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\S 1. Introduction

In a series of papers ([6]-[10]) , the author has developed a theory of
generalized Langevin equations for real continuous-time stationary Gaussian
processes with reflection positivity. The time evolution of such a process X
(t) can be described in terms of two kinds of Langevin equations with a
notable difference in character of random forces ([9]) : One is the first
KMO-Langevin equation having a white noise as a random force, and it has
a root in his study ([7]) and ([8]) of the [\alpha, \beta, \gamma] -Langevin equations.
The other is the second KMO-Langevin equation where a colored noise
named the Kubo noise is taken to be a random force.

With the linear response theory of R. Kubo ([4]) in mind, we estab-
lished in [10] the fluctuation-dissipation theorems based on these Langevin
equations of the two types; our discovery was that the classical Einstein
relation for Ornstein-Uhlenbeck processes holds for the second type, but does
not hold for the first one. In addition, we calculated the deviation from the
classical Einstein relation. As a concrete example in physics, we discussed
the Stokes-Boussinesque-Langevin equation with the Alder-Wainwright
effect within our framework of the theory of KMO-Langevin equations
possessing reflection positivity.

The purpose of the present and subsequent papers is to establish the
discrete analogues of the results mentioned above for the first and second
KMO-Langevin equations. Further development of these results will be
discussed in the author’s forthcomming third paper, with the same title. In
contrast to the continuous- ti^{t}me case, we will find that the Einstein relation
for discrete-time series X(n) always deviates from the classical one in the
Markovian case, not only for the first type (see \S 7 of the present ( I )), but
also for the second one (see \S 6 of ( II )). In the third paper ([12]), we will
discuss an entropy criterion and present an answer to the basic question in
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the problem of modelling such as: “ Which noise, white or Kubo, should be
taken to be a random force in the equation with given coefficients (\alpha, \beta, \gamma)

called the KMO-Langevin data ?”- It should be noted that a variety of
covariance functions arising from the theory of ARMA processes ([1]) and
of one-dimensional transformations ([5]) are all realized as those of real
discrete-time stationary Gaussian processes with reflection positivity. And
so they enter into the present framework of the theory of KMO-Langevin
equations.

Now we will state the content of this paper. Let X= (X(n) : n\in Z) be
a real stationary Gaussian process with mean zero and covariance function
R :

(1. 1) R(n)=E(X(n)X(0)) (n\in Z) .

In \S 2 we will briefly recall the spectral theory of X. In particular, for
the Hardy spectral density \Delta of X such that log \Delta\in L^{1}((-\pi, \pi)) , we define
the outer function h of X on U_{1}(0)\equiv\{z\in C:|z|<1\} by

(1.2) h(z)= \exp(\frac{1}{4\pi}\int_{-\pi}^{\pi}\frac{e^{i\theta}+z}{e^{i\theta}-z}\log\Delta(\theta)d\theta) .

In a similar manner to the continuous-time case discussed in [6], we will
in \S 3 define the reflection positivity of X, which can be characterized by the
condition: there exists a bounded Borel measure \sigma on [-1, 1] such that

(1.3) R(n)= \int_{1-1,1l}t^{|n|}\sigma(dt) (n\in Z) .

The following conditions are assumed in what follows:
(1.4) \sigma(\{-1,1\})=0

(1. 5) \int_{-1}^{1}(\frac{1}{1+t}+\frac{1}{1-t})\sigma(dt)<\infty .

From these conditions it follows that

(1. 6) R\in t^{1}(Z) .

Section 4 is devoted to the study of the structure of the outer function h
as well as of the canonical representation kernel E=\hat{h}, which will play an
important role in this paper. By using the result for the continuous-time
case obtained in [9], we have

THEOREM 4. 1. There exists a unique triple (\alpha_{1}, \beta_{1}, \rho_{1}) such that
(i) \alpha_{1}>0 and \beta_{1}>0

(ii) \rho_{1} is a bounded Borel measure on [-1, 1] with \rho_{1}(\{-1,1\})=0
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(iii) for any z\in U_{1}(0)

h(z)= \frac{\alpha_{1}}{\sqrt{2\pi}}\frac{1}{\beta_{1}(1+z)+1-z+(1-z^{2})\int_{-1}^{1}\frac{1}{1-tz}\rho_{1}(dt)}
.

We call the triple (\alpha_{1}, \beta_{1}, \rho_{1}) in Theorem 4. 1 the first KMO-Langevin
data associated with \sigma(orR) . Another triple (\alpha_{1}, \beta_{1}, \gamma_{1}) is also called by
the same name, where \gamma_{1} is a function on Z defined by

(1.7) \gamma_{1}=\frac{1}{2\pi}((1-e^{2i}.)\int_{-1}^{1}\frac{1}{1-te^{i}}.\rho_{1}(dt))^{\Lambda} .

More explicitly,

-0

(1.8)
\gamma_{1}(n)=\int_{-1}^{1}t^{n}\rho_{1}(dt)

\backslash \int_{-1}^{1}t^{n-2}(t^{2}-1)\rho_{1}(dt)

for n\in\{-1, -2, \ldots\}

for n\in\{0,1\}

for n\in\{2,3, \ldots\} ,

which implies that

(1.9) \gamma_{1}\in t^{1}(Z) .

It will be found in \S 5 that the correspondence between \sigma and (\alpha_{1},\beta_{1}, \rho_{1}) is
bijective (Theorem 5. 1). Furthermore we will obtain an explicit formula of
the triple (\alpha_{1}, \beta_{1}, \gamma_{1}) in terms of \sigma (Theorem 5. 2).

By using Theorem 4. 1, we will in \S 6 derive a stochastic difference
equation with a white noise as its random force describing the time evolution
of X.

THEOREM 6. 1.
(1. 10) X(n)-X(n-1)=-\beta_{1}(X(n)+X(n-1))-(\gamma_{1}*X)(n)+\alpha_{1}\xi(n)

a. s. (n\in Z) ,

where \xi=(\xi(n);n\in Z) is a real Gaussian white noise.

This equation (1. 10) is nothing but the first KMO-Langevin equation
we are looking for in the discrete-time case. Conversely, we will show that
the first KMO-Langevin equation can be uniquely solved for any given triple
(\alpha_{1}, \beta_{1}, \rho_{1}) with conditions ( i) and ( ii) in Theorem 4. 1 and a real Gaus-
sian white noise \xi (Theorem 6. 2).

Fundamental examples of X are given by the Markov processes X_{p} ,

-1<p<1 , with covariance functions R_{p} :

(1. 11) R_{p}(n)=p^{|n|} (n\in Z) .
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It then follows that the outer function h_{p} of X_{p} becomes

h_{p}(z)= \frac{1}{\sqrt{2\pi}}\frac{\sqrt{1-p^{2}}}{1-p_{\mathcal{Z}}} (z\in U_{1}(0))

By rewriting it in the form (iii) in Theorem 4. 1, we have

(1. 12) h_{p}(z)= \frac{\alpha b^{1)}}{\sqrt{2\pi}}\frac{1}{\beta\S^{1)}(1+z)+1-z} ,

where

(1. 13) \alpha b^{1)}=2\sqrt{\frac{1-p}{1+p}} and \beta b^{1)}=\frac{1-p}{1+p} .

Therefore, we find from Theorem 6. 1 that the time evolution of X_{p} is
governed by

(1. 14) X_{p}(n)-X_{p}(n-1)=-\beta b^{1)}(X_{p}(n)+X_{p}(n-1))+\alpha b^{1)}X_{0}(n)

a . s . (n\in Z) .

We note that X_{0} is a white noise.
Concerning a discrete analogue of the generalized fluctuation-dissipation

theorem for the continuous-time case discussed in [10], we will in \S 7 show

THEOREM 7. 1.
(i) For any \theta\in(-\pi, \pi)

\frac{1}{\beta_{1}(1+e^{i\theta})+1-e^{i\theta}+2\pi\tilde{\gamma}_{1}(\theta)}=\frac{h(e^{i\theta})}{2\lim_{\tau\downarrow-\pi}h(e^{i\tau})}

(ii) \frac{\alpha_{1}^{2}}{2}=R(0)C_{\beta_{1},\gamma 1} ,

where

(1. 15) C_{\rho_{1},\gamma 1}= \pi(\int_{-\pi}^{\pi}|\beta_{1}(1+e^{i\theta})+1-e^{i\theta}+2\pi\tilde{\gamma}_{1}(\theta)|^{-2}d\theta)^{-1}

(iii) D= \frac{\alpha_{1}^{2}}{2(2\beta_{1})^{2}} ,

where

(1. 16) D= \lim_{Narrow\infty}\frac{1}{2N}E((\sum_{n=0}^{N}X(n))^{2}) .

(iv) D= \frac{R(0)}{2\beta_{1}}\frac{c_{\rho_{1},\gamma 1}}{2\beta_{1}}

(v) \frac{C_{\beta_{1},\gamma 1}}{2\beta_{1}}-1=\frac{1}{R(0)}\int_{-1}^{1}\int_{-1}^{1}\frac{1+t}{1-tu}\sigma(dt)\rho_{1} (du).
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By taking account of the physical meaning of the generalized
fluctuation-dissipation theorem for the continuous-time case given in [10],
we call the relations ( i ) , ( ii) and (iv) in Theorem 7. 1 the generalized
first fluctuation-dissipation theorem, the generalized second fluctuation-
dissipation theorem and the generalized Einstein relation, respectively.
And we call the constants C_{\beta_{1},\gamma 1} in (1. 15) and D in (1. 16) the generalized
friction coefficient and the diffusion constant of X, respectively. We note
that this D is also expressed in terms of R :

(1. 17) D= \sum_{n=0}^{\infty}R(n)-\frac{R(0)}{2} .

In particular, the diffusion constant D_{p} of X_{p} is given by

(1. 18) D_{p}= \frac{R_{p}(0)}{2\beta\beta^{1)}}(=\frac{1+p}{2(1-p)}) (p\in(-1,1)) .

This expression is the classical Einstein relation. And so we conclude from
the generalized Einstein relation (iv) in Theorem 7. 1 that there occures a
deviation from the classical Einstein relation (1. 18) in general non-
Markovian cases. Such a deviation can be calculated explicitly by the
formula ( v) in Theorem 7. 1.

The author would like to thank the referees for t\dot{h}eir valuable and
constructive advices.

\S 2. Preliminaries

Let X= (X(n) : n\in Z) be a real stationary Gaussian process with
discrete time on a probability space (\Omega, \mathscr{T}, P) and let R be its covariance
function :
(2. 1) R(n)=E(X(n)X(0)) (n\in Z) .

We assume that the spectral measure of X has a spectral density \Delta=\Delta(\theta)

such that

(2.2) log \Delta\in L^{1}((-\pi, \pi)) ,

(2.3) R(n)= \int_{-\pi}^{\pi}e^{-in\theta}\Delta(\theta)d\theta .

Then we can define an outer function h of \Delta by

(2. 4) h(z)=\exp{\frac{1}{4\pi}\int_{-\pi}^{\pi}\frac{e^{i\theta}+z}{e^{i\theta}-z}log \Delta(\theta)d\theta }

for z\in U_{1}(0)=\{z\in C;|z|<1\} . Such a function h has the following prop-
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erties ([2]) :

(2.5) \sup_{0<r<1}\int_{-\pi}^{\pi}|h(re^{i\theta})|^{2}d\theta<\infty ;

(2.6) h(e^{i\theta})= \lim_{r\uparrow 1}h(re^{i\theta}) exists a . e . \theta\in(-\pi, \pi) ;
(2. 7) |h(e^{i\theta})|^{2}=\Delta(\theta) a . e . \theta\in(-\pi, \pi) ;
(2.8) \lim_{r\uparrow 1}h(re^{i}.)=h(e^{i}.) in L^{2}((-\pi, \pi)) .

Next we define a function E on Z by

(2.9) E(n)= \hat{h}(n)=\int_{-\pi}^{\pi}e^{-in\theta}h(e^{i\theta})d\theta .

It then follows from the above properties of h that

(2. 10) E\in t^{2}(Z) ,
(2. 11) E(n)=0 (n=-1, -2, -3, \ldots) ,
(2. 12) \lim_{narrow\infty}E(n)=0 , and

(2. 13) R(n)= \frac{1}{2\pi}\sum_{m=0}^{\infty}E(|n|+m)E(m) (n\in Z) .

As is well known ([3]), there exists a normalized Gaussian white noise
\xi= (\xi(n) ; n\in Z) such that

(2. 14) X(n)= \frac{1}{\sqrt{2\pi}}\sum_{m=-\infty}^{n}E(n-m)\xi(m) in L^{2}(\Omega, \mathscr{F}, P) .

(2. 15) \sigma(X(m) : m\leq n)=\sigma(\xi(m) ; m\leq n) (n\in Z) .

By taking account of what have been obtained so far, the function E is said
to be a canonical representation kernel of X.

\S 3. Reflection positivity

Let X= (X(n) : n\in Z) be a real stationary Gaussian process on(O, \mathscr{F},
P) with covariance function R . We denote by M(resp. M^{+}) the closed
linear hull of \{X(n);n\in Z\} (resp. \{X(n):n\geq 0\} ) in L^{2}(\Omega, \mathscr{T}, P) and by
P_{M^{+}} the orthogonal projection on M^{+} . The time reflection operator T is a
unitary and self-adjoint operator on M defined by

T(X(n))=X(-n) (n\in Z) .

As in the continuous-time case ([6]), we say that X has reflection positivity
(T-positivity) if and only if P_{M^{+}}TP_{M^{+}} is non-negative.

In the sequel, we assume that X has reflection positivity. By taking the
same consideration as \S 2 in [6], we see that there exists a unique Borel
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measure \sigma on [-1, 1] such that

(3. 1) R(n)= \int_{1-1,1l}t^{|n|}\sigma(dt) (n\in Z) .

EXAMPLE 3. 1 For each p\in(-1,1) consider a non-negative definite
function R_{p} corresponding to the case \sigma=\delta_{\{p\}} , i . e. ,

(3. 2) R_{p}(n)=p^{|n|} .

Then the spectral density \Delta_{p} of R_{p} is given by

(3.3) \Delta_{p}(\theta)=\frac{1}{2\pi}\frac{1-p^{2}}{|1-pe^{i\theta}|^{2}} (\theta\in(-\pi, \pi)) .

We now impose the additional assumption on the measure \sigma in (3. 1) :

(3. 4) \sigma(\{-1,1\})=0 .

Then it immediately follows that the spectral measure of R has the density
\Delta of the form

(3. 5) \Delta(\theta)=\frac{1}{2\pi}\int_{-1}^{1}\frac{1-t^{2}}{|1-te^{i\theta}|^{2}}\sigma(dt) (\theta\in(-\pi, \pi)) .

By using a homeomorphism \varphi from (-1, 1] onto [0, \infty ) :

(3. 6) \varphi(t)=\frac{1-t}{1+t} .

we define a bounded Borel measure \sigma_{c} on [0, \infty) by

(3. 7) \sigma_{c}=\varphi(\sigma) .

A direct calculation yields that

(3.3) \Delta(2\tan^{-1}\xi)=\frac{1+\xi^{2}}{2\pi}\int_{0}^{\infty}\frac{\lambda}{\xi^{2}+\lambda^{2}}\sigma_{c}(d\lambda) (\xi\in R) ,

which leads us to consider

(3.9) \Delta_{c}(\xi)=\frac{1}{\pi}\int_{0}^{\infty}\frac{\lambda}{\xi^{2}+\lambda^{2}}\sigma_{c}(d\lambda) .

Since \sigma_{c}(\{0\})=0 , it follows from Lemma 2. 12 in [6] that \Delta_{c} is a Hardy
weight, that is,

(3. 10) \frac{\log\Delta_{c}(\xi)}{1+\xi^{2}}\in L^{1}(R) .

And so we can define an outer function h_{c} of \Delta_{c} on C^{+} by
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(3. 11) h_{c}( \zeta)=\exp\{\frac{1}{2\pi i}\int_{R}\frac{1+\xi\zeta}{\xi-\zeta}\frac{\log\Delta_{c}(\xi)}{1+\xi^{2}}d\xi\} .

Noting that

\int_{-\pi}^{\pi}|\log\Delta(\theta)|d\theta=2\int_{R}.|\frac{\log\Delta(2\tan^{-1}\xi)}{1+\xi^{2}}|d\xi ,

we see from (3. 8), (3. 9) and (3. 10) that the spectral density \Delta of R
satisfies condition (2. 2). By a direct calculation, the outer function h of \Delta

can be rewritten into the form

(3. 12) h(z)= \exp\{\frac{1}{2\pi i}\int_{R}\dot{\frac{1+\lambda\zeta}{\lambda-\zeta}}\frac{\log\Delta(2\tan^{-1}\lambda)}{1+\lambda^{2}}d\lambda\} ,

where z\in U_{1}(0) and \zeta=i\frac{1-z}{1+z}\in C^{+} .

Since for any \zeta\in C^{+}

exp \{\frac{1}{2\pi i}\int_{R}\frac{1+\xi\zeta}{\xi-\zeta}\frac{\log(2/1+\xi^{2})}{1+\xi^{2}}d\xi\}=\frac{\sqrt{2}}{1-i\zeta} ,

it follows from (3. 8), (3. 9), (3. 11) and (3. 12) that

IEMMA 3. 1.

(i) h(z)= \frac{\sqrt{2}}{1+z}h_{c}(i\frac{1-z}{1+z}) (z\in U_{1}(0))

(ii) h_{c}( \zeta)=\frac{\sqrt{2}}{1-i\zeta}h(\frac{i-\zeta}{i+\zeta}) (\zeta\in C^{+}) .

Furthermore, immediately from (3. 7), we obtain

LEMMA 3. 2.

(i) \int_{-1}^{1}\frac{1+t}{1-t}\sigma(dt)=\int_{0}^{\infty}\lambda^{-1}\sigma_{c}(d\lambda)

(ii) \int_{-1}^{1}\frac{1-t}{1+t}\sigma(dt)=\int_{0}^{\infty}\lambda\sigma_{c}(d\lambda) .

\S 4. Outher function h and canonical representation kernel E

Let X= (X(n) : n\in Z) be a real stationary Gaussian process on(\Omega , \mathscr{F},
P) satisfying reflection positivity. It then follows that the covariance func-
tion R of X has such a representation as (3. 1) with a bounded Borel
measure \sigma on [-1, 1]. In the sequel, we assume the following conditions:

(4. 1) \sigma(\{-1,1\})=0

(4. 2) \int_{-1}^{1}(\frac{1}{1+t}+\frac{1}{1-t})\sigma(dt)<\infty .
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At first we will show the following structure theorem for the outer
function h of X, which will be the key to derive a description of the time
evolution of X in \S 6.

THEOREM 4. 1. There exists a unique triple (\alpha_{1}, \beta_{1}, \rho_{1}) such that

(i) \alpha_{1}>0 and \beta_{1}>0

(ii) \rho_{1} is a bounded Borel measure on [-1, 1] with \rho_{1}(\{-1,1\})=0

(iii) for any z\in U_{1}(0)

h(z)= \frac{\alpha_{1}}{\sqrt{2\pi}}\frac{1}{\beta_{1}(1+z)+1-z+(1-z^{2})\int_{-1}^{1}\frac{1}{1-tz}\rho_{1}(dt)}
.

PROOF. Since it follows from Lemma 3. 2 and condition (4. 2) that
\int_{0}^{\infty}(\lambda^{-1}+\lambda)\sigma_{c}(d\lambda)<\infty , we can apply Theorem 2. 2 in [9] to see that
there exists a unique triple (\alpha_{c}, \beta_{c}, \rho_{c}) such that

(4.3) \alpha_{c}>0 and \beta_{c}>0

(4.4) \rho_{c} is a Borel measure on [0, \infty) satisfying

\rho_{c}(\{0\})=0 and \int_{0}^{\infty}\frac{1}{1+\lambda}\rho_{c}(d\lambda)<\infty

(4.5)
h_{c}( \zeta)=\frac{\alpha_{c}}{\sqrt{2\pi}}\frac{1}{\beta_{c}-i\zeta-i\zeta\int_{0}^{\infty}\frac{1}{\lambda-i\zeta}\rho_{c}(d\lambda)}

for any \zeta\in C^{+}

Then we define a triple (\alpha_{1}, \beta_{1}, \rho_{1}) by

(4. 6) \alpha_{1}=\sqrt{2}\alpha_{c}

(4. 7) \beta_{1}=\beta_{c}

(4. 8) \rho_{1}(dt)=\frac{1+t}{2}(\varphi^{-1}\rho_{c})(dt) .

In particular, we have

(4. 9) \rho_{1}([-1,1])=\int_{0}^{\infty}\frac{1}{\lambda+1}\rho_{c}(d\lambda) .

Therefore, we find that the triple (\alpha_{1}, \beta_{1}, \rho_{1}) satisfies ( i) and ( ii) in
Theorem 4. 1. Furthermore, it follows from Lemma 3. 1 ( i) and (4. 5)
that for any z\in U_{1}(0)

h(z)= \frac{\sqrt{2}}{1+z}\frac{\alpha_{c}}{\sqrt{2\pi}}\frac{1}{\beta_{c}+\frac{1-z}{1+z}+\frac{1-z}{1+z}\int_{0}^{\infty}(\lambda+\frac{1-z}{1+z})^{-1}\rho_{c}(d\lambda)}
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On the other hand, by the definition of \varphi ,

\int_{0}^{\infty}(\lambda+\frac{1-z}{1+z})^{-1}\rho_{c}(d\lambda)=\int_{-1}^{1}(\frac{1-t}{1+t}+\frac{1-z}{1+z})^{-1}(\varphi^{-1}\rho_{c})(dt)

=(1+z) \int_{-1}^{1}\frac{1}{1-tz}\frac{1+t}{2}(\varphi^{-1}\rho_{c})(dt) .

Therefore, we find from (4. 6), (4. 7) and (4. 8) that the triple (\alpha_{1} , \beta_{1}, \rho_{1})

satisfies relation (iii) in Theorem 4. 1.
The uniqueness of such a triple (\alpha_{1}, \beta_{1}, \rho_{1}) can be proved as follows:

since 0 \leq\frac{(1+x)(1-x)}{1-tx}\leq 2 for any t, x\in(-1,1) , we see that

(4. 10) \lim_{x\downarrow-1}h(x)=\frac{\alpha_{1}}{2\sqrt{2\pi}}

and

(4. 11) \lim_{x\uparrow 1}h(x)=\frac{\alpha_{1}}{2\sqrt{2\pi}\beta_{1}} ,

which determine uniquely the pair (\alpha_{1}, \beta_{1}) . Furthermore, since

\int_{-1}^{1}\frac{1}{1+xt}\rho_{1}(dt)=\frac{1}{x}\int_{0}^{1}\frac{1}{\frac{1-x}{x}+s}\rho_{1}(d(s-1))
for any x\in(0,1) ,

it follows from the uniqueness of Stieltjes transform that the measure \rho_{1} is
uniquely determined. (Q. E. D.)

Next we will show the following expression of h , closely related to the
one established in Theorem 4. 1.

THEOREM 4. 2. There exists a unique Borel measure \nu on [-1, 1] such
that

(i) \nu(\{-1,1\})=0 and \nu([-1,1])<\infty

(ii) \int_{-1}^{1}(\frac{1}{1-t}+\frac{1}{1+t})\nu(dt)<\infty

(iii) h(z)= \frac{1}{2\pi}\int_{-1}^{1}\frac{1}{1-tz}\nu(dt) for any z\in U_{1}(0) .

PROOF. By Theorem 2. 1 and (2. 19) in [9], we see that there exists a
unique Borel measure \nu_{c} on [0, \infty) such that

(4. 12) \nu_{c}(\{0\})=0 and \nu_{c}([0, \infty])<\infty

(4. 13) \int_{0}^{\infty}\lambda^{-1}\nu_{c}(d\lambda)<\infty
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(4.14) h_{c}( \zeta)--\frac{1}{2\pi}\int_{0}^{\infty}\frac{1}{\lambda-i\zeta}\nu_{c}(d\lambda) for any \zeta\in C^{+} .

Then we define a Borel measure \nu on [-1, 1] by

(4. 15) \nu(dt)=\frac{1+t}{\sqrt{2}}(\varphi^{-1}\nu_{c})(dl) .

Since

\int_{0}^{\infty}\lambda^{-1}\nu_{c}(d\lambda)=\int_{-1}^{1}(\varphi(t))^{-1}(\varphi^{-1}\nu_{c})(dl)

= \sqrt{2}\int_{-1}^{1}\frac{1}{1-t}\nu(dt) .

it follows from (4. 12), (4. 13) and (4. 15) that the measure \nu satisfies ( i)
and ( ii) in Theorem 4. 2. Furthermore, we see from Lemma 3. 1 ( _{i}) and
(4. 14) that for any z\in U_{1}(0)

h(z)= \frac{\sqrt{2}}{1+z}\frac{1}{2\pi}\int_{0}^{\infty}(\lambda+\frac{1-z}{1+z})^{-1}\nu_{c}(d\lambda)

= \frac{\sqrt{2}}{1+z}\frac{1}{2\pi}\int_{-1}^{1}(\frac{1-l}{1+t}+\frac{1-z}{1+z})^{-1}(\varphi^{-1}\nu_{c})(dt)

= \frac{1}{2\pi}\int_{-1}^{1}\frac{1}{1-tz}\frac{1+t}{\sqrt{2}}(\varphi^{-1}\nu_{c})(dt) ,

which, together with (4. 15), yields (iii) in Theorem 4. 2. The uniqueness
of a Borel measure \nu satisfying ( i ) , ( ii) and (iii) can be proved by using
the uniqueness of Stieltjes transform. (Q. E. D.)

By taking a boundary value of the outer function h , we can rephrase
Theorems 4. 1 and 4. 2 as follows.

COROLLARY 4. 1. For almost all \theta\in(-\pi, \pi) ,

(i)
h(e^{i\theta})= \frac{\alpha_{1}}{\sqrt{2\pi}}\frac{1}{\beta_{1}(1+e^{i\theta})+1-e^{i\theta}+(1-e^{2i\theta})\int_{-1}^{1}\frac{1}{1-te^{i\theta}}\rho_{1}(dt)}

(ii) h(e^{i\theta})= \frac{1}{2\pi}\int_{-1}^{1}\frac{1}{1-te^{i\theta}}\nu(dt) .

As a consequence of the above expression ( ii) of h , we can obtain an
expression of the canonical representation kernel E in (2. 9), which says
that E(n) , n\geq 0 , is nothing but the moment sequence of the measure \nu .

THEOREM 4. 3.
E(n)= \chi_{l0,\infty)}(n)\int_{-1}^{1}t^{n}\nu(dt) for any n\in Z .
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PROOF. By Theorem 4. 2 ( ii) and Corollary 4. 1 ( ii) , the following
series

h(e^{i\theta})= \frac{1}{2\pi}\sum_{n=0}^{\infty}e^{i\theta n}(\backslash \int_{-1}^{1}t^{n}\nu(dt))

is absolutely convergent (a. e.) . Therefore, by (2. 9), we have the asser-
tion. (Q. E. D.)

Concerning a relation between the measures \sigma in (3. 1) and \nu in Then
rem 4. 2, we will show

THEOREM 4. 4.

(4. 16) \sigma(dt)=\frac{1}{2\pi}(\int_{-1}^{1}\frac{1}{1-ts}\nu(ds))\nu(dt) .

PROOF. By Theorem 4. 3, for any n\in\{0,1,2, \ldots\} ,

\sum_{m=0}^{\infty}E(n+m)E(m)=\int_{-1}^{1}t^{n}(\int_{-1}^{1}\frac{1}{1-ts}\nu(ds))\nu(dt) .

Therefore, by (2. 14) and (3. 1), we have Theorem 4. 4. (Q. E. D.)

REMARK 4. 1. By Lemma 2. 6 ( i) in [9], the measure \sigma_{c} in (3. 7) is
related to the measure \nu_{c} in (4. 12) as follows:

(4. 17) \sigma_{c}(d\lambda)=\frac{1}{2\pi}(\int_{0}^{\infty}\frac{1}{\lambda+\lambda’}\nu_{c}(d\lambda’))\nu_{c}(d\lambda) .

In view of (3. 7) and (4. 15), it turns out that this equality is equivalent to
(4. 16).

EXAMPLE 4. 1. For each fixed p\in(-1,1) , consider the non-neagtive
definite function R_{p} in (3. 2). Then we see that the outer function h_{p} and the
canonical representation kernel E_{p} become

(4. 18) h_{p}(z)= \frac{1}{\sqrt{2\pi}}\frac{\sqrt{1-p^{2}}}{1-p_{\mathcal{Z}}} (z\in U_{1}(0))

(4. 19) E_{p}(n)=\chi_{10,\infty)}(n)\sqrt{2\pi(1-p^{2})}p^{n} (n\in Z) .

Furthermore we observe that

(4.20)
h_{p}(z)= \frac{1}{\sqrt{2\pi}}2\sqrt{\frac{1-p}{1+p}}\frac{1-p}{1+p}(1+z)+1-z1

(z\in U_{1}(0) ,

which implies that the triple (\alpha_{p}^{(1)}, \beta_{p}^{(1)}, \rho_{p}^{(1)}) in Theorem 4. 1 associated with
R_{p} becomes
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(4.21) \alpha b^{1)}=2\sqrt{\frac{1-p}{1+p}} , \beta b^{1)}=\frac{1-p}{1+p} and \rho b^{1)}=0 .

EXAMPLE 4. 2. Let R be the non-negative definite function given by

(4.22) R(n)=\sigma_{1}p_{1}^{|n|}+\sigma_{2}p_{2}^{|n|} (n\Leftarrow^{-}Z) ,

where \sigma_{1} , \sigma_{2}>0 and -1<p_{1}<p_{2}<1 . Put

(4.23) a_{1}=\sigma_{1}(1-p_{1}^{2})p_{2}+\sigma_{2}(1-p_{2}^{2})p_{1}

(4.24) a_{2}=\sigma_{1}(1-p_{1}^{2})(1+p_{2}^{2})+\sigma_{2}(1-p_{2}^{2})(1+p_{1}^{2}) .

By a direct calculation, we can conclude that the outer function h , the triple
(\alpha_{1}, \beta_{1}, \rho_{1}) and the measure \nu associated with this R are given as follows:

(i) The case a_{1}=0(-1<p_{1}<0<p_{2}<1) :

(4.25) h(z)= \sqrt{\frac{a_{2}}{2\pi}}\frac{1}{(1-p_{1}z)(1-p_{2}z)} (z\in(U_{1}(0))

(4.26) \{\begin{array}{l}\alpha_{1}=\frac{2\sqrt{a_{2}}}{(1+p_{1})(1+p_{2})}\beta_{1}=\frac{(1-p_{1})(1-p_{2})}{(1+p_{1})(1+p_{2})}\rho_{1}(dt)=\frac{-2p_{1}p_{2}}{(1+p_{1})(1+p_{2})}\delta_{\{0\}}(dl)\end{array}

(4.27) \nu=\frac{\sqrt{2\pi a_{2}}}{p_{2}-p_{1}}\{(-p_{1})\delta_{\{p_{1}\}}+p_{2}\delta_{\{p_{2}\}}\}

(ii) The case a_{1}\neq 0 :

(4.28) h(z)= \sqrt{\frac{r_{1}}{2\pi}}\frac{1-q_{1}z}{(1-p_{1}z)(1-p_{2}z)} (z\in U_{1}(0))

(4.29) \{\begin{array}{l}\alpha_{1}=\frac{2\sqrt{r_{1}}(1+q_{1})}{(1+p_{1})(1+p_{2})}\beta_{1}=\frac{(1+q_{1})(1-p_{1})(1-p_{2})}{(1-q_{1})(1+p_{1})(1+p_{2})}\rho_{1}(dt)=\frac{2(q_{1}-p_{1})(p_{2}-q_{1})}{(1-q_{1})(1^{p}+p_{1})(1+p_{2})}\delta_{\{q_{1}\}}(dt)\end{array}

(4.30) \nu=\frac{\sqrt{2\pi r_{1}}}{p_{2}-p_{1}}\{(q_{1}-p_{1})\delta_{\{p_{1}\}}+(p_{2}-q_{1})\delta_{\{p_{2}\}}\} ,

where

(4.31) q_{1}= \frac{1}{2}(\frac{a_{2}}{a_{1}}-(+) ( \frac{a_{2}}{a_{1}})^{2}-4) if a_{1}>0(<)

(4.32) r_{1}= \frac{a_{1}}{q_{1}}
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We note that p_{1}<q_{1}<p_{2} and q_{1}>0(<) if a_{1}>0(<) .

\S 5. The first KMO-Langevin data

This section is devoted to the further study of the key expression of h in
Theorem 4. 1. In order to investigate the correspondence between \sigma in (3. 1)
and (\alpha_{1}, \beta_{1}, \rho_{1}) in Theorem 4. 1, we introduce two classes \Sigma_{1} and \mathscr{L}_{1} by

(5.1) \Sigma_{1}=\{\sigma;\sigma is a bounded Borel measure on [-1, 1] such that

\sigma(\{-1,1\})=0 and \int_{-1}^{1}(\frac{1}{1+t}+\frac{1}{1-t})\sigma(dt)<\infty\}

and

(5.2) \mathscr{L}_{1}=\{(\alpha, \beta, \rho):\alpha>0 , \beta>0 and \rho is a bounded Borel measure on
[-1, 1] such that \rho(\{-1,1\})=0\} .

For each \sigma\in\Sigma_{1} , we denote by R_{\sigma} , \Delta_{\sigma} and h_{\sigma} the non-negative definite
function, the spectral density and the outer function associated with \sigma ,
respectively:

(5.3)

\prime R_{\sigma}(n)=\int_{-1}^{1}t^{|n|}\sigma(dl) (n\in Z)

\Delta_{\sigma}(\theta)=\frac{1}{2\pi}\int_{-1}^{1}\frac{1-t^{2}}{|1-te^{i\theta}|^{2}}\sigma(dt) (\theta\in(-\pi, \pi))

\backslash h_{\sigma}(z)=\exp {\frac{1}{4\pi}\int_{-\pi}^{\pi}\frac{e^{i\theta}+z}{e^{i\theta}-z}log \Delta_{\sigma}(\theta)d\theta } (z\in U_{1}(0)) .

THEOREM 5. 1. There exists a bijective mapping L_{1} from \Sigma_{1} \^o to \mathscr{L}_{1} such
that for any \sigma\in\Sigma_{1} and (\alpha_{1}, \beta_{1}, \rho_{1})=L_{1}(\sigma)\in\Sigma_{1}

(5.4)
h_{\sigma}(z)= \frac{\alpha_{1}}{\sqrt{2\pi}}\frac{1}{\beta_{1}(1+z)+1-z+(1-z^{2})\int_{-1}^{1}\frac{1}{1-tz}\rho_{1}(dt)}(z\in U_{1}(0))

.

PROOF. By Theorem 4. 1, we have an injective mapping L_{1} from \Sigma_{1} into
\mathscr{L}_{1} satisfying relation (5. 4) and so we have only to show that L_{1} is sur-
jective. Let (\alpha_{1}, \beta_{1}, \rho_{1}) be any element of \mathscr{L}_{1} . We define a new triple (\alpha_{c} ,
\beta_{c} , \rho_{c}) by

(5.5) \alpha_{c}=\frac{\alpha_{1}}{\sqrt{2}} . \beta_{c}=\beta_{1} and \rho_{c}=\varphi(\frac{2}{1+\circ}\rho_{1}) .

By noting (4. 9), we see from Theorem 3. 1 in [9] that there exists a unique
bounded Borel measure \sigma_{c} on [0, \infty) such taht
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(5.6) \sigma_{c}(\{0\})=0 and \int_{0}^{\infty}(\lambda+\lambda^{-1})\sigma_{c}(d\lambda)<\infty

(5. 7)
h_{c}( \zeta)=\frac{\alpha_{c}}{\sqrt{2\pi}}\frac{1}{\beta_{c}-i\zeta-i\zeta\int_{0}^{\infty}\frac{1}{\lambda-i\zeta}\rho_{c}(d\lambda)}

(\zeta\in C^{+}) ,

where h_{c} is the outer function of the Hardy weight \Delta_{C} of the form

(5. 8) \Delta_{c}(\xi)=\frac{1}{\pi}\int_{0}^{\infty}\frac{\lambda}{\xi^{2}+\lambda^{2}}\sigma_{c}(d\lambda) (\xi\in R) .

We then define a bounded Borel measure \sigma on [-1, 1] by

(5. 9) \sigma=\varphi^{-1}(\sigma_{c}) .

By Lemma 3. 2, (5. 6) and (5. 9), we see that \sigma\in\Sigma_{1} . Furthermore, it fol-
lows from Lemma 3. 1 ( i) and (3. 12) that

h_{\sigma}(z)= \frac{\sqrt{2}}{1+z}h_{c}(i\frac{1-z}{1+z}) (z\in U_{1}(0))

By combining this with (5. 7) and then noting (5. 5), we conclude that
L_{1}(\sigma)=(\alpha_{1}, \beta_{1}, \rho_{1}) . (Q. E. D.)

For each bounded Borel measure \rho on [-1, 1] with \rho(\{-1,1\})=0 , we
define a function \gamma on Z by

(5. 10) \gamma=\frac{1}{2\pi}((1-e^{2i}.)\int_{-1}^{1}\frac{1}{1-te^{i}}. \rho(dt))^{\Lambda}

We note that \gamma is well-defined, because

(5. 11) | \frac{(1+e^{i\theta})(1-e^{i\theta})}{1-te^{i\theta}}|\leq 2 for any t\in(-1,1) and \theta\in(-\pi, \pi) .

Some properties of \gamma are listed as

PROPOSITION 5. 1.

(i) \gamma(n)=\{

0 for n\in\{-1, -2, \ldots\}

\int_{-1}^{1}\int_{-1}^{1}t^{n}\rho(dt)(t^{n}-t^{n-2})\rho(dt) forforn\in\{2, 3n\in\{0,1\}, \ldots\}

(ii) \gamma\in t^{1}(Z)

(iii) \sum_{n=0}^{\infty}\gamma(n)=0

(iv) \sum_{n=0}^{\infty}(-1)^{n}\gamma(n)=0 .
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PROOF. By the definition of \gamma , we have

\gamma(n)=\frac{1}{2\pi}\int_{-1}^{1}(\int_{-\pi}^{\pi}e^{-in\theta}\frac{1-e^{i2\theta}}{1-te^{i\theta}}d\theta)\rho(dt) (n\in Z) .

Hence ( i) follows from the sinlple fact that for any t\in(-1,1)

\int_{-\pi}^{\pi}e^{-in\theta}\frac{1-e^{i2\theta}}{1-te^{i\theta}}d\theta=

0 for n\in\{-1, -2, \ldots\}

for n\in\{0,1\}

-2\pi(t^{n}-t^{n-2}) for n\in\{2,3, \ldots\} .

Since

\sum_{n=2}^{\infty}|\gamma(n)|\leq\int_{-1}^{1}(\sum_{n=2}^{\infty}|t|^{n-2})(1-t^{2})\rho(dt)=\int_{-1}^{1}(1+|t|)\rho(dt)<\infty ,

we have ( ii) . By ( ii) , we can take the inverse Fourier transform of
(5. 10) to get

2 \pi\tilde{\gamma}(\theta)=(1-e^{2i\theta})\int_{-1}^{1}\frac{1}{1-te^{i\theta}}\rho(dt) for any \theta\in(-\pi, \pi) .

By taking \theta=0 and \theta=-\pi in the above expression, we have (iii) and (iv),
respectively. (Q. E. D.)

DEFINITION 5. 2. For each \sigma\in\Sigma_{1} , we call a triple (\alpha_{1}, \beta_{1}, \rho_{1})(=L_{1}(\sigma))

or (\alpha_{1}, \beta_{1}, \gamma_{1}) the first KMO-Langevin data associated with \sigma or R_{\sigma} .
We will give a formula concerning the first KMO-Langevin data

(\alpha_{1}, \beta_{1}, \gamma_{1}) associated with a fixed \sigma(\in\Sigma_{1}) .

THEOREM 5. 2.

(i) \alpha_{1}=2\sqrt{\int_{-1}^{1}\frac{1-t}{1+t}\sigma(dt)}

(ii)

(iii) \gamma_{1}(n)=\frac{\alpha_{1}}{(2\pi)^{3/2}}(\frac{1}{h_{\sigma}(e^{i})}.)^{\wedge}(n)-(\beta_{1}+1)\delta_{n,0}-(\beta_{1}-1)\delta_{n,1} (n\in Z) .

PROOF. By noting (4. 10), we see from (2. 6), (2. 7) and (3. 5) that

\alpha_{1}^{2}=(2\sqrt{2\pi})^{2}\lim_{r\uparrow 1}|h_{\sigma}(r)|^{2}

=(2\sqrt{2\pi})^{2}\Delta(-\pi)

=4 \int_{-1}^{1}\frac{1-t}{1+t}\sigma(dt) ,
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which implies ( i ) . Similarly, by noting (4. 11), we have

\beta_{1}^{2}=\Delta(-\pi)(\Delta(0))^{-1}

= \int_{-1}^{1}\frac{1-t}{1+t}\sigma(dt)(\int_{-1}^{1}\frac{1+t}{1-t}\sigma(dt))^{-1} .

which implies ( ii) . By Corollary 4. 1 ( i ) , for a.e . \theta\in(-\pi, \pi) ,

(1-e^{2i\theta}) \int_{-1}^{1}\frac{1}{1-te^{i\theta}}\rho_{1}(dt)

= \frac{\alpha_{1}}{\sqrt{2\pi}}\frac{1}{h_{\sigma}(e^{i\theta})}-\beta_{1}(1+e^{i\theta})-(1-e^{i\theta}) .

By taking Fourier transform of both hand sides, we have (iii). (Q. E. D.)

REMARK 5. 1. We see from (2. 4), (3. 5) and (4. 2) that

(i) \frac{1}{h_{\sigma}(z)}=\exp {\frac{1}{4\pi}\int_{-\pi}^{\pi}\frac{e^{i\theta}+z}{e^{i\theta}-z} log (\Delta_{\sigma}(\theta)^{-1})d\theta } (z\in U_{1}(0))

(ii) there exist positive constants c_{1} and c_{2} such that
c_{1}\leq\Delta_{\sigma}(\theta)\leq c_{2} for any \theta\in(-\pi, \pi)

(iii) \frac{1}{h_{\sigma}} is the outer function of the Hardy density \Delta_{\overline{\sigma}}^{1} .

\S 6. The first KMO-Langevin equation

Returning to \S 4, we will derive a stochastic difference equation describ-
ing the time evolution of a real stationary Gaussian process X=(X(n) : n\in

Z) on a probability space (\Omega, \mathscr{F}, P,) : the covariance function R takes the
form (3. 1) with some bounded Borel measure \sigma\in\Sigma_{1} .

Let the triple (\alpha_{1}, \beta_{1}, \gamma_{1}) be the first KMO-Langevin data associated
with \sigma . By using the normalized Gaussian white noise \xi= (\xi(n) ; n\in Z) in
(2. 14), we will show

THEOREM 6. 1.

(6. 1) X(n)-X(n-1)=-\beta_{1}(X(n)+X(n-1))-(\gamma_{1}*X)(n)+\alpha_{1}\xi(n)

a.s. (n\in Z) .

PROOF By Theorems 4. 2 ( ii) and 4. 3, we have

(6.2) E\in t^{1}(Z) .

Furthermore, by noting Proposition 5. 1 ( ii) , we see from (2. 14) that the
following two random series are absolutely convergent (a.s.) : for any n\in Z

(6.3) X(n)-X(n-1)+\beta_{1}(X(n)+X(n-1))
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= \frac{1}{\sqrt{2\pi}}\sum_{m=-\infty}^{\infty}\{E(n-m)-E(n-1-m)+\beta_{1}(E(n-m)

+E(n-m-1))\}\xi(m)

(6.4) ( \gamma_{1}*X)(n)=\sum_{l=-\infty}^{\infty}\gamma_{1}(n-t)X(l)

= \frac{1}{\sqrt{2\pi}}\sum_{m=-\infty}^{\infty}(\sum_{l=-\infty}^{\infty}\gamma_{1}(n-l)E(l-m))\xi(m) .

On the other hand, it follows from (2. 9), (5. 10), Proposition 5. 1 ( ii) and
(6. 2) that for any n, m\in Z

(6.5) E(n-m)-E(n-1-m)+\beta_{1} (E(n-m)+E(n-m-l))

= \int_{-\pi}^{\pi}e^{-i(n-m)\theta}\{1-e^{i\theta}+\beta_{1}(1+e^{i\theta})\}h(e^{i\theta})d\theta

(6.6) \sum_{l=-\infty}^{\infty}\gamma_{1}(n-l)E(l-m)

= \int_{-\pi}^{\pi}e^{-i(n-m)\theta}(1-e^{2i\theta})\int_{-1}^{1}\frac{1}{1-te^{i\theta}}\rho_{1}(dt)h(e^{i\theta})d\theta .

Therefore, by substituting (6. 5) and (6. 6) into (6. 3) and (6. 4), respec-
tively, we conclude from Corollary 4. 1 ( i) that for any n\in Z

X(n)-X(n-1)+\beta_{1}(X(n)+X(n-1))+(\gamma_{1}*X)(n)

= \frac{1}{\sqrt{2\pi}}\sum_{m=-\infty}^{\infty}(\int_{-\pi}^{\pi}e^{-i(n-m\rangle\theta}\frac{\alpha_{1}}{\sqrt{2\pi}}d\theta)\xi(m)

=\alpha_{1}\xi(n) a.s. ,

which completes the proof of Theorem 6. 1. (Q. E. D.)

DEFINITION 6. 1. We call the stochastic difference equation (6. 1) the
first KMO-Langevin equation associated with X.

As the converse of Theorem 6. 1, we will show

THEOREM 6. 2. For each triple (\alpha_{1}, \beta_{1}, \rho_{1})\in \mathscr{L}_{1} and each normalized
Gaussian white noise \xi= (\xi(n) ; n\in Z) on a probability space (\Omega, \mathscr{I}^{-},P) ,
there exists a unique real stationary Gaussian process X= (X(n) : n\in Z) on
(\Omega, \mathscr{B}^{-},P) with reflection positivity such that X satisfies the first KMO-
Langevin equation (6. 1) : the covariance function of this X coincides with
R_{\sigma} , \sigma=L_{1}^{-1}((\alpha_{1}, \beta_{1}, \rho_{1})) .

PROOF By Theorem 5. 1, we get a bounded Borel measure \sigma=L_{1}^{-1}((\alpha_{1} ,
\beta_{1} , \rho_{1})) in \Sigma_{1} such that the outer function h_{\sigma} associated with \sigma takes the form
(5. 4). Choose an l^{2}(Z) function E=\hat{h}_{\sigma} as a canonical representation ker-
nel to define a real stationary Gaussian process X= (X(n) ; n\in Z) :
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X(n)=( \sqrt{2\pi})^{-1}\sum_{m=-\infty}^{\infty}E(n-m)\xi(m) .

Then it follows from Theorem 6. 1 that this X is our desired process.
To prove the uniqueness of such a process X, let Y= (Y(n) ; n\in Z) be

another real stationary Gaussian process on (\Omega, \mathscr{F}, P) satisfying the same
equation (6. 1). Fix any m\in Z. By multiplying both hand sides of equa-
tion (6. 1) by (h_{\sigma}(\cdot)e^{-im}.)^{-}(n) and then summing up with respect to n , we
can observe from (2. 10), Corollary 4. 1, (5. 10), Proposition 5. 1 ( ii) and
(6. 2) that

Y(m)=( \sqrt{2\pi})^{-1}\sum_{n=-\infty}^{m}E(m-n)\xi(n) ,

which implies Y=X. (Q. E. D.)

EXAMPLE 6. 1. Let X_{p}= (X_{p}(n) : n\in Z) be a real stationary Gaussian
process with the covariance function R_{p} given in (3. 2) (p\in(-1,1)) . We
note that each X_{p} has the simple Markov property, and in particular X_{0}

represents a normalized Gaussian white noise \xi . The first KMO-Langevin
equation of X_{p} takes the simplest from

(6. 13) X_{p}(n)-X_{p}(n-1)=-\beta b^{1)}(X_{p}(n)+X_{p}(n-1))+\alpha_{p}^{(1)}\xi(n)

a.s . (n\in Z) ,

where the pair (\alpha b^{1)}, \beta b^{1)}) was given by (4. 21). In case p=0 , the above
form (6. 13) for the white noise \xi becomes trivial:

(6. 14) \xi(n)-\xi(n-1)=-(\xi(n)+\xi(n-1))+2\xi(n) a.s . (n\in Z) .

EXAMPLE 6. 2. Let X= (X(n) ; n\in Z) be a real stationary Gaussian
process with the covariance function R of the form (4. 22). It follows from
Proposition 5. 1 ( i) that

(6. 15) \gamma_{1}(n)=\{

0 for n\in\{-1, -2, \ldots\}

\rho_{0}q_{1}^{n} for n\in\{0,1\}

\rho_{0}q_{1}^{n-2}(q_{1}^{2}-1) for n\in\{2,3, \ldots\} ,

where

(6. 16) \rho_{0}=\frac{2(q_{1}-p_{1})(p_{2}-q_{1})}{(1-q_{1})(1+p_{1})(1+p_{2})} .

We note that ( i) in Example 4. 2 is a special case q_{1}=0 of ( ii) in Example
4. 2. Therefore, we see from Theorem 6. 1 that X satisfies the following
KMO-Langevin equation:
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(6. 17) X(n)-X(n-1)=-\beta_{1}(X(n)+X(n-1))-(\gamma_{1}*X)(n)+\alpha_{1}\xi(n)

a.s . (n\in Z) ,

where the pair (\alpha_{1}, \beta_{1}) was given by (4. 26) or (4. 29). It deserves men-
tion that the second term on the right hand side of equation (6. 17) depends
upon the whole past of X in case q_{1}\neq 0 , i.e. a_{1}\neq 0 .

\S 7. Generalized fluctuation-dissipation theorems

In this final section we will prove a couple of relations between our
objects-the first KMO-Langevin data (\alpha_{1}, \beta_{1}, \gamma_{1})\in \mathscr{L}_{1} , the outer function h
of X and other important quantities. The physical meaning of these rela-
tions will be explained in detail later (see Remarks 7. 2–7. 4).

Let (\alpha_{1}, \beta_{1}, \rho_{1}) be any element of \mathscr{L}_{1} and \xi=(\xi(n);n\in Z) be a nor-
malized Gaussian white noise. By Theorem 6. 2, we obtain a real stationary
Gaussian process X= (X(n) ; n\in Z) as the unique solution of the first
KMO-Langevin equation:

(7. 1) X(n)-X(n-1)=-\beta_{1}(X(n)+X(n-1))-(\gamma_{1}*X)(n)+\alpha_{1}\xi(n)

a.s . (n\in Z) ,

where \gamma_{1} is given by (5. 10). This process has the covariance function R=
R_{\sigma}\in l^{1}(Z) , with \sigma=L_{1}^{-1}((\alpha_{1}, \beta_{1}, \rho_{1})) .

We will begin with

LEMMA 7. 1. The following limit exists:

(7.2) D \equiv\lim_{Narrow\infty}\frac{1}{2N}E((\sum_{n=0}^{N}X(n))^{2})=\sum_{n=0}^{\infty}R(n)-\frac{R(0)}{2}

PROOF. For any N\in Z,

E(( \sum_{n=0}^{N}X(n))^{2})=(N+1)R(0)+2\sum_{n=0}^{N-1}(\sum_{m=n+1}^{N}R(n-m))

=(N+1)R(0)+2 \sum_{n=1}^{N}(\sum_{l=1}^{n}R(l)) .

Therefore, we have the assertion, noting that R\in l^{1}(Z) .
(Q. E. D.)

DEFINITION 7. 1. In view of the definition of diffusion constant for the
continuous-time case (cf. (2. 30) in [10]), the above limit D is called the
diffusion constant of the procese X.

As a discrete analogue of Theorem 2. 1 in [10], we will show

THEOREM 7. 1.
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(i) For any \theta\in(-\pi, \pi)

\frac{1}{\beta_{1}(1+e^{i\theta})+1-e^{i\theta}+2\pi\tilde{\gamma}_{1}(\theta)}=\frac{h(e^{i\theta})}{2\lim_{\tau\downarrow\pi}h(e^{i\tau})} .

(ii) \frac{\alpha_{1}^{2}}{2}=R(0)C_{\beta_{1},\gamma 1} ,

where

(7.3) C_{\rho_{1},\gamma 1}= \pi(\int_{-\pi}^{\pi}|\beta_{1}(1+e^{i\theta})+1-e^{i\theta}+2\pi\tilde{\gamma}_{1}(\theta)|^{-2}d\theta)^{-1}

(ii) D= \frac{\alpha_{1}^{2}}{2(2\beta_{1})^{2}}

(iv) D= \frac{R(0)}{2\beta_{1}}\frac{C_{\beta_{1},\gamma 1}}{2\beta_{1}}

(v) \frac{C_{\beta_{1},\gamma 1}}{2\beta_{1}}-1=\frac{1}{R(0)}\int_{-1}^{1}\int_{-1}^{1}\frac{1+t}{1-tu}\sigma(dt)\rho_{1} (i_{i}) .

PROOF. By noting (5. 11), we see from Corollary 4. 1 that

(7.4) 2 \lim_{\theta\downarrow-\pi}h(e^{i\theta})=\frac{\alpha_{1}}{\sqrt{2\pi}} .

Therefore, ( i) follows from Corollary 4. 1 ( i ) , (5. 10) and Proposition 5.
1 (ii) .

By using Corollary 4. 1 ( i ) , (5. 10) and Proposition 5. 1 ( ii) again,
we see from (2. 7) that

\Delta(\theta)=\frac{\alpha_{1}^{2}}{2\pi}|\beta_{1}(1+e^{i\theta})+1-e^{i\theta}+2\pi\tilde{\gamma}_{1}(\theta)|^{-2} a.e . \theta\in(-\pi, \pi) .

By integrating both hand sides with respect to \theta , we have ( ii) .
We now compute the diffusion constant D. By (3. 1) and (3. 7), we

have

(7.5) \sum_{n=0}^{\infty}R(n)=\int_{-1}^{1}\frac{1}{1-t}\sigma(dt)

(7.6) \int_{-1}^{1}\frac{1}{1-l}\sigma(dt)=\frac{1}{2}\int_{0}^{\infty}(1+\frac{1}{\lambda})\sigma_{c}(d\lambda)

(7.7) R(0)=\sigma_{c}([0, \infty)) .

Hence, appealing to the result in [10], Theorem 2. 1 (ii) . we get

D= \frac{1}{2}\{\int_{0}^{\infty}(1+\frac{1}{\lambda})\sigma_{c}(d\lambda)-\sigma_{c}([0^{ },\infty])\}=\frac{1}{2}\int_{0}^{\infty}\frac{1}{\lambda}\sigma_{c}(d\lambda)

= \frac{\alpha_{c}^{2}}{4\beta_{c}^{2}}=\frac{\alpha_{1}^{2}}{8\beta_{1}^{2}} ,
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which completes the proof of (iii). (iv) is an immediate consequence of
(ii) and (iii).

Now, we proceed to the proof of ( v) . We first claim

(7.8) E(0)= \frac{\sqrt{2\pi}\alpha_{1}}{1+\beta_{1}+\gamma_{1}(0)}

(7.9) E(n)= \frac{1-\beta_{1}}{1+\beta_{1}}E(0)-\frac{2\beta_{1}}{1+\beta_{1}}\sum_{m=1}^{n-1}E(m)-\frac{1}{1+\beta_{1}}\sum_{m=1}^{n}(\gamma_{1}*E)(m)

(n\geq 1) .

By Theorems 4. 2 and 4. 3, we have

(7. 10) \frac{1}{2\pi}\sum_{n=0}^{\infty}E(n)z^{n}=h(z) (z\in U_{1}(0)) .

In particular,

E(0)=2\pi h(z)|_{z=0} .

Therefore, by taking z=0 (resp. n=0) in Theorem 4. 1 (resp. Proposition
5. 1 ( i )) , we get (7. 8). Furthermore, by using Theorem 4. 1 again, we
see from (7. 10) that for any n\in N

E(n)-E(n-1)=-\beta_{1}(E(n)+E(n-1))-(\gamma_{1}*E)(n)

and so

E(n)-E(0)= \sum_{m=1}^{n}(E(m)-E(m-1))

=- \beta_{1}(E(O)+E(n)+2\sum_{m=1}^{n-1}E(m))-\sum_{m=1}^{n}(\gamma_{1}*E)(m) ,

which implies (7. 9).

Next we prove the key formula

(7. 11) 2 \pi R(0)=(1+\frac{\gamma_{1}(0)}{1+\beta_{1}})E(0)\sum_{n=0}^{\infty}E(n)-\frac{4\pi\beta_{1}}{1+\beta_{1}}\sum_{n=1}^{\infty}R(n)

- \frac{2\pi}{1+\beta_{1}}\sum_{m=0}^{\infty}(\sum_{k=0}^{\infty}R(m+k)\gamma_{1}(k)) .

By substituting (7. 8) and (7. 9) into (2. 13), we have

2 \pi R(O)=E(0)^{2}+\frac{1-\beta_{1}}{1+\beta_{1}}E(0)\sum_{n=1}^{\infty}E(n)-\frac{2\beta_{1}}{1+\beta_{1}}\sum_{n=1}^{\infty}(\sum_{l=1}^{n-1}E(l))E(n)

- \frac{1}{1+\beta_{1}}\sum_{n=1}^{\infty}(\sum_{l=1}^{n}(\gamma_{1}*E)(l))E(n) .

On the other hand, we see from (2. 11), (2. 13) and (6. 2) that
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\sum_{n=1}^{\infty}(\sum_{l=1}^{n-1}E(l))E(n)=\sum_{l=1}^{\infty}(\sum_{m=1}^{\infty}E(l+m))E(l)

= \sum_{m=1}^{\infty}(\sum_{l=0}^{\infty}E(m+l)E(l)-E(0)E(m+1))

=2 \pi\sum_{m=1}^{\infty}R(m)-E(0)\sum_{m=1}^{\infty}E(m) ,

and

\sum_{n=1}^{\infty}(\sum_{l=1}^{n}(\gamma_{1}*E)(l))E(n)

= \sum_{m=0}^{\infty}\sum_{k=0}^{\infty}(\sum_{l=1}^{\infty}E(l+m)E(l-k))\gamma_{1}(k)

= \sum_{m=0}^{\infty}\sum_{k=0}^{\infty}\gamma_{1}(k)\{\sum_{l=0}^{\infty}E(l+m)E(l-k)-E(m)E(-k)\}

=2 \pi\sum_{m=0}^{\infty}(\sum_{k=0}^{\infty}R(m+k)\gamma_{1}(k))-\gamma_{1}(0)E(0)\sum_{m=0}^{\infty}E(m) .

And so

2 \pi R(O)=E(0)^{2}+\frac{1-\beta_{1}}{1+\beta_{1}}E(0)\sum_{n=1}^{\infty}E(n)

- \frac{2\beta_{1}}{1+\beta_{1}}(2\pi\sum_{n=1}^{\infty}R(n)-E(0)\sum_{m=1}^{\infty}E(m))

- \frac{1}{1+\beta_{1}}\{2\pi\sum_{m=0}^{\infty}(\sum_{k=0}^{\infty}R(m+k)\gamma_{1}(k))-\gamma_{1}(0)E(0)\sum_{m=0}^{\infty}E(m)\}

=E(0)^{2}+E(0) \sum_{n=1}^{\infty}E(n)+\frac{\gamma_{1}(0)}{1+\beta_{1}}E(0)\sum_{m=0}^{\infty}E(m)

- \frac{4\pi\beta_{1}}{1+\beta_{1}}\sum_{n=1}^{\infty}R(n)-\frac{2\pi}{1+\beta_{1}}\sum_{m=0}^{\infty}(\sum_{k=0}^{\infty}R(m+k)\gamma_{1}(k)) ,

which implies (7. 11).

We are now ready to show

(7. 12) \frac{C_{\beta_{1},\gamma 1}}{2\beta_{1}}-1=\frac{1}{R(0)}\sum_{m=0}^{\infty}(\sum_{k=0}^{\infty}R(m+k)\gamma_{1}(k)) ,

which is proved in the following manner.
By (7. 10),

\sum_{n=0}^{\infty}E(n)=2\pi\lim_{x\uparrow 1}h(x) .

And so by (4. 11)

(7. 13) \sum_{n=0}^{\infty}E(n)=\frac{\sqrt{2\pi}\alpha_{1}}{2\beta_{1}} .
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Combining this with (7. 8), we have

(1+ \frac{\gamma_{1}(0)}{1+\beta_{1}})E(0)\sum_{n=0}^{\infty}E(n)=\frac{\pi\alpha_{1}^{2}}{\beta_{1}(1+\beta_{1})}1

On the other hand, by LemmJ 7. 1 and Theorem 7. 1 (iii),

\sum_{n=1}^{\infty}R(n)=\frac{\alpha_{1}^{2}}{8\beta_{1}^{2}}-\frac{R(0)}{2}

Therefore, by combining these with (7. 11), we see that

R(0)= \frac{\alpha_{1}^{2}}{2\beta_{1}(1+\beta_{1})}-\frac{2\beta_{1}}{1+\beta_{1}}(\frac{\alpha_{1}^{2}}{8\beta_{1}^{2}}-\frac{R(0)}{2})

- \frac{1}{1+\beta_{1}}\sum_{m=0}^{\infty}(\sum_{k=0}^{\infty}R(m+k)\gamma_{1}(k))

and so

R(0)= \frac{\alpha_{1}^{2}}{4\beta_{1}}-\sum_{m=0}^{\infty}(\sum_{k=0}^{\infty}R(m+k)\gamma_{1}(k)) ,

which, together with Theorem 7. 1 ( ii) , implies (7. 14).
Next we claim

(7. 14) \sum_{m=0}^{\infty}(\sum_{k=0}^{\infty}R(m+k)\gamma_{1}(k))=\int_{-1}^{1}\int_{-1}^{1}\frac{1+t}{1-tu}\sigma(dt)\rho_{1} (du).

By (3. 1) and Proposition 5. 1 ( i ) ,

the left hand side of (7. 14) = \sum_{k=0}^{\infty}(\sum_{m=1}^{\infty}R(m+k))\gamma_{1}(k)

= \sum_{k=0}^{\infty}(\int_{-1}^{1}\frac{t^{k}}{1-t}\sigma(dt))\gamma_{1}(k)

= \int_{-1}^{1}\{\sum_{k=0}^{\infty}\gamma_{1}(k)t^{k}\}\frac{\sigma(dt)}{1-t} ,

= \int_{-1}^{1}\{(1-t^{2})\int_{-1}^{1}\frac{\rho_{1}(du)}{1-tu}\}\frac{\sigma(dt)}{1-t} ,

which implies (7. 14). Thus, we conclude from (7. 12) and (7. 14) that
(v) holds. (Q. E. D.)

Before we go into the explanation of the physical meaning of Theorem
7. 1, we will consider the simplest

EXAMPLE 7. 1. Let X_{p} be the same stochastic process as in Example 6.
1, and D_{p} be the diffusion constant of X_{p} . By (3. 2) and Lemma 7. 1,

(7. 15) R_{p}(0)=1

(7. 16) D_{p}= \frac{1+p}{2(1-p)} .
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By combining these with (4. 21), we see that

(7. 19) \frac{(\alpha_{p}^{(1)})^{2}}{2}=R_{p}(0)(2\beta b^{1)})

(7. 20) D_{p-}- \frac{Rb^{0)}}{2\beta b^{1)}}f

which, together with Theorem 7. 1 ( ii) or Theorem 7. 1 (iv), imply

(7.21) C_{\beta^{t}\rho^{1)}}\gamma_{\rho}^{(1)}=C_{\beta_{\beta}^{(1)}0}=2\beta_{p}^{(1)} .

In addition, we see from (3. 2), (4. 19) and (4. 21) that a remarkable rela-
tion between R_{p} and E_{p} holds:

(7.22) R_{p}(n)= \frac{1+\beta b^{1)}}{\sqrt{2\pi}\alpha b^{1)}}E_{p}(n) (n\geq 0) .

We will return to the general case and give some characterization of the
simple Markovian property. As a discrete analogue of Theorem 2. 2 in [ 10],
we can see from Theorem 7. 1 that

THEOREM 7. 2.

(i) \frac{C_{\beta_{1},\gamma 1}}{2\beta_{1}}\geq 1

(ii) The following four statements are equivalent:

(a) \frac{C_{\beta_{1},\gamma 1}}{2\beta_{1}}=1

(b) \gamma_{1}=0

(c) \rho_{1}=0

(d) X=X_{p} with some p(\in(-1,1)) .

REMARK 7. 1. As we have seen in Theorem 2. 2 in [10], the relation (7.
22) characterizes the simple Markovian property for the continuous-time
processes. However, this is no longer true for the present discrete-time
processes. We will give such an example. Let X be a real stationary
Gaussian process discussed in the case ( i) of Example 6. 2 such that

(7.23) p_{1}=-p_{2} and \sigma_{1}=\sigma_{2}=\frac{1}{2(1-p_{1}^{2})} .

It then follows from Theorem 4. 3 and (4. 27) the canonical representation
kernel E of X becomes

(7.24) E(n)=\chi_{10,\infty)}(n)\sqrt{2\pi(1+p_{1}^{2})}(p_{1}^{n}+(-p_{1})^{n}) ,

which implies the desired relation
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(7.20) R(n)= \frac{1}{2(1-p_{1}^{2})\sqrt{2(1-p_{1}^{2})}}E(n) (n\geq 0) .

Finally we will give three remarks concerning the physical meaning of
Theorem 7. 1 (cf. [10] for the continuous-time case).

REMARK 7. 2. In relation ( i) in Theorem 7. 1, the left hand side
denotes a complex mobility of the system X described by equation (7. 1),
which represents the response of the system X to the external force \alpha_{1}\xi . On
the other hand, the right hand side is determined by the outer funciton of X,
which represents the thermal fluctuation of the system in equilibrium without
the external force. The relation ( i) in Theorem 7. 1 might be said to be
the generalized first fluctuation-dissipation theorem.

REMARK 7. 3. We are now concerned with relation ( ii) in Theorem 7.

1. The fluctuation power of a randow force \alpha_{1}\xi in equation (7. 1) is \frac{\alpha_{1}^{2}}{2} .

While, the positive constant C_{\beta_{1}} , \gamma_{1} is expressed in terms of the drift coefficient
representing the systematic part of equation (7. 1). And from the physical
point of view we can regard R(0) as the absolute constant kT, where k and
T denote the Boltzman constant and absolute temperature of the system in
equilibrium, respectively. This leads us to think of C_{\beta_{1},\gamma 1} as the generalized
friction constant, and the relation ( ii) itself might be said to be the
generalized second fluctuation-dissipation theorem.

REMARK 7. 4. For the Markov process X_{p} in Example 7. 1, we found
that the diffusion constant D_{p} is inversely proportional to the friction con-
stant \beta_{p}^{(1)} . This relation (7. 20) is analogous to the classical Einstein rela-
tion valid for the Ornstein-Uhlenbeck Brownian motion with continuous time
(see (2. 29) in [10]). For this reason, we call relation (7. 20) for X_{p} the
Einstein relation. In a general system described by equation (7. 1) with
\gamma_{1}\neq 0 , however, we found a significant deviation (iv) in Theorem 7. 1 from
the Einstein relation (7. 20) with \gamma_{1}=0 and obtained the formula ( v) in
Theorem 7. 1 expressing the degree of such a deviation. In view of the
analogous fact in the continuous-time case (Theorem 2. 1 in [10]), we call
the relation (iv) in Theorem 7. 1 the generalized Einstein relation.
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