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\S 1. Introduction.

Let M be a connected Riemannian manifold of dimension n\geqq 2 . If a
transformation of M preserves geodesies then it is called a projective
transformation. Let X be a vector field in M and let \{\phi_{t}\} be a l-parameter
group of transformations generated by X. For each t, if \phi_{t} is a projective
transformation then X is called an infinitesimal projective transformation.
A vector field X is an infinitesimal projective transformation if and only if
there exists a 1-form \varphi_{i} such that S_{X}\Gamma_{ji}^{h}=\delta_{j}^{h}\varphi_{i}+\delta_{i}^{h}\varphi_{j} , where S_{X} denotes the
Lie derivation with respect to the vector field X, \Gamma_{ji}^{h} are the components of
the Christoffel symbols of the metric tensor g of M and \delta_{i}^{h} mean the
Kronecker deltas. If \varphi_{i} vanishes identically then X is called an infinitesimal
affine transformation. We denote \nabla_{k} and K_{ji} the covariant differentiation
with respect to the Riemannian connection and the components of the Ricci
tensor.

The main purpose of the present paper is to show the following theorem.

THEOREM 1. Let M be a connected complete Riemannian manifold with
positive constant scalar curvature and satisfying the condition \nabla_{k}K_{ji}=\nabla_{j}K_{ki} .
If M admits a non-affine infifinitesimal projective transformation then M is a
space of positive constant curvature.

REMARK. The condition \nabla_{k}K_{ji}=\nabla_{j}K_{ki} in Theorem 1 geometrically has
the important meaning that it implies a constancy of the scalar curvature of
M due to the second Bianchi identity. And the examples of Riemannian
manifold which satisfy \nabla_{k}K_{ji}=\nabla_{j}K_{ki} but not \nabla_{k}K_{ji}=0 are already known (cf.

\lfloor\ulcorner 1] , [2], [3] ) . Furthermore it is well known that a conformally flat
Riemannian manifold with constant scalar curvature satisfies \nabla_{k}K_{ji}=\nabla_{j}K_{k\iota}\cdot .
Conversely, in the case of lower dimensions, it is easily shown that if M of
dim M=3 (resp. dim M=2) satisfies \nabla_{k}K_{ji}=\nabla_{j}K_{ki} then M is a conformally
flat space (resp. a space of constant curvature). Many mathematicians
studied Riemannian manifolds with the condition \nabla_{k}K_{ji}=\nabla_{j}K_{ki} and they
obtained many interesting results: (cf. [1], [2], [3], [4], [8], [9], [10], [ [1],
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etc.).

In the case that M satisfies the assumption of compactness, the following
results are known.

THEOREM A. (Yamauchi. [15]). Let M be a compact connected
Riemannian manifold with constant scalar curvature (dim M\geqq 3). If the
scalar curvature is non-positive then an infinitesimal projective transformation
is an isometry.

THEOREM B. (Yamauchi. [16]). Let M be a compact connected and
simply connected Riemannian manifold with comtant scalar curvature K
(dim M\geqq 3). If M admits a non-isomelric infifinitesimal projective trans-
formation, then M is isometric to a sphere of radius \sqrt{n(n-1)/K}.

In the case without the assumption of compactness, the following results
are known.

THEOREM C. (Solodovnikov. [12]). Let M be a complete connected
analytic Riemannian manifold (dim M\geqq 3). If M admits a non-affine
infinitesimal projective transformation thcn M is a space of positive constat
curvature.

THEOREM D. (Nagano. [6]). Let M be a complete connected Rieman-
nian manifold with parallel Ricci tensor. If M admits a non-affine
infifinitesimal projective transformation then M is a space of positive constant
curvature.

Our Theorem 1 is a generalization of the above Theorem D. For the
proof of Theorem 1, the following Theorem 2 and Theorem E play important
roles.

THEOREM 2. Let M be a connected Riemannian manifold and let T
(M) be the tangent bundle of M with complete lift metric. T(M) admits a
fifibre-preserving infifinitesimal conformal transformation if and only if M
admits an infifinitesimal projective transformation.

THEOREM E. (Tanno. [14]). Let M be a complete connected Riermn-
nian manifold. If M admits a non-trivial solution f satisfying the following
differential equations

(*) \nabla_{k}\nabla_{j}f_{i}+\alpha(2f_{k}g_{ji}+f_{j}g_{ik}+f_{i}g_{kj})=0 , \alpha=const.>0 ,

then M is a space of positive constant curvature, where f_{i}=\nabla_{i}f.
In fact, if M admits an infinitesimal projective transformation then T

(M) admits a fibre-preserving infinitesimal conformal transformation by
Theorem 2. Using this fact and \nabla_{k}K_{ji}=\nabla_{j}K_{ki} , we can show that there exists
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a non-trivial solution of the differential equation (*) in Tanno’s Theorem E.
Following this introductory section, in \S 2, we shall recall the complete

lift metric of the tangent bundle T(M) of M. In \S 3, we shall give the proof
of Theorem 2 and find a tensor equation which plays important roles in the
proof of Theorem 1. In \S 4, we shall prove Theorem 1. Lastly, in \S 5, we
shall consider infinitesimal projective transformations in T(M) and prove
the following theorem.

THEOREM 3. Let M be a complete connected Riemannian manifold. If
the tangent bundle T(M) with complete lift metric of M admits a non-ajfine
infinitesimal projective transformation then M is a locally flat.
\S 2. The complete lift metric in the tangent bundle of a

Riemannian manifold.

In this section we shall recall definitions and properties concerning the
complete lift metric in the tangent bundle of a Riemannian manifold
following YanO-Ishihara [19].

Let \pi be the natural projection of T(M) to M and \{ U, x^{h}\} be a local
coordinate neighborhood of M, then each \pi^{-1}(U) admits the induced
coordinates (x^{h}. y^{h}) . If \{ U’-x^{h’}\} is another coordinate neighborhood of M
and U\cap U’\neq\phi , then the induced coordinates (x^{h’}. y^{h’}) in \pi^{-1} ( U0 will be
given by

(2. 1) x^{h’}=x^{h’}(x) , y^{h’}= \frac{\partial x^{h’}}{\partial x^{h}}y^{h} .

Putting x^{\overline{h}}=y^{h}, x^{\overline{h}’}=y^{h’}, we often write the equation (2. 1) as x^{P’}=x^{P}(x) .
The indices a, b, c, \ldots-h, i, j, .. run over the range 1, 2, 3, ... n and the
indices A, B, C, \ldots P, Q, R, \ldots run over the range 1, 2, 3, ... . n,\overline{1},\overline{2},\overline{3} ,

... . \overline{n} . The summation convention will be used with respect to this system
of indices.

Suppose that we are given a Riemannian metric \tilde{g} in T(M) having local
expression \tilde{g}_{CB}dx^{C}dx^{B}=2g_{ji}dx^{j}\delta y^{i} with respect to the induced coordinates
(x^{h}, y^{h}) , where \delta y^{h}=dy+hN_{a}^{h}dx^{a} . N_{i}^{h}=y\Gamma_{ai}^{h}a . We call this metric the
complete lift metric of g. Thus \tilde{g} has components

(2.2) (\tilde{g}_{CB})=(\begin{array}{ll}\partial g_{ji} g_{ji}g_{ji} 0\end{array})

and contravariant components

(2. 3) ( _{\tilde{g}^{CB}})=(\begin{array}{ll}0 g^{ji}g^{ji} \partial g^{ji}\end{array})
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with respect to the induced coordinates in T(M) , where g^{ji} denote the
contravariant components of g and \partial=y^{a}\partial_{a} .

We have already known that the Riemannian connection defined by \tilde{g}

coincides with the complete lift of the Riemannian connection of g. Thus the
components \tilde{\Gamma}_{BC}^{A} of the Christoffel symbols of \tilde{g} are given by

(2. 4) \tilde{\Gamma}_{ji}^{h}=\Gamma_{ji}^{h},\tilde{\Gamma}_{ji}^{h_{-}}=0,\tilde{\Gamma}_{ji}^{h}=0,\tilde{\Gamma}_{ji}^{h}=\partial\Gamma_{ji}^{h} ,
\tilde{\Gamma}_{J^{i}}^{h_{r}}=\Gamma_{ji}^{h},\tilde{\Gamma}_{ji}^{h}=\Gamma_{ji}^{h},\tilde{\Gamma}_{ji}^{h_{-}}-=0,\tilde{\Gamma}_{\overline{ji}}^{h}=0 ,

with respect to the induced coordinates in T(M) .

\S 3. Fibre-preserving infinitesimal conformal transformations
in T(M) .

In this section we shall prove Theorem 2 and find a tensor equation which
plays important roles in the proof of Theorem 1.

Let the tangent bundle T(M) be endowed with the complete lift metric
of M. A transformation of T(M) is said to be fibre-preserving if it sends
each fibre of T(M) into a fibre. Let \tilde{X} be a vector field with components

(\begin{array}{l}X^{h}X^{\overline{h}}\end{array}) with respect to the induced coordinates in T(M) . If \tilde{X} generates a

local 1-parameter group of fibre-preserving transformations then it is called
a fibre-preserving infinitesimal transformation. A vector field \tilde{X} is a
fibre-preserving infinitesimal transformation if and only if the components X^{h}

of \tilde{X} depend only on the variables x^{h} with respect to the induced coordinates
(x^{h}. y^{h}) in T(M) . If there exists a function \tilde{\rho} in T(M) such that

(3. 1) L_{\tilde{X}}\tilde{g}=2\tilde{\rho}\tilde{g}

then \tilde{X} is called an infifin!.tesimal conformal transformation in the tangent
bundle T(M) , where L_{\tilde{X}} denotes the Lie derivation with respect to the
vector field \tilde{X}.

Let \tilde{X} be an infinitesimal conformal transformation. Then using (3. 1),

we get following formulas (3. 2) and (3. 3) by the relation L_{\tilde{X}}\tilde{\Gamma}_{BC}^{A}=\frac{1}{2}\tilde{g}^{AE}

\{\tilde{\nabla}_{B}(L_{\tilde{X}}\tilde{g}_{EC})+\tilde{\nabla}_{C}(L_{\tilde{X}}\tilde{g}_{BE})-\tilde{\nabla}_{E}(L -\tilde{g}_{BC})\} and by the definitions of Lie

derivative of \tilde{g} and \tilde{\Gamma} :

(3. 2) X^{E}\partial_{E}\tilde{g}_{BC}+\tilde{g}_{EC}\partial_{B}X^{E}+\tilde{g}_{BE}\partial_{C}X^{E}=2\tilde{\rho}\tilde{g}_{BC} ,

(3.3) \partial_{B}\partial_{C}X^{A}+X^{E}\partial_{E}\tilde{\Gamma}_{BC}^{A}-\tilde{\Gamma}_{BC}^{E}\partial_{E}X^{A}+\tilde{\Gamma}_{EC}^{A}\partial_{B}X^{E}+\tilde{\Gamma}_{BE}^{A}\partial_{C}X^{E}

=\delta_{B}^{A}\tilde{\rho}_{C}+\delta_{C}^{A}\tilde{\rho}_{B}-\tilde{g}_{BC}\tilde{\rho}^{A} .
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where \tilde{\rho}_{C} means \tilde{\nabla}\tilde{\theta},\tilde{\nabla}_{C} denotes the covariant differentiation with respect to
the Riemannian connection defined by \tilde{g} and \tilde{\rho}^{A}=\tilde{g}^{AE}\tilde{\rho}_{E}.

PROOF OF THEOREM 2. Let T(M) admits a fibre-preserving infinite-

simal conformal transformation \tilde{X} with componens (\begin{array}{l}X^{h}X^{\overline{h}}\end{array}) . Then the first n

components X^{h} of \tilde{X} depend only on the variables x^{h} and the formula (3. 3)

holds. Putting A_{-}^{-}h, B=j and C=\overline{i} in (3. 3) and taking account of (2. 2),

(2. 3) and (2. 4), we can show the function \tilde{\rho} in T(M) depends only on the
variables X_{-}^{h} Thus we can regard \tilde{\rho} as a function in M. When we regard
it as a function in M we express it as \rho . Since \tilde{X} is a fibre-preserving
infinitesimal transformation in T(M) , it induces a vector field X with
components X^{h} in the base space M. Next, putting A=h, B=j and C=i in
(3. 3) and taking account of (2. 2), (2. 3) and (2. 4), we obtain L_{X}\Gamma_{ji}^{h}=\delta_{j}^{h}

\rho_{i}+\delta_{i}^{h}\rho_{j} where L_{X} denotes the Lie derivation with respect to the induced
vector field X in M and \rho_{i}=\nabla_{i}\rho . This shows the induced vector field X in
M is an infinitesimal projective transformation. Therefore if T(M) admits
a fibre-preserving infinitesimal conformal transformation then M admits an
infinitesimal projective transformation.

Conversely, let X be an infinitesimal projective transformation with
components X^{h} in M, that is, there exists a 1-form \varphi_{i} in M such that L_{X}\Gamma_{j\iota}^{h}\cdot=

\delta_{j}^{h}\varphi_{i}+\delta_{i}^{h}\varphi_{j} . We put \frac{1}{n+1}\nabla_{a}X^{a}=\rho . Then from the classical relation on the

Lie derivative of the Christoffel symbols: L_{X}\Gamma_{ji}^{h}=\nabla_{j}\nabla_{i}X^{h}+K_{aji}^{h}X^{a}, we get

(3.4) \nabla_{j}\nabla_{i}X^{h}+K_{aji}^{h}X^{a}=\delta_{j}^{h}\varphi_{i}+\delta_{i}^{h}\varphi_{j} ,

where K_{kji}^{h} denote the componets of the curvature tensor of M. Contracting
h and i in (3. 4) we have \varphi_{j}=\nabla_{j}\rho , thus (\varphi^{h})=(g^{ha}\varphi_{a}) is a gradient vector
field of \rho . Now we put A_{i}^{h}=2\rho\delta_{i}^{h}-g^{ha}L_{X}g_{ia} then they are the components of
a (1, 1) tensor field in M. Using this tensor field, we define \tilde{X}=

(\begin{array}{l}X^{h}y^{a}(\partial_{a}X^{h}+A_{a}^{h})\end{array}) . Then we can show, by using (2. 1), \tilde{X} is a vector field in

T(M) . Thus \tilde{X} is a fibre-preserving infinitesimal transformation in T(M) .
Using (2. 2) and the left hand equation of (3. 2), we compute the Lie
derivative of \tilde{g} with respect to \tilde{X}. For example,

L_{\tilde{X}}\tilde{g}_{ji}=X^{m}\partial_{m}(y^{a}\partial_{a}g_{ji})+y^{a}(\partial_{a}X^{m}+A_{a}^{m})\partial_{\overline{m}}(y^{b}\partial_{b}g_{ji})

+y^{a}\partial_{a}g_{mi}\partial_{j}X^{m}+g_{mi}\partial_{j}\{y^{a}(\partial_{a}X^{m}+A_{a}^{m})\}+y^{a}\partial_{a}g_{jm}\partial_{i}X^{m}

+g_{jm}\partial_{i}\{y^{a}(\partial_{a}X^{m}+A_{a}^{m})\}

=y^{a}\{\partial_{a}L_{X}g_{ji}+g_{mi}\nabla_{j}A_{a}^{m}+g_{jm}\nabla_{i}A_{a}^{m}+g_{mi}A_{r}^{m}\Gamma_{ja}^{r}+g_{jm}A_{r}^{m}\Gamma_{ia}^{r}\}
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=y^{a}\{\nabla_{a}(L_{X}g_{ji})+\Gamma_{aj}^{m}L_{X}g_{mi}+\Gamma_{ai}^{m}S_{X}g_{jm}+g_{mi}(2\rho_{j}\delta_{a}^{m}

-g^{mb}\nabla_{j}(L_{X}g_{ab}))+g_{jm}(2\rho_{i}\delta_{a}^{m}-g^{mb}\nabla_{i}(L_{X}g_{ab}))

+g_{mi}A_{r}^{m}\Gamma_{ja}^{r}+g_{jm}A_{r}^{m}\Gamma_{ia}^{r}\}

=y^{a}\{\nabla_{a}(S_{X}g_{ji})-\nabla_{j}(_{0}L_{X}g_{ai})-\nabla_{i}(L_{X}g_{aj})+2\rho_{j}g_{ai}

+2\rho_{i}g_{aj}+(L_{X}g_{mi}+g_{ri}A_{m}^{r})\Gamma_{aj}^{m}+(L_{X}g_{jm}+g_{j\gamma}A_{m}^{r})\Gamma_{ai}^{m}\}

=y^{a}\{-2g_{am}L_{X}\Gamma_{ji}^{m}+2\rho_{j}g_{ai}+2\rho_{i}g_{aj}+2\rho g_{mi}\Gamma_{aj}^{m}+2\rho g_{jm}\Gamma_{ai}^{m}\}

=2\rho y\partial_{a}agji

=2\rho\tilde{g}_{ji} .

Then we obtain S_{\tilde{X}}\tilde{g}=2\rho\tilde{g} . Thus if M admits an infinitesimal projective
transformation then T(M) admits a fibre-preserving infinitesimal conformal
transformation. This completes the proof of Theorem 2. Q. E. D.

Next we find a tensor equation which plays important roles in the proof
of Theorem 1, that is, we show the following proposition.

PROPOSITION 3. 1. Let M admits an infifinitesimal projective transfor-
mation X with components X^{h} . Then the following tensor eqmtion holds

(3.5) A_{k}^{a}K_{aji}^{h}-A_{a}^{h}K_{kji}^{a}=-\delta_{j}^{h}\nabla_{k}\rho_{i}+g_{ki}\nabla_{j}\rho^{h}

where A_{i}^{h} are the components of the (1, 1) tensor fifield defifined in the proof of
Theorem 2, K_{kji}^{h} denote the components of the curvature tensor of M and

\rho^{h}=g^{ha}\rho_{a} , \rho_{a}=\nabla_{a}\rho , \rho=\frac{1}{n+1}\nabla_{a}X^{a} .

PROOF. Since M admits an infinitesimal projective transformation X=

(X^{h}) , the vector field \tilde{X} in T(M) with components (\begin{array}{ll}X^{h} y^{a}(\partial_{a}X^{h}+ A_{a}^{h}\end{array}) is a

fibre-preserving infinitesimal conformal transformation by means of the
proof of Theorem 2. Thus the formula (3. 3) holds. Putting A=\overline{h}, B=j
and C=i in (3. 3) and taking account of (2. 2), (2. 3) and (2. 4) we obtain

(3.6) A_{k}^{a}K_{aji}^{hh}-A_{a}^{h}K_{kj\iota}^{a}.+\nabla_{j}\nabla_{i}A_{k}^{h}+\Gamma_{jk}^{a}\nabla_{i}A_{a}^{h}+\Gamma_{zk}^{a}.\nabla_{j}A_{a}^{h}

+\partial_{k}(L_{X}\Gamma_{j_{l}}^{h}\cdot)+(\Gamma_{kj}^{a}g_{ai}+\Gamma_{ki}^{a}g_{ja})\rho^{h}=0 .

On the other hand, from the definition of A_{i}^{h} and the commutation formula for
L_{X} and \nabla_{k} , we get (3. 7) and (3. 8), by using L_{X}\Gamma_{ji}^{h}=\delta_{j}^{h}\rho_{i}+\delta_{i}^{h}\rho_{j} ,

(3. 7) \nabla_{k}A_{l}^{h}.=-\delta_{k}^{h}\rho_{i}-g_{ki}\rho^{h} .

(3.8) \partial_{k}(S_{X}\Gamma_{ji}^{h})=\delta_{j}^{h}(\nabla_{k}\rho_{i}+\Gamma_{ki}^{a}\rho_{a})+\delta_{i}^{h}(\nabla_{k}\rho_{j}+\Gamma_{kj}^{a}\rho_{a}) .

Substituting (3. 7) and (3. 8) into (3. 6), we obtain (3. 5). Q. E. D.
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\S 4. Proof of Theorem 1.

In this section we assume M be a complete Riemannian manifold with
positive constant scalar curvature K and satisfying the condition \nabla_{k}K_{ji}=

\nabla_{j}K_{ki} . And let M admits a non-affine infinitesiaml projective transfor-
mation X with components X^{h} . Then by definition, there exists a 1-form \rho_{i}

such that

(4. 1) \subset C_{X}\Gamma_{ji}^{h}=\delta_{j}^{h}\rho_{i}+\delta_{l}^{h}.\rho_{j} ,

where \rho_{i}=\nabla_{i}\rho and \rho=\frac{1}{n+1}\nabla_{a}X^{a} . Since X is a non-affine infinitesimal

projective transformation, \rho is a non constant function in M. We shall show
this function \rho is a solution of the differential equation (*) in Tanno’s
Theorem E.

Using the relation on the Lie derivative of the curvature tensor:
L_{X}K_{kji}^{h}=\nabla_{k}(L_{X}\Gamma_{ji}^{h})-\nabla_{j}(L_{X}\Gamma_{ki}^{h}) , we can prove

(4.2) L_{X}K_{ji}=-(n-1)\nabla_{j}\rho_{i} .

By means of the commutation formula for \nabla_{k} and S_{X} and by (4. 1), (4. 2)

and the Ricci identity for \nabla_{j}\nabla_{k}\rho_{i}-\nabla_{k}\nabla_{j}\rho_{i} , we get

0=L_{X}(\nabla_{k}K_{ji}-\nabla_{j}K_{ki})

=(n-1)K_{kji}^{a}\rho_{a}-\rho_{k}K_{ji}+\rho_{j}K_{k\iota}\cdot .

Thus we obtain the following equations:

(4.3) K_{kji}^{a} \rho_{a}=\frac{1}{n-1}(\rho_{k}K_{ji}-\rho_{j}K_{ki}) ,

(4.4) K_{k}^{a} \rho_{a}=\frac{K}{n}\rho_{k} .

To prove Theorem 1 we prove the following proposition.

PROPOSITION 4. 1. The following equations hold

(4.5) \Delta\rho+\frac{2(n+1)K}{n(n-1)}\rho=constant,

(4.6) \nabla_{k}\nabla_{j}\rho_{h}+\frac{(n+3)K}{n(n-1)}\rho_{k}g_{jh}-\frac{n+1}{n-1}\rho_{k}K_{jh}+\frac{1}{n-1}\rho_{j}K_{hk}+\frac{1}{n-1}\rho_{h}K_{kj}=0 ,

where \Delta\rho=\nabla_{a}\rho^{a} .

PROOF. Since M admits an infinitesimal projective transformation,
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from Proposition 3. 1, the equation (3. 5) holds. Transvecting (3. 5) with
g^{Ji} , we get A_{k}^{a}K_{a}^{h}-A_{a}^{h}K_{k}^{a}=0 . Applying \nabla_{h} to the both sides of this equation

and using (3. 7), (4. 4) and \nabla_{a}K_{k}^{a}(=\frac{1}{2}\nabla_{k}K)=0 , we obtain

(4.7) A^{af}V_{a}K_{bk}=0 ,

where A^{ji}=gA_{a}^{j}ia . On the other hand, from the definition of A_{i}^{h} we get

(4.8) A^{at}V_{a}K_{bk}=(2^{ab}\rho g+L_{X}g^{ab})\nabla_{a}K_{bk}

=-g^{ab}L_{X}(\nabla_{a}K_{bk})

=(n-1) \nabla_{k}(\Delta\rho+\frac{2(n+1)K}{n(n-1)}\rho) .

Thus from (4. 7) and (4. 8) we have (4. 5). Next, we apply g^{i}\Psi_{b} to the
both sides of (3. 5) [the index h being lowered]. Then we can get (4. 6) by
means of (3. 7), (4. 3), (4. 4), (4. 5) and \nabla_{i}K_{kjh}^{i}(=\nabla_{k}K_{jh}-\nabla_{j}K_{kn})=0 .

Q. E. D.

PROOF OF THEOREM 1. By the Ricci identity for \nabla_{k}\nabla_{j}\rho_{h}-\nabla_{j}\nabla_{k}\rho_{h} and by
(4. 3) and (4. 6), we can prove

(4.9) \rho_{k}G_{jh}=\rho_{j}G_{kh} ,

where we define G_{jh}=K_{jh}- \frac{K}{n}g_{jh} .

Using (4. 4) and (4. 9), we can easily show \rho_{k}G_{jh}=0 . Thus (4. 6) is
rewriten in the form

\nabla_{k}\nabla_{j}\rho_{h}+\frac{K}{n(n-1)}(2\rho_{k}g_{jh}+\rho_{j}g_{hk}+\rho_{h}g_{kj})=0 .

This shows the function \rho is the solution of the differential equation (*) in
Tanno’s Theorem E. And this solution \rho is non-trivial because it is a non
constant function. Therefore M is a space of positive constant curvature by
Theorem E. This completes the proof of Theorem 1. Q. E. D.

\S 5. Infinitesimal projective transformations in tangent bundles.

Let the tangent bundle T(M) be endowed with the complete lift metric
of M. A vector field \tilde{X} in T(M) is called an infinitesimal projective
transformation if there exists a function \tilde{\rho} in T(M) such that L_{\tilde{X}}\tilde{\Gamma}_{BC}^{A}=

\delta_{B}^{A}\tilde{\rho}_{C}+\delta_{C}^{A}\tilde{\rho}_{B} , where \tilde{\rho}_{C}=\tilde{\nabla}_{C}\tilde{\rho}. And if \tilde{\rho} is a constant function then \tilde{X} is
called an infinitesimal affine transformation.

In this section we shall prove Theorem 3. And to prove Theorem 3, we
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show the following fundamental proposition.

PROPOSITION 5. 1. Let \tilde{X} be an infinitesimal projective transforrmtion
with components (\begin{array}{l}X^{h}X^{\overline{h}}\end{array}) . Then X^{h} , X^{\overline{h}} and \tilde{\rho} are expressed in the following

forms :
(1) X^{h}=yA_{a}^{h}a+B^{h} .
(2) X^{\overline{h}}=yy(ab-\Gamma_{ar}^{h}A_{b}^{\gamma}+\delta_{a}^{h}\varphi_{b})+y^{O}(\partial_{a}B^{h}+C_{a}^{h})+F^{h} .
(3) \tilde{\rho}=y^{a}\varphi_{a}+\psi,

where A_{i}^{h} , C_{i}^{h} are the components of (1, 1) tensor fifields in M, B^{h}, F^{h} are the
components of contravariant vector fifields in M, \psi a function of x^{h} only and
\varphi_{i}=\nabla_{i}A_{a}^{a} . And furthermorc the following eqmtions hold:

(4) \nabla_{j}A_{i}^{h}=\delta_{j}^{h}\varphi_{i} ,

(5) \nabla_{j}C_{i}^{h}=-\delta_{j}^{h}\psi_{i} ,

(6) \nabla_{j}\varphi_{i}=0 ,
(7) \nabla_{j}\psi_{i}=0 ,
(8) L_{F}\Gamma_{ji}^{h}=0 ,

(9) L_{B}\Gamma_{ji}^{h}=\delta_{j}^{h}\psi_{i}+\delta_{i}^{h}\psi_{j} ,

(10) A_{k}^{a}K_{aji}^{h}=A_{a}^{h}K_{kji}^{a}=A_{i}^{a}K_{kja}^{h}=0 ,

(1) C_{k}^{a}K_{aji}^{h}=C_{a}^{h}K_{kji}^{a}=C_{i}^{a}K_{kja}^{h} .

where \psi_{i}=\nabla_{i}\psi and L_{B}, L_{F} denote the Lie derivations with respect to B=(B^{h})

and F=(F^{h}) , respectively. Conversely, let A_{i}^{h} , C_{i}^{h} are the components of
(1, 1) tensor fifields in M, B^{h} . F^{h} are the components of contravariant vector
fifields in M and \psi a function in M. If they satisfy (4)-(11) then the vector
fifield \tilde{X} whose components are defifined by (1) and (2) is an infinitesimal
projective transformation in T(M) , that is, \tilde{\rho} defifined by (3) satisfifies

L_{\tilde{X}}\tilde{\Gamma}_{BC}^{A}=\delta_{B}^{A}\tilde{\rho}_{C}+\delta_{C}^{A}\tilde{\rho}_{B} .

This Proposition 5. 1 will be proved by simple but long computation of
L_{\tilde{X}}\tilde{\Gamma}_{BA}^{A} . The detailed proof is omitted here.

The following lemma is useful to prove Theorem 3.

LEMMA. (cf. [5]). If M is a complete connected Riemannian manifold
which is not locally flat, then every homothetic transformation of M is an
isometry.

PROOF 0F THEOREM 3. Let M be a complete connected Riemannian
manifold and T(M) admits an infinitesimal projective transformation \tilde{X}.
Then, by Proposition 5. 1, (1)-(11) hold. Now, we define the contra-
variant vector fields Z=(Z^{h}) and W=(W^{h}) as Z^{h}=A_{a}^{h}\varphi a and W^{h}=-C_{a}^{h}\psi^{a} ,
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respectively, where \varphi^{h}=g^{ha}\varphi_{a} and \psi^{h}=g^{ha}\psi_{a} . Using (4), (5), (6) and (7).
we obtain

(5. 1) L_{Z}g_{ji}=2(\varphi_{a}\varphi^{a})g_{ji} and \varphi_{a}\varphi^{a}=constant ,

(5.2) S_{W}g_{ji}=2(\psi_{a}\psi^{a})g_{ji} and \psi_{a}\psi^{a}=constant .

Thus Z and W are infinitesimal homothetic transformations. Therefore, by
Lemma, Z and W are infinitesimal isometries if M is not locally flat. If Z
and W are infinitesimal isometries then by (5. 1) and (5. 2) we obtain \varphi_{i}=

0 and \psi_{i}=0 . This shows \tilde{\rho}=constant by (3). Thus \tilde{X} is an infinitesimal
affine transformation. This completes the proof of Theorem 3. Q. E. D.
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