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\S 1. Introduction. H. Liebmann [7] proved

THEOREM A. The only ovaloids with constant mean curvature H in
Euclidean space E^{3} are the spheres.
W. S\"uss [11] generalized this result for a closed convex hypersurface in an
n-dimensional Euclidean space E^{n} . To prove this Theorem we need integral

formulas of Minkowski type. Y. Katsurada ([4], [6]) derived integral for-
mulas of Minkowski type which are valid in an Einstein space and proved the
following:

THEOREM B. Let R^{n+1} be an Einstein space which admits a vector fifield
\xi^{i} generating a continuous one-parameter group of conformal transformations
in R^{n+1} and V^{n} a closed orientable hypersurface in R^{n+1} such that

(i) H_{1}=const. ,

(ii) C^{i}\xi_{i} has fifixed sign on V^{n} . Then every point of V^{n} is umbilic,

where H_{1} and C^{i} denote the fifirst mean curvature of V^{n} and the unit normal
vector to V^{n} respectively.

It is one of our interesting problems to find a certain condition for a
closed orientable hypersurface in a Riemannian manifold to be isometric to
a sphere. On this subject, she [5] also proved the following two Theorems:

THEOREM C. Let \xi^{i} be a proper conformal Killing vector fifield such that
\nabla_{j}\xi_{i}+\nabla_{i}\xi_{j}=2\varphi G_{ji} in an Einstein space R^{n+1} and V^{n} a closed orientable
hypersurface such that

(i) H_{1}=const. ,

(ii) C^{i}\nabla_{i}\varphi has fifixed sign on V^{n} and is not constant along V^{n} . Then
V^{n} is isometric to a sphere, where G_{ji} and \nabla_{i} denote the positive defifinite
fundamental tensor of R^{n+1} and the operator of covariant differentiation with

respect to Christoffel symbols \{\begin{array}{l}kji\end{array}\} formed with G_{ji} respectively.

THEOREM D. Let \xi^{i} be a proper conformal Killing vector fifield in an
Einstein space R^{n+1} and V^{n} a closed orientable hypersurface such that
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(i) H_{1}=const. ,

(ii) C^{i}\xi_{i} has fifixed sign on V^{n} .
(iii) \varphi is not constant along V^{n} . Then V^{n} is isometric to a sphere.
It is known that if an Einstein space R^{n+1} of dimension n+1 admits a

proper conformal Killing vector field \xi^{i} , then it admits a non-constant scalar
function v which satisfies the partial differential equation given by

\nabla_{j}\nabla_{i}v=\lambda vG_{ji}(\lambda=-R/n(n+1))([13], [15]) ,

where R denotes the scalar curvature of R^{n+1} . Such being the case, we
assume in this paper the existence of a non-constant scalar function \Phi which
satisfies the partial differential equation defined by

(1. 1) \nabla_{j}\nabla_{i}\Phi=\rho\Phi G_{ji} (\rho=non zero const).

The purpose of the present paper is to prove some analogous Theorems to
Theorem B, C and D, replacing an Einstein manifold by a more general one.
In \S 3, we derive some integral formulas which are valid for a closed orient-
able hypersurface in a Riemannian manifold R^{n+1} . In \S 4, we discuss pr0-
perties of R^{n+1} admitting the scalar field \Phi defined by (1. 1). In \S 5, we
apply the integral formulas obtained in \S 3 to a closed orientable hypersur-
face whose first mean curvature H_{1} is non zero constant. And, in the last
section 6, we give a certain condition for a closed orientable hypersurface to
be isometric to a sphere.

\S 2. Notation and general formulas.

Let R^{n+1} be an (n+1) -dimensional orientable Riemannian manifold with
local coordinates x^{i} , and G_{ji} the positive definite fundamental tensor of R^{n+1} .

We now consider an orientable hypersurface V^{n} imbedded in R^{n+1} and
locally given by

x^{i}=x^{j}(u^{a}) i=1,2 , \ldots . n+1 ; \alpha=1,2 , \ldots . n ,

where u^{a} are local coordinates of V^{n} . Throughout the present paper Latin
indices i, j, k, . . run from 1 to n+1 and Greek indices \alpha , \beta , \gamma , \ldots from 1 to
n .

If we put

B_{a}^{i}=\partial x^{i}/\partial u^{a},

then B_{a}^{i} are n linearly independent vectors tangent to V^{n} and the first
fundamental tensor g\beta a of V^{n} is given by

(2. 1) g_{\beta a}=G_{ji}B_{\beta}^{j}B_{a}^{i} .
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We assume that n vectors B_{1}^{i} , B_{2}^{i} , . . . B_{n}^{i} give the positive orientation
on V^{n} , and we denote by C^{i} the unit normal vector to V^{n} such that

B_{1}^{i} , B_{2}^{i} , \ldots . B_{n}^{i} , C^{i}

give the positive orientation in R^{n+1} .
Denoting by \nabla_{a} the van der W\"arden-Bortolotti covariant differentiation

along V^{n}[10] , we can write the equations of Gauss and Weingarten in the
form

(2.2) \nabla_{\beta}B_{a}^{i}=b_{\beta a}C^{i} ,
(2.3) \nabla_{\beta}C^{i}=-b_{\beta}^{a}B_{a}^{i}

respectively, where b_{\beta a} is the second fundamental tensor of V^{n} and
b_{\gamma}^{a}=g^{\beta a}b_{\gamma\beta} . Also, the equations of Codazzi are written as follows:

(2.4) \nabla_{\gamma}b_{\beta a}-\nabla_{\beta}b_{\gamma a}=R_{kjih}B_{\gamma}^{k}B_{\beta}^{j}B_{a}^{i}C^{h} .

where R_{kjih} is the curvature tensor of R^{n+1} . Transvecting g^{\beta a} to (2. 4) and
remembering g^{\beta a}B_{\beta}^{j}B_{a}^{i}=G^{ji}-C^{j}C^{i} . we find that

(2.5) \nabla_{\gamma}b_{\beta}^{\beta}-\nabla_{\beta}b_{\gamma}^{\beta}=R_{kh}B^{k}{}_{\gamma}C^{h},

where b_{\beta}^{\beta}=gb_{\beta a}\beta a and R_{kh}=G^{ji}R_{kjih} .
Now, if we denote by k_{1} , k_{2} , \ldots

k_{n} the principal curvatures of V^{n} , that
is, the roots of the characteristic equation

det (b_{\rho a}-kg_{\beta a})=0 ,

then the first mean curvature H_{1} and the second mean curvature H_{2} of V^{n} are
respectively given by

(2. 6) nH_{1}= \sum_{a}k_{a}=b_{a}^{a}

and

(2. 7) (\begin{array}{l}n2\end{array}) H_{2}= \sum_{\beta<a}k_{\beta}k_{a}=\frac{1}{2}\{(b_{\beta}^{\beta})^{2}-b_{\beta}^{a}b_{a}^{\beta}\} .

\S 3. Integral formulas in a Riemannian manifold R^{n+1} admitting a
special concircular scalar field \Phi .

As mentioned in \S 1, we assume the existence of a non-constant scalar
field \Phi which satisfies the partial differential equations defined by

(3. 1) \nabla_{j}\Phi_{i}=\rho\Phi G_{ji} (\rho=non-zero const.),

where \Phi_{i}=\nabla_{i}\Phi , and hereafter we shall call th^{\dagger}is scalar field \Phi a special
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concircular scalar field.
And, if \Phi=0 on V^{n} , since the second covariant derivative of \Phi=0 along

V^{n} is given by \nabla_{j}\Phi_{i}B_{\beta}^{j}B_{a}^{i}+\Phi_{i}\nabla_{\beta}B_{a}^{i}=0 , substituting (2. 2) and (3. 1) into
this equation and transvecting g^{\beta a} to the resulting equation, we see that
H_{1}\Theta=0 on V^{n} , where \Theta=C^{i}\Phi_{i} . Hence we have the following:

LEMMA 3. 1 Let R^{n+1} be an (n+1) -dimensional Riemannian manifold
which admits a special concircular scalar fifield \Phi . If V^{n} is a hypersurface in
R^{n+1} such that H_{1}\Theta\not\equiv 0 there, then we have \Phi\not\equiv 0 on V^{n} .

On the hypersurface V^{n} , we can put

(3. 2) \Phi^{j}=B_{\beta}^{j}\phi^{\beta}+\Theta C^{j},

where \Phi^{j}=G^{ji}\Phi_{i} . Transvecting G_{ji}B_{a}^{i}\backslash to this equation and making use of
(2. 1), we get \phi_{a}=B_{a}^{i}\Phi_{i} , from which, by covariant differentiation along
V^{n} and by virtue of (2. 2), (3. 1) and (2. 1), we obtain

\nabla_{\beta}\phi_{a}=\Theta b_{\beta a}+\rho\Phi g_{\beta a} .

Transvecting g^{\beta a} to this equation and making use of (2. 6), we get

(3.3) \nabla_{\beta}\phi^{\beta}=nH_{1}\Theta+n\rho\Phi ,

where \nabla_{\beta}\phi^{\beta}=g^{\beta a}\nabla_{\beta}\phi_{a} .
We now put

\eta_{\beta}=b_{\beta}^{a}B_{a}^{i}\Phi_{i} ,

from which, by covariant differentiation along V^{n} . we obtain, by virtue of
(2. 2), (3. 1), (2. 1) and C^{i}\Phi_{i}=\Theta .

\nabla_{\gamma}\eta_{\beta}=\nabla_{\gamma}b_{\beta}^{a}B_{a}^{i}\Phi_{i}+b_{\beta}^{a}b_{\gamma a}\Theta+\rho\Phi b_{\beta\gamma} .

Transvecting g^{\gamma\beta} to this equation, we get

(3. 4) \nabla_{\gamma}\eta^{\gamma}=\nabla_{\gamma}b_{\beta}^{\gamma}\phi^{\beta}+b_{\beta}^{\gamma}b_{\gamma}^{\beta}\Theta+\rho\Phi b_{\gamma}^{\gamma}

by virtue of (2. 2).

On the other hand, we have, from (2. 6) and (2. 7),

b_{\gamma}^{\gamma}=nH_{1} , b_{\beta}^{\gamma}b_{\gamma}^{\beta}=n^{2}H_{1}^{2}-n(n-1)H_{2} ,

and consequently, we have, from (3. 4),

(3.5) \nabla_{\gamma}\eta^{\gamma}=\nabla_{\gamma}b_{\beta}^{\gamma}\phi^{\beta}+n\{nH_{1}^{2}-(n-1)H_{2}\}\Theta+n\rho\Phi H_{1} .

We now assume that the hypersurface V^{n} is closed, and apply Green’s
formula [12] to (3. 3) and (3. 5). Then we obtain
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(3.6) \int_{V^{n}}H_{1}\Theta dA+\int_{V^{n}}\rho\Phi dA=0

and

(3. 7) \frac{1}{n}\int_{V^{n}}\nabla_{\gamma}b_{\beta}^{\gamma}\phi^{\beta}dA+\int_{V^{n}}\{nH_{1}^{2}-(n-1)H_{2}\}\Theta dA+\int_{V^{n}}\rho\Phi H_{1}dA=0

respectively [4], where dA denotes the area element of V^{n} .
If we assume, moreover, that the first mean curvature of V^{n} is non zero

constant: H_{1}=const.\neq 0 , then we obtain, from (2. 5),

\nabla_{\gamma}b_{\beta}^{\gamma}=-R_{ji}B_{\beta}^{j}C ,

and consequently, we have, from (3. 7),

(3.8) - \frac{1}{n}\int_{V^{n}}R_{ji}B_{\beta}^{j}\phi^{\beta}C^{i}dA+\int_{V^{n}}\{nH_{1}^{2}-(n-1)H_{2}\}\Theta dA+H_{1}\int_{V^{n}}\rho\Phi dA=0 .

Eliminating \int_{V^{n}}\rho\Phi dA from (3. 6) and (3. 8), we find that

(3.6) - \frac{1}{n}\int_{V^{n}}R_{ji}B_{\beta}^{j}\phi^{\beta}C^{i}dA+(n-1)\int_{V^{n}}\{H_{1}^{2}-H_{2}\}\Theta dA=0 .

\S 4. Some properties of a Riemannian manifold admitting a special
concircular scalar field \Phi .

Let R^{n+1} be a Riemannian manifold of dimension n+1 which admits a
special concircular scalar field \Phi defined by (3. 1). Substituting (3. 1) into
the Ricci identity

\nabla_{k}\nabla_{j}\Phi_{i}-\nabla_{j}\nabla_{k}\Phi_{i}=-R_{kji}^{l}\Phi_{l} ,

we find that

R_{kji}^{l}\Phi_{l}=\rho(\Phi_{j}G_{ki}-\Phi_{k}G_{ji}) ,

from which, by covariant differentiation, we obtain

(4. 1) \nabla_{h}R_{kji}^{l}\Phi_{l}=-\rho\Phi\{R_{kjih}-\rho(G_{ki}G_{jh}-G_{kh}G_{ji})\} .

This shows that the tensor \nabla_{h}R_{kji}^{l}\Phi_{l} is skew-symmetric in h and i , that is,

\nabla_{h}R_{kji}^{l}\Phi_{l}+\nabla_{i}R_{kjh}^{l}\Phi_{l}=0 ,

and consequently, transvecting G^{hi} to this equation, we get

(4. 2) \nabla_{h}R_{kjl}^{h}\Phi^{l}=0 .

Also, transvecting G^{ji} to (4. 1), we obtain
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(4. 3) \nabla_{h}R_{kl}\Phi^{l}=-\rho\Phi(R_{hk}+n\rho G_{hk}) ,

and if we put

(4. 4) S_{hk}=R_{hk}+n\rho G_{hk} ,

then (4. 3) is rewritten as follows:

(4. 5) \nabla_{h}R_{kl}\Phi^{l}=-\rho\Phi S_{hk} .

Moreover, transvecting G^{hk} to this equation and making use of 2\nabla_{k}R_{l}^{k}=\nabla_{l}R ,
we get

(4.6) \nabla_{l}R\Phi^{l}=-2\rho\Phi S,

where S=G^{hk}S_{hk} . Next, transvecting G^{hk} to (4. 4), we obtain
(4. 7) S=R+n(n+1)\rho .

Thus from (4. 6), we have

THEOREM 4. 1 Let R^{n+1} be a Riemannian manifold which admits a
special concircular scalar fifield \Phi such that \nabla_{j}\Phi_{i}=\rho\Phi G_{ji} (\rho=non-zero consl.).
If its scalar curvature R is constant, then we have

\rho=-R/n(n+1) .

Now, transvecting G^{hj} to (4. 1), we get, from R_{kjil}=R_{ilkj} and (4. 4),

(4.8) \nabla_{h}R_{lik}^{h}\Phi^{l}=-\rho\Phi S_{ik} .

On the other hand, transvecting G^{lh} to the Bianchi’s identity: \nabla_{l}R_{kjih}

+\nabla_{k}R_{jlih}+\nabla_{j}R_{lkih}=0 , we find that

(4.9) \nabla_{h}R_{kji^{h}}=\nabla_{k}R_{ji}-\nabla_{j}R_{ki} ,

and consequently, transvecting \Phi^{k} to this equation, we get, from (4. 8) and
(4. 5),

(4. 10) \nabla_{k}R_{ji}\Phi^{k}=-2\rho\Phi S_{ji} .

Also, transvecting \Phi^{i} to (4. 9) and making use of (4. 2), we obtain

(4.11) \nabla_{k}R_{ji}\Phi^{i}=\nabla_{j}R_{ki}\Phi^{i} (that is, symmetric in k and j).

LEMMA 4. 2 Let R^{n+1} be a Riemannian manifold which admits a special
concircular scalar fifield \Phi . If the scalar fifield \Phi satisfifies the following equa-
tion:

(4. 12) \Phi S_{kj}=0 ,
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then we have (\Phi_{l}\Phi^{l})S_{kj}=0 in R^{n+1} .

PROOF. Covariantly differentiating (4. 12), we get, from (4. 4),

\Phi_{l}S_{kj}+\Phi\nabla_{l}R_{kj}=0 .

Transvecting \Phi^{l} to this equation and making use of (4. 10), we obtain

(\Phi_{l}\Phi^{l})S_{kj}-2\rho\Phi^{2}S_{kj}=0 ,

from which, taking account of the assumption (4. 12), we conclude that
Lemma 4. 2 holds.

\S 5. Closed orientable hypersurfaces with H_{1}=const.\neq 0 .
First, we shall prove the following Theorem:

THEOREM 5. 1 Let R^{n+1} be an (n+1) -dimensional orientable Riemann-
ian manifold with \nabla_{k}R_{ji}=\nabla_{j}R_{ki} which admits a special concircular scalar fifield
\Phi such that

\nabla_{j}\Phi_{i}=\rho\Phi G_{ji} (\rho=non -zero const),

and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const.\neq 0 ,
(ii) C^{i}\Phi_{i}(=\Theta) has fifixed sign on V^{n} .

Then every point of V^{n} is umbilic.

PROOF. Transvecting \Phi^{k} to the assumption \nabla_{k}R_{ji}=\nabla_{j}R_{ki} , we get,
from (4. 10) and (4. 5), \Phi S_{ji}=0 . Thus, using Lemma 4. 2, we have (\Phi_{k}\Phi^{k})

.S_{ji}=0 in R^{n+1} . Moreover, by the assumption that C^{i}\Phi_{i} has fixed sign on
V^{n} , we find that S_{ji}=0 on V^{n} , that is, R_{ji}=-n\rho G_{ji} on V^{n} . Consequently,
from (3. 9), we obtain

(5. 1) \int_{V^{n}}(H_{1}^{2}-H_{2})\Theta dA=0 .

On the other hand, since

(5.2) H_{1}^{2}-H_{2}= \frac{1}{n^{2}(n-1)}\sum_{a<\beta}(k_{a}-k_{\beta})^{2} ,

we see that H_{1}^{2}-H_{2}\geqq 0 . Thus, from (5. 1) and the assumption that \Theta has
fixed sign on V^{n} , we conclude that H_{1}^{2}-H_{2}=0 , and consequently, because of
(5. 2), that k_{1}=k_{2}=\cdots=k_{n} at each point of V^{n} . This means that every point
of V^{n} is umbilic.

COROLLARY 5. 2 Let R^{n+1} be an orientable Riemannian manifold with
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\nabla_{k}R_{ji}=0 which admits a special concircular scalar fifield \Phi, and V^{n} a closed
orientable hypersurface in R^{n+1} such that

(i) H_{1}=const.\neq 0 ,
(ii) C^{i}\Phi_{i} has fifixed sign on V^{n} .

Then every point of V^{n} is umbilic.

COROLLARY 5. 3 Let R^{n+1} be an orientable Riemannian manifold with
\nabla_{l}R_{kjih}=0 which admits a special concircular scalar fifield \Phi, and V^{n}a

closed orientable hypersurface in R^{n+1}. such that
(i) H_{1}=const.\neq 0 ,
(ii) C^{i}\Phi_{i} has fifixed sign on V^{n} .

Then every point of V^{n} is umbilic.
We next assume that R^{n+1} is a conformally flat Riemannian manifold:

R_{kji}^{h}=- \frac{1}{n-1}(R_{ki}\delta_{j}^{h}-R_{ji}\delta_{k}^{h}+G_{ki}R_{j}^{h}-G_{ji}R_{k}^{h})

+ \frac{R}{n(n-1)}(G_{ki}\delta_{j}^{h}-G_{ji}\delta_{k}^{h}) .

By covariant differentiation, we have
\nabla_{l}R_{kji^{h}}=-\frac{1}{n-1}(\nabla_{l}R_{ki}\delta_{j}^{h}-\nabla_{l}R_{ji}\delta_{k}^{h}+G_{ki}\nabla_{l}R_{j}^{h}-G_{ji}\nabla_{l}R_{k}^{h})

+ \frac{\nabla_{l}R}{n(n-1)}(G_{ki}\delta_{j}^{h}-G_{ji}\delta_{k}^{h}) ,

from which, replacing l by h and summing for h , we get

\nabla_{h}R_{kji}^{h}---\frac{1}{n-1}(\nabla_{j}R_{ki}-\nabla_{k}R_{ji}+G_{ki}\nabla_{h}R_{j}^{h}-G_{ji}\nabla_{h}R_{k}^{h})

+ \frac{1}{n(n-1)}(G_{ki}\nabla_{j}R-G_{ji}\nabla_{k}R) .

And, making use of (4. 9) and 2\nabla_{h}R_{j}^{h}=\nabla_{j}R , we find that

(5.3) \nabla_{j}R_{ki}-\nabla_{k}R_{ji}-\frac{1}{2n}(G_{ki}\nabla_{j}R-G_{ji}\nabla_{k}R)=0(n>2) .

Also, in case n=2 , a conformally flat Riemannian manifold is defined by

(5.4) \nabla_{j}R_{ki}-\nabla_{k}R_{ji}-\frac{1}{4}(G_{ki}\nabla_{j}R-G_{ji}\nabla_{k}R)=0 .

Therefore, assuming the scalar curvature R to be constant, we see easily,
from (5. 3) and (5. 4), that \nabla_{j}R_{ki}-\nabla_{k}R_{ji}=0 . Consequently, using TheO-
rem 5. 1, we have the following:



On a certain property of closed hypersurfaces with constant
mean curvature in a Riemannian manifold 285

COROLLARY 5. 4 Let R^{n+1} be an orientable conformally flat Riemannian
manifold with R=const. which admits a special concircular scalar fifield \Phi,

and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const.\neq 0 ,
(ii) C^{i}\Phi_{i} has fifixed sign on V^{n} .

Then every point of V^{n} is umbilic.
Moreover, making use of (4. 11), (4. 5) and (4. 10), we can prove the

following Theorem by an argument similar to that used in the proof of
Theorem 5. 1:

THEOREM 5. 5 Let R^{n+1} be an orientable Riemannian manifold with
\nabla_{k}R_{ji}+\nabla_{j}R_{ik}+\nabla_{i}R_{kj}=0^{1)} which admits a special concircular scalar fifield \Phi,

and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const.\neq 0 ,
(ii) C^{i}\Phi_{i} has fifixed sign on V^{n} .

Then every point of V^{n} is umbilic.
We now assume that the length of the Ricci tensor is constant in R^{n+1} ,

that is,

(5.5) R^{ji}R_{ji}=\alpha (\alpha=const.) .

By covariant differentiation, we have

(5. 6) \nabla_{k}R^{ji}R_{ji}=0 .

On the other hand, from (4.4), we see that R^{ji}R_{ji}=S^{ji}S_{ji}-2n\rho S

+n^{2}(n+1)\rho^{2} . Thus, we have, from (5. 5),

(5. 7) S^{ji}S_{ji}=2n\rho S-n^{2}(n+1)\rho^{2}+\alpha .

Also, transvecting \nabla_{k}R^{ji} to (4. 4), that is, S_{ji}=R_{ji}+n\rho G_{ji} and using (5. 6),

we have VkRjiSji npVkR, and, moreover, transvecting \Phi^{k} to this equation,
from (4. 10) and (4. 6), we find that

(5.8) \Phi S^{ji}S_{ji}=n\rho\Phi S .

Consequently, substituting (5. 7) into (5. 8), we can see easily that

(5.8) \Phi\{n\rho S-n^{2}(n+1)\rho^{2}+\alpha\}=0 .

So, covariantly differentiating and taking account of the fact that \nabla_{i}S is
equal to \nabla_{i}R , we have

\Phi_{i}\{n\rho S-n^{2}(n+1)\rho^{2}+\alpha\}+n\rho\Phi\nabla_{i}R=0 ,

1) See [2].
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and consequently, multiplying by \Phi and using (5. 9), we obtain
(5. 10) \Phi^{2}\nabla_{i}R=0 .

LEMMA 5. 6 Let R^{n+1} be a Riemannian manifold with R^{ji}R_{ji}=const.
which admits a special concircular scalar fifield \Phi, V^{n} a hypersurface in R^{n+1} ,
and \Phi_{k}\Phi^{k}>0 on V^{n} . If \beta\neq 0 , then we have \nabla_{i}R=0 , that is, R=const. in
R^{n+1} , and if \beta=0 , then we have \nabla_{i}R=0 on V^{n}, where \beta is a constant
number defifined by \beta=\rho\Phi^{2}-\Phi_{j}\Phi^{j} .

PROOF. Since \nabla_{i}(\rho\Phi^{2}-\Phi_{j}\Phi^{j})=0 , we see that \beta is constant in R^{n+1} .
Now, by covariant differentiation of (5. 10), we get

2 \Phi\Phi_{j}\nabla_{i}R+\Phi^{2}\nabla_{j}\nabla_{i}R=0 ,

from which, because of \nabla_{j}\nabla_{i}R=\nabla_{i}\nabla_{j}R , we obtain \Phi(\Phi_{j}\nabla_{i}R-\Phi_{i}\nabla_{j}R)=0 .
Moreover, covariantly differentiating and making use of (3. 1), we have

\Phi_{k}(\Phi_{j}\nabla_{i}R-\Phi_{i}\nabla_{j}R)+\rho\Phi^{2}(G_{kj}\nabla_{i}R-G_{ki}\nabla_{j}R)+\Phi(\Phi_{j}\nabla_{k}\nabla_{i}R-\Phi_{i}\nabla_{k}\nabla_{j}R)=0 ,

and consequently, taking account of (5. 10), we obtain
\Phi_{k}(\Phi_{j}\nabla_{i}R-\Phi_{i}\nabla_{j}R)+\Phi(\Phi_{j}\nabla_{k}\nabla_{i}R-\Phi_{i}\nabla_{k}\nabla_{j}R)=0 .

And, transvecting G^{kj} to this equation, we have, from (5. 10) and (4. 6),

(5. 11) -\beta\nabla_{i}R+\Phi\{\Phi^{j}\nabla_{j}\nabla_{i}R+\Phi_{i}(2\rho S-\nabla^{j}\nabla_{j}R)\}=0 ,

where \nabla^{j}\nabla_{j}R=G^{kj}\nabla_{k}\nabla_{j}R . Thus, if \beta\neq 0 , then we have, from (5. 10) or
(5. 11), \nabla_{i}R=0 . And if \beta=0 , then we have \rho\Phi^{2}=\Phi_{i}\Phi^{i} , which is non zero on
V^{n} and hence \nabla_{i}R=0 there because of (5. 10).

LEMMA 5. 7 Let R^{n+1} be a Riemannian manifold which admits a special
concircular scalar fifield \Phi, and V^{n} a hypersurface in R^{n+1} such that

(i) H_{1}=const.\neq 0 ,
(ii) C^{i}\Phi_{i}(=\Theta) has fifixed sign on V^{n} .

If \nabla_{i}R=0 on V^{n}, then we have S=0 on V^{n} .

PROOF. Transvecting B_{a}^{i} to the both sides of \nabla_{i}R=0 , we get \nabla_{a}R=0 ,
that is, R const. on V^{n} . Consequently, because of (4. 7), we have
(5.12) const. on V^{n} .
Moreover, making use of the assumption \nabla_{i}R=0 on V^{n} . we get, from (4. 6),

\Phi S=0 on V^{n} .

Here \Phi\not\equiv 0 on V^{n} . Because, from the assumption ( i) and ( _{ii}) , we have
H_{1}\Theta\not\equiv 0 on V^{n} , which shows that this holds because of Lemma 3. 1. Thus,
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by virtue of (5. 12), we can prove that S=0 on V^{n} .
Next, making use of these Lemmas, we shall prove the following TheO-

rem:

THEOREM 5. 8 Let R^{n+1} be an orientable Riemannian manifold with
R^{ji}R_{ji}=const. which admits a special concircular scalar fifield \Phi, and V^{n}a

closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const.\neq 0 ,
(ii) C^{i}\Phi_{i} has fifixed sign on V^{n} .

Then every point of V^{n} is umbilic.

PROOF. Transvecting \Phi^{k} to (5. 6), and substituting (4. 10) and (4. 4)

into this equation, we obtain

\Phi(S^{ji}S_{ji}-n\rho S)=0 .

Now, by covariant differentiation, we get, because of (4. 4) and (4. 7),

\Phi_{k}(S^{ji}S_{ji}-npS)+\Phi(2\nabla_{k}R^{ji}S_{ji}-npVkR)=0 ,

and, substituting (4. 4) into the second term of the left-hand side of this
equation, and using (5. 6), we find that

\Phi_{k}(S^{ji}S_{ji}-n\rho S)+n\rho\Phi\nabla_{k}R=0 .

Thus, making use of Lemma 5. 6 and Lemma 5. 7 and transvecting \Phi^{k} to its
equation, it follows that

(\Phi_{k}\Phi^{k})(S^{ji}S_{ji})=0 on V^{n} ,

and, using the assumption that C^{i}\Phi_{i} has fixed sign on V^{n} , we conclude that

S_{ji}=0 , that is, R_{ji}=-n\rho G_{ji} on V^{n} .

Therefore, from (3. 9), we obtain

\int_{V^{n}}(H_{1}^{2}-H_{2})\Theta dA=0 ,

and consequently, by the argument similar to that used in the proof of
Theorem 5. 1, it follows that Theorem 5. 8 holds.

REMARK 1. We can see that Theorem 5. 8 is a generalization of CorO-
llary 5. 2.

REMARK 2. We need to keep in mind the fact that Theorems and
Corollaries mentioned in this section afford examples of the following
Theorem, because it can be proved that S_{ji}=0 on V^{n} , that is, R_{ji}=-n\rho G_{ji}
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on V^{n} in all cases:

THEOREM E. (T\hat{O}tsuki, [9]) Let R^{n+1} be an orientable Riemannian
manifold which admits a conformal Killing vector fifield \xi^{i}, and V^{n} a closed
orientable hypersurface in R^{n+1} such that

(i) H_{1}=const. ,

(ii) C^{i}\xi_{i} has fifixed sign on V^{n},

(iii) R_{ji}B_{\beta}^{j}\overline{\xi}^{\beta}C^{i}=0 on V^{n} .
Then every point of V^{n} is umbilic, where \xi^{j}=B_{\beta}^{j}\overline{\xi}^{\beta}+\omega C^{j} on V^{n} .

\S 6. Some characterizations of a hypersurface in R^{n+1} to be isometric
to a sphere.

To prove that the hypersurface under consideration is isometric to a
sphere, we use the following Theorem due to M. Obata [8] :

THEOREM F. Let V^{n}(n\geqq 2) be a complete Riemannian manifold which
admits a non-null function \Psi such that \nabla_{\beta}\nabla_{a}\Psi=-C^{2}\Psi g\beta a(C=const.) .
Then V^{n} is isometric to a sphere of radius 1/C.

Making use of Theorem 5. 1, we obtain the following:

THEOREM 6. 1 Let R^{n+1} be an orientable Riemannian manifold with
\nabla_{k}R_{ji}=\nabla_{j}R_{ki} which admits a special concircular scalar fifield \Phi, and V^{n}a

closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const.\neq 0 ,
(ii) C^{i}\Phi_{i} has fifixed sign on V^{n} and is not constant along V^{n} .

Then V^{n} is isometric to a sphere.

PROOF. If we put \Phi^{i}=B_{a}^{i}\phi^{a}+\Theta C^{i} on V^{n} , then we obtain

(6. 1) \Theta=C^{i}\Phi_{i} .

By covariant differentiation of (6. 1) along V^{n} and by virtue of (3. 1) and
(2. 3), we have

(6. 2) \nabla_{\beta}\Theta=-b_{\beta}^{a}B_{a}^{i}\Phi_{i} .

Furthermore, by virtue of Theorem 5. 1, every point of V^{n} is umbilic,

that is,

(6. 3) b_{\beta\gamma}=H_{1}g_{\beta\gamma} .

So, transvecting g^{\gamma a} to this equation, we see that b_{\beta}^{a}=H_{1}\delta_{\beta}^{a} . Thus, sub-
stituting this equation into (6. 2), we have

(6.4) \nabla_{\beta}\Theta=-H_{1}B_{\beta}^{i}\Phi_{i}, that is, \nabla_{\beta}\Theta+H_{1}\nabla_{\beta}\Phi=0 .
Accordingly, under the assumption, that is, H_{1}=const. , we get



On a
certainpropertyofctosedhypersu?faceswithmeancurvatureinaRiemannianmanifotd

constant
289

(6.5) \Theta+H_{1}\Phi=c(c=const.) .

Moreover, by covariant differentiation of (6. 4) along V^{n} and by virtue
of (3. 1), (2. 1), (2. 2) and (6. 1), we obtain

\nabla_{\gamma}\nabla_{\beta}\Theta=-H_{1}(\rho\Phi g_{\gamma\beta}+\Theta b_{\gamma\beta}) .

Thus, from (6. 3) and (6. 5), it follows that

(6.6) \nabla_{\gamma}\nabla_{\beta}\Theta=-\{(H_{1}^{2}-\rho)\Theta+\rho c\}g_{\gamma\beta} .

If H_{1}^{2}-\rho=0 , then (6. 6) becomes \nabla_{\gamma}\nabla_{\beta}\Theta=-\rho cg_{\gamma\beta} , from which \triangle\Theta=-n\rho c ,

that is, \triangle\Theta=const ., where \triangle\Theta=g^{\gamma\beta}\nabla_{\gamma}\nabla_{\beta}\Theta . However this is impossible,
unless \Theta=const . on V^{n}([3], [1], [12]) . Thus, H_{1}^{2}-\rho being different from
zero, we have, from (6. 6),

(6. 7) \nabla_{\gamma}\nabla_{\beta}(\Theta+\frac{\rho c}{H_{1}^{2}-\rho})---(H_{1}^{2}-\rho)(\Theta+\frac{\rho c}{H_{1}^{2}-\rho})g_{\gamma\beta} ,

from which we get

\triangle(\Theta+\frac{\rho c}{H_{1}^{2}-\rho})=-n(H_{1}^{2}-\rho)(\Theta+\frac{\rho c}{H_{1}^{2}-\rho}) ,

and consequently, it follows that H_{1}^{2}-\rho>0[14] . Therefore, using TheO-
rem F, the equation (6. 7) shows that the hypersurface V^{n} under considera-
tion is isometric to a sphere ([5], [6]).

COROLLARY 6. 2 Let R^{n+1} be an orientable Riemannian manifold with
\nabla_{k}R_{ji}=0 which admits a special concircular scalar fifield \Phi, and V^{n}a

closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const.\neq 0 ,

(ii) C^{i}\Phi_{i} has fifixed sign on V^{n} and is not constant along V^{n} .
Then V^{n} is isometric to a sphere.

COROLLARY 6. 3 Let R^{n+1} be an orientable Riemannian manifold with
\nabla_{l}R_{kjih}=0 which admits a special concircular scalar fifield \Phi, and V^{n}a

closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const.\neq 0 ,
(ii) C^{i}\Phi_{i} has fixed sign on V^{n} and is not constant along V^{n} .

Then V^{n} is isometric to a sphere.

COROLLARY 6. 4 Let R^{n+1} be an oriqntable conformally fiat Riemannian
manifold with R=const. which admits a special concircular scalar fifield \Phi,

and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const.\neq 0 ,
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(ii) C^{i}\Phi_{i} has fifixed sign on V^{n} and is not constant along V^{n} .
Then V^{n} is isometric to a sphere.

Moreover, making use of Theorem 5. 5 and Theorem 5. 8 respectively,
we obtain the following two Theorems:

THEOREM 6. 5 Let R^{n+1} be an orientable Riemannian manifold with
\nabla_{k}R_{ji}+\nabla_{j}R_{ik}+\nabla_{i}R_{kj}=0 which admits a special concircular scalar fifield \Phi,

and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const.\neq 0 ,
(ii) C^{i}\Phi_{i} has fifixed sign on V^{n} and is not constant along V^{n} .

Then V^{n} is isometric to a sphere.

THEOREM 6. 6 Let R^{n+1} be an orientable Riemannian manifold with
R^{ji}R_{ji}=const. which admits a special concircular scalar fifield \Phi, and V^{n}

a closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const.\neq 0 ,
(ii) C^{i}\Phi_{i} has fifixed sign on V^{n} and is not constant along V^{n} .

Then V^{n} is isometric to a sphere.
Next, under the new assumption of \Phi , that is, \Phi is not constant along

V^{n} , we shall prove some Theorems in the same way. Making use of
Theorem 5. 1, we have

THEOREM 6. 7 Let R^{n+1} be an orientable Riemannian manifold with
\nabla_{k}R_{ji}=\nabla_{j}R_{ki} which admits a special concircular scalar fifield \Phi, and V^{n}a

closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const.\neq 0 ,
(ii) C^{i}\Phi_{i} has fifixed sign on V^{n},
(iii) \Phi is not constant along V^{n} .

Then V^{n} is isometric to a sphere.

PROOF. Since \nabla_{\beta}(\Phi_{i}B_{a}^{i})=\nabla_{j}\Phi_{i}B_{\beta}^{j}B_{a}^{i}+\Phi_{i}\nabla_{\beta}B_{a}^{i} , we see, from (3. 1),

(2. 2) and C^{i}\Phi_{i}=\Theta , that

(6.8) \nabla_{\beta}\nabla_{a}\Phi=\rho\Phi g_{\beta a}+\Theta b_{\beta a} .

Also, making use of Theorem 5. 1. every point of V^{n} is umbilic, that is,
b_{\beta a}=H_{1}g_{\beta a} . Thus we have, from (6. 8),

\nabla_{\beta}\nabla_{a}\Phi=(\rho\Phi+H_{1}\Theta)g_{\beta a} .

And, substituting (6. 5) into this equation, we find that

(6.9) \nabla_{\beta}\nabla_{a}\Phi=\{-(H_{1}^{2}-\rho)\Phi+cH_{1}\}g_{\beta a} .

If H_{1}^{2}-\rho=0 , then (6. 9) becomes \nabla_{\beta}\nabla_{a}\Phi--cH_{1}g_{\beta a} , from which \triangle\Phi--ncH_{1} ,
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that is, const. However this is impossible, unless \Phi=const . on V^{n} .
Thus, H_{1}^{2}-\rho being different from zero, we have, from (6. 9),

(6. 10) \nabla_{\beta}\nabla_{a}(\Phi-\frac{cH_{1}}{H_{1}^{2}-\rho})=-(H_{1}^{2}-\rho)(\Phi-\frac{cH_{1}}{H_{1}^{2}-\rho})g_{\beta a} ,

from which we get

\triangle(\Phi-\frac{cH_{1}}{H_{1}^{2}-\rho})=-n(H_{1}^{2}-\rho)(\Phi-\frac{cH_{1}}{H_{1}^{2}-\rho}) ,

and consequently, it follows that H_{1}^{2}-\rho>0 . Therefore, using Theorem F,
the equation (6. 10) shows that the hypersurface V^{n} under consideration is
isometric to a sphere ([5], [6], [15]).

COROLLARY 6. 8 Let R^{n+1} be an orientable Riemannian manifold with
\nabla_{k}R_{ji}=0 which admits a special concircular scalar fifield \Phi, and V^{n} a closed
orientable hypcrsurface in R^{n+1} such that

(i) H_{1}=const.\neq 0 ,
(ii) C^{i}\Phi_{i} has fifixed sign on V^{n},
(iii) \Phi is not constant along V^{n} .

Then V^{n} is isometric to a sphere.

COROLLARY 6. 9 Let R^{n+1} be an orientable Riemannian manifold with
\nabla_{l}R_{kjih}=0 which admits a special concircular scalar fifield \Phi, and V^{n} a closed
orientable hypersurface in R^{n+1} such that

(i) H_{1}=const.\neq 0 ,
(ii) C^{i}\Phi_{i} has fifixed sign on V^{n} .
(iii) \Phi is not constant along V^{n} .

Then V^{n} is isometric to a sphere.

COROLLARY 6. 10 Let R^{n+1} be an orientable conformally flat Riemannian
manifold with R=const. which admits a special concircular scalar fifield \Phi,
and V^{n} a closed orientable hypersurface in R^{n+1} such that

(i) H_{1}=const.\neq 0 ,
(ii) C^{i}\Phi_{i} has fifixed sign on V^{n},
(iii) \Phi is not constant along V^{n} .

Then V^{n} is isometric to a sphere.
Similarly, making use of Theorem 5. 5 and Theorem 5. 8 respectively,

we have the following two Theorems:

THEOREM 6. 11 Let R^{n+1} be an orientable Riemannian manifold with
\nabla_{k}R_{ji}+\nabla_{j}R_{ik}+\nabla_{i}R_{kj}=0 which admits a special concircular scalar fifield \Phi,
and V^{n} a closed orientable hypersurface in R^{n+1} such that
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(i) H_{1}=const.\neq 0 ,
(ii) C^{i}\Phi_{i} has fifixed sign on V^{n},

(iii) \Phi is not constant along V^{n} .
Then V^{n} is isometric to a sphere.

THEOREM 6. 12 Let R^{n+1} be an orientable Riemannian manifold
with R^{ji}R_{ji}=const. which admits a special concircular scalar fifield \Phi, and
V^{n} a closcd orientable hypcrsurface in R^{n+1} such that

(i) H_{1}=const.\neq 0 ,
(ii) C^{i}\Phi_{i} has fifixed sign on V^{n} .
(iii) \Phi is not constant along V^{n} .

Then V^{n} is isometric to a sphere.

REMARK 1. We can see easily that Theorem 6. 6 and Theorem 6. 12 is
a generalization of Corollary 6. 2 and of Corollary 6. 8 respectively.

REMARK 2. For the same reason as mentioned in Remark 2 of \S 5,

Theorems and Corollaries from 6. 7 to 6. 12 afford examples of the following
Theorem:

THEOREM G. (K. Yano, [15]) Let R^{n+1} be an orientable Riemannian
manifold which admits a non-constant scalar fifield \Phi such that

\nabla_{j}\nabla_{i}\Phi=k\Phi G_{ji} , k=const. ,

and V^{n} a closed orientable hypersurface in R^{n+1} such that
(i) H_{1}=const. ,

(ii) C^{i}\nabla_{i}\Phi has fixed sign on V^{n},

(iii) (R_{ji}+nkG_{ji})C^{j}C^{i}\geqq 0 on V^{n} .
Then every point of V^{n} is umbilic. If moreover,

(iv) \Phi is not constant on V^{n}, then V^{n} is isometric to a sphere.
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