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\S 0. Introduction

In a previous paper [5] the auther studied the topology of a compact

riemannian manifold CM,g) whose injectivity radius i(M) is close to its
diameter d(M) and got the following results.

THEOREM A. Let (M, g) be a 2-dimensional riemannian manifold and
K denote its Gaussian curvature. Assume that one of the following holds;

(i) There is a positive number \delta such that

K\geq-\delta^{2} and \sinh(\delta i(M))>(\sqrt 7/2)\sinh(\delta d(M)) .

(ii) K\geq 0 and i(M)>(\sqrt{3}/2)d(M) hold.
Then M is dijfeomorphic to the sphere S^{2} or projective plane P^{2} .

THEOREM B. Let (M, g) be a 3-dimensional riemannian manifold and
K denote its sectional curvature. If there is a positive number \delta such that

K\geq\delta^{2} and \sin(\delta i(M))>(\sqrt{3}/2)\sin(\delta d(M)) ,

then M is diffeomorphic to the sphere S^{3} or projective space P^{3} .

These results are best possible.
On the other hand recently O. Durumeric has shown in [4] that in

arbitrary dimension any manifold whose injectivity radius is sufficiently close
to its diameter has either the trivial fundamental group or the homotopy type

of the real projective space.
In this paper we prove the following theorem.

THEOREM. Let (M, g) be a 3-dimensional compact riemannian
manifold and K denote its sectional curvature. Assume that one of the
following holds :
(i) There is a positive number \delta such that we have

K\geq-\delta^{2} and sinh (\delta i(M))>a(\delta d(M))\circ sinh (\delta d(M))

where
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a(\delta d(M)) := sin
[ \frac{\pi}{2}-\frac{1}{10}\sin^{-1}\{\frac{\sin h(\frac{1}{10}\delta d(M))}{\sin h(2\delta d(M))}\}]

(ii) K\geq 0 and i(M)>a\cdot d(M) hold
where

a:= \sin(\frac{\pi}{2}-\frac{1}{10}\sin^{-1}\frac{1}{20})=0.99998\cdots\cdots .

Then M is diffeomorphic to 3-dimensional sphere S^{3} or real projective space P^{3}

REMARK 1. The inequalities of Theorem are invariant under hom0-
theties.

To prove Theorem we use the stable cut locus whose local structure is
well understood by M. Buchner in [2]. In a previous paper [5] the auther
showed that the stable cut locus collapses on one point or a subcomplex
which consists of some S^{2}\acute{s} , P^{2}\prime s and trees. We will show that the
subcomplex is PL-homeomorphic to P^{2} by Toponogov’s comparison theorem.

The auther would like to express my sincere thanks to Prof. T. Sakai
for his kind advices.

\S 1. Preliminaries

To begin with we state the following theorems which play important
roles in our arguments. We denote the distance from p to q by d(p, q) .

Toponogov’s COMPARISON THEOREM (T C. T.) [3] Let M be a
complete manifold with sectional curvature K\geq c. Let \gamma_{1} , \gamma_{2} be geodesic
segments of length l_{1} , l_{2} in M such that \gamma_{1}(l_{1})=\gamma_{2}(0) and 4 (-\dot{\gamma}_{1}(l_{1}),\dot{\gamma}_{2}(0))

=\theta . We call such a configuration a hinge and denote it by (\gamma_{1}, \gamma_{2}, \theta) .
Assume that \gamma_{1} is minimal and l_{2}\leq\pi/\sqrt{c}\backslash if c>0 . Let \gamma_{1}^{*} \gamma_{2}^{*} be geodesic
segments of length l_{1} , l_{2} in the simply connected 2-dimensional space of
constant curvature c such that \gamma_{1}(l_{1})=\gamma_{2}(0) and 4 (-\dot{\gamma}_{1}^{*}(l_{1}),\dot{\gamma}_{2}^{*}(0))=\theta .
Then d(\gamma_{1}(0), \gamma_{2}(l_{2}))\leq d(\gamma_{1}^{*}(0), \gamma_{2}^{*}(l_{2})) .

REMARK 2. By checking the proof of T. C. T. carefully, in the above
we may choose a geodesic segment \gamma_{3} from \gamma_{1}(0) to \gamma_{2}(l_{2}) in M which is
homotopic to \gamma_{2^{\circ}}\gamma_{1} and whose length is less than or equal to d(\gamma_{1}^{*}(0), \gamma_{2}^{*}(l_{2})) .

THEOREM (BUCHNER). If dem M=3 and p\in M then the picture near a
point q on stable cut locus C(p) of pis(i) a plane through q or ( ii) three
planes meeting along a line through q, any two of the planes having regular
intersection or (iii) the picture of 6 planes meeting along 4 lines all meeting
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at q obtained by viewing q as the barycenter of a tetrahedron and joining it
to the 4 vertices or (iv) a half plane with q in the boundary or ( v) a

quarter plane glued onto a surface. See Figure 1.

REMARK 3. By checking the proof of the above theorem, we have the
following. There are n minimal geodesic segments from p to q\in C(p)

where n=2 in the case ( i) of the above theorem, n=3 in the case ( ii) ,

n=4 in the case (iii) and n=2 is the case ( _{V}) . There is one geodesic
segment from p to q in the case (iv). Namely for any q\in C(p) there are at
most 4 minimal geodesic segments from p to q .

(i)

q

(iv)

with vertical
cross-sections

\vee
and

Figure 1.



104 J. itoh

We can take a cut stable metric g_{0} which satisfies the hypotheses of
Theorem by an approximation ([1]). Moreover we can take some trian-
gulation of M which is compatible with the local structure of stable cut locus
C(p) . Take a subcomplex \tilde{C}(p) on which C(p) collapses and which can
not collapse further. Let \{ F_{i}\} be the family of connected components of the
union of all 2-simplexes in \tilde{C}(p) and let \{ E_{j}\} be the family of connected

components of ( \tilde{C}(p)\{(\bigcup_{i}F_{i})) , when \tilde{C}(p) is not one point. Each F_{i} is a
2-complex and the closure of E_{j} is a 1-complex. Now we state the results
which are shown in [5].

(1) Under the hypotheses of Theorem each F_{i} is a 2-dimensional PL-
manifold (without boundary), which follows from Lemma 1 in [5]. In fact
the hypotheses of the lemma is weaker than those of Theorem.

(2) F_{i} is PL homeomorphic to S^{2} or P^{2} and the closure of E_{j} is a tree
(Lemma 3 in [5]), Moreover if F_{i} is homeomorphic to P^{2} , then for ecch \overline{E}_{j}

there is at most one end point which is contained in F_{i} (See the proof of
Lemma 3 in [5] ) .

(3) If \tilde{C}(p) is PL-homeomorphic to one point or P^{2} , then Theorem
follows immediately. See \S 2 and \S 3 in [5]. In the next section we will
show that the hypothesis of the above result (3) holds.

We now define some function l(b, \theta) as follows; Take a geodesic right
triangle (\tilde{\gamma}_{1} , \tilde{\gamma}_{2},\tilde{\gamma}_{3}) in the simply connected 2-dimensional space of constant
curvature -\delta^{2} such that \tilde{\phi}_{1}=\pi/2,\tilde{\phi}_{3}=\theta,\tilde{l}_{1}=b where \tilde{l}_{i} is the length of \tilde{\gamma}_{i}

and
\tilde{\phi}_{i}=4(-\tilde{\gamma}_{i+1}.(\tilde{l}_{i+1}),\tilde{\gamma}_{i+2}.(O)) .

Put l(b, \theta):=\tilde{l}_{2} . We can represent l(b, \theta) explicitly from sine and cosine
rules.

\S 2. The proof of Theorem

In this section under the hypotheses of Theorem we show that \tilde{C}(p) is
homeomorphic to one point or P^{2} . Now it is known that \tilde{C}(p) consists of
\{F_{i}\} and \{ E_{j}\} where F_{i}\simeq S^{2} or P^{2} and \overline{E}_{j} is a tree, if \tilde{C}(p) is not one point
([5]). To begin with we prepare the following Lemmas 1 and 2. Put

\Theta := \frac{\pi}{2}-\frac{1}{10}\sin^{-1} {sinh ( \frac{1}{10}\cdot\delta d(M))/\sinh(2\cdot\delta d(M)) },

then a(\delta d(M))=\sin\Theta .

LEMMA 1. Under the hypotheses of Theorem let q be a cut point of p

and \gamma_{v} , \gamma_{v’} be geodesic segments from p to q with initial vectors v, v’ such
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that \gamma_{v}\circ(\gamma_{v’})^{-1} is a homotopically non trivial closed curve. Then 4 (v, v9>
2\Theta .

PROOF. Let b be the distance from p to q and \gamma_{2} be the geodesic from
p with the unit initial direction (v+v’)/|v+v’| . In this section we simply
denote l(b, \Theta) by l_{b} , Put x:=\gamma_{2}(l_{b}) . Assume that 4 (v, v\gamma\leq 2\Theta(i. e .
4 (\dot{\gamma}_{v}(0),\dot{\gamma}_{2}(0))\leq\Theta , 4 (\dot{\overline{\gamma}}_{v’}(0),\dot{\gamma}_{2}(0))\leq\Theta) . We apply Remark 2 after T C.
T. in \S 1 to two hinges ((\gamma_{v})^{-1}, \gamma_{2}|[0, l_{b}], 4 (\dot{\gamma}_{v}(0),\dot{\gamma}_{2}(0))) and ((\gamma_{v’})^{-1} ,

\gamma_{2}|[0, l_{b}] , 4-(\dot{\gamma}_{v’}(0),\dot{\gamma}_{2}(0))) . Then there are geodesic segments \gamma_{3}^{1} , \gamma_{3}^{2} from
q to x whose lengths are less than i(M) such that \gamma_{3}^{1} is homotopic to
(\gamma_{2}|[0, l_{b}])\circ(\gamma_{v})^{-1} and \gamma_{3}^{2} is homotopic to (\gamma_{2}|[0, l_{b}])\circ(\gamma_{v’})^{-1} . Hence
(\gamma_{3}^{1})^{-1}\circ\gamma_{3}^{2} is a homotopically non trivial closed curve whose length is less than
2i(M) . This is a contradiction. Q. E. D.

Put \Psi :=\pi-2\Theta , then

\Psi=\frac{1}{5}\sin^{-1} { sinh ( \frac{1}{10}\cdot\delta d(M))/\sinh(2\delta d(M))^{\mathfrak{l}}, .

From

sin 5 \psi=\{\sinh(\frac{1}{10}\cdot\delta d(M))/\sinh(2\delta d(M))\}

it follows that

sin ( \frac{1}{2}\psi)=\sin(\frac{1}{2}(\pi-2\Theta))<\{\sinh(\frac{1}{10}\cdot\delta d(M))/\sinh(\delta d(M))\} .

From sinh (\delta i(M))>a(\delta d(M))\circ sinh (\delta d(M)) and the definition of
a(\delta d(M)) , we have d(M)-i(M)<(1/100)d(M) .

LEMMA 2. Under the hypotheses of Theorem if there are q_{i}(i=1,2)

which are cut points of p and minimal geodesic segments \gamma_{v_{t}} , \gamma_{v_{l}’}(i=1,2)

from p to q_{i} with initial vectors v_{i} , v_{i}’ such that \gamma_{v},\circ(\gamma_{v1})^{-1} is homotopically
non
trivial and \gamma_{v},\circ(\gamma_{v’}|)^{-1} is not homotopic to \gamma_{v_{2}}\circ(\gamma_{v_{2}’})^{-1} , then 4 (v_{1} , v_{2})>10\cdot\psi

=10(\pi-2\Theta) .

PROOF. Let \tilde{M} be the universal covering space of M , II be its covering
map. Take a point p_{0}\in\Pi^{-1}(p) . Denote by \tilde{v}_{i} , the lift of v_{i} to T_{p)}\tilde{M} and by
\tilde{\gamma}_{iy},, the geodesic from p_{0} with initial direction \tilde{v}_{i} . Let \tilde{q}_{i} be the first point
along \tilde{\gamma}_{i7}

, such that II (\tilde{q}_{i})=q_{i} . We denote the distance from p to q_{i} by b_{i} .
Take a geodesic \alpha_{i} from \tilde{q}_{i} with \Pi(\alpha_{i}|[0, b_{i}])=(\gamma_{v’},)^{-1} . Put p_{i} :=\alpha_{i}(b_{i}) ,

then II (p_{i})=p . Thus we have i(M)<d(\tilde{q}_{i},p_{i})=d(\tilde{q}_{i},p_{0})=d(q_{i},p)=b_{i}<d(M) .
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Define y_{i} :=\tilde{\gamma}_{\partial},(2d(M)) . Now we will show that d(y_{i}, p_{i})< \frac{3}{10}d(M)(i=1,2) .

Put w_{0.i}:=-\tilde{\gamma}_{\partial}.

, |q_{t}’ w_{i}:=\dot{\alpha}_{i}|_{\tilde{q}_{t}} . From Lemma 1 it follows that 4 (w_{0,i}, w_{i})

>2\Theta . Put w_{y},
:=\tilde{\gamma}_{\partial}

, |_{\overline{q}},(=-w_{0,i}) . We take the geodesic segment \beta_{i} from \tilde{q}_{i}

to y_{i} with initial vector w_{y},
(\beta_{i}\subset\tilde{\gamma}_{\sigma},) . Put y_{i}’ :=\beta_{i}(d(M))(=\tilde{\gamma}_{\sigma},(d(M)+b_{i}))

and ff_{i} :=\alpha_{i}(d(M)) . Then d(y_{i}’, 7_{i})=d(ff_{i},\tilde{q}_{i})=d(M) and \triangleleft:(w_{i}, w_{y},)<\psi

=\pi-2\Theta hold. From T. C. T it follows that d(y_{i}’, p_{i}’)<(2/10)d(M) ,
d(y_{i}, y_{i}’)<(d(M)-i(M))<(1/100)d(M) and d(p_{i}, p_{i}^{r})<(d(M)-i(M))

<(1/100)d(M) (See Figure 2). Hence d(y_{i}, \beta_{i})<(3/10)d(M) .
Put \xi :=4(\tilde{v}_{\dot{\iota}},\tilde{v}_{2}) . We consider the hinge ((\tilde{\gamma}_{\tilde{v}_{1}}|[0,2d(M)])^{-1} ,

\tilde{\gamma}_{\sigma_{2}}|[0,2d(M)] , \xi) at p_{0} . From T C. T it follows that

d(y_{1} , y_{2})< \frac{2}{\delta}\sinh^{-1} { sin ( \frac{\xi}{2}) . sinh (2 \delta d(M)) }.

We will show that \xi>10\cdot\psi=10(\pi-2\Theta) . If \xi\leq 10\cdot\psi holds, we have
d(y_{1} , y_{2})<(2/10)d(M) . Then

d(p_{1\prime}b)\leq d(p_{1}, y_{1})+d(y_{1\prime}y_{2})+d(y_{2}, b)

<(8/10)d(M) .

On the other hand for II (p_{1})=\Pi(b) and p_{1}\neq b , d(p_{1}, b)<2i(M) holds.
Hence an inequality 2i(M)<(8/10)d(M) contradicts the hypotheses.

Q. E. D.

\overline{p}_{1}^{r}

Figure 2.
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We show that \tilde{C}(p) consists of just one F_{i} which is homeomorphic to P^{2} ,
if \tilde{C}(p) is not one point. From (2) in \S 1 if there is only one F_{i} which is
homeomorphic to P^{2} or \{ F_{i}\} is empty, then \{ E_{j}\} is empty. From now on
we will derive a contradiction under one of the following assumptions; ( i)
There are at least two 2-complexes F_{i} and F_{j} which are homeomorphic to P^{2} .
(ii) There is at least one 2-complex F_{l}. which is homeomorphic to S^{2} .
Firstly we consider the case ( i ) . There are homotopically non trivial
closed curves c_{1} on F_{i} and c_{2} on F_{j} which are transverse to all 1-simplexes and
do not contain any 0-simplex of F_{i} , F_{j} . Let \Phi be a map from U_{p}M to C(p)
such that for any x\in U_{p}M \Phi(x) is the cut point of gecodesic from p with
initial direction x . For any q\in C(p) we have \#\{\Phi^{-1}(q)\}\leq 4 from Remark 3.
Moreover for any q\in c_{1} or c_{2} we have I\{\Phi^{-1}(q)\}\leq 3 . In the following a
minimal geodesic segment on U_{p}M , which is S^{2} with the cannonical metric,
is called a great arc.

LEMMA 3. Under the above situation|\not\in(\Phi^{-1}(c_{1}), \Phi^{-1}(c_{2})) := min \{<X(x_{1}

x_{2})|x_{1}\in\Phi^{-1}(c_{1}) , x_{2}\in\Phi^{-1}(c_{2})\}<4\psi .

PROOF. We note that for any x\in\Phi^{-1}(c_{k}) there is x^{*}\in\Phi^{-1}(c_{k}) such that
\Phi(x)=\Phi(x^{*}) and \gamma_{x}\circ(\gamma_{x^{*}})^{-1} is htmotopically non trivial closed curve where
k=1 or 2 and \gamma_{x} , \gamma_{x} . are geodesic segments from p to their cut points with
initial directions x, x^{*} . Moreover it follows that 4 (x, x^{*})>2\Theta from Lemma
1. We denote by \{ c_{k}^{t}\} , the family of connected components of \Phi^{-1}(c_{k}) .
Note that c_{k}^{t} is a curve on U_{p}M . For any end point x of c_{k}^{l} there is only one
end point y of ckl’ such that \Phi(x)=\Phi(y) and \gamma_{x}\circ(\gamma_{v}.)^{-1} is homotopically
trivial closed curve. For any above pair (x, y) we have 4 (x, y)<2\psi . In fact
since we have 4 (x, x^{*})>2\Theta and 4 (y, x^{*})>2\Theta , it follows that \{(x, -x^{*})

<\pi-2\Theta=\psi and 4 (y, -x^{*})<\psi . Take the closed curve s_{k}(k=1,2) which
consists of \{ c_{k}^{t}\} and great arcs connecting all of the above pairs of end
points of c_{k}^{l}\prime s . Fix two points x_{1}\in\Phi^{-1}(c_{1}) and x_{2}\in\Phi^{-1}(c_{2}) . Let s_{k}’ be a
curve which is a part of s_{k} connecting x_{k} and x_{k}^{*} . We denote by \tilde{c}_{k} , the closed
curve on U_{p}M which consists of s_{k}’ , the antipodal curve s_{k}’ of s_{k}’ , and two
great arcs connecting end points of s_{k}’ , s_{k}^{rr} whose lengths are less than 2\psi .
For any z\in\tilde{c}_{k} it holds that 4 (z, \Phi^{-1}(c_{k}))<2\psi from the construction. More-
over for any z\in\tilde{c}_{k} the antipodal point of z is contained in \tilde{c}_{k} . Thus evidently
\tilde{c}_{1} and \tilde{c}_{2} have intersections. Then 4 (\Phi^{-1}(c_{1}), \Phi^{-1}(c_{2}))<4\psi . Q. E. D.

Now we can take vectors v_{1} , v_{2}\in U_{p}M with 4 (v_{1}, v_{2})<4\psi such that the
cut point of p along \gamma_{v}, (resp. \gamma_{v_{2}}) is contained in F_{i}\simeq P^{2} (resp. F_{j^{1}}\simeq P^{2}).
This contradicts the conclusion of Lemma 2. Thus in \tilde{C}(p) there is at most
one surface F_{i} which is homeomorphic to P^{2} .
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Next we consider the case ( ii) . In this case F_{i}(\simeq S^{2}) is tw0-sided in
M . We simply denote F_{i} by F . Put D:=\Phi^{-1}(F)(\subset U_{p}M) . The set D
coincides with the union of of D_{+} and D_{-} such that all geodesies from p with
initial vectors in D_{+} (resp. D_{-} ) strike on F(\simeq S^{2}) at their cut points from
the fixed one (resp. the other) side of F(\simeq S^{2}) and (D_{+}\cap D_{-})=\Phi .

LEMMA 4. Under the above situation we have 4 (v_{1}, v_{2})<\pi-9\psi for
any v_{1} , v_{2}\in D_{+} (resp. D-).

PROOF. For any v_{1}\in D_{+} there is v_{1}’\in D_{-} such that 4 (v_{1}, v_{1}’)>2\Theta from
Lemma 1. Then 4 (-v_{1}, v_{1}’)<\psi for \psi=\pi-2\Theta . Since v_{1}’\in D_{-} we have 4
(v_{1}’, v_{2})>10\cdot\psi for any v_{2}\in D_{+} from Lemma 2. Hence 4 (-v_{1} , v_{2})>9\psi ,

namely 4 (v_{1} , v_{2})<\pi-9\psi . Q. E. D.

Let \{ D_{+,i}\} (resp. { D_{-}
, i\} ) be the family of conncted components of D_{+}

(resp. D-). Any 1-simplex \sigma_{k}^{i} in \partial D_{+,i} is identified by \Phi with the other 1-
simplex \sigma_{l}^{i’} in \partial D_{+,i’} where D has a triangulation induced by \Phi^{-1} from F .

Let \overline{=}_{j.k,j’}^{+}

, l be the union of all great arcs on U_{p}M connecting points of \sigma_{k}^{j}

and those of \sigma_{l}^{j’} which are identified by \Phi . We note that the lengths of these
great arcs are less than 2\psi=2(\pi-2\Theta) . In fact, when v_{1} and v_{2} are the end
points of a great arc, there is v_{1}’\in D_{-} such that \Phi(v_{1}’)=\Phi(v_{1})=\Phi(v_{2}) .
From Lemma 1 it follows that 4 (v_{1} , v_{1}’)>2\Theta and 4 (v_{2}, v_{1}’)>2\Theta . Then
4 (v_{1}, v_{2})<2\psi . We denote by D_{+}’ , the union of D_{+} and all \overline{=}_{j,k,j’,l}^{+}\prime s .
Define — j-. k;j” l and D_{-}’ from D_{-} in the same way as above. It is easy to
show that D_{+}’ and D_{-}’ do not intersect. In fact suppose x\in (D_{+}’\cap D’-) , then
since D_{+} and D_{-} do not intersect there are two great arcs each of which con-
tains x and whose lengths are less than 2\psi . Hence there are y\in D_{+} , z\in D_{-}

such that 4 (x, y)<\psi and 4 (x, z)<\psi , namely 4 (y, z)<2\psi holds. This
contradicts Lemma 2. Moreover D_{+}’ and D_{-}’ are connected from the con-
struction. We denote by D_{\vdash}’ (resp. D’’), the simply connected domain
on U_{p}M(\simeq S^{2}) which contains D_{+}’ (resp. D_{-}’), does not intersect D_{-}’ (resp.

D_{+}’) and whose boundary is contained in \partial D_{+}’ (resp. \partial D’-). The domains
D_{+}’ and D’’ do not intersect. From now on we only consider D_{+} , D_{+,i} ,

D_{+}’ , D_{+}’ , — j+
, k , j’, l and simply denote them by D, D_{i} , D’D’\overline{=}_{j,k,j’}, l

respectively. Take the disjoint union of \{ D_{i}\} and \{_{-j,k}^{-}- , _{j}\} . We attach
all —j. k , j” l\prime s to \{ D_{i}\} by the identity maps on \sigma_{k}^{j} , \sigma_{l}^{j’} and get a set D’
For any y\in\partial D we have ff\{(\Phi|_{D})^{-1}(\Phi(y))\}\leq 3 , because we put D=D_{+} .

Then each connected component e_{m} of \partial D’ consists of three great arcs in

j,
j”\cup

k. l\overline{=}_{j.k,j’}, l whose lengths are less than 2\psi . On U_{p}M we denote by E_{m} ,

the domain bounded by e_{m} which is contained in (3/2)\mbox{\boldmath $\psi$}-disk. We attach
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E_{m} to D’ by the identity map on e_{m} for all m and get D. We note that D
is homeomorphic to a sphere from the construction. Put \tilde{D}:=D’\cup(\bigcup_{m}E_{m})

on U_{p}M , Let \Psi:Darrow\tilde{D}\subset U_{p}M be a natural projection, namely \Psi|_{D}|
’

\Psi|---j.k.j’.f and \Psi|_{E_{m}} are the identity maps.

Now we define some property of subsets of U_{p}M(\simeq S^{2}) as follows; A
subset s\subset U_{p}M has the property (*) with respect to x\in U_{p}M if and only if
for any great circle c through x on U_{p}M the subset s is not contained in each
open hemi-sphere with boundary c . Put B_{x}^{\epsilon}:=\{v\in U_{p}M|<X(v, x)\leq\Theta-\epsilon(,
(\epsilon>0) .

LEMMA 5. Under the above situation for {PL) -simple closed curve A
:=\partial\tilde{D} on U_{p}M either ( I) or (II) of the following holds.
(I) There are \epsilon>0 and x\in U_{p}M such that B_{x}^{\epsilon}\supset A .
(II) For any \epsilon>0 there are x\in U_{p}M and a connected component \mathscr{A} of

(B_{x}^{\epsilon}\cap A) such that (\partial B_{x}^{\epsilon}\cap \mathscr{A}) on U_{p}M has the property (*) with respect
to x.

PROOF. For any z\in U_{p}M and for any y\in A with { (z, y)=\Theta-\epsilon , we
denote by \mathscr{A}_{z,v} , the connected component of (B_{z}^{\epsilon}\cap A) containing y . Under
the negotiation of ( II) , we will derive ( I) . If for some \epsilon>0 , z\in U_{p}M and
y\in A with 4 (z, y)=\Theta-\epsilon a subset (\partial B_{z}^{\epsilon}\cap.\mathscr{A}_{z.v}) does not have the property
(*) with respect to z , then there are a great circle c through z and hemi-
sphere O with boundary c which contains (\partial B_{z}^{\epsilon}\cap \mathscr{A}_{z,v}) . Denote by \{ z_{t/}^{\mathfrak{l}} ,

the great arc from z_{0}=z to the pole of O . For sufficiently small t>0 there
is y_{t}\in A such that 4 (z_{t}, y_{t})=\Theta-\epsilon and \mathscr{A}_{z,,y_{t}}\supset \mathscr{A}_{z,y} . Denote the maximum
of such number by t_{0} . We exchange z^{(1)} , y^{(1)} for z_{t_{0}} , y_{t_{0}} and repeat the same
procedure successively. At last there is n such that \mathscr{A}_{z^{tn)}}y^{(n)} coincides with A ,

then ( I) holds. Q. E. D.

Put

l :=l(d(M), \Theta-\epsilon)

i_{\epsilon} := \frac{1}{\delta}\sinh^{-1} (sin (\Theta-\epsilon) . sinh (\delta d(M)) ) <i(M) .

Let \mathscr{B}_{z}^{\epsilon} be a closed ball in M centered at Exp_{p}lz with radius i_{\epsilon} . Under the
above preparations we will show that the existence F(\simeq S^{2}) derives a cont-
radiction. If there are \epsilon>0 and x\in U_{p}M such that B_{x}^{\epsilon}\supset D, then we get \mathscr{B}_{x}^{\epsilon}

\supset F In fact from T. C. T. \mathscr{B}_{x}^{\epsilon} contains the subset consisting of all geode-
sic segments from p whose lengths are equal to d(M) and whose initial
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vectors are contained in B_{x}^{\epsilon}(D\subset\tilde{D}\subset B_{x}^{\epsilon}) . Then the homotopically non
trivial sphere F is contained in contractible ball \mathscr{B}_{x}^{\epsilon} . This is a contradiction.

Next we consider the case that for any \epsilon>0 and z\in U_{p}M, F is not
contained in \mathscr{B}_{z}^{\epsilon} . Namely for a closed curve A=\partial\tilde{D}, ( II) of Lemma 5
holds. Take a point z\in U_{p}M . sufficiently small number \epsilon>0(\epsilon\ll\psi) and a
connected component G_{0} of (D\cap\Psi^{-1}(B_{z}^{\epsilon})) such that (\partial B_{z}^{\epsilon}\cap\partial\Psi(G_{0})) has
the property (*) with respect to z and fix them. Put G_{0} : =\Psi(G_{0}) . Denote
by \{G_{k}\} , the family of closure of each connected component of (D|G_{0}) .
Put G_{k}:=\Psi(G_{k}) . We simply denote B_{z}^{\epsilon} , \mathscr{B}_{z}^{\epsilon} by B_{z} , \mathscr{B}_{z} . We can deform
\mathscr{B}_{z} to sufficiently near \mathscr{B}_{\acute{z}} so that \mathscr{B}_{\acute{z}} is transverse to F and (\partial \mathscr{B}_{\acute{z}}’\cap F)

consists of closed curves. Let R_{0} be a connected component of (F\cap \mathscr{B}_{\acute{z}})

such that \Phi(G_{0}\cap D)\subset R_{0} . Each connected component of (F \{ R_{0}) is
homeomorphic to a disk. We denote by \{ R_{j}\} , the family of closure of each
connected component of (F|R_{0}) . For any j there is k(j) such that
(\Phi|D)^{-1}(R_{j}) intersects G_{k(j)} . Put c_{j} :=R_{j}\cap R_{0} . Now for each connected
component G_{k} take a point y_{k}\in\partial B_{z} such that

4 (y_{k}, \partial B_{z}\cap G_{k})=\max_{y\in\partial B_{z}}\not\in(y, \partial B_{z}\cap G_{k}) .

The 4\psi -neighborhood of y_{k} does not intersect \tilde{D} from Lemma 4. For any G_{k}

there are n, m\in\{k\} such that (G_{k}\cap\partial B_{z}) is contained in the inferior arc y_{n}\cdot y_{m}

on \partial B_{z} . Define a great arc \gamma_{k} by \gamma_{k}:= { the great arc connecting y_{n} and y_{m} }
|\{4\psi -neighborhood of y_{n} and y_{m/}^{(} . Let N_{k} be a 2\psi -neighborhood of \gamma_{k} in B_{z}^{2\epsilon}

We can take a homotopy H_{t} : S^{1}\cross[0,1]arrow F and a simple closed curve c_{j}^{1}

on F such that H_{0}=c_{j} , H_{1}=c_{j}^{1} , (\Phi|_{D})^{-1}(c_{j}^{1})\subset N_{k(j)} , (\Phi|_{D})^{-1}(H_{t}(S^{1}\cross[0,1]))

\subset(B_{z}\cup G_{k(j)}) , c_{j}^{1} is transverse to all 1-simplexes of F and c_{j}^{1} does not contain
any 0-simplex of F . This is possible from the construction of \tilde{D}. For any
circle c_{j}^{1} on F\cap \mathscr{B}_{z} we denote by \mathscr{D}_{z}(c_{j}^{1}) , the union of geodesic segments
connecting Exp_{p}lz (the center of \mathscr{B}_{z}) and all points of c_{j}^{1} . Note that there
is \tilde{\epsilon}>0 , which depends on \epsilon , such that for any z’ with 4 (z, z0\leq\tilde{\epsilon} and for
any j it holds that \mathscr{D}_{z}(c_{j}^{1})\subset \mathscr{B}_{z’} . We denote by F_{j}^{1} , the domain on F

bounded by c_{j}^{1} such that F_{j}^{1} and {_{l\neq j}^{\cup c_{t}^{1}\}} are disjoint. Then (F_{j}^{1}\cup \mathscr{D}_{z}(c_{j}^{1})) is
homeomorphic to a sphere and moreover there is at least one J\in\{j\} such
that (F_{J}^{1}\cup \mathscr{D}_{z}(c_{J}^{1})) is homotopically non trivial, for F is homotopically non
trivial.

From now on we simply denote F_{J}^{1} by F^{1} . The set (\Phi|_{D})^{-1}(c_{J}^{1}) is the
union of curves. We can get the closed curve \tilde{c}_{J}^{1} in N_{k(f)} by connecting the
corresponding end points of (\Phi|_{D})^{-1}(c_{J}^{1}) with great arcs. Let D^{1} be the disk
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in D such that \Phi(\Psi(D^{1})\cap D)\supset F^{1} and \partial D^{1}\subset(\Psi^{-1}(\tilde{c}_{J}^{1})) . Put \tilde{D}^{1}:=\Psi(D^{1}) .
If there is x\in U_{p}M such that 4 (x, z)\leq\tilde{\epsilon} and B_{x}\supset\tilde{D}^{1} , then a homotopically
non trivial sphere (F^{1}\cup \mathscr{D}_{z}(c_{J}^{1})) is contained in the contractible ball \mathscr{B}_{x} ,
which is a contradiction. Then for any x\in U_{p}M with 4 (x, z)\leq\tilde{\epsilon}, F^{1} is not
contained in \mathscr{B}_{X} . We will repeat the similar procedure as above. Let U be
the \tilde{\epsilon}-neighborhood of z in U_{p}M . For any z’\in U we denote by G_{0}^{1’}(z\gamma , the
connected component of (D\cap\Psi^{-1}(B_{z’})) intersecting G_{0} . Put G_{0}^{1’}(z9 :=\Psi

( G_{0}^{1’}(z9) and G_{0}^{1}(z’) :=\tilde{D}^{1}\cap G_{0}^{1’}(z\gamma . We note that for any z’\in u(\partial G_{0}^{1’}(z’)\cap

\partial B_{z’}) has the property (*) with respect to z’ from Lemma 4. Take a point
z^{1}\in U(\subset U_{p}M) such that

area of G_{0}^{1}(z^{1})= \max_{z’\in U} area of G_{0}^{1}(z\gamma .

Denote simply G_{0}^{1}(z’) , G_{0}^{1\prime}(z^{1}) by G_{0}^{1} , G_{0}^{1’} respectively. Denote by \{ G_{k^{1}}^{1}\} ,
the family of closure of each connected component of ((D^{1}\cup G_{0}^{1}\gamma {int (G_{0}19) .
Put G_{k^{1}}^{1}:=\Psi(G_{k^{1}}^{1}) . We can deform \mathscr{B}_{z^{1}} to sufficiently near \mathscr{B}_{z^{1}}’ so that \mathscr{B}_{z^{1}}’

is transverse to F^{1} and ( \partial \mathscr{B}_{z^{1}}’\bigcap_{\mathfrak{s}}F^{1}) consists of closed curves. Let R_{0}^{1} be a
connected component of (F^{1}\cap \mathscr{B}_{z^{1}}’) such that \Phi(G_{0}^{1}\cap D)\subset R_{0}^{1} . If the set
(F^{1}|R_{0}^{1}) is in empty, we are done. Otherwise each connected component of
(F^{1}|R_{0}^{1}) is homeomorphic to a disk. Let { R_{j^{1/}}^{1\backslash } be the family of closure of
each connected component of (F^{1}\{R_{0}^{1}) . For any j^{1} there is k^{1} such that
(\Phi|_{D})^{-1}(R_{j^{1}}^{1}) intersects G_{k^{1}}^{1} . Put c_{j^{1}}^{1}:=R_{j^{1}}^{1}\cap R_{0}^{1}(\subset F^{1}) . For each con-
nected component G_{k^{1}}^{1} , take a point y_{k^{1}}^{1}\in\partial B_{z^{1}} such that

4 (y_{k}, \partial B_{z^{1}}\cap G_{k^{1}}^{1})=\max_{y\in\partial B,l}4(y, \partial B_{z^{1}}\cap G_{k^{1}}^{1}) .

The 4\psi -neighborhood of each y_{k^{1}}^{1} does not intersect \tilde{D}. For any G_{k^{1}}^{1} with G_{k^{1}}^{1}

\subset\tilde{D}^{1} there are n, m\in\{k^{1}\} such that (G_{k^{1}}^{1}\cap\partial B_{z^{1}}) is contained in the in-
ferior arcy_{n}^{\overline{1}}\cdot y_{m}^{1} on \partial B_{z^{1}} . Next we define \gamma_{k^{1}}^{1} . Firstly we denote by V. the
domain in B_{z^{1}} whose boundary consists of the inferior arc y_{n}^{\overline{1}}\cdot

y_{m}^{1} and the great
arc connecting y_{n}^{1} and y_{m}^{1} . When \gamma_{k(f)}\cap V=\phi , we define \gamma_{k^{1}}^{1} by \gamma_{k^{1}}^{1}:=\{the

great arc connecting y_{n}^{1} and y_{m}^{1} } |\{4\psi -neighborhood of y_{n}^{1} and y_{m/}^{1(} . Note that
(\gamma_{k(f)}\cap V) is a great arc, if \gamma_{k(J)}\cap V\neq\phi . Take a piecewise great arc
which consists of the three great arcs as follows; The first great arc connects
y_{n}^{1} and one end point of (\gamma_{k(f)}\cap V) . The second one is (\gamma_{k(f)}\cap V) . The
third one connects y_{m}^{1} and the other end point of (\gamma_{k(f)}\cap V) . We define \gamma_{k^{1}}^{1}

by \gamma_{k^{1}}^{1}:= {the above piecewise great arc}|{4\mbox{\boldmath $\psi$}-neighborhood of y_{n}^{1} and y_{m}^{1} }.
Let N_{k^{1}}^{1} be a 2\psi -neighborhood of \gamma_{k^{1}}^{1} in B_{z^{1}}^{2\epsilon} . We can take a homotopy H_{t}^{1} :
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S^{1}\cross[0,1]arrow F^{1} and a simple closed curve c_{j^{1}}^{2} on F^{1} such that H_{0}^{1}=c_{j^{1}}^{1} , H_{1}^{1}=

c_{j^{1}\ddagger}^{2}(\Phi|D)^{-1}(c_{j^{1}}^{2})\subset N_{k^{1}(j^{1})} , (\Phi|D)^{-1}(H1t(S^{1}\cross[0,1]))\subset(B_{z^{1}}(_{i})G_{k^{1}(j^{1})}^{1}) , c_{i^{1}}^{2} is
transverse to all 1-simplexes of F and c_{j^{1}}^{2} does not contain any 0-simplex of
F . We denote by F_{j^{1}}^{2} , the domain on F^{1} bounded by c_{j^{1}}^{2} such that F_{j^{1}}^{2} and

{_{l\neq j^{1}}^{\cup c_{l}^{2}\}} have no intersection. There is at least one J^{1}\in\{j^{1}\} such that (F_{J^{1}}^{2}

\cup \mathscr{D}_{z^{1}}(c_{J^{1}}^{2})) is a homotopically non trivial sphere. Denote simply F_{J^{1}}^{2} by F^{2} .
Define a closed curve \tilde{c}_{J^{1}}^{2} in N_{k^{1}(f^{1})}^{1} and a domain \tilde{D}^{2} in \tilde{D}^{1} by the same way
as \tilde{c}_{J}^{1} in N_{k(J)} and \tilde{D}^{1} in \tilde{D}. If there is x\in U_{p}M such that 4 (x, z^{1})\leq\tilde{\epsilon} and B_{X}

\supset\tilde{D}^{2} , then we get a contradiction. Then any x\in U_{p}M with 4 (x, z^{1})\leq\tilde{\epsilon} , F^{2}

is not contained in \mathscr{B}_{X} .
After repeating the same procedure finitely many times -say n times-,

we have z^{n}\in U_{p}M such that \tilde{D}^{n}\subset B_{z^{n}} because \tilde{D} is bounded. This contradicts
the fact that (F^{n}\cup \mathscr{D}_{z^{n}}(c_{J^{n-1}}^{n} )) is a homotopically non trivial sphere.
Hence \tilde{C}(p) is homeomorphic to one point or P^{2} , which complete the proof
of Theorem.
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