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Introduction. Let $A$ be a ring with identity and $B$ a subring of $A$ with
common identity. We shall say that $A$ is $H$-separable over $B$ if $A\otimes_{B}A$ is
isomorphic to a direct summand of a finite direct sum of copies of $A$ as $(A$ ,
$A)$ -bimodules. Let $C$ be the center of $A$ and $V_{A}(B)$ the commutator of $B$

in $A$ . Then it is well-known that $A$ is $H$-separable over $B$ iff the maping $\eta$ :
$A\otimes_{B}Aarrow Hom_{C}$ (VA(B) $A$) given by $\eta(a\otimes a’)(v)=ava’$ for $a$, $a’$ in $A$ and $v$

in $V_{A}(B)$ is an isomorphism and $V_{A}(B)$ is a finitely generated projective
$C$-module [7, Theorem 1. 1].

Recently K. Sugano [8] has pointed out that $H$-separable extensions of
$B$ have close connections with Gabriel topologies on $B$. He showed, among
other things, that if $A$ is left flat and $H$-separable over $B$ then $V_{A}(V_{A}(B))$ is
isomorphic to the localization of $B$ with respect to the right Gabriel topology
consisting of all right ideals $b$ of $B$ such that $bA=A$ , where $V_{A}(V_{A}(B))$

denotes the double commutator of $B$ in $A$ . Using this he then showed that
if $A$ is $H$-separable over $B$ and $B$ is regular then $B=V_{A}(V_{A}(B))$ .

Motivated by his results we shall study in this paper H-separable
extensions of $B$ from the point of view of torsion theories. We shall begin
with the study of the torsion class

$T=\{M_{B}|M\otimes_{B}A=0\}$

of $mod$-B. If $A$ is flat, then $T$ is hereditary. This assumption, however,
is not necessary for $T$ to be hereditary. We shall introduce the notion of
weakly flat $B$ -modules and show that the weakly flatness of $A$ ensures $T$ to
be hereditary. We shall provide an example to show that not all weakly flat
modules are flat. It is shown in case $A$ is $H$-separable over $B$ a necessary
and sufficient condition for $Barrow V_{A}(V_{A}(B))$ to be a right flat epimorphism
(Theorem 3. 9) and also one for $B=V_{A}(V_{A}(B))$ to hold (Theorem 3. 12).

We shall use $M_{B}$ to denote a right $B$ -module $M$ and $M’\leqq M$ a submodule
$M’$ of $M$. Consequently $0\leqq B_{B}$ means that 0 is a right ideal of $B$. For
undefined notions about torsion theory we shall refer to [6]. For a right
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$B$ -module $M$ and a left $B$ -module $N$ we denote its tensor product by $M\otimes N$

instead of $M\otimes_{B}N$.

1. Preliminaries. Let A be a ring, B a subring of A with common
identity and $\nu$ : $Barrow A$ the inclusion map. Let

T $=\{M_{B}|M\otimes A=0\}$ .

Then T is a torsion class of mod-B. We shall denote by t the associated
idempotent radical. It is easy to see that if BA is flat, then T is hereditary.

The following proposition, however, shows that it is not necessary to
assume B A being flat for T to be hereditary.

A $B$ -module BN is said to be $t$-weakly flat if the functor $-\otimes_{B}N$ is exact
on all the exact sequence of right B-modules

0- $L’-$ L- $L’-0$

with $L\in T$. Obviously flat modules are $t$ -weakly flat. The converse,
however, is not the case in general. In the next section we shall characterize
$t$-weakly flat modules using the notion of weakly divisible modules. By this
characterization we shall provide an example of modules which are t-weakly
flat but not flat.

PROPOSITION 1. 1. If $BA$ is $t$-weakly flat, then $T$ is hereditary.

PROOF. Let us put

$L=\{b\leqq B_{B}|bA=A\}$

and show that if $b\in L$ and $b\in B$, then $(b:b)\in L$ . In fact, the canonical
map $B/(b:b)arrow B/b$ induces the exact sequence $0arrow B/(b:b)\otimes A$-$arrow B/b\otimes A$

by assumption. Hence $B/b\otimes A=0$ implies $(b:b)A=A$ .
To apply [2, Theorem 3. 5], we have to prove that for each $M(\neq 0)\in$

$T$, there exists $x(\neq 0)$ in $M$ such that $xB\in T$. Suppose that $0\neq M\in T$.
Then there exists $x(\neq 0)$ in $M$, and the sequence $Oarrow xB$- $M$ is exact. By
assumption 0-$arrow xB\otimes A$-$arrow M\otimes A$ is also exact. Hence $M\otimes A=0$ implies $xB\otimes$

$A=0$ . Thus $xB\in T$.
Now throughout this section assume

$T=\{M_{B}|M\otimes A=0\}$

is hereditary. Then $t$ is left exact and we have

LEMMA 1. 2. (1) The corresponding right Gabriel topology is given by

$L=\{b\leqq B_{B}|bA=A\}$ .
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(2) $L$ has a basis consisting of finitely generated $n\dot{g}ht$ ideals of $B$.

PROOF. (1) This is clear.
(2) Let $b\in L$ . Then $bA=A$ and hence

$1=\Sigma b_{i}a_{i}$

for some $b_{i}\in b$ and $a_{i}\in A$ . The right ideal $\sum b_{i}B$ is contained in $b$ and
belongs to $L$ .

LEMMA 1. 3. (1) For each $A$ -module $N_{A}$ ,

$t(N)=0$

regarding as a $B$-module via $\nu$ .
(2) For each $B$-module $M_{B}$ ,

$t(M)=Ker(f_{M})$

where $f_{M}:Marrow M\otimes A$ is given by $xarrow x\otimes 1$ .

PROOF. (1) Let $x\in t(N)$ . Then $r_{B}(x)A=A$ and hence $xA=x\cdot r_{B}(x)$

$A=0$ . Thus we have $x=0$ .
(2) First by (1) $t(M\otimes A)=0$ . Hence $t(M)\leqq Ker(f_{M})$ . On the other

hand, for each $x\in Ker(f_{M})$ and $a\in A$ , we have $x\otimes a=(x\otimes 1)a=0$ . Thus
$Ker(f_{M})$ is torsion and Ker $U_{M}$ ) $\leqq t(M)$ .

It follows from this lemma that $A_{B}$ is torsionfree. Furthermore, for
each $B$-module $M_{B}$, the diagrm

is commutative. It follows that if $M_{B}$ is flat, then $f_{M}$ must be a monomor-
phism. Hence $M_{B}$ is torsionfree. In particular, if $B$ is a regular ring, $t$

must be zero.
Since
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is a commutative diagram with exact row, where $\sigma$ is given by $a\otimes a’-aa_{J}’$ it
follows that $\sigma$ is an isomorphism iff $A/B\otimes A=0$ , $i$ . $e.$ , $(A/B)_{B}$ is torsion.
This also means, as is well-known, $\nu$ is an epimorphism in the category of
rings [6, Proposition $XI$ . 12].

Note that $\sigma$ is an isomorphism iff

$a\otimes 1=1\otimes a$ in $A\otimes A$

holds for all $a\in A$ . More generally we have

LEMMA 1. 4. Let $B’$ be a submodule of $A_{B}$ such that $B\leqq B’\leqq A$ . Then
the following conditions are equivalent:

(1) $B’/B$ is torsion.
(2) The canonical mapping $B’\otimes A$-$arrow A$ given by $b’\otimes a-b’a$ is an

isomorphism.
(3) For each $b’\in B’$ .

$b’\otimes 1=1\otimes b’$ in $B’\otimes A$

holds.
In case $BA$ is flat, the above conditions are also equivalent to:
(4) For each $b’\in B’$ .

$b’\otimes 1=1\otimes b’$ in $A\otimes A$

holds.

PROOF. Straightforward.

Let $\overline{B}$ be the closure of $B_{B}$ in $A_{B}$, $i$. $e$ .

$\overline{B}=\{a\in A|a+B\in t(A/B)\}$

$=\{a\in A|(B : a)\in L\}$ .

Then $B\leqq\overline{B}\leqq A$ and $\overline{B}$ is a subring of $A$ .
A $B$-module $M_{B}$ is called $t$-injective if, given $b\in L$ and $f\in Hom_{B}(b, M)$ ,

there exists $\overline{f}\in Hom_{B}(B, M)$ such that $\overline{f}|_{b}=f$.

LEMMA 1. 5. (1) $\overline{B}/B$ is torsion and $A/\overline{B}$ is torsionfree.
(2) $A_{B}$ is $t$-injective in case $BA$ is flat.
(3) $\overline{B}_{B}$ is also $t$-injective in case $BA$ is flat.
PROOF. (1) follows from definition. Indeed these conditions charac-

terize the closure $\overline{B}$.
(2) Given $b\in L$ and $f\in Hom_{B}(b, A)$ . Since $B/b$ is torsion and $BA$ is

flat,

$\mu\otimes 1$ : $b\otimes Aarrow B\otimes A$
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is an isomorphism where $\mu$ : $barrow B$ is the inclusion map. Hence, for each $b\in$

$B$, there exist $b_{i}\in b$ and $a_{i}\in A$ such that

$b \otimes 1=(\mu\otimes 1)(\sum b_{i}\otimes a_{i})$ .

Define $\overline{f}:Barrow A$ to be $barrow\Sigma f(b_{i})a_{i}$ . It is easy to see that $\overline{f}$ is well-defined
and is a $B$-homomorphism. Particularly for $b\in b$ , $(\mu\otimes 1)$ $(b\otimes 1)=b\otimes 1$ .
Thus we have $\overline{f}( b)=f( b)$ .

(3) [4, Proposition 0. 6].
By this lemma and [3, Proposition 3] we have

PROPOSITION 1. 6. If $BA$ is flat, then there is a unique ring isomorphism
$h:\overline{H}arrow B_{t}$ such that the diagram

is commutative, where $\phi_{B}$ denotes the canonical homomorphism with respect
to the localization.

2. Weakly flat modules. Let R be a ring with identity. Apart from
the torsion class T in Section 1, let t be an arbitrary preradical of mod-R
and $T(t)=\{M_{R}|t(M)=M\}$ .

Recall that RM is $t$-weakly flat if $-\otimes_{R}M$ is exact on all the exact
sequences

0- $L’arrow Larrow L’-arrow 0$

of right $R$-modules with $L\in T(t)$ . On the other hand, following Sato [5],
we call $N_{R}t$-weakly divisible if $Hom_{R}$ $($ -, $N)$ is exact on all the exact
sequences

$0-arrow L’arrow Larrow L’arrow 0$

of right $R$-modules with $L\in T(t)$ .
First we shall characterize $t$-weakly flat $R$-modules by using the notion

of weakly divisibility.

THEOREM 2. 1. Let $RM$ be an $R$-module. Then $M$ is $t$-weakly flat iff
$M^{*}$ is $t$-weakly divisible, where $M^{*}=Hom_{Z}(M, Q/Z)$ denotes the character
module of $M$.

PROOF. Let
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0- $L’arrow L-arrow L’-0$

be an exact sequence of right $R$-modules wih $L\in T(t)$ . Suppose that $M$ is
$t$-weakly flat. Then by definition

$0-arrow L’\otimes_{R}Marrow L\otimes_{R}Marrow L’\otimes_{R}Marrow 0$

is exact. Since $Q/Z$ is injective over $Z$, it follows that

$0arrow(L’\otimes_{R}M)^{*}arrow(L\otimes_{R}M)^{*}arrow(L’\otimes_{R}M)^{*}arrow 0$

is exact and hence so is

$0arrow Hom_{R}(L’-M^{*})arrow Hom_{R}(L, M^{*})arrow Hom_{R}(L_{5}’M^{*})arrow 0$ .

Thus $M^{*}$ is $t$-weakly divisible. This argument may be reversed using the
fact that $Q/Z$ is a cogenerator over $Z$.

Using this theorem we now show that not all $t$-weakly flat modules are
flat.

EXAMPLE. Let $S$ be a left Artinian ring and I an ideal of $S$ which is not
a direct summand of $SS$. Let $\overline{S}=S/I$ and put

$R=$ ( $\frac{\overline{S}}{S}$).

Then this is a left Artinian ring and the mapping $f$ : $Rarrow S$ given by ( $\overline{\frac{a}{b}}$) -

$c$ is a ring homomorphism with $Ker(f)=(\begin{array}{ll}0 \overline{S}0 \overline{S}\end{array})$ , where $\overline{a}$ and $\overline{b}$ denote

cosets containing $a$ and $b$ respectively. The left $S$-module $\overline{S}$ can be regarded
as a left $R$-module via $f$ and is not projective. Since $\overline{S}$ is $R$TvMsomorphic to
$(\begin{array}{ll}0 S0 0\end{array})$ , it follows that

$R$

$(\begin{array}{ll}0 S0 0\end{array})$ is not projective and hence is not flat. On

the other hand, $Ker(/)$ is an idempotent ideal of $R$ and is projective as a left
$R$-module. Hence we can define a hereditary 3-fold torsion theory

$(C_{Ker(f)}, T_{Ker(f)}, F_{Ker(J)})$

for mod-R [1, Theorem 6]. It is easy to see that the character module of

$R$

$(\begin{array}{ll}0 S0 0\end{array})$ $.is$ torsionfree with respect to $(G_{ter(J)}, T_{Ker(J)})$ . Thus
$R$

$(\begin{array}{ll}0 S0 0\end{array})$ is

weakly flat with respect to this torsion theory by Theorem 2. 1.

3. $H$ -separable extensions. Let A be a ring, B a subring of $A$

with common identity and $\nu$ : $Barrow A$ the inclusion map as before. We will
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use the same notations as in Section 1.
We say $a\in A$ is dominated by $\nu$ [ $6$ , p. 225] if, for any ring $S$ and ring

homomorphisms $\alpha$ , $\beta$ : $Aarrow S$, $\alpha\nu=\beta\nu$ always implies $\alpha(a)=\beta(a)$ . The set
of elements of $A$ dominated by $\nu$ is called the dominion of $\nu$ and is denoted
by Dom(i/). This is a subring of $A$ containing $B$.

Applying [6, Proposition $XI$ . 1. 1] we have

PROPOSITION 3. 1. The following conditions on $a\in A$ are equivalcnl:
(1) $a\in Dom(\nu)$ .
(2) If $N$ is an { $A$ ,$A)$ -bimodulc and $x\in N$ has the property that $bx=xb$

for all $b\in B$, then $ax=m$ .
(3) $a\otimes 1=1\otimes a$ in $A\otimes A$ .
(4) If $N$ and $N’$ arc right $A$ -modules and $f$ : $Narrow N’$ is a B-homomor-

phism, then $f(xa)=f(x)$ . $a$ for all $x\in N$.

We see in particular from this proposition that if we take $N=A$ , then
(2) means that

Dom $(\nu)\leqq V_{A}(V_{A}(B))$ .

Also by (3) we have

Dom $(v)=$ { $a\in A|a\otimes 1=1\otimes a$ in $A\otimes A$ }.

Consider the torsion class

$T=\{M_{B}|M\otimes A=0\}$

again and throughout this section assume $T$ is hereditary. Then, as a
consequence of Lemma 1. 4 we have $\overline{B}\leqq Dom(\nu)$ , since $\overline{B}/B$ is torsion and
$(1)\Rightarrow(4)$ in Lemma 1. 4 can be shown without the assumption that $BA$ is flat.
However, we shall prove this fact by using the following two lemmas,

because it seems that Lemma 3. 2 may be of interest by itself.

LEMMA 3. 2. $A/Dom(\nu)$ is torsionfree.
PROOF. Let Dom(v)\in t $(A/Dom(\nu))$ . Then Dom(v) : $a$ ) $A=A$

and there exist some $b_{i}\in(Dom(\nu) : a)$ and $a_{i}\in A$ such that $\sum b_{i}a_{i}=1$ . Since
$ab_{i}\otimes 1=1\otimes ab_{i}$ for each $i$, $a\otimes b_{i}a_{i}=ab_{i}\otimes a_{i}=(ab_{i}\otimes 1)a_{i}=(1\otimes ab_{i})a_{i}=1\otimes ab_{i}a_{i}$

for each $i$. Hence we have $a \otimes 1=\sum a\otimes b_{i}a_{i}=\sum 1\otimes ab_{i}a_{i}=1\otimes a$ . Thus we see
that $a\in Dom(\nu)$ .

LEMMA 3. 3. Let $B’$ be a submodule of $A_{B}$ such that $B\leqq B’\leqq A$ . If $A/B’$

is torsionfree, then we have $\overline{B}\leqq B’$

PROOF. Obvious.
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Summarizing the discussion above we obtain

PROPOSITION 3. 4. $B\leqq\overline{B}\leqq Dom(\nu)\leqq V_{A}(V_{A}(B))\leqq A$ .
However, we have

LEMMA 3. 5. If $A$ is $H$-separable over $B$, then

Dom $(\nu)=V_{A}( V_{A}(B))$ .

PROOF. Let $a\in V_{A}(V_{A}(B))$ and consider the isomorphism $\eta$ : $A\otimes A$-

$Hom_{C}(V_{A}(B), A)$ mentioned in Introduction. Then $\eta(a\otimes 1)=\eta(1\otimes a)$ and
hence $a\otimes 1=1\otimes a$ . Thus we have $a\in Dom(\nu)$ .

LEMMA 3. 6. If $A$ is flat, then

$\overline{B}=Dom(\nu)$ .

PROOF. By Lemma 1. 4, $Dom(\nu)/B$ is torsion. On the other hand,
$A/Dom(\nu)$ is torsionfree by Lemma 3. 2. Thus Dom(i/) has to coincide with
$\overline{B}$ .

THEOREM 3. 7. If $A$ is $H$-separablc over $B$ and $BA$ is flat, then we have

$B\leqq\overline{B}=Dom(\nu)=V_{A}(V_{A}(B))\leqq A$ .

Combining this theorem with Proposition 1. 6, we have

COROLLARY 3. 8 ([8, Theorem 2]). If $A$ is $H$-separable over $B$ and $BA$

is flat, then we have

$B_{t}\cong V_{A}(V_{A}(B))$ .

Sugano [8, Proposition 2] has shown that if $A$ is $H$-separable over $B$,
$BA$ is flat and $V_{A}(V_{A}(B))$ is a direct summand of $BA$ , then the inclusion map
$Barrow V_{A}(V_{A}(B))$ is a right flat epimorphism. Concerning this, we shall give
the following theorem which follows from [6, Theorem $XI$ . 2. 1].

THEOREM 3. 9. Let $A$ be $H$-separable over $B$ and $BA$ flat. Then the
inclusion $rmp$ $Barrow V_{A}(V_{A}(B))$ is a right flat epimorphism iff $(B:x)\overline{B}=\overline{B}$

for all $x\in\overline{B}$.

Now consider

$L’=\{b\leqq B_{B}|b\overline{B}=\overline{B}\}$ .

Then we have

LEMMA 3. 10. $L’\subseteqq L$ .
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PROOF. Let $b\in L’$ . Then $b\overline{B}=\overline{B}$. For each $b\in B$, there exist some $b_{i}$

$\in b$ and $x_{i}\in\overline{B}$ such that $b=\Sigma b_{i}x_{i}$ . Since $\overline{B}/B$ is torsion, it follows that
$\cap$ $(B : x_{i})\in L$ . If $b’\in\cap(B : x_{i})$ , then $bb’=\Sigma b_{i}(x_{i}b9eb$ . This means that
$\cap$ $(B : x_{i})\leqq(b:b)$ . Thus $(b:b)\in L$ and $B/b$ is torsion.

Let $A$ be $H$-separable over $B$ and $B$
$A$ flat. Assume that $\overline{B}$ is a direct

summand of $BA$ . Then there exists some $C’\leqq_{B}$ $A$ such that $A=\overline{B}\oplus C’$

For each $b\in L$, $A=bA=b\overline{B}\oplus bC’$ and hence $\overline{B}=b\overline{B}\oplus(\overline{B}\cap bC\gamma=b\overline{B}$. Thus
we have $L\subseteqq L’$ and by Lemma 3. 10 $L=L’$ Since $\overline{B}/B$ is torsion, for each
$x\in\overline{B}$, $(B:x)\in L=L’$ Therefore, by Theorem 3. 9, the inclusion map $Barrow$

$V_{A}(V_{A}(B))$ is a right flat epimorphism.
Sugano [8, Theorem 3] has shown that if $B$ is regular and $A$ is

$H$-separable over $B$, then $V_{A}(V_{A}(B))=B$, $i$ . $e$ . $B$ has the double
commutator property. Also he has shown in [7, Proposition 1. 2] that if $A$

is $H$-separable over $B$ such that $B$ is a left (or right) direct summand of $A$ ,

then $V_{A}( V_{A}(B))=B$.
By Lemma 1. 4, $A/B$ is torsion iff $A=Dom(\nu)$ . On the contrary, we

have

LEMMA 3. 11. $A/B$ is torsionfree iff $B=Dom(\nu)$ .

PROOF. The “ if ” part is trivial by Lemma 3. 2. Now suppose that
$A/B$ is torsionfree. Then, by Lemma 1. 3, the mapping $f_{A/B}$ : $A/Barrow A/B\otimes$

$A$ given by $\overline{a}arrow\overline{a}\otimes 1$ is a monomorphism, where $\overline{a}$ denotes the coset
containing $a$ . Let $\pi$ : $Aarrow A/B$ be the canonical homomorphism and consider
the mapping $\pi\otimes 1:A\otimes Aarrow A/B\otimes A$ . For $a\in Dom(\nu)$ , $\overline{a}\otimes 1=(\pi\otimes 1)$

$(a\otimes 1)=(\pi\otimes 1)(1\otimes a)=\overline{1}\otimes a=0$ . Hence $\overline{a}=0$ and we have $a\in B$.
In particular, we obtain

THEOREM 3. 12. Let $A$ be $H$-separable over B. Then $B=V_{A}(V_{A}(B))$

iff $A/B$ is torsionfree.
If $B$ is regular, as we have shown in Section 1, $t=0$ and hence $A/B$ is

torsionfree. Thus [8, Theorem 3] is a direct consequence of Theorem
3. 12. Furthermore, if $B$ is a direct summand of $A_{B}$, then $A/B$ is
torsionfree. Hence if, in addition, we assume that $A$ is $H$ -separable over $B$,

Theorem 3. 12 implies that $B=V_{A}(V_{A}(B))$ . Likewise if we assume that $A$

is $H$-separable over $B$ and $B$ is a direct summand of $gA$ , then we have $B=$

$V_{A}(V_{A}(B))$ .
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