma\tau$  invert every element of  $Q/[Q,\sigma]$ ,  $< C_Q(\tau)$ ,  $C_Q(\sigma\tau) > \subseteq [Q,\sigma]$ . Setting  $[\overline{Q},\overline{\sigma}] =$  $[Q, \sigma]/\Phi([Q, \sigma]), [\overline{Q, \sigma}] = \overline{C_Q(\tau)} \overline{C_Q(\sigma \tau)}$  by Lemma 3.2. This implies that  $< C_Q(\tau)$ ,  $C_Q(\sigma \tau) > = < C_Q(\tau)$ ,  $C_Q(\sigma \tau)$ ,  $\Phi([Q, \sigma]) > = [Q, \sigma]$ . So  $[Q, \sigma] \subseteq N_G(P)$ . Since  $C_P(\sigma) = 1$ ,  $P \subseteq C_G([Q, \sigma])$  by Lemma 2.4. Since Q $\triangleright [Q, \sigma]$  by Lemma 2.1(ii),  $\langle P, Q \rangle \subseteq N_G([Q, \sigma])$ . This implies that PQ = QP.

LEMMA 5.2. PQ = QP.

PROOF. Suppose false and the proof will be by contradiction. By Lemmas 4. 17 and 5. 1, we may assume that  $p \mid N_G(Q)/C_G(Q) \mid$  and  $q \mid N_G(P)/C_G(P) \mid$ . Setting  $Q_0 = C_Q(\sigma) \cap N_G(P)$  and  $P_0 = P \cap N_G(Q)$ ,  $P_0 \neq 1$ . Since  $N_G(P) = C_G(P)P(C_G(\sigma) \cap N_G(P))$ ,  $Q_0 \neq 1$ . Furthermore, we set  $P_1 = C_P(\tau)$  and  $L = C_G(\sigma) \cap N_G(P)$ . Now we divide the proof of Lemma 5. 2 into seven steps.

Step 1. There exists a maximal A-invariant subgroup of G containing  $\langle C_G(\sigma), P_0, Q \rangle$ .

PROOF.  $[P_0, Q_0] \subseteq P \cap Q = 1$  Let M be a maximal A-invariant subgroup of G containing  $C_G(Q_0)$ . Then  $< C_G(\sigma)$ ,  $P_0$ ,  $Z(Q) > \subseteq C_G(Q_0) \subseteq M$ . we subdivide the proof according to whether  $Z(Q) \cap O_q(H) \neq 1$  or  $Z(Q) \cap O_q(H) = 1$ .

Case I.  $Z(Q) \cap O_q(M) \neq 1$ 

Since  $Z(Q)\subseteq M$ ,  $M=O_q(M)N_M(Z(Q))$  by Lemmas 3.8 and 4.4. Furthermore, since  $[O_q(M),\ Z(Q)\cap O_q(M)]=1$ ,  $M=O_q(M)N_M(Z(Q))=N_G(Z(Q)\cap O_q(M))$  by maximality of M. Hence  $Q\subseteq M$ . Then M satisfies the required conditions.

Case II.  $Z(Q) \cap O_q(M) = 1$ 

Then  $[P_0, Z(Q)] \subseteq Z(Q) \cap F(M) = Z(Q) \cap O_q(M) = 1$ . Set  $H = (N_G(P_0))_{p,q}$ . Then  $Z(Q) \subseteq H$  and  $H = O_{q,p,q}(H)$ .

Suppose  $C_{Z(Q)}(\sigma)=1$ . Setting  $\bar{H}=H/O_q(H)$ ,  $[\overline{Z(Q)},\ O_p(\bar{H})]=1$  by Lemma 2. 4. By Lemma 2. 6,  $\overline{Z(Q)}=1$  and so  $Z(Q)\subseteq O_q(H)$ . By Lemmas 4. 3 and 4. 4,  $H\subseteq N_G(Z(Q))=N_G(Q)$ . Hence  $N_P(P_0)=P_0$ . This implies  $P=P_0$ . Thus  $P\subseteq N_G(Q)$  and so PQ=QP, a contradiction. Hence  $C_{Z(Q)}(\sigma)\neq 1$ .

Setting  $Z = C_{Z(Q)}(\sigma)$ ,  $< P_0$ ,  $C_G(\sigma)$ ,  $Q > \subseteq C_G(Z)$ . Let T be a maximal A-invariant subgroup of G containing  $C_G(Z)$ . Then T satisfies the required conditions.

Step 2.  $C_G(\sigma) \subseteq N_G(Q)$ .

PROOF. If Q is non-abelian, then  $M = N_G(Q)$  by Lemma 4.7. Thus  $C_G(\sigma) \subseteq N_G(Q)$ . Hence we may assume that Q is abelian.

Set  $X = [C_{\Omega}(P_0), \sigma]$ . Suppose  $X \neq 1$ . Let K be a maximal A-invariant  $(C_{\mathcal{C}}(P_0))_{p,q}$ . Then  $\{p, q\}$ -subgroup which contains  $\langle Z(P), X \rangle \subseteq$  $(C_G(P_0))_{p,q}\subseteq K$ . Setting  $\bar{K}=K/O_q(K)$ ,  $\bar{X}\subseteq C_{\bar{K}}(O_p(\bar{K}))\subseteq O_p(\bar{K})$  by Lemmas 2.4 and 2.6, and hence  $X \subseteq O_q(K)$ . Since Q is abelian,  $Q \subseteq$  $(N_G(O_q(K)))_{p,q} = K$  by maximality of K. Suppose  $O_p(K) \cap Z(P) \neq 1$ . Since  $O_q(K) \times (O_p(K) \cap Z(P)) \subseteq (C_G(O_p(K) \cap Z(P)))_{p,q} \text{ and } O_q(K) \neq 1 \neq O_p(K) \cap Z(P)$ Z(P),  $P \subseteq (C_G(O_P(K) \cap Z(P)))_{p,q} \subseteq K$  by Lemma 4.21. Hence  $\langle P, Q \rangle \subseteq K$ and so PQ = QP, a contradiction. Hence  $O_b(K) \cap Z(P) = 1$ . Then  $[Q_0, Z(P)] \subseteq Z(P) \cap F(K) = 1$ . By Lemmas 4.3 and 4.4, K = $O_q(K)N_K(Z(P)) = O_q(K)N_K(P)$ . Since  $Q \subseteq K$  and  $[N_Q(P), \sigma] \subseteq O_q(K)$ by Lemmas 2. 4 and 2. 6,  $Q = Q_0 O_q(K)$ . Hence  $Z(P) \subseteq N_G(Q)$ . Thus Z(P) $\subseteq P_0$ . Let U be a maximal A-invariant  $\{p, q\}$ -subgroup which contains  $(C_G(Z(P)))_{p,q}$ . Then  $\langle X, P \rangle \subseteq (C_G(Z(P)))_{p,q} \subseteq U$ . Since  $1 \neq X \subseteq O_q(U)$ by Lemmas 2.4 and 2.6,  $Q \subseteq (N_G(O_q(N)))_{p,q} = U$  by maximality of N. Hence  $\langle P, Q \rangle \subseteq U$  and so PQ = QP, a contradiction. Hence X = $[C_{o}(P_{0}), \sigma] = 1.$ 

Since  $[P_0,Q]\subseteq Q\cap F(M)=O_q(M)$ ,  $Q=C_Q(P_0)O_q(M)$ . Since  $[C_Q(P_0),\sigma]=1$ ,  $[Q,\sigma]\subseteq O_q(M)$ . Now  $C_G(\sigma)$  is abelian by Lemma 3.1 and so  $C_G(\sigma)$  normalizes  $C_Q(\sigma)O_q(M)=C_Q(\sigma)[Q,\sigma]=Q$  by Lemma 2.1(ii). Thus  $C_G(\sigma)\subseteq N_G(Q)$ .

Step 3.  $Z(P) \cap F(N_G(Q)) = 1$ .

PROOF. Set  $P_2 = Z(P) \cap F(N_G(Q))$ . If  $P_2 \neq 1$ , then  $\langle P, Q \rangle \subseteq$ 

STEP 4.

 $C_G(P_2)$  and so PQ = QP, a contradiction. Hence  $Z(P) \cap F(N_G(Q)) = 1$ .  $[L, P_0] \neq 1$  or  $P_0 \subseteq P'$ .

Suppose  $[L, P_0] \neq 1$  and  $P_0 \not\subseteq P'$ . Set  $N = N_G(P)$  and  $\bar{N} = N_G(P)$ N/P'. Since  $N = C_G(P)PL$  by Lemma 2.4,  $\bar{N}' \cap \bar{P} = [\bar{L}, \bar{P}]$ . Now since  $\bar{P} = [\bar{P}, \bar{L}] \times C_{\bar{P}}(\bar{L})$  and  $1 \neq \bar{P}_0 \subseteq C_{\bar{P}}(\bar{L})$ ,  $\bar{P} \not\supseteq [\bar{P}, \bar{L}] = \bar{N}' \cap \bar{P} \supseteq \bar{N}' \cap \bar{P}$ . Hence  $N' \cap P \subseteq P$ . This contradicts Lemma 4.3.

STEP 5. P is non-abelian. In particular,  $P_1' \neq 1$ .

Suppose P is abelian. Since  $\langle P_0, C_G(\sigma) \rangle \subseteq N_G(Q)$ ,  $[L, P_0]$ Proof.  $\subseteq P \cap F(N_G(Q)) = 1$  by Step 3. This contradicts Step 4. Hence P is non-abelian. By Lemma 3.7,  $P_1' \neq 1$ .

 $P_0 \cap P_1' = 1.$ STEP 6.

PROOF. Set  $P_3 = P_0 \cap P_1'$  and assume that  $P_3 \neq 1$ . Since class  $P \leq 2$  by Lemma 2.5,  $P_3 \subseteq P_1 \subseteq Z(P)$ . Then  $[L, P_3] \subseteq Z(P) \cap F(N_G(Q)) = 1$  by Steps 2

and 3, where  $L = C_G(\sigma) \cap N_G(P)$ . Hence  $P_3 \subseteq Z(N_G(P))$ . By Lemmas 2. 7 and 4. 3, every element of  $P_3$  is weakly closed in P with respect to G. Lemma 4.9,  $P_1 \subseteq N_G(Q_1)$  for some Sylow q-subgroup  $Q_1$  of  $C_G(\tau)$ . By Lemma 4.6,  $P_3 \subseteq P_1' \subseteq C_G(Q_1)$ . Let  $Q^*$  be a  $\tau$ -invariant Sylow q-subgroup of G containing  $Q_1$ . Then  $Z(Q^*)Q_1$  normalizes a  $\tau$ -invariant Sylow p-subgroup  $P^*$  by Lemma 4.8. By Lemma 2.1(iv),  $Q^{*x}=Q$  for some  $x\in$  $C_G(\tau)$ . Then  $Z(Q^*)^x Q_1^x = Z(Q) C_Q(\tau)$  normalizes  $P^{*x}$ . Now since  $P_3 \subseteq$  $C_G(Q_1)$ ,  $P_3 \subseteq P^*$  for some  $y \in C_G(Q_1)$  by Sylow's theorem. Since  $P_3 \subseteq P^{*x}$ and every element of  $P_3$  is weakly closed,  $P_3^{yx} \subseteq C_G(Z(Q)C_Q(\tau)) =$  $C_G(C_Q(\tau)) \cap C_G(Z(Q)) \subseteq C_G(C_Q(\tau)) \cap N_G(Q)$  by Lemma 4.3. By Lemma 4.8,  $P_3^{yx} \subseteq C_G(Q)$ . Since  $C_P(Q)$  is a Sylow *p*-subgroup of  $C_G(Q)$ ,  $P_3^{yxz} \subseteq$  $C_P(Q)$  for some  $z \in C_G(Q)$  by Sylow's theorem. Since  $P_3$  is weakly closed in P,  $P_3 = P_3^{yxz} \subseteq C_P(Q)$ . Thus  $1 \neq P_3 \subseteq C_{Z(P)}(Q)$ . Setting  $Z = C_{Z(P)}(Q)$ , < P,  $Q > \subseteq C_G(Z)$  and so PQ = QP, a contradiction. Hence  $1 = P_3 = P_0 \cap P_1'$ .

We have a contradiction. STEP 7.

By Step 2,  $[P_0, L] \subseteq P \cap F(N_G(Q))$ . Set  $P_4 = P \cap F(N_G(Q))$ .  $\text{If} \quad P_4 \neq 1, \text{ then} \quad Z(P) \subseteq N_G(P_4) = N_G(Q). \quad \text{Hence} \quad P_1' \subseteq Z(P) \subseteq N_P(Q) = P_0.$ Thus  $1 \neq P_1' = P_0 \cap P_1'$ . This contradicts Step 6. Hence  $1 = P_4 = [P_0, L]$ . By Step 4,  $P_0 \subseteq P'$ . By Lemma 3.7,  $P' = C_P(\tau)' C_P(\sigma \tau)'$  and so  $C_{P'}(\tau) =$ 

 $C_P(\tau)'=P_1'$ . Since  $C_{P_0}(\sigma)=1$ ,  $P_0=C_{P_0}(\tau)C_{P_0}(\sigma\tau)$  by Lemma 3.2 and so  $1\neq C_{P_0}(\tau)\subseteq C_{P'}(\tau)=P_1'$ . Thus  $P_0\cap P_1'\neq 1$ . This contradicts Step 6.

#### 6. The case Q, $R \in \pi_2$

LEMMA 6.1. Suppose q and r are distinct primes. Let Q and R be the A-invariant Sylow q- and r-subgroups of G such that Q,  $R \in \pi_2$ , ie.,  $C_Q(\sigma) \neq 1 \neq C_R(\sigma)$  and  $C_{Z(Q)}(\sigma) = 1 = C_{Z(R)}(\sigma)$ . Then QR = RQ.

PROOF. Suppose false. By Lemma 4.20, there exists a maximal A-invariant  $\{q, r\}$ -subgroup H of G such that  $\langle C_Q(\sigma), C_R(\sigma) \rangle \subseteq H$  and  $O_q(H) \neq 1 \neq O_r(H)$ . If  $Q \not\subseteq H$ ,  $Z(Q) \subseteq N_G(R)$  by Lemma 4.22. Since  $C_{Z(Q)}(\sigma) = 1 = C_{Z(R)}(\sigma)$ , [Z(Q), Z(R)] = 1. Now  $Z(R) \subseteq (N_G(O_r(H)))_{q,r} = H$  by maximality of H. By Lemma 4.23,  $Z(R) = [Z(R), \sigma] \subseteq [R \cap H, \sigma] \subseteq O_r(H)$ . Since  $Z(R) \times O_q(H) \subseteq (C_G(Z(Q)))_{q,r}$  and  $Z(R) \times O_q(H) \subseteq F(H)$ ,  $(C_G(Z(Q)))_{q,r} \subseteq H$  by Lemma 4.21. Thus  $Q \subseteq (C_G(Z(Q)))_{q,r} \subseteq H$ . By symmetry between Q and R, we also have  $R \subseteq H$  and so QR = RQ, a contradiction.

#### 7. The case Q, $R \in \pi_3$

Lemma 7.1. Suppose q and r are distinct primes. Let Q and R be the A-invariant Sylow q- and r-subgroups of G such that Q,  $R \in \pi_3$ , ie.,  $C_{Z(Q)}(\sigma) \neq 1 \neq C_{Z(R)}(\sigma)$ . Then QR = RQ.

PROOF. Suppose false and the proof will be by contradiction. Now we divide the proof of Lemma 71 into two steps.

Step 1. There exists a maximal A-invariant  $\{q, r\}$ -subgroup H of G such that  $O_q(H) \neq 1 \neq O_r(H)$ , and  $\langle Q, C_R(\sigma) \rangle \subseteq H$  or  $\langle R, C_Q(\sigma) \rangle \subseteq H$ .

PROOF. Suppose false. Let  $1 \neq a \in C_{Z(Q)}(\sigma)$ . Let H be a maximal A-invariant  $\{q, r\}$ -subgroup of G containing  $(C_G(a))_{q,r}$ . Then  $< C_R(\sigma)$ ,  $Q>\subseteq (C_G(a))_{q,r}\subseteq H$ . If  $O_q(H)=1$ , then  $H\subseteq N_G(R)$  by Lemma 4.11. Thus  $Q\subseteq N_G(R)$  and so QR=RQ, a contradiction. Hence  $O_q(H)\neq 1$ . If  $O_r(H)\neq 1$ , then H satisfies the required conditions, a contradiction. Hence  $O_r(H)=1$ . Then  $H\subseteq N_G(Q)$  by Lemma 4.11. Thus  $C_R(\sigma)\subseteq H\subseteq N_G(Q)$ . By symmetry between Q and Q, we also have  $C_Q(\sigma)\subseteq N_G(R)$ .

Now suppose that  $C_R(\sigma)$  is non-cyclic. Then  $Q = \langle C_Q(x) | 1 \neq x \in C_R(\sigma) \rangle = \langle C_Q(x) | C_Q(x) \not\supseteq C_Q(\sigma)$ ,  $1 \neq x \in C_R(\sigma) \rangle$ . Let  $1 \neq x \in C_R(\sigma)$  such that  $C_Q(x) \not\supseteq C_Q(\sigma)$ . Setting  $Q^* = [C_Q(x), \sigma]$ ,  $Q^* = [Q^*, \sigma] \neq 1$ . Let K be

a maximal A-invariant  $\{q, r\}$ -subgroup of G containing  $(C_G(x))_{q,r}$ . Then  $\langle C_R(x), Q^* \rangle \subseteq (C_G(x))_{q,r} \subseteq K$ . By Lemma 4.10,  $1 \neq Q^* = [Q^*, \sigma] \subseteq$  $O_q(K)$ . By Lemmas 3. 4 and 4. 2,  $1 \neq [C_R(C_R(\sigma)), \sigma]$  and so  $1 \neq [C_R(x), \sigma]$ . Then  $[C_R(x), \sigma] \subseteq O_r(K)$  by Lemma 4.10. Thus  $O_q(K) \neq 1 \neq O_r(K)$ . If  $R \cap K$  is non-abelian,  $R \subseteq K$  by Lemma 4.7. Then K satisfies the required conditions. Hence  $R \cap K$  is abelian. Then  $R \cap K = C_R(x) = C_R(C_R(\sigma))$ since  $x \in C_R(\sigma)$  and  $C_R(\sigma) \subseteq C_R(x) \subseteq R \cap K$ . Setting  $R^* = C_R(C_R(\sigma))$ ,  $1 \neq 0$  $[R^*, \sigma] \subseteq O_r(K)$  by Lemma 4.10. Suppose  $C_{R^*}(\sigma) \cap O_r(K) \neq 1$ . Since  $(C_{R^*}(\sigma) \cap O_r(K)) \times O_q(K) \subseteq F(K)$  and  $(C_{R^*}(\sigma) \cap O_r(K)) \times O_q(K) \subseteq F(K)$  $(C_G(C_{Z(Q)}(\sigma)))_{q,r}, Q\subseteq (C_G(C_{Z(Q)}(\sigma)))_{q,r}\subseteq K$  by Lemma 4.21. Thus Ksatisfies the required conditions, a contradiction. Hence  $C_{R^*}(\sigma) \cap O_r(K) = 1$ and so  $O_r(K) = [R^*, \sigma]$ . Hence  $C_Q(x) \subseteq K \subseteq N_G(O_r(K)) = N_G([R^*, \sigma])$ . Since  $Q = \langle C_Q(x) | 1 \neq x \in C_R(\sigma), C_Q(x) \supseteq C_Q(\sigma) \rangle, Q \subseteq N_G([R^*, \sigma]).$ Hence  $Q\subseteq (N_G([R^*,\sigma]))_{q,r}=(N_G(O_r(K)))_{q,r}=K$  by maximality of K, a contradiction. Hence  $C_R(\sigma)$  is cyclic. By symmetry between Q and R,  $C_{\Omega}(\sigma)$  is cyclic.

By Lemma 4.19, we may assume that  $C_Q(a) \not\supseteq C_Q(\sigma)$  for some  $1 \neq a \in \Omega_1(C_R(\sigma))$ . Since  $C_R(\sigma)$  is cyclic and  $C_{Z(R)}(\sigma) \neq 1$ ,  $a \in Z(R)$ . Setting  $Q_0 = [C_Q(a), \sigma]$ ,  $Q_0 \neq 1$ . Let M be a maximal A-invariant  $\{q, r\}$ -subgroup which contains  $(C_G(a))_{q,r}$ . Then  $\langle R, Q_0 \rangle \subseteq (C_G(a))_{q,r} \subseteq M$ . By Lemma 4.10,  $1 \neq Q_0 \subseteq Q_q(M)$ . If  $O_r(M) = 1$ , then  $Q \subseteq M$  by Lemma 4.11. Then  $\langle Q, R \rangle \subseteq M$  and so QR = RQ, a contradiction. Hence  $O_r(M) \neq 1$ . Then M satisfies the required conditions, a contradiction. This completes the proof.

#### Step 2. We have a contradiction.

PROOF. By Step 1, we may assume that there exists a maximal A-invariant  $\{q,r\}$ -subgroup H of G such that  $O_q(H) \neq 1 \neq O_r(H)$  and  $< Q, C_R(\sigma)>\subseteq H$ . Setting  $R_1=C_{Z(R)}(\sigma)$  and  $R_2=[Z(R),\sigma]$ ,  $R_1\neq 1$  and  $Z(R)=R_1\times R_2$  by hypothesis and Lemma 2.1(ii). By Lemma 4.14,  $1\neq O_q(H)=< C_{O_q(H)}(R_1)$ ,  $C_{O_q(H)}(R_2)>$ , and hence  $C_{O_q(H)}(R_1)\neq 1$  or  $C_{O_q(H)}(R_2)\neq 1$ . Suppose that  $C_{O_q(H)}(R_1)\neq 1$ . Since  $C_{O_q(H)}(R_1)\times O_r(H)\subseteq F(H)$  and  $C_{O_q(H)}(R_1)\neq 1\neq O_r(H)$ ,  $C_{O_q(H)}(R_1)\times O_r(H)\subseteq (C_G(R_1))_{q,r}\subseteq H$  by Lemma 4.21. Thus  $R\subseteq (C_G(R_1))_{q,r}\subseteq H$ . Then since  $< Q, R>\subseteq H$ , QR=RQ, a contradiction. Hence  $C_{O_q(H)}(R_2)\neq 1$ . If  $R_2\neq 1$ , similarly, we have a contradiction. Hence  $R_2=1$  and so  $[Z(R),\sigma]=1$ .

If Q is non-abelian,  $Q \subseteq H$  by Lemma 4.7. Since  $O_r(H) \times C_Q(\sigma) \subseteq$ 

F(H) and  $O_r(H) \neq 1 \neq C_Q(\sigma)$ ,  $O_r(H) \times C_Q(\sigma) \subseteq (C_G(Z(R)))_{q,r} \subseteq H$  by Lemma 4.21. Then <Q,  $R>\subseteq H$  since  $R\subseteq (C_G(Z(R)))_{q,r}\subseteq H$ , and so QR=RQ, a contradiction. Hence Q is abelian.

By Lemma 4. 22,  $Z(R) \subseteq N_G(Q)$ . By Lemma 4. 13,  $C_Q(Z(R)) \supseteq C_Q(\sigma)$ . Setting  $Q_1 = [C_Q(Z(R)), \sigma]$ ,  $Q_1 \neq 1$ . Then  $Q_1 \subseteq C_G(Z(R)) \subseteq N_G(R)$ . By Lemma 4. 23,  $[N_{Q \cap H}(R), \sigma] \subseteq C_G(R)$  and so  $Q_1 \subseteq C_G(R)$ . Since Q is abelian,  $Q_1 \subseteq Q_2(R)$  and so  $Q_2 \subseteq Q_3(R)$ . Thus we have a contradiction and the lemma is proved.

#### 8. The case $Q \in \pi_2$ and $R \in \pi_3$

Lemma 8.1. Suppose q and r are distinct primes. Let Q and R be the A-invariant Sylow q- and r-subgroups of G such that  $Q \in \pi_2$  and  $R \in \pi_3$ , i.e.,  $C_Q(\sigma) \neq 1 \neq C_{Z(R)}(\sigma)$  and  $C_{Z(Q)}(\sigma) = 1$ . Then QR = RQ.

PROOF. Suppose false and the proof will be by contradiction. Now we divide the proof of Lemma 8.1 into eleven steps.

Step 1. There exists a maximal A-invariant  $\{q, r\}$ -subgroup H of G such that  $O_q(H) \neq 1 \neq O_r(H)$  and  $\langle C_Q(\sigma), C_R(\sigma) \rangle \subseteq H$ .

Proof. See Lemma 4. 20.

Step 2.  $R \subseteq H$ .

PROOF. Suppose  $R \not\equiv H$ . Since  $O_q(H) \neq 1$ ,  $Z(Q) \subseteq (N_G(O_q(H)))_{q,r} = H$  by maximality of H. By Lemma 4.23,  $Z(Q) \subseteq [Q \cap H, \sigma] \subseteq O_q(H)$ . Hence  $H \subseteq N_G(Z(Q)) = N_G(Q)$  by Lemmas 4.3 and 4.4, and so  $Q \triangleleft H$ . Since  $C_Q(\sigma) \times O_r(H) \subseteq F(H)$  and  $C_Q(\sigma) \neq 1 \neq O_r(H)$ ,  $C_Q(\sigma) \times O_r(H) \subseteq (C_G(C_{Z(R)}(\sigma)))_{q,r} \subseteq H$  by Lemma 4.21. Hence  $R \subseteq H$ , a contradiction.

Step 3. The following conditions hold.

- (i)  $C_Q(\sigma)\subseteq C_G(R)$ .
- (ii) Q is non-abelian and  $Q \cap H$  is abelian.
- (iii)  $[R, \sigma] \subseteq O_r(H)$ .

PROOF. By Lemma 4.23 and Step 2,  $[R, \sigma] \subseteq O_r(H)$  and so  $R = O_r(H) C_R(\sigma)$ . Since  $O_q(H) \neq 1$ ,  $Z(Q) \subseteq (N_G(O_q(H)))_{q,r} = H$  by maximality of H. Then, since  $Z(Q) \times C_Q(\sigma) \subseteq N_G(O_r(H))$  and  $Z(Q) = [Z(Q), \sigma]$ ,  $[O_r(H), C_Q(\sigma)] = 1$  by Lemma 4.14. Then

 $[C_Q(\sigma), O_r(H) \ C_R(\sigma)] = 1$  by Lemma 3.1, and hence  $[C_Q(\sigma), R] = 1$ . Now, if Q is abelian, then  $Q = Z(Q) \subseteq H$ . Hence  $\langle Q, R \rangle \subseteq H$  and so QR = RQ, a contradiction. Hence Q is non-abelian. Next, if  $Q \cap H$  is abelian, then  $Q \subseteq H$  by Lemma 4.7, and so  $Q \in H$ , a contradiction. Hence  $Q \cap H$  is abelian.

STEP 4.  $C_{\Omega}(Q \cap H) = Q \cap H$ .

PROOF. Set  $Q_0 = C_Q(\sigma)$ . Then  $H = \langle R, Q \cap H \rangle \subseteq (C_G(Q_0))_{q,r} = H$  by Step 3. Hence  $C_Q(Q_0) = Q \cap H$ , in particular,  $C_Q(Q \cap H) = Q \cap H$ .

STEP 5.  $[Z(Q), R] = O_r(H)$ .

PROOF. By Lemma 4.22,  $Z(Q) \subseteq N_G(R)$ . Suppose  $C_{O_r(H)}(Z(Q)) \neq 1$ . Then, since  $O_q(H) \times C_{O_r(H)}(Z(Q)) \subseteq F(H)$  and  $O_q(H) \neq 1 \neq C_{O_r(H)}(Z(Q))$ ,  $O_q(H) \times C_{O_r(H)}(Z(Q)) \subseteq (C_G(Z(Q)))_{q,r} \subseteq H$  by Lemma 4.21. Thus  $Q \subseteq H$  and so  $Q_q(R) \subseteq H$ , a contradiction. Hence  $Q_{O_r(H)}(Z(Q)) = 1$  and so  $Q_q(R) = [Z(Q), Q_r(H)] = Q_r(H)$  by Lemmas 2.1(ii) and 4.12.

Step 6.  $R \triangleleft H$ .

PROOF. If R in non-abelian, then  $R \triangleleft H$  by Lemma 4.7. Hence we may assume that R is abelian. Let L be the A-invariant Hall r'-subgroup of  $N_G(R)$ . Since  $N_G(R)'$  is nilpotent by Lemma 3.8,  $N_G(R)' \subseteq C_G(R)$  and so  $N_G(R)/C_G(R)$  is abelian. Let  $x \in R$ ,  $y \in Z(Q)$  and  $h \in N_G(R)$ . Then  $y^h = ay$  for some  $a \in C_G(R)$ . Hence  $[x, y]^h = (x^h)^{-1}(y^h)^{-1}x^hy^h = (x^h)^{-1}y^{-1}x^hay = [x^h, y] \in [R, Z(Q)]$ . Thus we have  $O_r(H) = [Z(Q), R] \triangleleft N_G(R)$ , and hence L normalizes  $O_r(H)$ . Since  $[R, \sigma] \subseteq O_r(H)$  by Lemma 4.23,  $[R/O_r(H), \sigma] = 1$ . Hence L centralizes  $R/O_r(H)$  by Lemma 3.4. Then  $R = R \cap N_G(R)' = [L, R] \subseteq O_r(H)$  by Lemma 4.3. Thus  $R = O_r(H) \triangleleft H$ .

Step 7.  $r \mid N_G(Q)/C_G(Q)|$ .

PROOF. By Lemma 4. 23,  $[N_R(Q), \sigma] \subseteq C_R(Q)$ . Hence  $N_R(Q) = (C_G(\sigma) \cap N_R(Q)) C_R(Q)$ . Setting  $R_0 = C_G(\sigma) \cap N_G(Q)$ ,  $[R_0, Q \cap H] \subseteq Q \cap R$  since  $H \triangleright R$ . Since  $(Q \cap H) \times R_0$  normalizes Q and  $C_Q(Q \cap H) = Q \cap H$  by Step 4,  $[R_0, Q \cap H] = 1$  by  $A \times B$ -theorem (see [3], Theorem 5. 3. 4). Hence  $N_R(Q) = C_R(Q)$ .

Step 8.  $C_{\bar{Q}}(\sigma) \neq 1$ , where  $\bar{Q} = Q/Q'$ .

Proof. See Lemma 4.17.

Step 9. For some prime  $p \in \pi(N_G(Q)) - \{q, r\}$ , there exists the A-invariant Sylow p-subgroup  $P_0$  of  $N_G(Q)$  such that  $[P_0, \sigma] \nsubseteq C_G(Q)$ .

PROOF. Suppose false. Let U be the A-invariant Hall q'-subgroup of  $N_G(Q)$ . Then  $N_G(Q) = C_G(Q) \, Q C_U(\sigma)$  by Step 7. Set  $N = N_G(Q)$  and  $\bar{N} = N/Q'$ . Then  $\bar{N}' \cap \bar{Q} = [\overline{C_U(\sigma)}, \bar{Q}]$ . Since  $\bar{Q} = [\overline{C_U(\sigma)}, \bar{Q}] \times C_{\bar{Q}}(\overline{C_U(\sigma)})$  and  $1 \neq C_{\bar{Q}}(\sigma) \subseteq C_{\bar{Q}}(\overline{C_U(\sigma)})$ ,  $\bar{Q} \supsetneq [\overline{C_U(\sigma)}, \bar{Q}] = \bar{N}' \cap \bar{Q}$ , and so  $N' \cap Q \supsetneq Q$ . This contradicts Lemma 4.3.

Step 10. Let P be the A-invariant Sylow p-subgroup of G. Then  $PR \neq RP$ .

PROOF. Suppose false. Setting T=PR=RP and  $Q_0=C_Q(\sigma)$ ,  $[Q_0,R]=1$  by Step 3. Hence  $< C_G(\sigma)$ , Z(Q),  $R>\subseteq C_G(Q_0)$ . Setting  $K=C_G(Q_0)$ ,  $R=[Z(Q),R]\subseteq F(K)$  by Lemma 3.8 and Steps 5 and 6. Hence  $O_r(K)=R$  and so  $C_G(\sigma)\subseteq K\subseteq N_G(R)$ .

Now  $1 \neq [R, \sigma] \subseteq O_r(T)$  by Lemmas 4. 2 and 4. 10. Setting  $M = N_G(O_r(T))$ ,  $< P, Q_0 > \subseteq M$ . Moreover, setting  $P_1 = [P_0, \sigma]$ ,  $1 \neq [P_1, Q] = [P_1, O_q(M)]$  by Lemma 4. 12. Since  $[P_1, Q] \triangleleft Q$ ,  $Z(Q) \cap [P_1, O_q(M)] \neq 1$ . Setting  $Q_1 = Z(Q) \cap [P_1, O_q(M)]$ ,  $Q_1 \subseteq O_q(M)$ , and so  $[Q_1, O_r(M)] = 1$ . Since  $O_r(T) \subseteq O_r(M)$ ,  $[Q_1, O_r(T)] = 1$ . Now, since  $O_q(H) \times O_r(T) \subseteq F(H)$  and  $O_q(H) \neq 1 \neq O_r(T)$ ,  $O_q(H) \times O_r(T) \subseteq (C_G(Q_1))_{q,r} \subseteq H$  by Lemma 4. 21. Thus  $Q \subseteq H$  and so  $< Q, R > \subseteq H$ , a contradiction.

Step 11. We have a contradiction.

PROOF. By Step 10, PR = RP. By Lemmas 5.2 and 7.1 and Step 3,  $C_P(\sigma) \neq 1 = C_{Z(P)}(\sigma)$  and P is non-abelian. Then PQ = QP by Lemma 6.1. Since P and Q are non-abelian by Step 3,  $PQ \triangleright P$  and  $PQ \triangleright Q$  by Lemma 4.7. Thus [P,Q]=1. Hence  $p \nmid |N_G(Q)/C_G(Q)|$ . This contradicts Step 9.

By Lemma 5. 2, 6. 1, and 7. 1, 8. 1, if P, Q are the A-invariant Sylow p-and q-subgroups of G for p, q in  $\pi(G)$  ( $p \neq q$ ), then PQ = QP. By P. Hall's characterization of solvable groups, G is solvable. Thus we have a final contradiction. Hence no minimal counterexample to the theorem can exist, and the theorem is proved.

Additional Comment. After I submitted this paper for publication, I was informed that the same result was also obtained by B. Dolman in his unpublished Ph. D. Thesis at the University of Adelaide.

#### References

[1] G. GLAUBERMAN; Fixed points in groups with operator groups, Math. Z. 84 (1964), 120

-125.

- [2] G. GLAUBERMAN; A sufficient condition for p-stability, Proc. London Math. Soc. (3) 25 (1972), 253-287.
- [3] D. GORENSTEIN; Finite Groups, Harper & Row, New YorK, 1968.
- [4] R. P. MARTINEAU; Elementary abelian fixed-point-free automorphism groups, Quart. J. Math. Oxford (2) 23 (1972), 205-212.
- [5] B. H. NEUMANN; Groups with automorphisms that leave only the neutral element fixed, Archiv der Math. 7 (1956), 1–5.
- [6] E. W. RALSTON; Solvability of finite groups admitting fixed-point-free automorphisms of order rs, J. Algebra. 23 (1972), 164-180.
- [7] E. SHULT; On groups admitting fixed point free abelian operator groups, Illinois J. Math. 9 (1965), 701-720.
- [8] H. WIELANDT; Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen einer endlichen Gruppe, Math. Z. 73 (1960), 146–158.

Department of Mathematics, Faculty of General Study Gunma University, Japan