H-separable Extensions and Torsion Theories

In memory of Professor Akira Hattori

Yoshiki Kurata and Shoji Morimoto (Received May 26, 1986)

Introduction. Let A be a ring with identity and B a subring of A with common identity. We shall say that A is *H*-separable over B if $A \otimes_B A$ is isomorphic to a direct summand of a finite direct sum of copies of A as (A, A)-bimodules. Let C be the center of A and $V_A(B)$ the commutator of B in A. Then it is well-known that A is *H*-separable over B iff the maping η : $A \otimes_B A \rightarrow \text{Hom}_C(V_A(B), A)$ given by $\eta(a \otimes a')(v) = ava'$ for a, a' in A and v in $V_A(B)$ is an isomorphism and $V_A(B)$ is a finitely generated projective C-module [7, Theorem 1.1].

Recently K. Sugano [8] has pointed out that *H*-separable extensions of *B* have close connections with Gabriel topologies on *B*. He showed, among other things, that if *A* is left flat and *H*-separable over *B* then $V_A(V_A(B))$ is isomorphic to the localization of *B* with respect to the right Gabriel topology consisting of all right ideals b of *B* such that bA = A, where $V_A(V_A(B))$ denotes the double commutator of *B* in *A*. Using this he then showed that if *A* is *H*-separable over *B* and *B* is regular then $B = V_A(V_A(B))$.

Motivated by his results we shall study in this paper H-separable extensions of B from the point of view of torsion theories. We shall begin with the study of the torsion class

$$T = \{ M_B \mid M \otimes_B A = 0 \}$$

of mod-*B*. If ${}_{B}A$ is flat, then *T* is hereditary. This assumption, however, is not necessary for *T* to be hereditary. We shall introduce the notion of weakly flat *B*-modules and show that the weakly flatness of *A* ensures *T* to be hereditary. We shall provide an example to show that not all weakly flat modules are flat. It is shown in case *A* is *H*-separable over *B* a necessary and sufficient condition for $B \rightarrow V_{A}(V_{A}(B))$ to be a right flat epimorphism (Theorem 3.9) and also one for $B = V_{A}(V_{A}(B))$ to hold (Theorem 3.12).

We shall use M_B to denote a right *B*-module *M* and $M' \leq M$ a submodule M' of *M*. Consequently $a \leq B_B$ means that a is a right ideal of *B*. For undefined notions about torsion theory we shall refer to [6]. For a right

B-module *M* and a left *B*-module *N* we denote its tensor product by $M \otimes N$ instead of $M \otimes_B N$.

1. Preliminaries. Let A be a ring, B a subring of A with common identity and $\nu: B \rightarrow A$ the inclusion map. Let

$$T = \{ M_B \mid M \otimes A = 0 \}.$$

Then T is a torsion class of mod-B. We shall denote by t the associated idempotent radical. It is easy to see that if ${}_{B}A$ is flat, then T is hereditary. The following proposition, however, shows that it is not necessary to assume ${}_{B}A$ being flat for T to be hereditary.

A *B*-module $_{B}N$ is said to be *t*-weakly flat if the functor $-\otimes_{B}N$ is exact on all the exact sequence of right *B*-modules

$$0 \rightarrow L' \rightarrow L \rightarrow L'' \rightarrow 0$$

with $L \in T$. Obviously flat modules are *t*-weakly flat. The converse, however, is not the case in general. In the next section we shall characterize *t*-weakly flat modules using the notion of weakly divisible modules. By this characterization we shall provide an example of modules which are *t*-weakly flat but not flat.

PROPOSITION 1.1. If ${}_{B}A$ is t-weakly flat, then T is hereditary.

PROOF. Let us put

$$L = \{ \mathfrak{b} \leq B_B \mid \mathfrak{b} A = A \}$$

and show that if $b \in L$ and $b \in B$, then $(b:b) \in L$. In fact, the canonical map $B/(b:b) \rightarrow B/b$ induces the exact sequence $0 \rightarrow B/(b:b) \otimes A \rightarrow B/b \otimes A$ by assumption. Hence $B/b \otimes A = 0$ implies (b:b)A = A.

To apply [2, Theorem 3.5], we have to prove that for each $M(\pm 0) \in T$, there exists $x(\pm 0)$ in M such that $xB \in T$. Suppose that $0 \pm M \in T$. Then there exists $x(\pm 0)$ in M, and the sequence $0 \rightarrow xB \rightarrow M$ is exact. By assumption $0 \rightarrow xB \otimes A \rightarrow M \otimes A$ is also exact. Hence $M \otimes A = 0$ implies $xB \otimes A = 0$. Thus $xB \in T$.

Now throughout this section assume

$$T = \{ M_B \mid M \otimes A = 0 \}$$

is hereditary. Then t is left exact and we have

LEMMA 1.2. (1) The corresponding right Gabriel topology is given by

$$L = \{ \mathfrak{b} \leq B_B \mid \mathfrak{b} A = A \}.$$

(2) L has a basis consisting of finitely generated right ideals of B.

PROOF. (1) This is clear.

(2) Let $b \in L$. Then bA = A and hence

 $1 = \sum b_i a_i$

for some $b_i \in \mathfrak{b}$ and $a_i \in A$. The right ideal $\sum b_i B$ is contained in \mathfrak{b} and belongs to L.

LEMMA 1.3. (1) For each A-module N_A ,

$$t(N) = 0$$

regarding as a B-module via v.

(2) For each B-module M_B ,

$$t(M) = \operatorname{Ker}(f_M)$$

where $f_M: M \to M \otimes A$ is given by $x \to x \otimes 1$.

PROOF. (1) Let $x \in t(N)$. Then $r_B(x)A = A$ and hence $xA = x \cdot r_B(x)$ A = 0. Thus we have x = 0.

(2) First by (1) $t(M \otimes A) = 0$. Hence $t(M) \leq \operatorname{Ker}(f_M)$. On the other hand, for each $x \in \operatorname{Ker}(f_M)$ and $a \in A$, we have $x \otimes a = (x \otimes 1)a = 0$. Thus $\operatorname{Ker}(f_M)$ is torsion and $\operatorname{Ker}(f_M) \leq t(M)$.

It follows from this lemma that A_B is torsionfree. Furthermore, for each *B*-module $M_{B'}$ the diagrm

is commutative. It follows that if M_B is flat, then f_M must be a monomorphism. Hence M_B is torsionfree. In particular, if B is a regular ring, t must be zero.

Since

is a commutative diagram with exact row, where σ is given by $a \otimes a' \rightarrow aa'$, it follows that σ is an isomorphism iff $A/B \otimes A = 0$, i. e., $(A/B)_B$ is torsion. This also means, as is well-known, ν is an epimorphism in the category of rings [6, Proposition XI.12].

Note that σ is an isomorphism iff

 $a \otimes 1 = 1 \otimes a$ in $A \otimes A$

holds for all $a \in A$. More generally we have

LEMMA 1. 4. Let B' be a submodule of A_B such that $B \leq B' \leq A$. Then the following conditions are equivalent:

(1) B'/B is torsion.

(2) The canonical mapping $B' \otimes A \rightarrow A$ given by $b' \otimes a \rightarrow b'a$ is an isomorphism.

(3) For each $b' \in B'$,

$$b' \otimes 1 = 1 \otimes b'$$
 in $B' \otimes A$

holds.

In case $_{B}A$ is flat, the above conditions are also equivalent to:

(4) For each $b' \in B'$,

$$b' \otimes 1 = 1 \otimes b'$$
 in $A \otimes A$

holds.

PROOF. Straightforward.

Let \overline{B} be the closure of B_B in A_B , *i. e.*

$$\overline{B} = \{a \in A \mid a + B \in t(A/B)\}$$
$$= \{a \in A \mid (B:a) \in L\}.$$

Then $B \leq \overline{B} \leq A$ and \overline{B} is a subring of A.

A *B*-module M_B is called *t*-injective if, given $\mathfrak{b} \in L$ and $f \in \operatorname{Hom}_B(\mathfrak{b}, M)$, there exists $\overline{f} \in \operatorname{Hom}_B(B, M)$ such that $\overline{f}|_{\mathfrak{b}} = f$.

LEMMA 1.5. (1) \overline{B}/B is torsion and A/\overline{B} is torsionfree.

(2) A_B is t-injective in case ${}_{B}A$ is flat.

(3) \bar{B}_B is also t-injective in case ${}_BA$ is flat.

PROOF. (1) follows from definition. Indeed these conditions characterize the closure \overline{B} .

(2) Given $b \in L$ and $f \in Hom_B(b, A)$. Since B/b is torsion and $_BA$ is flat,

$$\mu \otimes 1 : \mathfrak{b} \otimes A \to B \otimes A$$

is an isomorphism where $\mu : b \to B$ is the inclusion map. Hence, for each $b \in B$, there exist $b_i \in b$ and $a_i \in A$ such that

$$b \otimes 1 = (\mu \otimes 1) (\sum b_i \otimes a_i).$$

Define $\overline{f}: B \to A$ to be $b \to \sum f(b_i)a_i$. It is easy to see that \overline{f} is well-defined and is a *B*-homomorphism. Particularly for $b \in \mathfrak{b}$, $(\mu \otimes 1)(b \otimes 1) = b \otimes 1$. Thus we have $\overline{f}(b) = f(b)$.

(3) [4, Proposition 0.6].

By this lemma and [3, Proposition 3] we have

PROPOSITION 1.6. If _BA is flat, then there is a unique ring isomorphism $h: \overline{B} \rightarrow B_t$ such that the diagram

is commutative, where ϕ_B denotes the canonical homomorphism with respect to the localization.

2. Weakly flat modules. Let *R* be a ring with identity. Apart from the torsion class *T* in Section 1, let *t* be an arbitrary preradical of mod-*R* and $T(t) = \{M_R | t(M) = M\}$.

Recall that $_{R}M$ is t-weakly flat if $-\otimes_{R}M$ is exact on all the exact sequences

$$0 \rightarrow L' \rightarrow L \rightarrow L'' \rightarrow 0$$

of right *R*-modules with $L \in T(t)$. On the other hand, following Sato [5], we call N_R *t-weakly divisible* if $\operatorname{Hom}_R(-, N)$ is exact on all the exact sequences

$$0 \rightarrow L' \rightarrow L \rightarrow L'' \rightarrow 0$$

of right *R*-modules with $L \in T(t)$.

First we shall characterize t-weakly flat R-modules by using the notion of weakly divisibility.

THEOREM 2.1. Let $_{R}M$ be an R-module. Then M is t-weakly flat iff M^{*} is t-weakly divisible, where $M^{*} = \operatorname{Hom}_{Z}(M, Q/Z)$ denotes the character module of M.

PROOF. Let

 $0 \rightarrow L' \rightarrow L \rightarrow L'' \rightarrow 0$

be an exact sequence of right *R*-modules wih $L \in T(t)$. Suppose that *M* is *t*-weakly flat. Then by definition

$$0 \rightarrow L' \otimes_R M \rightarrow L \otimes_R M \rightarrow L'' \otimes_R M \rightarrow 0$$

is exact. Since Q/Z is injective over Z, it follows that

$$0 \rightarrow (L'' \otimes_R M)^* \rightarrow (L \otimes_R M)^* \rightarrow (L' \otimes_R M)^* \rightarrow 0$$

is exact and hence so is

$$0 \rightarrow \operatorname{Hom}_{R}(L'', M^{*}) \rightarrow \operatorname{Hom}_{R}(L, M^{*}) \rightarrow \operatorname{Hom}_{R}(L', M^{*}) \rightarrow 0.$$

Thus M^* is *t*-weakly divisible. This argument may be reversed using the fact that Q/Z is a cogenerator over Z.

Using this theorem we now show that not all *t*-weakly flat modules are flat.

EXAMPLE. Let S be a left Artinian ring and I an ideal of S which is not a direct summand of _SS. Let $\overline{S}=S/I$ and put

$$R = \begin{pmatrix} S & \bar{S} \\ 0 & \bar{S} \end{pmatrix}$$

Then this is a left Artinian ring and the mapping $f: R \to S$ given by $\begin{pmatrix} c & \bar{a} \\ 0 & \bar{b} \end{pmatrix} \to c$ is a ring homomorphism with $\operatorname{Ker}(f) = \begin{pmatrix} 0 & \bar{S} \\ 0 & \bar{S} \end{pmatrix}$, where \bar{a} and \bar{b} denote cosets containing a and b respectively. The left S-module \bar{S} can be regarded as a left R-module via f and is not projective. Since \bar{S} is R-isomorphic to $\begin{pmatrix} 0 & \bar{S} \\ 0 & 0 \end{pmatrix}$, it follows that $_{R}\begin{pmatrix} 0 & \bar{S} \\ 0 & 0 \end{pmatrix}$ is not projective and hence is not flat. On the other hand, $\operatorname{Ker}(f)$ is an idempotent ideal of R and is projective as a left R-module. Hence we can define a hereditary 3-fold torsion theory

$$(C_{\text{Ker}(f)}, T_{\text{Ker}(f)}, F_{\text{Ker}(f)})$$

for mod-*R* [1, Theorem 6]. It is easy to see that the character module of $\begin{pmatrix} 0 & \bar{S} \\ 0 & 0 \end{pmatrix}$ is torsionfree with respect to $(C_{\text{Ker}(f)}, T_{\text{Ker}(f)})$. Thus $_{R}\begin{pmatrix} 0 & \bar{S} \\ 0 & 0 \end{pmatrix}$ is weakly flat with respect to this torsion theory by Theorem 2.1.

3. H-separable extensions. Let A be a ring, B a subring of A with common identity and $\nu: B \rightarrow A$ the inclusion map as before. We will

use the same notations as in Section 1.

We say $a \in A$ is *dominated* by ν [6, p. 225] if, for any ring S and ring homomorphisms α , $\beta : A \rightarrow S$, $\alpha \nu = \beta \nu$ always implies $\alpha(a) = \beta(a)$. The set of elements of A dominated by ν is called the *dominion* of ν and is denoted by Dom(ν). This is a subring of A containing B.

Applying [6, Proposition XI. 1. 1] we have

PROPOSITION 3.1. The following conditions on $a \in A$ are equivalent:

(1) $a \in \text{Dom}(v)$.

(2) If N is an (A, A)-bimodule and $x \in N$ has the property that bx = xb for all $b \in B$, then ax = xa.

(3) $a \otimes 1 = 1 \otimes a \text{ in } A \otimes A$.

(4) If N and N' are right A-modules and $f: N \rightarrow N'$ is a B-homomorphism, then $f(xa) = f(x) \cdot a$ for all $x \in N$.

We see in particular from this proposition that if we take N=A, then (2) means that

$$\operatorname{Dom}(\boldsymbol{\nu}) \leq V_{\mathcal{A}}(V_{\mathcal{A}}(B)).$$

Also by (3) we have

$$Dom(\mathbf{v}) = \{ a \in A \mid a \otimes 1 = 1 \otimes a \text{ in } A \otimes A \}.$$

Consider the torsion class

 $T = \{ M_B \mid M \otimes A = 0 \}$

again and throughout this section assume T is hereditary. Then, as a consequence of Lemma 1.4 we have $\bar{B} \leq \text{Dom}(\nu)$, since \bar{B}/B is torsion and $(1) \Rightarrow (4)$ in Lemma 1.4 can be shown without the assumption that ${}_{B}A$ is flat. However, we shall prove this fact by using the following two lemmas, because it seems that Lemma 3.2 may be of interest by itself.

LEMMA 3.2. $A/\text{Dom}(\nu)$ is torsionfree.

PROOF. Let $a + \text{Dom}(v) \in t(A/\text{Dom}(v))$. Then (Dom(v): a)A = Aand there exist some $b_i \in (\text{Dom}(v): a)$ and $a_i \in A$ such that $\sum b_i a_i = 1$. Since $ab_i \otimes 1 = 1 \otimes ab_i$ for each i, $a \otimes b_i a_i = ab_i \otimes a_i = (ab_i \otimes 1)a_i = (1 \otimes ab_i)a_i = 1 \otimes ab_i a_i$ for each i. Hence we have $a \otimes 1 = \sum a \otimes b_i a_i = \sum 1 \otimes ab_i a_i = 1 \otimes a$. Thus we see that $a \in \text{Dom}(v)$.

LEMMA 3.3. Let B' be a submodule of A_B such that $B \leq B' \leq A$. If A/B' is torsionfree, then we have $\overline{B} \leq B'$.

PROOF. Obvious.

Summarizing the discussion above we obtain

PROPOSITION 3.4. $B \leq \bar{B} \leq \text{Dom}(\nu) \leq V_A(V_A(B)) \leq A$. However, we have

LEMMA 3.5. If A is H-separable over B, then $Dom(\nu) = V_A(V_A(B)).$

PROOF. Let $a \in V_A(V_A(B))$ and consider the isomorphism $\eta : A \otimes A \rightarrow Hom_C(V_A(B), A)$ mentioned in Introduction. Then $\eta(a \otimes 1) = \eta(1 \otimes a)$ and hence $a \otimes 1 = 1 \otimes a$. Thus we have $a \in Dom(\nu)$.

LEMMA 3.6. If ${}_{B}A$ is flat, then $\bar{B}=\text{Dom}(\nu)$.

PROOF. By Lemma 1.4, $Dom(\nu)/B$ is torsion. On the other hand, $A/Dom(\nu)$ is torsionfree by Lemma 3.2. Thus $Dom(\nu)$ has to coincide with \overline{B} .

THEOREM 3.7. If A is H-separable over B and $_{B}A$ is flat, then we have

$$B \leq B = \operatorname{Dom}(\nu) = V_A(V_A(B)) \leq A.$$

Combining this theorem with Proposition 1.6, we have

COROLLARY 3.8 ([8, Theorem 2]). If A is H-separable over B and $_{B}A$ is flat, then we have

$$B_t \cong V_A(V_A(B)).$$

Sugano [8, Proposition 2] has shown that if A is H-separable over B, ${}_{B}A$ is flat and $V_{A}(V_{A}(B))$ is a direct summand of ${}_{B}A$, then the inclusion map $B \rightarrow V_{A}(V_{A}(B))$ is a right flat epimorphism. Concerning this, we shall give the following theorem which follows from [6, Theorem XI. 2. 1].

THEOREM 3.9. Let A be H-separable over B and _BA flat. Then the inclusion map $B \rightarrow V_A(V_A(B))$ is a right flat epimorphism iff $(B:x)\bar{B}=\bar{B}$ for all $x \in \bar{B}$.

Now consider

$$L' = \{ \mathfrak{b} \leq B_B \mid \mathfrak{b} \overline{B} = \overline{B} \}.$$

Then we have

Lemma 3.10. $L' \subseteq L$.

PROOF. Let $b \in L'$. Then $b\bar{B}=\bar{B}$. For each $b \in B$, there exist some $b_i \in b$ and $x_i \in \bar{B}$ such that $b = \sum b_i x_i$. Since \bar{B}/B is torsion, it follows that $\cap (B:x_i) \in L$. If $b' \in \cap (B:x_i)$, then $bb' = \sum b_i (x_ib') \in b$. This means that $\cap (B:x_i) \leq (b:b)$. Thus $(b:b) \in L$ and B/b is torsion.

Let A be H-separable over B and ${}_{B}A$ flat. Assume that \overline{B} is a direct summand of ${}_{B}A$. Then there exists some $C' \leq_{B}A$ such that $A = \overline{B} \oplus C'$. For each $b \in L$, $A = bA = b\overline{B} \oplus bC'$ and hence $\overline{B} = b\overline{B} \oplus (\overline{B} \cap bC') = b\overline{B}$. Thus we have $L \subseteq L'$ and by Lemma 3.10 L = L'. Since \overline{B}/B is torsion, for each $x \in \overline{B}$, $(B:x) \in L = L'$. Therefore, by Theorem 3.9, the inclusion map $B \rightarrow V_{A}(V_{A}(B))$ is a right flat epimorphism.

Sugano [8, Theorem 3] has shown that if *B* is regular and *A* is *H*-separable over *B*, then $V_A(V_A(B)) = B$, i. e. *B* has the double commutator property. Also he has shown in [7, Proposition 1.2] that if *A* is *H*-separable over *B* such that *B* is a left (or right) direct summand of *A*, then $V_A(V_A(B)) = B$.

By Lemma 1.4, A/B is torsion iff $A = Dom(\nu)$. On the contrary, we have

LEMMA 3.11. A/B is torsionfree iff B = Dom(v).

PROOF. The "if" part is trivial by Lemma 3.2. Now suppose that A/B is torsionfree. Then, by Lemma 1.3, the mapping $f_{A/B}: A/B \rightarrow A/B \otimes A$ given by $\bar{a} \rightarrow \bar{a} \otimes 1$ is a monomorphism, where \bar{a} denotes the coset containing a. Let $\pi: A \rightarrow A/B$ be the canonical homomorphism and consider the mapping $\pi \otimes 1: A \otimes A \rightarrow A/B \otimes A$. For $a \in \text{Dom}(\nu)$, $\bar{a} \otimes 1 = (\pi \otimes 1)$ $(a \otimes 1) = (\pi \otimes 1)(1 \otimes a) = \bar{1} \otimes a = 0$. Hence $\bar{a} = 0$ and we have $a \in B$.

In particular, we obtain

THEOREM 3.12. Let A be H-separable over B. Then $B = V_A(V_A(B))$ iff A/B is torsionfree.

If *B* is regular, as we have shown in Section 1, t=0 and hence A/B is torsionfree. Thus [8, Theorem 3] is a direct consequence of Theorem 3.12. Furthermore, if *B* is a direct summand of A_B , then A/B is torsionfree. Hence if, in addition, we assume that *A* is *H*-separable over *B*, Theorem 3.12 implies that $B = V_A(V_A(B))$. Likewise if we assume that *A* is *H*-separable over *B* and *B* is a direct summand of $_BA$, then we have $B = V_A(V_A(B))$.

References

[1] G. AZUMAYA: Some properties of TTF-classes, Lecture Notes in Math. 353, Berlin-Hei-

delberg-New York: Springer 1973, 72-83.

- [2] Y. KURATA, K. SHIGENAGA and M. T. CHEN: On the hereditarity of torsion classes, Proc. 16th Symposium on Ring Theory, Okayama 1983, 57-70.
- [3] Y. KURATA and M. T. CHEN: On the double centralizer of the injective hull relative to a torsion theory, to appear in Math. J. Okayama Univ.
- [4] J. LAMBEK: Torsion Theories, Additive Semantics, and Rings of Quotients, Lecture Notes in Math. 177, Berlin-Heidelberg-New York: Springer 1971.
- [5] M. SATO: On pseudo-cohereditary subtorsion theory and weakly divisible modules I, Memo. of Fac. Lib. Arts and Edu. Yamanashi Univ. 32(1983), 20-24.
- [6] B. STENSTRÖM: Rings of Quotients, Berlin-Heidelberg-New York: Springer 1975.
- [7] K. SUGANO: Note on semisimple extensions and separable extensions, Osaka J. Math. 4 (1967), 265–270.
- [8] K. SUGANO: On flat H-separable extensions and Gabriel topology, Hokkaido Math. J. 15 (1986), 149-155.

Yamaguchi University Hagi Koen Gakuin