Real hypersurfaces with cyclic-parallel Ricci tensor of a complex projective space

Jung-Hwan Kwon* and Hisao Nakagawa
(Received August 10, 1987, Revised May 19, 1988)

Introduction.

The study of real hypersurfaces of a complex projective space $P_{n} \boldsymbol{C}$ was initiated by Takagi [11], who proved that all homogeneous hypersurfaces of $P_{n} C$ could be divided into six types which are said to be of type A_{1}, A_{2}, B, C, D and E. He showed also in $[12,13]$ that if a real hypersurface M of $P_{n} C$ has two or three distinct constant principal curvatures, then M is locally congruent to one of the homogeneous ones of type A_{1}, A_{2} and B. This result is recently generalized by Kimura [4], who proves that a real hypersurface M of $P_{n} \boldsymbol{C}$ has constant principal curvatures and $J \boldsymbol{\xi}$ is principal if and only if M is locally congruent to one of the homogeneous hypersurfaces, where $\boldsymbol{\xi}$ denotes the unit normal and J is the complex structure of P_{n} \boldsymbol{C}. In particular, real hypersurfaces of type A_{1}, A_{2} and B of $P_{n} \boldsymbol{C}$ have been studied by several authors (cf. Cecil and Ryan [2], Kimura [5], Maeda [6] and Okumura [10]).

On the other hand, real hypersurfaces of a complex hyperbolic space H_{n} \boldsymbol{C} have also been investigated from different points of view and there are some studies by Chen, Ludden and Montiel [3] and Montiel and Romero [9]. In particular, real hypersurfaces of $H_{n} C$, which are said of type A, similar to those of type A_{1} and A_{2} of $P_{n} C$ were treated by Montiel and Romero [9].

Now, the Ricci tensor S is said to be cyclic-parallel if it satisfies

$$
\text { ভ } \nabla S(X, Y, Z)=0
$$

for any vector fields X, Y and Z, where \subseteq and ∇ denote the cyclic sum and the Riemannian connection, respectively. It is noticed in § 4 that the Ricci tensors of real hypersurfaces of type A_{1} or A_{2} (resp. A) of $P_{n} \boldsymbol{C}$ (resp. $H_{n} \boldsymbol{C}$) are cyclic-parallel. The purpose of this paper is to investigate this converse problem. Let M be a real hypersurface of a complex space form $M_{n}(c), c$ $\neq 0$, whose Ricci tensor is cyclic-parallel. In § 3, it is verified that if $J \xi$ is principal, then all principal curvatures of M are constant and the number of
distinct principal curvatures is at most 5. By means of this result and the classfication theorem due to Takagi [12] and Kimura [4], we can prove

Theorem. Let M be a real hypersurface of $P_{n} \boldsymbol{C}$, whose Ricci tensor is cyclic-parallel. If $J \xi$ is principal, then M is locally congruent to one of homogeneous hypersurfaces of $P_{n} \boldsymbol{C}$.

In the last section, real hypersurfaces of $P_{n} \boldsymbol{C}$ whose Ricci tensors are cyclic-parallel are partially classified in the case where $J \xi$ is principal.

The authors would like to express their thanks to the referee for his valuable suggestions.

1. Preliminaries.

First of all, we recall a semi-Sasakian structure of a Riemannian manifold or a Lorentz manifold. Let \bar{N} be a ($2 n+1$)-dimensional semiRiemannian manifold of index 0 or 1 with a semi-Riemannian metric tensor G. Let ϕ, \bar{E} and $\bar{\omega}$ be a tensor field of type (1,1), a vector field and a 1 -form on \bar{N}, respectively, satisying the following properties:

$$
\left\{\begin{array}{l}
\bar{\omega}(U)=\varepsilon G(U, \bar{E}), \bar{\omega}(\bar{E})=1, G(\bar{E}, \bar{E})=\varepsilon, \tag{1.1}\\
\phi \bar{E}=0, \bar{\omega} \circ \phi=0, \phi^{2}=-1+\bar{\omega} \otimes \bar{E}, \\
G(\phi U, \phi V)=G(U, V)-\varepsilon \bar{\omega}(U) \bar{\omega}(V),
\end{array}\right.
$$

for any vetor fields U and V on \bar{N}, where I denotes the identity mapping and $\varepsilon=1$ or -1 according as \bar{N} is Riemannian or Lorentz. In spite of the respective cases, the set ($\phi, \bar{E}, \bar{\omega}, G$) is called an almost contact metric structure and \bar{N} is called an almost contact metric manifold. If the almost contact metric atructure ($\phi, \bar{E}, \bar{\omega}, G$) satisfies

$$
\begin{equation*}
\bar{D}_{U} \phi(V)=-G(U, V) \bar{E}+\varepsilon \bar{\omega}(U) V, \tag{1.2}
\end{equation*}
$$

where \bar{D} denotes the Levi-Civita connection of N, then it is called a semiSasakian structure, and \bar{N} is called a semi-Sasakian manifold. As is easily seen, (1.1) and (1.2) imply

$$
\begin{equation*}
\bar{D}_{U} \bar{E}=\varepsilon \phi U, d \bar{\omega}(U, V)=G(\phi U, V), \bar{D}_{U} \phi(V)=\varepsilon \bar{R}^{\prime}(U, E) V, \tag{1.3}
\end{equation*}
$$

where \bar{R}^{\prime} denotes the Riemannian curvature tensor of \bar{N}, and hence \bar{E} is the Killing vector field.

For a semi-Sasakian manifold \bar{N} a plane section in the tangent space N_{X} at any point x of \bar{N} is called a ϕ-section if it is spanned by a unit vector u orthogonal to \bar{E}_{X} and ϕu. This section is non-degenerate in the case of the Lorentz manifold, because \bar{E} is the time-like vector field. The sectional curvature of the ϕ-section is called a ϕ-sectional curvature and \bar{N} is called a
semi-Sasakian space form if it has constant ϕ-sectional curvature. Let \bar{N} be a $(2 n+1)$-dimensional semi-Sasakian space form of ϕ-sectional curvature c, which is denoted by $N_{a}^{2 n+1}(c)$, where $a=0$ or 1 according as it is Riemannian or Lorentz. The Riemannian curvature tensor \bar{R}^{\prime} of $N_{a}^{2 n+1}(c)$ is given by

$$
\begin{align*}
\bar{R}^{\prime}(U, V) W & =[(c+3 \varepsilon)\{G(V, W) U-G(U, W) V\} \tag{1.4}\\
& +(\varepsilon c-1) \omega(W)\{\omega(U) V-\omega(V) U\} \\
& +(c-\varepsilon)\{(G(U, W) \omega(V) \\
& -G(V, W) \omega(U)\} E+G(\phi V, W) \phi U \\
& -G(\phi U, W) \phi V-2 G(\phi U, V) \phi W] / 4 .
\end{align*}
$$

In particular, if $c=\varepsilon$, then $N_{a}^{2 n+1}(c)$ is of constant curvature c. For details, see cf. Takahashi [14] and Yano and Kon [15].

Let \bar{N} be a semi-Sasakian manifold with a structure $(\phi, \bar{E}, \bar{\omega}, G)$ and let N be a $2 n$-dimensional semi-Riemannian hypersurface of \bar{N} tangent to \bar{E}. By the same symbol G the induced semi-Riemannian metric of N is denoted. Each tangent space N_{X} at a point x of N is by definition a non-degenerate subspace of \bar{N}_{X}. Hence a property of a vector space furnished with a scalar product gives the direct sum docomposition $\bar{N}_{X}=N_{X} \oplus N_{\bar{X}}$ and the normal space $N_{\bar{X}}^{\perp}$ is non-degenerate. An endomorphism P^{\prime} of the tangent bundle T (N) and a 1 -form F^{\prime} with values is the normal bundle $N(N)$ are defined by

$$
\phi X^{\prime}=P^{\prime} X^{\prime}+F^{\prime} X^{\prime}
$$

Then P^{\prime} is skew-symmetric, because ϕ is skew-symmetric, and the following relationships are given:

$$
\left\{\begin{array}{l}
G\left(F^{\prime} X^{\prime}, \xi^{\prime}\right)+G\left(X^{\prime}, \phi \xi^{\prime}\right)=0, \tag{1.5}\\
P^{\prime 2}+\phi F^{\prime}=-I+\omega^{\prime} \otimes E^{\prime}, F^{\prime} P^{\prime}=0, \\
P^{\prime} E^{\prime}=F^{\prime} E^{\prime}=0
\end{array}\right.
$$

for any tangent vector X^{\prime} and the unit normal ξ^{\prime}, where E^{\prime} and ω^{\prime} are the restriction of \bar{E} and $\bar{\omega}$ to N, respectively. Let D be the Levi-Civita connection of N and let σ^{\prime} and A^{\prime} be the second fundamental form of N and the shape operator in the direction of the unit normal, respectively. The first equations of (1.3) and (1.5) and the Gauss equation give

$$
\left\{\begin{array}{l}
D_{X} E^{\prime}=\varepsilon P^{\prime} X^{\prime}, F^{\prime} X^{\prime}=\varepsilon \sigma^{\prime}\left(X^{\prime}, E^{\prime}\right), A^{\prime} E^{\prime}=-\varepsilon \phi \xi^{\prime}, \tag{1.6}\\
\sigma^{\prime}\left(E^{\prime}, E^{\prime}\right)=0 .
\end{array}\right.
$$

By means of the formulas of Gauss and Weingarten, we have

$$
\begin{cases}D_{X} P^{\prime}\left(Y^{\prime}\right)=G\left(F^{\prime} Y^{\prime}, \xi^{\prime}\right) A^{\prime} X^{\prime} & +\phi \sigma^{\prime}\left(X^{\prime}, Y^{\prime}\right)-G\left(X^{\prime}, Y^{\prime}\right) E^{\prime} \tag{1.7}\\ & +\varepsilon \omega^{\prime}\left(Y^{\prime}\right) X^{\prime},\end{cases}
$$

Let R^{\prime} and S^{\prime} be the Riemannian curvature tensor and the Ricci tensor of N respectively. The Ricci tensor S^{\prime} is given by

$$
S^{\prime}\left(X^{\prime}, Y^{\prime}\right)=\sum \varepsilon_{j} G\left(R^{\prime}\left(E_{j}^{\prime}, X^{\prime}\right) Y^{\prime}, E_{j}^{\prime}\right)
$$

relative to an orthonormal frame $\left\{E^{\prime}{ }_{j}\right\}$ such that $G\left(E^{\prime}{ }_{i}, E_{j}^{\prime}\right)=\varepsilon_{i} \delta_{i j}$. In particular, if N is a semi-Sasakian space form of ϕ-sectional curvature c, then the Gauss equation of N is given by

$$
\begin{aligned}
& R^{\prime}\left(X^{\prime}, Y^{\prime}\right) Z^{\prime} \\
& =\left[(c+3 \varepsilon)\left\{G\left(Y^{\prime}, Z^{\prime}\right) X^{\prime}-G\left(X^{\prime}, Z^{\prime}\right) Y^{\prime}\right\}\right. \\
& +(\varepsilon c-1) \omega^{\prime}\left(Z^{\prime}\right)\left\{\omega^{\prime}\left(X^{\prime}\right) Y^{\prime}-\omega^{\prime}\left(Y^{\prime}\right) X^{\prime}\right\} \\
& +(c-\varepsilon)\left\{G\left(X^{\prime}, Z^{\prime}\right) \omega^{\prime}\left(Y^{\prime}\right)-G\left(Y^{\prime}, Z^{\prime}\right) \omega^{\prime}\left(X^{\prime}\right)\right\} E^{\prime} \\
& \left.+G\left(P^{\prime} Y^{\prime}, Z^{\prime}\right) P^{\prime} X^{\prime}-G\left(P^{\prime} X^{\prime}, Z^{\prime}\right) P^{\prime} Y^{\prime}-2 G\left(P^{\prime} X^{\prime}, Y^{\prime}\right) P^{\prime} Z^{\prime}\right] / 4 \\
& +G\left(\sigma^{\prime}\left(Y^{\prime}, Z^{\prime}\right), \xi^{\prime}\right) A^{\prime} X^{\prime}-G\left(\sigma^{\prime}\left(X^{\prime}, Z^{\prime}\right), \xi^{\prime}\right) A^{\prime} Y^{\prime},
\end{aligned}
$$

where $E_{2 n}=E^{\prime}$ and hence S^{\prime} is given by

$$
\begin{align*}
S^{\prime}\left(X^{\prime}, Y^{\prime}\right) & =\left[(2 n-1)(c+3 \varepsilon) G\left(X^{\prime}, Y^{\prime}\right)\right. \tag{1.8}\\
& -2(n-1)(\varepsilon c-1) \omega^{\prime}\left(X^{\prime}\right) \omega^{\prime}\left(Y^{\prime}\right) \\
& \left.+(c-\varepsilon)\left\{3 G\left(P^{\prime} X^{\prime}, P^{\prime} Y^{\prime}\right)-G\left(X^{\prime}, Y^{\prime}\right)\right\}\right] / 4 \\
& +\sum_{j=1}^{2 n-1}\left\{G\left(\sigma^{\prime}\left(X^{\prime}, Y^{\prime}\right), \sigma^{\prime}\left(E_{j}^{\prime}, E_{j}^{\prime}\right)\right)\right. \\
& \left.-G\left(\sigma^{\prime}\left(X^{\prime}, E_{j}^{\prime}\right), \sigma^{\prime}\left(Y^{\prime}, E_{j}^{\prime}\right)\right)\right\}-\varepsilon G\left(F^{\prime} X^{\prime}, F^{\prime} Y^{\prime}\right) .
\end{align*}
$$

Now, let \bar{M} be a 2 n-dimensional Kaehler manifold with an almost complex structure J and a Kaehler metric tensor g. Let M be a real hypersurface of \bar{M} whose induced metric from that of \bar{M} is denoted by the same symbol g. By the similar definition to that of the set of (P^{\prime}, F^{\prime}), an endomorphism P of $T(M)$ and a 1-form F of $T(M)$ with values in $N(M)$ are defined by

$$
J X=P X+F X
$$

Then P is skew-symmetric and moreover the following relationships between these operators are given :

$$
\begin{align*}
& g(F X, \xi)+g(X, J \xi)=0 \tag{1.9}\\
& P^{2}=-I-J F, \quad F P=0
\end{align*}
$$

A Kaehler manifold of constant holomorphic sectional curvature is called a complex space form. A complex space form of constant holomorphic curvature $4 c$ and of complex dimension n is denoted by $M_{n}(c)$. For the unit normal ξ to M in \bar{M}, the tangent vector $J \xi$ is denoted by $-E$. Then E is the unit vector field on M and a 1 -form ω is defined by $F(X)=\omega(X) \xi$. As is well known, M admits an almost contact metric structure (P, E, ω, g). Let
σ and A be a second fundamental form of M and a shape operator derived from ξ, respectively. The covariant derivative ∇P is defined by $\nabla_{X} P(Y)=$ $\nabla_{X}(P Y)-P \nabla_{X} Y$. Then it follows from the Gauss and the Weingarten formulas that it satisfies

$$
\left\{\begin{array}{l}
\nabla_{X} P(Y)=-g(A X, Y)+\omega(Y) A X \tag{1.10}\\
\nabla_{X} E=P A X
\end{array}\right.
$$

where ∇ denotes the Riemannian connection of M. By the Gauss equation, the Ricci tensor S of M is given by

$$
\begin{align*}
S(X, Y) & =c\{(2 n+1) g(X, Y)-3 \omega(X) \omega(Y)\} \tag{1.11}\\
& +h g(A X, Y)-g(A X, A Y)
\end{align*}
$$

where h denotes the trace of A, and by the Codazzi equation we have

$$
\begin{equation*}
\nabla_{X} A(Y)-\nabla_{X} A(X)=c\{\omega(X) P Y-\omega(Y) P X+2 g(X, P Y) E\} . \tag{1.12}
\end{equation*}
$$

Frow now on, assume that the structure vector E is principal, that is, E is an eigenvector of A associated with an eigenvalue α. The equation (1.10) implies that
(1.13) $\nabla_{X} A(E)=d \alpha(X) E+\alpha P A X-A P A X$,
from which is follows that

$$
\left\{\begin{array}{l}
2 A P A=\alpha(A P+P A)+2 c P \tag{1.14}\\
\beta(A P+P A)=0, d \alpha=\beta \omega
\end{array}\right.
$$

where $\beta=d \alpha(E)$. It implies that the principal curvature α is constant provided that $c>0$. Suppose that $c<0$. Consequently (1.12), (1.13) and (1.14) give rise to

$$
\left\{\begin{array}{l}
\nabla_{X} A(E)=\alpha(P A-A P) X / 2-c P X+\beta \omega(X) E \tag{1.15}\\
\nabla_{E} A(Y)=\alpha(P A-A P) Y / 2+\beta \omega(Y) E
\end{array}\right.
$$

By combining these equations, the following relationship

$$
\begin{equation*}
d h(E)=\beta \tag{1.16}
\end{equation*}
$$

is obtained. In fact, since the function h is the trace of the shape operator A, we have

$$
\begin{aligned}
d h(E) & =\sum\left\{g\left(\nabla_{E} A\left(E_{j}\right), E_{j}\right)+2 g\left(A E_{j}, \nabla_{E} E_{j}\right)\right\} \\
& =\sum\left\{\alpha g\left((P A-A P) E_{j}, E_{j}\right) / 2+\beta \omega\left(E_{j}\right)^{2}+2 g\left(A E_{j}, \nabla_{E} E_{j}\right)\right\}
\end{aligned}
$$

which is independent of the choice of the orthonormal frame $\left\{E_{j}\right\}$. Accordingly, without loss of generality, each E_{j} may be chosen as a principal
vector.
For details stated in this section, see cf. Yano and Kon [15].

2. Hypersurfaces.

Let \bar{N} be a $(2 n+1)$-dimensional semi-Sasakian manifold equipped with the structure $(\phi, \bar{E}, \bar{\omega}, G)$. Assume that there is a fibration $\bar{\pi}: \bar{N} \rightarrow \bar{M}$, where \bar{M} denotes the set of orbits of \bar{E} and a real $2 n$-dimensional Kaehler manifold. \bar{N} is a principal circle bundle over \bar{M} and $\bar{\omega}$ is a connection in this bundle, and we have the orthogonal decomposition $T_{q}(\bar{N})=T_{\bar{\pi}(q)}(\bar{M})+$ $\operatorname{span}\{\bar{E}\}$. Let * be the horizontal lift with respect to the connection $\bar{\omega}$. We donote the Kaehler structure of \bar{M} by (J, g), where J is defined by $J X=d \bar{\pi}$ $\left(\phi X^{*}\right)$. Then, by the construction we have

$$
\begin{equation*}
(J X)^{*}=\phi X^{*}, G\left(X^{*}, Y^{*}\right)=g(X, Y) \tag{2.1}
\end{equation*}
$$

for any vector fields X and Y on \bar{M}. The following relation between the Riemannian connections $\bar{\nabla}$ of \bar{M} and \bar{D} on \bar{N} is derived from the above properties:

$$
\begin{equation*}
\left(\bar{\nabla}_{X} Y\right)^{*}=-\phi^{2} \bar{D}_{X} \cdot Y^{*}=\bar{D}_{X} Y^{*}-G\left(\phi X^{*}, Y^{*}\right) \bar{E}, \bar{D}_{X} \cdot E=\varepsilon \phi X^{*} \tag{2.2}
\end{equation*}
$$

Let N be a hypersurface tangent to \bar{E} of \bar{N}. In the sequel, we assume that there is a fibration $\pi: N \rightarrow M$, where M is a real hypersurface of \bar{M} such that the diagram

\[

\]

is commutative and the immersion i^{\prime} of N into \bar{N} is a diffeomorphism of the fibres. This shows that we have the orthogonal decomposition $T_{q}(N)=$ $\left(T_{\pi(q)} M\right)^{*}+\operatorname{span}\left\{E^{\prime}{ }_{q}\right\}$. Then the fibrations $\bar{\pi}: \bar{N} \rightarrow \bar{M}$ and $\pi: N \rightarrow M$ are both the Riemannian submersions in the sense of O^{\prime} Neill. By G and g the induced semi-Riemannian tensors of N and M are denoted, respectively. Let D and ∇ be the Levi-Civita connections on N and M, and σ^{\prime} and σ be the second fundamental forms of N and M, respectively. The associated shape operators are denoted by A^{\prime} and A. The Gauss formulas for the immersions i^{\prime} and i and (2.2) yield

$$
\begin{equation*}
D_{X} \cdot Y^{*}=\left(\nabla_{X} Y\right)^{*}-G\left(\phi X^{*}, Y^{*}\right) E^{\prime}, \quad \sigma^{\prime}\left(X^{*}, Y^{*}\right)=\sigma(X, Y)^{*} \tag{2.3}
\end{equation*}
$$

and by the Weingarten formulas for the immersions and (2.2) we have the
following relations between the shape operators A^{\prime} and A :

$$
\begin{equation*}
\left.A^{\prime} Y^{*}=(A Y)^{*}+\varepsilon G\left(A^{\prime} Y^{*}, E^{\prime}\right) E^{\prime}, D_{\bar{x}}^{\frac{1}{x}} \cdot \xi^{*}=\left(\nabla \frac{1}{x} \xi\right)\right)^{*}, \tag{2.4}
\end{equation*}
$$

where D^{\perp} and ∇^{\perp} are the covariant differentials with respect to the normal connections.

On the other hand, for the orthogonal operators $\left(P^{\prime}, F^{\prime}\right)$ and (P, F) of the immersions i^{\prime} and i respectively, (2.1) means that
(2.5) $(P X)^{*}=P^{\prime} X^{*},(F X)^{*}=F^{\prime} X^{*},(J \xi)^{*}=\phi \xi^{*}$,
and by (1.6) and (2.4) it turns out that

$$
\begin{equation*}
A^{\prime} Y^{*}=(A Y)^{*}+G\left(F^{\prime} Y^{*}, \xi^{*}\right) E^{\prime}, A^{\prime} E^{\prime}=-\varepsilon \phi \xi^{*} . \tag{2.6}
\end{equation*}
$$

For the relationship between covariant derivatives of the second fundamental form σ^{\prime} of N and σ of M, it follows from (1.3), (1.6), (2.3) and (2.4) that we have

$$
\left\{\begin{array}{l}
D_{X} \cdot \sigma^{\prime}\left(Y^{*}, Z^{*}\right)=\left\{\nabla_{X} \sigma(Y, Z)+\varepsilon g(P X, Y) F Z+\varepsilon g(P X, Z) F Y\right\}^{*}, \tag{2.7}\\
D_{x} \cdot \sigma^{\prime}\left(Y^{*}, E^{*}\right)=D_{E^{\prime}} \sigma^{\prime}\left(X^{*}, Y^{*}\right)=-\varepsilon\{\sigma(X, P Y)+\sigma(P X, Y)\}^{*}, \\
D_{X} \cdot \sigma^{\prime}\left(E^{\prime}, E^{\prime}\right)=D_{E^{\prime}} \sigma^{\prime}\left(E^{\prime}, X^{*}\right)=-2 F^{\prime} P^{\prime} X^{*} .
\end{array}\right.
$$

By means of (1.1) and (2.2), a straightforward calculation gives rise to

$$
\begin{align*}
(\bar{R}(X, Y) Z)^{*} & =\bar{R}^{\prime}\left(X^{*}, Y^{*}\right) Z^{*}+\varepsilon\left\{G\left(Z^{*}, \phi Y^{*}\right) \phi X^{*}\right. \tag{2.8}\\
& \left.-G\left(Z^{*}, \phi X^{*}\right) \phi Y^{*}-2 G\left(Y^{*}, \phi X^{*}\right) \phi Z^{*}\right\}
\end{align*}
$$

and by choosing the orthonormal frame field in which E^{\prime} is included, it turns out that

$$
\begin{equation*}
\bar{S}(X, Y)=\bar{S}^{\prime}\left(X^{*}, Y^{*}\right)+2 \varepsilon g(X, Y) . \tag{2.9}
\end{equation*}
$$

Then, by making use of (2.3), (2.6), (2.7) and (2.8) it follows from the Gauss equations of N and M that we have

$$
\begin{align*}
& (R(X, Y) Z)^{*}=R^{\prime}\left(X^{*}, Y^{*}\right) Z^{*}+\varepsilon\{g(P Y, Z) P X \tag{2.10}\\
& -g(P X, Z) P Y-2 g(P X, Y) P Z\}^{*} \\
& +\left\{-G\left(F^{\prime} X^{*}, \xi^{*}\right) G\left(A^{\prime} Y^{*}, Z^{*}\right)+G\left(F^{\prime} Y^{*}, \xi^{*}\right) G\left(A^{\prime} X^{*}, Z^{*}\right)\right\} E^{*}
\end{align*}
$$

and hence it turns out that

$$
\begin{equation*}
S(X, Y)=S^{\prime}\left(X^{*}, Y^{*}\right)+2 \varepsilon g(P X, P Y) \tag{2.11}
\end{equation*}
$$

In particular, if \bar{N} is a semi-Sasakian space form of ϕ-holomorphic curvature c , then we have by (1.8)

$$
\begin{equation*}
S^{\prime}\left(X^{*}, Y^{*}\right)=[(2 n-1)(c+3 \varepsilon) g(X, Y) \tag{2.12}
\end{equation*}
$$

$$
\begin{aligned}
& +(c-\varepsilon)\{3 g(P X, P Y)-g(X, Y)\}] / 4 \\
& +\sum_{j=1}^{2 n-1}\left\{g\left(\sigma(X, Y), \sigma\left(E_{j}, E_{j}\right)\right)\right. \\
& \left.-g\left(\sigma\left(X, E_{j}\right), \sigma\left(Y, E_{j}\right)\right)\right\} \\
& -\varepsilon g(F X, F Y), \\
S^{\prime}\left(X^{*}, E^{*}\right)= & \left.\varepsilon \sum_{j=1}^{2 n-1}\left\{g\left(F X, \sigma\left(E_{j}, E_{j}\right)\right)-g\left(\sigma X, E_{j}\right), F E_{j}\right)\right\}, \\
S^{\prime}\left(E^{\prime}, E^{\prime}\right)= & (2 n-1) c-\sum_{j=1}^{2 n-1} g\left(F E_{j}, F E_{j}\right) .
\end{aligned}
$$

Finally, the following property between the covariant derivatives of Ricci tensors S^{\prime} and S is given. The proof is omitted, because it is only the straightforward calculation in which many formulas mentioned above are used.

Lemma 2.1. Let \bar{N} be a semi-Sasakian space form of constant $\boldsymbol{\phi}$ sectional curvature c and N be semi-Riemannian hypersurface tangent to the structure vector \bar{E}. Assume that there exist fibrations $\bar{\pi}: \bar{N} \rightarrow \bar{M}$ and $\pi: N \rightarrow$ M, where M is a hypersurface of a Kaehler manifold \bar{M}. If the one is compatible with the other, then we have

$$
\begin{align*}
D_{X} S^{\prime}\left(Y^{*}, Z^{*}\right) & =\nabla_{X} S(Y, Z)+g(P X, Y) S^{\prime}\left(E^{\prime}, Z^{*}\right) \tag{2.13}\\
& +g(P X, Z) S^{\prime}\left(E^{\prime}, Y^{*}\right) \\
& -2 \varepsilon\{g(\sigma(Y, P Z), F X)+g(\sigma(Z, P Y), F X)\} \\
& +2 \varepsilon\{g(\sigma(X, Y), F P Z)+g(\sigma(X, Z), F P Y)\}
\end{align*}
$$

for any vector fields X, Y and Z tangent to M.
REMARK. Lemma 2.1 holds in the case where N and M are semiRiemannian submanifolds of N and M, respectively.

3. Cyclic-parallel Ricci tensors.

This section is devoted to the investigation about the principal curvatures of a real hypersurface of a complex space form whose Ricci tensor is cyclic-parallel. The Ricci tensor S of the semi-Riemannian manifold is said to be cyclic-parallel, if it satisfies $\mathfrak{S} \nabla S=0$, where \mathbb{S} denotes the cyclic sum, that is, it satisfies
(3.1) $\subseteq \nabla S(X, Y, Z)=\nabla_{X} S(Y, Z)+\nabla_{Y} S(Z, X)+\nabla_{Z} S(X, Y)=0$
for any tangent vector fields X, Y and Z, which is equivalent to $\nabla S(X, X$, $X)=0$. For this condition, refer to Besse [1].

Let M be a real hypersurface of $M_{n}(c)(c \neq 0)$ whose Ricci tensor is cyclic-parallel. Then M admits an almost contact metric structure (P, E, ω, g). Assume that the structure vector field E is principal. The principal curvature is denoted by α. Then it follows from some formulas given in § 1
that (3.1) is reduced to

$$
\begin{align*}
& h\left\{g\left(\nabla_{X} A(Y), Z\right)+g\left(\nabla_{Y} A(Z), X\right)+g\left(\nabla_{Z} A(X), Y\right\}\right. \tag{3.2}\\
& +\{X h g(A Y, Z)+Y h g(A Z, X)+Z h g(A X, Y)\} \\
& -\left\{g\left(A X, \nabla_{Y} A(Z)+\nabla_{Z} A(Y)\right)\right. \\
& +g\left(A Y, \nabla_{z} A(X)+\nabla_{X} A(Z)\right) \\
& +g\left(A Z, \nabla_{X} A(Y)+\nabla_{Y}(X)\right\} \\
& -3 c\{\omega(X) g(B Y, Z)+\omega(Y) g(B Z, X)+\omega(Z) g(B X, Y)\}=0,
\end{align*}
$$

where B denotes the operator of $T(M)$ defined by $P A-A P$.
First of all, the constancy of the principal curvature α is proved. In the case of $P_{n} \boldsymbol{C}$, the fact is true without the condition that S is cyclic-parallel.

Lemma 3.1. Let M be a real hypersurface of $M_{n}(c),(c \neq 0)$, whose Ricci tensor is cyclic-parallel. If E is principal, then the corresponding principal curvature α is constant.

Proof. Putting $Z=E$ in (3.2) and taking account of (1.15) and (1.16), we have

$$
\begin{align*}
& \left(3 \alpha h-8 c-2 \alpha^{2}\right) B-2 \alpha\left(P A^{2}-A^{2} P\right)+2 \alpha(d h \otimes E+\omega \otimes \operatorname{grad} h) \tag{3.3}\\
& +2 \beta A+6 \beta(h-2 \alpha) \omega \otimes E=0
\end{align*}
$$

where $\beta=d \alpha(E)$. If this operator acts on E, then it turns out that (3.4) $\alpha d h=\beta(4 \alpha-3 h) \omega$,
from which together with (1.16) it follows that

$$
\begin{equation*}
\beta(\alpha-h)=0 \tag{3.5}
\end{equation*}
$$

Let U be the set consisting of points of M at which the function β is not zero. Suppose that U is not empty. Then we have

$$
\begin{equation*}
P A+A P=0, \alpha=h \tag{3.6}
\end{equation*}
$$

by means of (1.14) and (3.5). Accordingly the following equation is derived from (3.3):

$$
\left(\alpha^{2}-8 c\right) P A-\alpha \beta \omega \otimes E+\beta A=0
$$

For a principal vector X on U orthogonal to E with a principal curvature λ, we have

$$
\left(\alpha^{2}-8 c\right) \lambda P X+\beta \lambda X=0
$$

Since X and $P X$ are mutually orthogonal, it means that $\lambda=0$ on U. This together with (3.6) implies that

$$
A X=0, A P X=0,
$$

which show that the shape operator A and the structure tensor P commute each other on U. The same argument as those of Okumura [10] ($c>0$) and Montiel and Romero [9] ($c<0$) proves that α is constant on U. By (1.15) it turns out that $\beta=0$, which is a contradiction. Consequently U is empty and therefore $\beta=0$ on M.
q. e. d.

Since α is constant, (3.3) and (3,4) give

$$
\alpha d h=0,\left(3 \alpha h-8 c-2 \alpha^{2}\right) B-2 \alpha\left(P A^{2}-A^{2} P\right)=0 .
$$

By making use of this equation, the following theorem is proved. By means of the congruence theorem due to Kimura [4], the main theorem mentioned in the introduction is a direct consequence of the following result.

ThEOREM 3.2. Let M be a real hypersurface of $M_{n}(c), c \neq 0$, whose Ricci tensor is cyclic-parallel. If the structure vector E is principal, then all principal curvatures of M are constant and the number of distinct principal curvatures are at most 5 .

Proof. Let X be a principal vector orthogonal to E with a principal curvature λ. Then it follows from (1.14) that

$$
(2 \lambda-\alpha) A P X=(\lambda \alpha+2 c) P X .
$$

Let V be the set consisting of points at which the function $2 \lambda-\alpha$ is non-zero. In the case of $c>0, V$ is entirely equal to M. Suppose that V is not empty. Then $P X$ is also principal on the open set V and its corresponding principal curvature μ is given by

$$
\mu=(\alpha \lambda+2 c) /(2 \lambda-\alpha) .
$$

Consequently, as the relationship between principal curvatures λ and μ, (3.7) is reduced to

$$
\begin{equation*}
(\lambda-\mu)\{\alpha(\lambda+\mu)-k\}=0, k=\left(3 \alpha h-8 c-2 \alpha^{2}\right) / 2, \tag{3.8}
\end{equation*}
$$

which is the quartic equation of variable λ whose coefficients are not necessarily constant.

Suppose that $\alpha=0$. Then (3.8) is regarded as $c(\lambda-\mu)=0$ and hence $\lambda=\mu$, which implies that $\lambda^{2}=c>0$, because of the definition of μ. It means that λ is constant on V and hence the continuity of λ shows that V coincides with M.

On the other hand, suppose that $\alpha \neq 0$. It is seen that the function h is constant by (3.7) and hence (3.8) is the quartic equation of λ whose
coefficients are constant. It means that λ is constant on V and hence on M, and the number d of the distinct principal curvatures is at most 5 .

Next, the case where V is emtpy is considered. Then we have $2 \lambda=\alpha$ on M and hence $\alpha \lambda+2 c=0, \lambda^{2}=-c>0$ on M. Accordingly $\lambda \neq \alpha$ and $\alpha \neq$ 0 , and hence h is constant on M. Suppose that there exist a point x and a principal vector u at x orthogonal to E_{x} with a principal curvature τ such that $\tau \neq \alpha / 2$. Then $P_{x} u$ becomes a principal vector with a principal curvature

$$
(\alpha \tau+2 c) /(2 \tau-\alpha) \neq \alpha / 2
$$

and from (3.3) it follows that

$$
(2 \tau-\alpha)(3 h-2 \tau-\alpha)=0 .
$$

Accordingly, $\tau=(3 h-\alpha) / 2$ and it is different from $\boldsymbol{\alpha}$. In fact, suppose that $\tau=\alpha$ and its multiplicity is equal to p. Then we have $h=\alpha$, which yields $(2 n-1+p) \alpha=0$, a contradiction. This shows that there exist distinct constant principal curvatures $\alpha, \alpha / 2$ and $(3 h-\alpha) / 2$.
q. e. d.

Remark 1. In a complex projective space Kimura [4] proved that if all principal curvatures are constant and if E is principal, then $d \leqq 5$.

Remark 2. In a complex hyperbolic space, Montiel and Romero [10] gave an example of a real hpersurface whose distinct principal curvatures are α and $\alpha / 2$ with multiplicites 1 and $2 n-2$. It is stated in the next section.

Remark 3. Under the condition $\nabla(ভ \nabla S)=0$, the same conclusion as that in this section is obtained.

4. Examples.

In this section, some standard examples of real hypersurfaces of $M_{n}(c)$ ($c \neq 0$) whose Ricci tensors are cyclic-parallel are given. In the complex Euclidean space \boldsymbol{C}^{n+1} equipped with the Hermitian form F, the Euclidean metric of \boldsymbol{C}^{n+1} which is identified with $\boldsymbol{R}^{2 n+2}$ is given by Re F. For the unit sphere $S^{2 n+1}=\left\{z \in C^{n+1}: F(z, z)=1\right\}$ the tangent space $T_{z} S^{2 n+1}$ at each point z can be identified with $\left\{w \in C^{n+1}: \operatorname{Re} F(z, w)=0\right\}$. Let T_{z}^{\prime} be the orthogonal complement of the vector $i z$ in $T_{z} S^{2 n+1}$. When the sphere $S^{2 n+1}$ is considered as a principal fibre bundle over $P_{n} \boldsymbol{C}$ with the structure group S^{1} and the projection π, there is a connection such that T_{z}^{\prime} is the horizontal subspace at z which is invariant under the S^{1}-action. The Fubini-Study metric g of constant holomorphic sectional curvature 4 is given by $g_{P}(X$, $Y)=\operatorname{Re} F_{z}\left(X^{*}, Y^{*}\right)$ for any tangent vectors X and Y in $T_{P}\left(P_{n} \boldsymbol{C}\right)$, where
z is any point of $S^{2 n+1}$ with $\pi(z)=p$ and, X^{*} and Y^{*} are the vectors in T_{z}^{\prime} such that $d \pi X^{*}=X$ and $d \pi Y^{*}=Y$. On the other hand, the complex structure $J: w \rightarrow i w$ in T_{z}^{\prime} is compatible with the action of S^{1} and induces the almost complex structure J on $P_{n} \boldsymbol{C}$ such that $d \pi \circ i=J \circ d \pi$. Then $P_{n} \boldsymbol{C}$ is a complex projective space with constant holomorphic curvature 4.

Now, for any positive number r a hypersurface $N_{0}(2 n, r)$ of $S^{2 n+1}$ is defined by

$$
N_{0}(2 n, r)=\left\{\left(z_{1}, \ldots, z_{n+1}\right) \in S^{2 n+1} \subset \boldsymbol{C}^{n+1}: \sum_{j=1}^{n}\left|z_{j}\right|^{2}=\mathrm{r}\left|z_{n+1}\right|^{2}\right\}
$$

For an integer $m(2 \leqq m \leqq n-1)$ and a positive number s, a hypersurface N ($2 n, m, s$) of $S^{2 n+1}$ is defined by

$$
\begin{aligned}
N(2 n, m, s)= & \left\{\left(z_{1}, \ldots, z_{n+1}\right) \in S^{2 n+1} \subset \boldsymbol{C}^{n+1}:\right. \\
& \left.\sum_{j=1}^{m}\left|z_{j}\right|^{2}=s \sum_{j=m+1}^{n+1}\left|z_{j}\right|^{2}\right\} .
\end{aligned}
$$

Then it is seen that $N_{0}(2 n, r)$ and $N(2 n, m, s)$ are both isoparametric hypersurfaces of $S^{2 n+1}$ which have two distinct constant principal curvatures $[12,13]$, and the second fundamental forms are parallel.

For a real hypersurface M of $P_{n} \boldsymbol{C}$ it is known that we can construct a real hypersurface N of $S^{2 n+1}$ which is a principal S^{1}-bundle over M with totally geodesic fibres and the projection π. Moreover, the projection is compatible with the Hopf fibration $\bar{\pi}: S^{2 n+1} \rightarrow P_{n} C$, that is, the diagram

\[

\]

is commutative (i^{\prime} and i being the respective immersions). Since the second fundamental forms of the immersions i^{\prime} of the examples mentioned above are parallel, so are the Ricci tensors. It follows from this result together with Lemma 2.1 that $M_{0}(2 n-1, r)=\pi\left(N_{0}(2 n, r)\right)$ and $M(2 n-1, m, s)=\pi$ ($N(2 n, m, s))(n \geqq 3)$ are examples of real hypersurfaces of $P_{n} C$ whose Ricci tensors are cyclic-parallel, because the shape operator and the induced structure tensor P commute with each other.

REMARK 1. It is known [11] that $M_{0}(2 n-1, r)$ and $M(2 n-1, m, s)$ are both compact connected real hypersurfaces of $P_{n} \boldsymbol{C}$ with constant two or three distinct principal curvatures respectively, which are said to be of type A_{1} and A_{2} respectively.

Remark 2. It is shown in [2] and [10] that $M_{0}(2 n-1, r)$ and M $(2 n-1, m, s), s=(m-1) /(n-m)$, are pseudo-Einstein. From this property that the Ricci tensor is cyclic-parallel can be checked by the direct calculation.

Now, some examples of real hypersurfaces of $H_{n} C$ are considered. In C^{n+1} with the standard basis, a Hermitian form F is defined by

$$
F(z, w)=-z_{0} \bar{w}_{0}+\sum_{k=1}^{n} z_{k} \bar{w}_{k},
$$

where $z=\left(z_{0}, \ldots, z_{n}\right)$ and $w=\left(w_{0}, \ldots, w_{n}\right)$ are in \boldsymbol{C}^{n+1}. The Minkowski space ($\left.\boldsymbol{C}^{n+1}, F\right)$ is simply denoted by \boldsymbol{C}_{1}^{n+1}. The scalar product given by Re $F(z, w)$ is a semi-Riemannian metric of index 2 in \boldsymbol{C}_{1}^{n+1}. Let $H_{1}^{2 n+1}$ be a real hypersurface of \boldsymbol{C}_{1}^{n+1} defined by

$$
H_{1}^{2 n+1}=\left\{z \in \boldsymbol{C}_{1}^{n+1}: F(z, z)=-1\right\},
$$

and let G be a semi-Riemannian metric of $H_{1}^{2 n+1}$ induced from the complex Lorentz metric Re F of \boldsymbol{C}_{1}^{n+1}. Then $\left(H_{1}^{2 n+1}, G\right)$ is the Lorentz manifold of constant curvature -1, which is called an anti-de Sitter space. For any point z of $H_{1}^{2 n+1}$ the tangent space $T_{z} H_{1}^{2 n+1}$ can be identified with $\left\{w \in \boldsymbol{C}_{1}^{n+1}\right.$: $\operatorname{Re} F(z, w)=0\}$. Moreover, similar to the case of the complex projective space, it is known in [9] that $H_{1}^{2 n+1}$ is a principal S^{1}-bundle over a complex hyperbolic space $H_{n} \boldsymbol{C}$ with the projection $\pi: H_{1}^{2 n+1} \rightarrow H_{n} \boldsymbol{C}$, which is a semiRiemannian submersion with the fundamental tensor J and time-like totally geodesic fibres.

Now, for given integers p and q with $p+q=n-1$ and $r \in \boldsymbol{R}$ with $0<r<$ 1, a Lorentz hypersurface $N_{p, q}(r)$ of $H_{1}^{2 n+1}$ is defined by

$$
N_{p, q}(r)=\left\{\left(z_{0}, \ldots, z_{n}\right) \in H_{1}^{2 n+1}: r\left(-\left|z_{0}\right|^{2}+\sum_{j=1}^{p}\left|z_{j}\right|^{2}\right)=-\sum_{j=p+1}^{n}\left|z_{j}\right|^{2}\right\}
$$

and a Lorentz hypersurface N_{n} of $H_{1}^{2 n+1}$ is given by

$$
N_{n}=\left\{\left(z_{0}, \ldots, z_{n}\right) \in H_{1}^{2 n+1}:\left|z_{0}-z_{1}\right|^{2}=1\right\} .
$$

Then it is seen from [8] that $N_{p, q}(r)$ is isometric to $H_{1}^{2 p+1}(1 /(\mathrm{r}-1)) \times S^{2 q+1}$ $(r /(1-r))$ and the second fundamental forms of $N_{p, q}(r)$ and N_{n} are both parallel, and hence so are the Ricci tensors.

Since $N_{p, q}(r)$ and N_{n} are S^{1}-invariant, $M_{p, q}(r)=\pi\left(N_{p, q}(r)\right)$ and $M_{n}=\pi$ $\left(N_{n}\right)$ are real hypersurfaces of $H_{n} C$. Then $\pi: N_{p, q}(r) \rightarrow M_{p, q}(r)$ and $\pi: N_{n}$ $\rightarrow M_{n}$ are semi-Riemannian submersions which are compatible with the $S^{1}-$ fibration $\pi: H_{1}^{2 n+1} \rightarrow H_{n} C$. By means of Lemma 2.1 it follows that $M_{p, q}(r)$ and M_{n} are examples of real hypersurfaces of $H_{n} C$ whose Ricci tensors are cyclic-parallel, because the shape operator and the structure tensor commute with each other.

Real hypersurfaces of $H_{n} \boldsymbol{C}$ are due to Montiel [8] and Montiel and Romero [9].

REMARK 3. It is seen that $M_{p, q}(r)$ and M_{n} are complete connected real hypersurfaces of $H_{n} \boldsymbol{C}$ with constant two or three distinct principal curvatures, which are said to be of type A.

5. Classifications in $\mathbf{P}_{n} C$.

In this section the complete connected real hypersurface of $P_{n} C$ whose Ricci tensor is cyclic-parallel is considered. Let M be such a hypersurface of $P_{n} \boldsymbol{C}$ and assume that the structure vector E is principal. Then it is already seen that all principal curvatures are constant and the number d of distinct principal curvatures is at most 5 . Let $\lambda_{a}(a=0, \ldots, 4)$ be distinct principal curvatures with multiplicities m_{a}, respectively, defined by

$$
\begin{align*}
& \lambda_{0}=\alpha \\
& \lambda_{1}, \lambda_{2}: \text { the roots of } x^{2}-\alpha x-1=0 \tag{5.1}\\
& \lambda_{3}, \lambda_{4}: \text { the roots } x^{2}-k x / \alpha+k / 2+1=0
\end{align*}
$$

where $k=\left(3 \alpha h-8-2 \alpha^{2}\right) / 2(\alpha \neq 0)$. Accordingly, by means of a theorem due to Kimural [4], M is congruent to an open set of a homogeneous real hypersurface of $P_{n} C$.

In connection with the examples given in the previous section, we next investigate whether or not the homogeneous real hypersurfaces of $P_{n} C$ which are not of type A_{1} or A_{2} satisfy the condition $\subseteq \nabla S=0$. In order to answer this purpose, the sufficient condition for the cyclic-parallelism of the Ricci tensor is first considered.

LEMMA 5.1. Let M be a real hypersurface of $P_{n} \boldsymbol{C}$. If the structure vector is principal, then the Ricci tensor is cyclic-parallel if and only if

$$
\mathfrak{S} \nabla S \mid E^{\perp}=0, \subseteq
$$

for any vector fields X and Y, where E^{\perp} denotes the orthogonal complement of E.

PROOF. It suffices to prove only the "if " part. Since the operator \subseteq S is trilinear, we have

$$
\mathfrak{S} \nabla S(X, Y, Z+f E)=\subseteq \nabla S(X, Y, Z) \text { for any function } f
$$

from which together with the assumption $\subseteq \nabla S \mid E^{\perp}=0$ it follows that

$$
\subseteq \nabla S(X, Y, Z)=0 \text { for any vector fields } X \text { and } Y \text { of } E^{\perp}
$$

By repeating the similar argument to the above one, the conclusion is given.

> q. e. d.

By taking account of (3.2) and (3.3), it is easily seen that the second condition is equivalent to the equation (3.7), because h is constant.

Lemma 5.2. Let M be a real hypersurface of $P_{n} C$. If E is principal, then it satisfies the condition $\subseteq \nabla S(X, Y, E)=0$ for any vector fields X and Y if and only if the function h is constant and

$$
\begin{equation*}
\alpha\left(P A^{2}-A^{2} P\right)-k(P A-A P)=0 \tag{5.2}
\end{equation*}
$$

where $k=\left(3 \alpha h-2 \alpha^{2}-8\right) / 2$.
Let M be a homogeneous hypersurface of type B, C, D or E of $P_{n} C$. Then it has always principal curvatures λ_{3} and λ_{4} with the same multiplicities m_{3} and m_{4}, which satisfy $\lambda_{3} \lambda_{4}=-1$ (cf. [12], Table). Accordingly, in order for M to satisfy the condition $\subseteq \nabla S(X, Y, E)=0$, the principal curvatures λ_{3} and λ_{4} must satisfy the relation (5.2), in other words, they ought to be the roots of the second equation of (5.1). This means that $h=2 \alpha / 3$ is a necessary and sufficient condition. Since h is given by $h=\alpha+m_{1}\left(\lambda_{1}+\lambda_{2}\right)+$ $m_{3}\left(\lambda_{3}+\lambda_{4}\right)$, we have

$$
h=\left(1+m_{1}\right) \alpha-4 m_{3} / \alpha,
$$

because of $\lambda_{1}+\lambda_{2}=\alpha$ and $\lambda_{3}+\lambda_{4}=-4 / \alpha$. It yields that $h=2 \alpha / 3$ is equivalent to

$$
\alpha^{2}=12(n-1), 24 /(3 n-8), 48 / 13 \text { or } 72 / 25
$$

according as the homogenous hypersurface M of type B, C, D or E.
We next consider the condition $\subseteq \nabla S \mid E^{\perp}=0$. Suppose that the number d of distinct principal curvatures of a real hypersurface of $P_{n} C$ is at most three, say α, λ and μ. Since any vector fields $X_{a}(a=1,2,3)$ orthogonal to E have the direct sum decomposition $X_{a}=X_{a 1}+X_{a 2}$ such that $A X_{a 1}=\lambda X_{a 1}$ and $A X_{a 2}=\mu X_{a 2}$, we have $g\left(\nabla_{X 1} A\left(X_{2}\right), X_{3}\right)=\sum g\left(\nabla_{X a b} A\left(X_{c d}\right), X_{e f}\right)$. Since g $\left(\nabla_{X} A(Y), Z\right)$ is symmetric with respect to X, Y and Z orthogonal to E because of (1.12), we may consider without loss of generality that, in each term $g\left(\nabla_{X} A(Y), Z\right)$ of the right hand side of the above equation, Y and Z are both principal vectors corresponding to the principal curvature λ. Consequently, since the shape operetor is self-adjoint, we get

$$
g\left(\nabla_{X} A(Y), Z\right)=g\left(\nabla_{X}(A Y)-A \nabla_{X} Y, Z\right)=0
$$

from which it follows that $g\left(\nabla_{X_{1}} A\left(X_{2}\right), X_{3}\right)=0$ for any vector fields X_{a} orthogonal to E, and hence the condition

$$
\mathfrak{S} \nabla S \mid E^{\perp}=0
$$

is satisfied. It yields that the homogeneous real hypersurface of type B satisfies the above condition. For a real number $t(0<t<1)$ we denote by N ($2 n, t$) a hypersurface of $S^{2 n+1}$ defined by $\left|\sum_{j=1}^{n+1} z_{j}^{2}\right|^{2}=t$ and $\sum_{j=1}^{n+1}\left|z_{j}\right|^{2}=1$ for $\left(z_{1}, \ldots, z_{n+1}\right) \in \boldsymbol{C}^{n+1}$. Then it is seen by Takagi [13] that the hypersurface has constant principal curvatures $\lambda_{a}(a=1, \ldots, 4)$ with multiplicities 1,1 , $n-1$ and $n-1$, and that $t=\sin ^{2} 2 \theta$. Thus, for the projection π of the Hopf fibration of $S^{2 n+1}$ onto $P_{n} \boldsymbol{C}, M(2 n-1, t)=\boldsymbol{\pi}(N(2 n, t))$ is a compact real hypersurface of type B and, since $t=1 /(3 n-2)$ is equivalent to $\alpha^{2}=12(n-$ 1), the Ricci tensor of $M(2 n-1,1 /(3 n-2))$ is cyclic-parallel, because of $\alpha=2 \cot 2 \theta$. By means of Lemmas 3.1, 5.1 and 5.2 we can prove the following

Theorem 5.3. $\quad M_{0}(2 n-1, r), M(2 n-1, m, s)$ and $M(2 n-1,1 /(3 n-$ 2)) are complete and connected real hypersurfaces of $P_{n} \boldsymbol{C}$ whose Ricci tensor is cyclic-parallel and whose structure vector is principal.

Remark 1. Let X, Y and Z be principal vectors orthogonal to E associated with principal curvatures λ, μ and σ, respectively. Then the following equation is derived from (3.8):

$$
\subseteq \nabla S(X, Y, Z)=\{3 h-2(\lambda+\mu+\sigma)\} g\left(\nabla_{X} A(Y), Z\right) .
$$

For the homogenous real hypersurface of type C, D or E of $P_{n} \boldsymbol{C}$ whose value of α^{2} is given by $24 /(3 n-8), 48 / 13$ or $72 / 25$, the above relationship means that $\subseteq \nabla S \mid E^{\perp}=0$ if and only if $g\left(\nabla_{X} A(Y), Z\right)=0$ for any vector fields orthogonal to E.

Remark 2. Let M be a complete and connected real hypersurface of $H_{n} \boldsymbol{C}$. Montiel and Romero [9] proved that M is congruent to $M_{p, q}(r)$ or M_{n} provided that $B=P A-A P=0$. Accordingly it seems to be interesting whether or not Theorem 5.3 holds in the case of $H_{n} C$.

Bibliography

[1] A. L. BESSE, Einstein manifolds, Springer-Verlang, 1987.
[2] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc., 269 (1982), 481-499.
[3] B. Y. Chen, G. D. Ludden and S. Montiel, Real submanifolds of a Kaehlerian manifold, Algebraic, Groups and Geometries, 1 (1984), 174-216.
[4] M. KImURA, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc., 296 (1986), 137-149.
[5] M. Kimura, Real hypersurfaces in a complex projective space, Bull. Austral. Math. Soc., 33 (1986), 383-387.
[6] M. KON, Pseudo-Einstein real hypersurfaces in complex space forms, J. Differential Geometry, 14 (1979), 339-354.
[7] Y. MAEDA, On real hypersurfaces of a complex projective space, J. Math. Soc. Japan, 28 (1976), 529-540.
[8] S. MONTIEL, Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan, 37 (1985), 515-535.
[9] S. MONTIEL and A. ROMERO, On some real hypersurfaces of a complex hyperbolic space, Geometriae Dedicata, 20 (1986), 245-261.
[10] M. OkUMURA, Real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc., 213 (1975), 355-364.
[11] R. TAKAGI, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math., 10 (1973), 495-506.
[12] R. TAKAGI, Real hypersurfaces in a complex projective space with constant principal curvatures, J. Math. Soc. Japan, 27 (1975), 43-53.
[13] R. TAKAGI, Real hypersurfaces in a complex projective space, J. Math. Soc. Japan, 27 (1975), 506-516.
[14] T. TAKAHASHI, Sasakian manifold with pseudo-Riemannian metric, Tôhoku Math. J., 21 (1969), 271-290.
[15] K. Yano and M. KON, CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhauser, 1983.

Taegu Univ.
Univ. of Tsukuba

