H-separable Extensions and Torsion Theories

In memory of Professor Akira Hattori

Yoshiki Kurata and Shoji Morimoto
(Received May 26, 1986)

Introduction. Let A be a ring with identity and B a subring of A with common identity. We shall say that A is H-separable over B if $A \otimes_{B} A$ is isomorphic to a direct summand of a finite direct sum of copies of A as (A, A)-bimodules. Let C be the center of A and $V_{A}(B)$ the commutator of B in A. Then it is well-known that A is H-separable over B iff the maping η : $A \otimes{ }_{B} A \rightarrow \operatorname{Hom}_{C}\left(V_{A}(B), A\right)$ given by $\eta\left(a \otimes a^{\prime}\right)(v)=a v a^{\prime}$ for a, a^{\prime} in A and v in $V_{A}(B)$ is an isomorphism and $V_{A}(B)$ is a finitely generated projective C-module [7, Theorem 1.1].

Recently K. Sugano [8] has pointed out that H-separable extensions of B have close connections with Gabriel topologies on B. He showed, among other things, that if A is left flat and H-separable over B then $V_{A}\left(V_{A}(B)\right)$ is isomorphic to the localization of B with respect to the right Gabriel topology consisting of all right ideals \mathfrak{b} of B such that $\mathfrak{b} A=A$, where $V_{A}\left(V_{A}(B)\right)$ denotes the double commutator of B in A. Using this he then showed that if A is H-separable over B and B is regular then $B=V_{A}\left(V_{A}(B)\right)$.

Motivated by his results we shall study in this paper H-separable extensions of B from the point of view of torsion theories. We shall begin with the study of the torsion class

$$
T=\left\{M_{B} \mid M \otimes_{B} A=0\right\}
$$

of mod- B. If ${ }_{B} A$ is flat, then T is hereditary. This assumption, however, is not necessary for T to be hereditary. We shall introduce the notion of weakly flat B-modules and show that the weakly flatness of A ensures T to be hereditary. We shall provide an example to show that not all weakly flat modules are flat. It is shown in case A is H-separable over B a necessary and sufficient condition for $B \rightarrow V_{A}\left(V_{A}(B)\right)$ to be a right flat epimorphism Theorem 3.9) and also one for $B=V_{A}\left(V_{A}(B)\right)$ to hold (Theorem 3.12).

We shall use M_{B} to denote a right B-module M and $M^{\prime} \leqq M$ a submodule M^{\prime} of M. Consequently $\mathfrak{a} \leqq B_{B}$ means that \mathfrak{a} is a right ideal of B. For undefined notions about torsion theory we shall refer to [6]. For a right
B-module M and a left B-module N we denote its tensor product by $M \otimes N$ instead of $M \otimes_{B} N$.

1. Preliminaries. Let A be a ring, B a subring of A with common identity and $\nu: B \rightarrow A$ the inclusion map. Let

$$
T=\left\{M_{B} \mid M \otimes A=0\right\}
$$

Then T is a torsion class of mod- B. We shall denote by t the associated idempotent radical. It is easy to see that if ${ }_{B} A$ is flat, then T is hereditary. The following proposition, however, shows that it is not necessary to assume ${ }_{B} A$ being flat for T to be hereditary.

A B-module ${ }_{B} N$ is said to be t-weakly flat if the functor $-\otimes_{B} N$ is exact on all the exact sequence of right B-modules

$$
0 \rightarrow L^{\prime} \rightarrow L \rightarrow L^{\prime \prime} \rightarrow 0
$$

with $L \in T$. Obviously flat modules are t-weakly flat. The converse, however, is not the case in general. In the next section we shall characterize t-weakly flat modules using the notion of weakly divisible modules. By this characterization we shall provide an example of modules which are t-weakly flat but not flat.

Proposition 1.1. If ${ }_{B} A$ is t-weakly flat, then T is hereditary.
Proof. Let us put

$$
L=\left\{\mathfrak{b} \leqq B_{B} \mid \mathfrak{b} A=A\right\}
$$

and show that if $\mathfrak{b} \in L$ and $b \in B$, then $(\mathfrak{b}: b) \in L$. In fact, the canonical map $B /(\mathfrak{b}: b) \rightarrow B / \mathfrak{b}$ induces the exact sequence $0 \rightarrow B /(\mathfrak{b}: b) \otimes A \rightarrow B / \mathfrak{b} \otimes A$ by assumption. Hence $B / \mathfrak{b} \otimes A=0$ implies $(\mathfrak{b}: b) A=A$.

To apply [2, Theorem 3.5], we have to prove that for each $M(\neq 0) \in$ T, there exists $x(\neq 0)$ in M such that $x B \in T$. Suppose that $0 \neq M \in T$. Then there exists $x(\neq 0)$ in M, and the sequence $0 \rightarrow x B \rightarrow M$ is exact. By assumption $0 \rightarrow x B \otimes A \rightarrow M \otimes A$ is also exact. Hence $M \otimes A=0$ implies $x B \otimes$ $A=0$. Thus $x B \in T$.

Now throughout this section assume

$$
T=\left\{M_{B} \mid M \otimes A=0\right\}
$$

is hereditary. Then t is left exact and we have
Lemma 1.2. (1) The corresponding right Gabriel topology is given by

$$
L=\left\{\mathfrak{b} \leqq B_{B} \mid \mathfrak{b} A=A\right\} .
$$

(2) L has a basis consisting of finitely generated right ideals of B.

Proof. (1) This is clear.
(2) Let $\mathfrak{b} \in L$. Then $\mathfrak{b} A=A$ and hence

$$
1=\sum b_{i} a_{i}
$$

for some $b_{i} \in \mathfrak{b}$ and $a_{i} \in A$. The right ideal $\sum b_{i} B$ is contained in \mathfrak{b} and belongs to L.

Lemma 1.3. (1) For each A-module N_{A},

$$
t(N)=0
$$

regarding as a B-module via ν.
(2) For each B-module M_{B},

$$
t(M)=\operatorname{Ker}\left(f_{M}\right)
$$

where $f_{M}: M \rightarrow M \otimes A$ is given by $x \rightarrow x \otimes 1$.
Proof. (1) Let $x \in t(N)$. Then $r_{B}(x) A=A$ and hence $x A=x \cdot r_{B}(x)$ $A=0$. Thus we have $x=0$.
(2) First by (1) $t(M \otimes A)=0$. Hence $t(M) \leqq \operatorname{Ker}\left(f_{M}\right)$. On the other hand, for each $x \in \operatorname{Ker}\left(f_{M}\right)$ and $a \in A$, we have $x \otimes a=(x \otimes 1) a=0$. Thus $\operatorname{Ker}\left(f_{M}\right)$ is torsion and $\operatorname{Ker}\left(f_{M}\right) \leqq t(M)$.

It follows from this lemma that A_{B} is torsionfree. Furthermore, for each B-module M_{B}, the diagrm

is commutative. It follows that if M_{B} is flat, then f_{M} must be a monomorphism. Hence M_{B} is torsionfree. In particular, if B is a regular ring, t must be zero.

Since

is a commutative diagram with exact row, where σ is given by $a \otimes a^{\prime} \rightarrow a a^{\prime}$, it follows that σ is an isomorphism iff $A / B \otimes A=0$, i. e., $(A / B)_{B}$ is torsion. This also means, as is well-known, ν is an epimorphism in the category of rings [6, Proposition XI. 12].

Note that σ is an isomorphism iff

$$
a \otimes 1=1 \otimes a \text { in } A \otimes A
$$

holds for all $a \in A$. More generally we have
Lemma 1. 4. Let B^{\prime} be a submodule of A_{B} such that $B \leqq B^{\prime} \leqq A$. Then the following conditions are equivalent:
(1) B^{\prime} / B is torsion.
(2) The canonical mapping $B^{\prime} \otimes A \rightarrow A$ given by $b^{\prime} \otimes a \rightarrow b^{\prime} a$ is an isomorphism.
(3) For each $b^{\prime} \in B^{\prime}$,

$$
b^{\prime} \otimes 1=1 \otimes b^{\prime} \text { in } B^{\prime} \otimes A
$$

holds.
In case ${ }_{B} A$ is flat, the above conditions are also equivalent to:
(4) For each $b^{\prime} \in B^{\prime}$,

$$
b^{\prime} \otimes 1=1 \otimes b^{\prime} \text { in } A \otimes A
$$

holds.
Proof. Straightforward.
Let \bar{B} be the closure of B_{B} in A_{B}, i.e.

$$
\begin{aligned}
\bar{B} & =\{a \in A \mid a+B \in t(A / B)\} \\
& =\{a \in A \mid(B: a) \in L\} .
\end{aligned}
$$

Then $B \leqq \bar{B} \leqq A$ and \bar{B} is a subring of A.
A B-module M_{B} is called t-injective if, given $\mathfrak{b} \in L$ and $f \in \operatorname{Hom}_{B}(\mathfrak{b}, M)$, there exists $\bar{f} \in \operatorname{Hom}_{B}(B, M)$ such that $\left.\bar{f}\right|_{0}=f$.

Lemma 1.5. (1) \bar{B} / B is torsion and A / \bar{B} is torsionfree.
(2) A_{B} is t-injective in case ${ }_{B} A$ is flat.
(3) \bar{B}_{B} is also t-injective in case ${ }_{B} A$ is flat.

Proof. (1) follows from definition. Indeed these conditions characterize the closure \bar{B}.
(2) Given $\mathfrak{b} \in L$ and $f \in \operatorname{Hom}_{B}(\mathfrak{b}, A)$. Since B / \mathfrak{b} is torsion and ${ }_{B} A$ is flat,

$$
\mu \otimes 1: \mathfrak{b} \otimes A \rightarrow B \otimes A
$$

is an isomorphism where $\mu: \mathfrak{b} \rightarrow B$ is the inclusion map. Hence, for each $b \in$ B, there exist $b_{i} \in \mathfrak{b}$ and $a_{i} \in A$ such that

$$
b \otimes 1=(\mu \otimes 1)\left(\sum b_{i} \otimes a_{i}\right)
$$

Define $\bar{f}: B \rightarrow A$ to be $b \rightarrow \sum f\left(b_{i}\right) a_{i}$. It is easy to see that \bar{f} is well-defined and is a B-homomorphism. Particularly for $b \in \mathfrak{b},(\mu \otimes 1)(b \otimes 1)=b \otimes 1$. Thus we have $\bar{f}(b)=f(b)$.
(3) [4, Proposition 0.6].

By this lemma and [3, Proposition 3] we have
Proposition 1.6. If ${ }_{B} A$ is flat, then there is a unique ring isomorphism $h: \bar{B} \rightarrow B_{t}$ such that the diagram

is commutative, where ϕ_{B} denotes the canonical homomorphism with respect to the localization.
2. Weakly flat modules. Let R be a ring with identity. Apart from the torsion class T in Section 1, let t be an arbitrary preradical of $\bmod -R$ and $T(t)=\left\{M_{R} \mid t(M)=M\right\}$.

Recall that ${ }_{R} M$ is t-weakly flat if $-\otimes_{R} M$ is exact on all the exact sequences

$$
0 \rightarrow L^{\prime} \rightarrow L \rightarrow L^{\prime \prime} \rightarrow 0
$$

of right R-modules with $L \in T(t)$. On the other hand, following Sato [5], we call N_{R} t-weakly divisible if $\operatorname{Hom}_{R}(-, N)$ is exact on all the exact sequences

$$
0 \rightarrow L^{\prime} \rightarrow L \rightarrow L^{\prime \prime} \rightarrow 0
$$

of right R-modules with $L \in T(t)$.
First we shall characterize t-weakly flat R-modules by using the notion of weakly divisibility.

Theorem 2.1. Let ${ }_{R} M$ be an R-module. Then M is t-weakly flat iff M^{*} is t-weakly divisible, where $M^{*}=\operatorname{Hom}_{Z}(M, Q / Z)$ denotes the character module of M.

Proof. Let

$$
0 \rightarrow L^{\prime} \rightarrow L \rightarrow L^{\prime \prime} \rightarrow 0
$$

be an exact sequence of right R-modules wih $L \in T(t)$. Suppose that M is t-weakly flat. Then by definition

$$
0 \rightarrow L^{\prime} \otimes_{R} M \rightarrow L \otimes_{R} M \rightarrow L^{\prime \prime} \otimes_{R} M \rightarrow 0
$$

is exact. Since Q / Z is injective over Z, it follows that

$$
0 \rightarrow\left(L^{\prime \prime} \otimes_{R} M\right)^{*} \rightarrow\left(L \otimes_{R} M\right)^{*} \rightarrow\left(L^{\prime} \otimes_{R} M\right)^{*} \rightarrow 0
$$

is exact and hence so is

$$
0 \rightarrow \operatorname{Hom}_{R}\left(L^{\prime \prime}, M^{*}\right) \rightarrow \operatorname{Hom}_{R}\left(L, M^{*}\right) \rightarrow \operatorname{Hom}_{R}\left(L^{\prime}, M^{*}\right) \rightarrow 0
$$

Thus M^{*} is t-weakly divisible. This argument may be reversed using the fact that Q / Z is a cogenerator over Z.

Using this theorem we now show that not all t-weakly flat modules are flat.

Example. Let S be a left Artinian ring and I an ideal of S which is not a direct summand of ${ }_{S} S$. Let $\bar{S}=S / I$ and put

$$
R=\left(\begin{array}{ll}
S & \bar{S} \\
0 & \bar{S}
\end{array}\right)
$$

Then this is a left Artinian ring and the mapping $f: R \rightarrow S$ given by $\left(\begin{array}{ll}c & \bar{a} \\ 0 & \bar{b}\end{array}\right) \rightarrow$ c is a ring homomorphism with $\operatorname{Ker}(f)=\left(\begin{array}{ll}0 & \bar{S} \\ 0 & \bar{S}\end{array}\right)$, where \bar{a} and \bar{b} denote cosets containing a and b respectively. The left S-module \bar{S} can be regarded as a left R-module via f and is not projective. Since \bar{S} is R-isomorphic to $\left(\begin{array}{ll}0 & \bar{S} \\ 0 & 0\end{array}\right)$, it follows that ${ }_{R}\left(\begin{array}{ll}0 & \bar{S} \\ 0 & 0\end{array}\right)$ is not projective and hence is not flat. On the other hand, $\operatorname{Ker}(f)$ is an idempotent ideal of R and is projective as a left R-module. Hence we can define a hereditary 3 -fold torsion theory

$$
\left(C_{\operatorname{Ker}(f)}, T_{\operatorname{Ker}(f)}, F_{\operatorname{Ker}(f)}\right)
$$

for $\bmod -R$ [1, Theorem 6]. It is easy to see that the character module of ${ }_{R}\left(\begin{array}{ll}0 & \bar{S} \\ 0 & 0\end{array}\right)$.is torsionfree with respect to $\left(C_{\operatorname{Ker}(\mathcal{A})}, T_{\operatorname{Ker}(\AA)}\right)$. Thus ${ }_{R}\left(\begin{array}{ll}0 & \bar{S} \\ 0 & 0\end{array}\right)$ is weakly flat with respect to this torsion theory by Theorem 2.1.
3. H-separable extensions. Let A be a ring, B a subring of A with common identity and $\nu: B \rightarrow A$ the inclusion map as before. We will
use the same notations as in Section 1.
We say $a \in A$ is dominated by ν [6, p. 225] if, for any ring S and ring homomorphisms $\alpha, \beta: A \rightarrow S, \alpha \nu=\beta \nu$ always implies $\alpha(a)=\beta(a)$. The set of elements of A dominated by ν is called the dominion of ν and is denoted by $\operatorname{Dom}(\boldsymbol{\nu})$. This is a subring of A containing B.

Applying [6, Proposition XI. 1. 1] we have
Proposition 3.1. The following conditions on $a \in A$ are equivalent:
(1) $a \in \operatorname{Dom}(\nu)$.
(2) If N is an (A, A)-bimodule and $x \in N$ has the property that $b x=x b$ for all $b \in B$, then $a x=x a$.
(3) $a \otimes 1=1 \otimes a$ in $A \otimes A$.
(4) If N and N^{\prime} are right A-modules and $f: N \rightarrow N^{\prime}$ is a B-homomorphism, then $f(x a)=f(x) \cdot a$ for all $x \in N$.

We see in particular from this proposition that if we take $N=A$, then (2) means that

$$
\operatorname{Dom}(\nu) \leqq V_{A}\left(V_{A}(B)\right)
$$

Also by (3) we have

$$
\operatorname{Dom}(\nu)=\{a \in A \mid a \otimes 1=1 \otimes a \text { in } A \otimes A\} .
$$

Consider the torsion class

$$
T=\left\{M_{B} \mid M \otimes A=0\right\}
$$

again and throughout this section assume T is hereditary. Then, as a consequence of Lemma 1.4 we have $\bar{B} \leqq \operatorname{Dom}(\nu)$, since \bar{B} / B is torsion and $(1) \Rightarrow(4)$ in Lemma 1.4 can be shown without the assumption that ${ }_{B} A$ is flat. However, we shall prove this fact by using the following two lemmas, because it seems that Lemma 3.2 may be of interest by itself.

Lemma 3.2. $A / \operatorname{Dom}(\boldsymbol{\nu})$ is torsionfree.
Proof. Let $a+\operatorname{Dom}(\boldsymbol{\nu}) \in t(A / \operatorname{Dom}(\boldsymbol{\nu}))$. Then $(\operatorname{Dom}(\boldsymbol{\nu}): a) A=A$ and there exist some $b_{i} \in(\operatorname{Dom}(\boldsymbol{\nu}): a)$ and $a_{i} \in A$ such that $\sum b_{i} a_{i}=1$. Since $a b_{i} \otimes 1=1 \otimes a b_{i}$ for each $i, a \otimes b_{i} a_{i}=a b_{i} \otimes a_{i}=\left(a b_{i} \otimes 1\right) a_{i}=\left(1 \otimes a b_{i}\right) a_{i}=1 \otimes a b_{i} a_{i}$ for each i. Hence we have $a \otimes 1=\sum a \otimes b_{i} a_{i}=\sum 1 \otimes a b_{i} a_{i}=1 \otimes a$. Thus we see that $a \in \operatorname{Dom}(\nu)$.

Lemma 3. 3. Let B^{\prime} be a submodule of A_{B} such that $B \leqq B^{\prime} \leqq A$. If A / B^{\prime} is torsionfree, then we have $\bar{B} \leqq B^{\prime}$.

Proof. Obvious.

Summarizing the discussion above we obtain
Proposition 3.4. $B \leqq \bar{B} \leqq \operatorname{Dom}(\boldsymbol{\nu}) \leqq V_{A}\left(V_{A}(B)\right) \leqq A$.
However, we have
Lemma 3.5. If A is H-separable over B, then

$$
\operatorname{Dom}(\nu)=V_{A}\left(V_{A}(B)\right)
$$

Proof. Let $a \in V_{A}\left(V_{A}(B)\right)$ and consider the isomorphism $\eta: A \otimes A \rightarrow$ $\operatorname{Hom}_{C}\left(V_{A}(B), A\right)$ mentioned in Introduction. Then $\eta(a \otimes 1)=\eta(1 \otimes a)$ and hence $a \otimes 1=1 \otimes a$. Thus we have $a \in \operatorname{Dom}(\nu)$.

Lemma 3.6. If ${ }_{B} A$ is flat, then

$$
\bar{B}=\operatorname{Dom}(\boldsymbol{\nu}) .
$$

Proof. By Lemma 1.4, $\operatorname{Dom}(\boldsymbol{\nu}) / B$ is torsion. On the other hand, $A / \operatorname{Dom}(\boldsymbol{\nu})$ is torsionfree by Lemma 3.2. Thus $\operatorname{Dom}(\boldsymbol{\nu})$ has to coincide with \bar{B}.

Theorem 3.7. If A is H-separable over B and ${ }_{B} A$ is flat, then we have

$$
B \leqq \bar{B}=\operatorname{Dom}(\boldsymbol{\nu})=V_{A}\left(V_{A}(B)\right) \leqq A
$$

Combining this theorem with Proposition 1.6, we have
Corollary 3.8 ([8, Theorem 2]). If A is H-separable over B and ${ }_{B} A$ is flat, then we have

$$
B_{t} \cong V_{A}\left(V_{A}(B)\right) .
$$

Sugano [8, Proposition 2] has shown that if A is H-separable over B, ${ }_{B} A$ is flat and $V_{A}\left(V_{A}(B)\right)$ is a direct summand of ${ }_{B} A$, then the inclusion map $B \rightarrow V_{A}\left(V_{A}(B)\right)$ is a right flat epimorphism. Concerning this, we shall give the following theorem which follows from [6, Theorem XI. 2.1].

Theorem 3.9. Let A be H-separable over B and ${ }_{B} A$ flat. Then the inclusion map $B \rightarrow V_{A}\left(V_{A}(B)\right)$ is a right flat epimorphism iff $(B: x) \bar{B}=\bar{B}$ for all $x \in \bar{B}$.

Now consider

$$
L^{\prime}=\left\{\mathfrak{b} \leqq B_{B} \mid \mathfrak{b} \bar{B}=\bar{B}\right\} .
$$

Then we have
Lemma 3. 10. $\quad L^{\prime} \cong L$.

Proof. Let $\mathfrak{b} \in L^{\prime}$. Then $\mathfrak{b} \bar{B}=\bar{B}$. For each $b \in B$, there exist some b_{i} $\in \mathfrak{b}$ and $x_{i} \in \bar{B}$ such that $b=\sum b_{i} x_{i}$. Since \bar{B} / B is torsion, it follows that $\cap\left(B: x_{i}\right) \in L$. If $b^{\prime} \in \cap\left(B: x_{i}\right)$, then $b b^{\prime}=\sum b_{i}\left(x_{i} b^{\prime}\right) \in \mathfrak{b}$. This means that $\cap\left(B: x_{i}\right) \leqq(b: b)$. Thus $(b: b) \in L$ and B / b is torsion.

Let A be H-separable over B and ${ }_{B} A$ flat. Assume that \bar{B} is a direct summand of ${ }_{B} A$. Then there exists some $C^{\prime} \leqq{ }_{B} A$ such that $A=\bar{B} \oplus C^{\prime}$. For each $\mathfrak{b} \in L, A=\mathfrak{b} A=\mathfrak{b} \bar{B} \oplus \mathfrak{b} C^{\prime}$ and hence $\bar{B}=\mathfrak{b} \bar{B} \oplus\left(\bar{B} \cap \mathfrak{b} C^{\prime}\right)=\mathfrak{b} \bar{B}$. Thus we have $L \subseteq L^{\prime}$ and by Lemma 3.10 $L=L^{\prime}$. Since \bar{B} / B is torsion, for each $x \in \bar{B}, \quad(B: x) \in L=L^{\prime}$. Therefore, by Theorem 3.9, the inclusion map $B \rightarrow$ $V_{A}\left(V_{A}(B)\right)$ is a right flat epimorphism.

Sugano [8, Theorem 3] has shown that if B is regular and A is H-separable over B, then $V_{A}\left(V_{A}(B)\right)=B$, i. e. B has the double commutator property. Also he has shown in [7, Proposition 1.2] that if A is H-separable over B such that B is a left (or right) direct summand of A, then $V_{A}\left(V_{A}(B)\right)=B$.

By Lemma 1.4, A / B is torsion iff $A=\operatorname{Dom}(\boldsymbol{\nu})$. On the contrary, we have

Lemma 3.11. A / B is torsionfree iff $B=\operatorname{Dom}(\boldsymbol{\nu})$.
Proof. The "if" part is trivial by Lemma 3.2. Now suppose that A / B is torsionfree. Then, by Lemma 1.3, the mapping $f_{A / B}: A / B \rightarrow A / B \otimes$ A given by $\bar{a} \rightarrow \bar{a} \otimes 1$ is a monomorphism, where \bar{a} denotes the coset containing a. Let $\pi: A \rightarrow A / B$ be the canonical homomorphism and consider the mapping $\pi \otimes 1: A \otimes A \rightarrow A / B \otimes A$. For $\quad a \in \operatorname{Dom}(\nu), \quad \bar{a} \otimes 1=(\pi \otimes 1)$ $(a \otimes 1)=(\pi \otimes 1)(1 \otimes a)=\overline{1} \otimes a=0$. Hence $\bar{a}=0$ and we have $a \in B$.

In particular, we obtain
Theorem 3.12. Let A be H-separable over B. Then $B=V_{A}\left(V_{A}(B)\right)$ iff A / B is torsionfree.

If B is regular, as we have shown in Section $1, t=0$ and hence A / B is torsionfree. Thus [8, Theorem 3] is a direct consequence of Theorem 3.12. Furthermore, if B is a direct summand of A_{B}, then A / B is torsionfree. Hence if, in addition, we assume that A is H-separable over B, Theorem 3. 12 implies that $B=V_{A}\left(V_{A}(B)\right)$. Likewise if we assume that A is H-separable over B and B is a direct summand of ${ }_{B} A$, then we have $B=$ $V_{A}\left(V_{A}(B)\right)$.

References

[1] G. Azumaya: Some properties of TTF-classes, Lecture Notes in Math. 353, Berlin-Hei-
delberg-New York: Springer 1973, 72-83.
[2] Y. Kurata, K. Shigenaga and M. T. Chen : On the hereditarity of torsion classes, Proc. 16th Symposium on Ring Theory, Okayama 1983, 57-70.
[3] Y. KURATA and M. T. CHEN : On the double centralizer of the injective hull relative to a torsion theory, to appear in Math. J. Okayama Univ.
[4] J. Lambek: Torsion Theories, Additive Semantics, and Rings of Quotients, Lecture Notes in Math. 177, Berlin-Heidelberg-New York: Springer 1971.
[5] M. SATO: On pseudo-cohereditary subtorsion theory and weakly divisible modules I, Memo. of Fac. Lib. Arts and Edu. Yamanashi Univ. 32(1983), 20-24.
[6] B. STENSTRÖM: Rings of Quotients, Berlin-Heidelberg-New York: Springer 1975.
[7] K. Sugano : Note on semisimple extensions and separable extensions, Osaka J. Math. 4 (1967), 265-270.
[8] K. Sugano : On flat H-separable extensions and Gabriel topology, Hokkaido Math. J. 15 (1986), 149-155.

Yamaguchi University
Hagi Koen Gakuin

