On pseudo-product graded Lie algebras

Tomoaki YATSUI (Received April 13, 1987, Revised April 27, 1988)

Introduction.

For several years, N. Tanaka has worked on the geometry of pseudoproduct manifolds in connection with the geometric study of systems of k-th order ordinary differential equations, where $k \ge 2$. A study in this line can be found in his recent paper [6]. His theory shows that the geometry is closely related to the study of pseudo-product graded Lie algebras, which we will explain later on.

The main purpose of this paper is to prove structure theorems on some restricted types of pseudo-product graded Lie algebras.

Let $\mathfrak{m} = \bigoplus_{p < \mathfrak{o} \mathfrak{g}_p}$ be a graded Lie algebra with $0 < \dim \mathfrak{m} < \infty$. Then \mathfrak{m} is called a fundamental graded Lie algebra or simply an FGLA, if m is generated by g_{-1} . Let e and f be subspaces of g_{-1} . Then the triplet (m; e, f) is called a pseudo-product FGLA if the following conditions are satisfied:

(1)m is an FGLA. (2)

 $\mathfrak{g}_{-1} = \mathfrak{e} \oplus \mathfrak{f}$ and $[\mathfrak{e}, \mathfrak{e}] = [\mathfrak{f}, \mathfrak{f}] = \{0\}$

A pseudo-product FGLA (m; e, f) is called non-degenerate, if the condition " $x \in g_{-1}$ and $[x, g_{-1}] = \{0\}$ " implies x = 0.

Now let $g = \bigoplus_{p \in \mathbb{Z}} g_p$ be a graded Lie algebra and let e and f be subspaces of \mathfrak{g}_{-1} . Set $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$. Then \mathfrak{g} (together with \mathfrak{e} and \mathfrak{f}) is called a pseudoproduct graded Lie algebra if the following conditins are satisfied:

- (1)(m; e, f) is a pseudo-product FGLA.
- g is transitive, i. e. the condition " $p \ge 0$, $x \in g_p$ and $[x, g_{-1}] = \{0\}$ " (2)implies x=0.
- (3) $[g_0, e] \subset e \text{ and } [g_0, f] \subset f$

Let (m; e, f) be an FGLA and g_0 be its derivations of the graded Lie algebra m leaving both e and f invariant. Then the prolongation $\check{g} = \bigoplus_{p \in \mathbb{Z}} \check{g}_p$ of the pair $(m; g_0)$ is called the prolongation of (m; e, f) (see [4] and [6]), which may be characterized as the maximum pseudo-product graded Lie algebra $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ such that $\bigoplus_{p \leq 0} \mathfrak{g}_p = \mathfrak{m} \bigoplus_{q \in \mathbb{Q}} \mathfrak{g}_0$ (as graded Lie algebras). It is known that if $(\mathfrak{m}; \mathfrak{e}, \mathfrak{f})$ is non-degenerate, then $\check{\mathfrak{g}}$ is of finite dimension (see N. Tanaka [6], page 292).

These being prepared, our main theorems (Theorem 3.2 and 3.3) together may be stated as follows: let $g = \bigoplus_{p \in \mathbb{Z}} g_p$ be a pseudo-product graded Lie algebra over the field C of complex numbers or the field R of real numbers. Assume that the natural representations of g_0 on both e and f are irreducible and that the pseudo-product FGLA (m; e, f) is non-degenerate. If $g_2 \neq \{0\}$, the Lie algebra g is of finite dimension and simple.

Following N. Tanaka (see [5] and [6]), we will explain how the geometry of pseudo-product manifolds is related to the study of pseudo-product graded Lie algebras, as we promised. Let R be a manifold, and E and F be two differential systems on R. Then the triplet (R; E, F) is called a pseudo-product manifold, if both E and F are completely integrable, and E $\cap F = \{0\}$. Let (R; E, F) be a pseudo-product manifold. Assuming that the differential system D=E+F is regular, let us consider the symbol algebra (m(x); E(x), F(x)) of (R; E, F) at each point $x \in R$, which is a pseudo-product FGLA. Note that m(x) is the symbol algebra of D at x, and $g_{-1}=D(x)$. Given a pseudo-product FGLA, (m; e, f), the pseudo-product manifold (R; E, F) is called of type (m; e, f), if D is regular, the symbol algebra (m(x); E(x), F(x)) of (R; E, F) at each $x \in R$ is isomorphic with the given (m; e, f), and dim $R=\dim m$.

Now, let (m; e, f) be a non-degenerate pseudo-product FGLA, and let $g = \bigoplus_{p \in \mathbb{Z}} g_p$ be its prolongation. Then N. Tanaka showed that to every pseudo-product manifold (R; E, F) of type (m; e, f) there is associated, in canonical manner, a manifold (P, ω) with absolutely parallelism satisfying the following conditions: 1) dim $P = \dim g 2$) P is a fibred manifold over M, and 3) ω is a g-valued 1-form on P, and gives the absolutely parallelism. In particular, it follows that the Lie algebra α of all infinitesimal automorphisms of (R; E, F) is of finite dimension, and dim $\alpha \leq \dim g$. Futhermore, he showed that if g is simple, to every pseudo-product manifold (R; E, F) of type (m; e, f) there is associated a connection of type g on R in natural manner. Recently he has generalized this fact to the case where g is not semisimple (and satisfies certain conditions), and has applied the result to the geometric study of systems of k-th order ordinary differential equations, where $k \geq 3$.

We have thus seen that our main theorems are applicable to the geometry of pseudo-product manifolds. It should be remarked that our main theorems are likewise applicable to the geometry of pseudo-complex manifolds, which is based on N. Tanaka's work [4] and the fact that the complexification of a pseudo-complex FGLA becomes naturally a pseudoproduct FGLA (see also [6]). We will now give a brief description of the varoius sections. Following V. G. Kac [1], we first give basic definitions on graded Lie algebras and minimal graded Lie algebras. In Section 2, we consider a finite dimensional transitive graded Lie algebra $g = \bigoplus_{p \in \mathbb{Z}} g_p$ over *C* for which the natural representation of g_0 on g_{-1} is completely reducible. Our main task in this section is to determine the structure of the local part $g_{-1} \bigoplus g_0 \bigoplus g_1$ of g, and discuss conditions for g to be semisimple (Corollary 2.5). To do these, we apply the reasonings, due to V. G. Kac [1], in the realization of graded Lie algebras, and use the fundamental representation theory of finite dimensional Lie algebras. In Section 3 we prove the main theorems by using the finite dimensionality of the pseudo-product graded Lie algebras and by applying the results in Section 2.

Finally I warmly thank Professor N. Tanaka for his kind suggestion of the problem and thank Dr. Yamaguchi for his invaluable help.

§1. Preliminaries

In this section, the ground field K is assumed to be of characteristic zero. In fact in our applications K will be the field C of complex numbers or the field R of real numbers.

1.1. Graded Lie algebras.

Let g be a Lie algebra. If Z is the ring of integers, a Z-gradation of g is, by definition, a direct decomposition

$$\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$$
 such that $[\mathfrak{g}_i, \mathfrak{g}_j] = \mathfrak{g}_{i+j}$, dim $\mathfrak{g}_i < \infty$ $(i \in \mathbb{Z})$

We will call a Lie algebra g a \mathbb{Z} -graded Lie algebra when g has such a \mathbb{Z} -gradation. A subalgebra (resp. an ideal) $\mathfrak{F} \subseteq \mathfrak{g}$ is called a \mathbb{Z} -graded subalgebra (resp. ideal) if $\mathfrak{F} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{F} \cap \mathfrak{g}_i$. Let g and g' be two \mathbb{Z} -graded Lie algebras. Then, by definition, a homomorphism $\phi: \mathfrak{g} \to \mathfrak{g}'$ of \mathbb{Z} -graded Lie algebras preserves the \mathbb{Z} -gradation in the sense that $\phi(\mathfrak{g}_i) \subset \mathfrak{g}'_i$. Similarly isomorphisms and epimorphisms of \mathbb{Z} -graded Lie algebras are defined.

Let $g = \bigoplus_{i \in \mathbb{Z}} g_i$ be a \mathbb{Z} -graded Lie algebra. We will denote by g_- the subalgebra $\bigoplus_{i \leq -1} g_i$. Then a \mathbb{Z} -graded Lie algebra g is called *transitive* if it satisfies the following conditions :

(1.1.1) $g_{-1} \neq \{0\}$ and g_{-} is an FGLA.

(1.1.2) For $x \in g_i (i \ge 0)$, $[x, g_{-1}] = \{0\}$ implies x = 0.

1.2. Correspondence between local Lie algebra and graded Lie algebras (see V.G. Kac. [1]. page 1276-1277)

A direct sum of vector spaces $g_{-1} \oplus g_0 \oplus g_1$ is called a *local Lie algebra* if

one has bilinear maps $:g_i \times g_j \to g_{i+j}$ for |i|, |j|, $|i+j| \leq 1$, such that anticommutativity and the Jacobi identity hold whenever they make sense. Homomorphisms and isomorphisms of local Lie algebras are defined as in the case of graded Lie algebras. Given a \mathbb{Z} -graded Lie algebra $g = \bigoplus_{i \in \mathbb{Z}} g_i$, the subspace $g_{-1} \bigoplus g_0 \bigoplus g_1$ is a local Lie algebra, which is called the local part of g.

Now, let $g = \bigoplus_{i \in \mathbb{Z}} g_i$ be a \mathbb{Z} -graded Lie algebra generated by $g_{-1} \bigoplus g_0 \bigoplus g_1$. Then the \mathbb{Z} -graded Lie algebra g is called *minimal* if, for any other \mathbb{Z} -graded Lie algebra g', each isomorphism of the local parts \widehat{g} and \widehat{g}' extends to an epimorphism of g' onto g. Indeed, for any local Lie algebra \widehat{g} , there is a minimal \mathbb{Z} -graded Lie algebra g whose local part is isomorphic to \widehat{g} (see V. G. Kac [1], page 1276). We will utilize this fact in the proof of Lemma 2.2.

§2. Finite dimensional transitive graded Lie algebras

In this section, we state a necessary and sufficient condition under which a finite dimensional transitive Z-graded Lie algebra over C be semisimple. Also, throughout this section, we assume that the ground field is the field of complex numbers C.

2.1. Throughout this section, $g = \bigoplus_{i \in \mathbb{Z}} g_i$ will denote a finite dimensional transitive \mathbb{Z} -graded Lie algebra for which the representation of g_0 on g_{-1} is completely reducible. We denote by ϕ_i the representation of g_0 on g_i induced by restriction of the adjoint representation of g. By the assumption, we can decompose g_{-1} into a direct sum of g_0 -submodules

$$(2.1.1) \quad \mathfrak{g}_{-1} = \tilde{\mathfrak{g}}_{-1} \oplus \mathfrak{g}'_{-1}, \quad \tilde{\mathfrak{g}}_{-1} = \oplus_{j=1}^{t} \mathfrak{g}_{-1}^{(j)}, \quad \mathfrak{g}'_{-1} = \oplus_{j=t+1}^{n(-1)} \mathfrak{g}_{-1}^{(j)},$$

where each $g_{-1}^{(j)}$ is an irreducible g_0 -submodule of g_{-1} such that

```
 [\mathfrak{g}_{-1}^{(j)}, \mathfrak{g}_1] \neq \{0\} \text{ for } 1 \leq j \leq t 
and  [\mathfrak{g}_{-1}^{(j)}, \mathfrak{g}_1] = \{0\} \text{ for } t < j \leq n(-1).
```

We denote by $\phi_{-1}^{(j)}$ the representation of g_0 on $g_{-1}^{(j)}$ given by $[g_0, g_{-1}^{(j)}] \subset g_{-1}^{(j)}$. Since ϕ_{-1} is faithful and completely reducible, g_0 is a reductive Lie algebra, i. e, $g_0 = g'_0 \oplus c(g_0)$, where g'_0 denotes the semisimple part of g_0 and $c(g_0)$ the conter of g_0 .

From the assumption, we first deduce

LEMMA 2.1 The representation of g_0 on g is completely reducible.

PROOF. We first prove that g_0 -module g_- is completely reducible. By transitivity, we can consider g_0 as a subalgebra of the Lie algebra Dergr (g_-) of all the derivations of g_- preserving the gradation of g_- . On the other

hand, $\text{Dergr}(g_{-})$ contains the semisimple and nilpotent components of its elements (see N. Bourbaki [2], Ch. VII, § 5, n°1). Thus we can decompose the element x of $c(g_{0})$ as follows:

$$x = x_s + x_n, x_s, x_n \in \text{Dergr}(g_-),$$

where x_s (resp. x_n) is the semisimple (resp. nilpotent) component of x. Since $x|g_{-1}$ is semisimple and $x_n|g_{-1}$ is the nilpotent component of $x|g_{-1}$, we have $x_n|g_{-1}=0$. Since g_- is generated by g_{-1} , we have $x_n=0$, so $x=x_s$. Thus g_0 -module g_- is completely reducible. Next we prove that $g_p(p \ge 0)$ is a completely reducible g_0 -module. We will use induction on p. Since g_0 is reductive, the statement holds for p=0. We assume now that the statement holds for k. We consider the mapping

$$\iota:\mathfrak{g}_{k+1}\longrightarrow \operatorname{Hom}(\mathfrak{g}_{-1},\mathfrak{g}_k),$$

where for $x \in g_{k+1}$, $\iota(x) = ad(x)|g_{-1}$. Then, by transitivity, it is easy to prove that ι is a monomorphism of g_0 -modules, so we may regard g_{k+1} as a g_0 -submodule of Hom (g_{-1}, g_k) . Owing to the induction hypothesis, Hom (g_{-1}, g_k) is a completely reducible g_0 -module, so g_{k+1} is a completely reducible g_0 -module. This proves the Lemma. Q. E. D

2.2. Now we decompose g_1 into a direct sum of irreducible g_0 -submodules :

$$\mathfrak{g}_1 = \bigoplus_{j=1}^{n(1)} \mathfrak{g}_1^{(j)},$$

and we denote by $\phi_1^{(j)}$ the representation of g_0 on $g_1^{(j)}$ given by $[g_0, g_1^{(j)}] \subset g_1^{(j)}$. In this paragraph, we will investigate the relation between $\phi_1^{(k)}$ and $\phi_{-1}^{(j)}$.

Here we note that the elements of $c(g_0)$ act on $g_1^{(i)}(i=1,\ldots,n(1))$ by scalar multiplications.

Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}_0 . Then, associated to this choice is the system of weights of the representations ϕ_P , $\phi_{-1}^{(i)}$ and $\phi_1^{(i)}$.

We now fix a Cartan subalgebra b and a Weyl chamber, and by Λ_i (resp. M_i) we will denote the highest (resp. lowest) weight of $\phi_{-i}^{(i)}$ (resp. $\phi_{1}^{(i)}$). For each Λ_i (resp. M_i), $F_{\Lambda_i} \in \mathfrak{g}_{-1}^{(i)}$ (resp. $E_{M_i} \in \mathfrak{g}_1^{(i)}$) denotes a non-zero weight vector for Λ_i (resp. M_i). Also, for a root α of \mathfrak{g}_0 , we denote by e_α a root vector for α , and let h_α be the unique element of $C[e_\alpha, e_{-\alpha}]$ for which $\alpha(h_\alpha)=2$. Fix $1 \leq i \leq n(1)$. Then there is an integer i_0 such that $[\mathfrak{g}_{-1}^{(i_0)}, \mathfrak{g}_1^{(i)}] \neq \{0\}$, since \mathfrak{g} is transitive. Here we remark that $[\mathfrak{g}_{-1}^{(i_0)}, \mathfrak{g}_1^{(i)}] \neq \{0\}$ if and only if $[E_{M_i}, F_{\Lambda_{i_0}}] \neq \{0\}$.

Then we have

LEMMA 2.2. The representations of g_0 on $g_{-1}^{(i_0)}$ and $g_1^{(i)}$ are contra-

T. Yatsui

gredient (i. e., $\Lambda_{i_0} + M_i = 0$). Consequently $h := [E_{M_1}, F_{\Lambda_{i_0}}] \in \mathfrak{h}$.

PROOF. For covenience, we suppose that $i_0 = i = 1$. We first suppose that $\Lambda_1 + M_1 = \alpha$ is a root of $g'_0(i. e., [E_{M_1}, F_{\Lambda_1}] = e_{\alpha})$. Then we have

 $\mathfrak{g}_0' = \mathfrak{a}_1 \oplus \mathfrak{a}_2 \oplus \mathfrak{a}_3 \oplus \mathfrak{a}_4,$

where each a_i is a semisimple ideal in g'_0 such that

Ker $\phi_{-1}^{(1)} = a_1 \oplus a_2$ and Ker $\phi_1^{(1)} = a_2 \oplus a_3$.

Here we consider four cases. If α is a root of α_2 , then we have $\left[e_{\gamma} \left[E_{M_1}\right]\right]$ $[F_{\Lambda_1}] = [e_{-\gamma}[E_{M1}, F_{\Lambda_1}]] = 0$ for any root γ of α_2 , which is a contradiction because of the semisimplicity of a_2 . Next suppose that α is a root of a_3 . Since $\Lambda_1 + M_1 = \alpha$ and $M_1(h_{\alpha}) = 0$, we have $\Lambda_1(h_{\alpha}) \neq 0$. Let b be the three dimensional subalgebra of g with a basis $\{[F_{\Lambda_1}, e_{-\alpha}], h_{\alpha}, E_{M_1}\}$. We consider b-submodule N of b-module g generated by $F_{\Lambda_i}(i. e., N = Ad(U(b))F_{\Lambda_i})$, where $U(\mathfrak{b})$ is the universal enveloping algebra of \mathfrak{b}). Then we have 0=tr(ad $h_{\alpha}|N) = (\dim N)\Lambda_1(h_{\alpha})$, which is a contradiction. Similarly, when we suppose that α is a root of a_1 , we reach a contradiction by applying the above arguments to $\mathfrak{b} = CF_{\Lambda_1} \oplus Ch_{\alpha} \oplus C[E_{M_1}, e_{\alpha}]$ and $N = \mathrm{Ad}(U(\mathfrak{b}))E_{M_1}$. Finally, we suppose that α is a root of a_4 . Let a be a simple component of a_4 such that α is a root of α , and $\widehat{g}_{-1}^{(1)}$ (resp. $\widehat{g}_{1}^{(1)}$) be an irreducible α -submodule of $g_{-1}^{(1)}$ (resp. $g_1^{(1)}$) containing F_{Λ_1} (resp. E_{M_1}). Then the representations of a on $\widehat{g}_{-1}^{(1)}$ and $\widehat{\mathfrak{g}}_{1}^{(1)}$ are faithful and irreducible. Since $\Lambda_1 + M_1 = \alpha$, by V.G. Kac ([1], page 1299 Theorem 2), we know that $\widehat{\mathfrak{g}}^{(1)} \oplus \mathfrak{a} \oplus \widehat{\mathfrak{g}}^{(1)}$ is isomorphic to the local part of the special algebra S_n or the Hamiltonian algebra H_n as a local Lie algebra. Since S_n and H_n is minimal, it follows that g contains a subalgebra whose factor algebra is isomorphic to S_n or H_n . But since S_n and H_n is infinite dimensional, we obtain that g is infinite dimensional, which is a contradiction due to the assumption. Q. E. D

For the behavior of $h := [E_{M_i}, F_{\Lambda_{i_o}}]$, we have

LEMMA 2.3. $M_i(h) = -\Lambda_{i_0}(h) \neq 0$. Consequently $[h, E_{M_i}] \neq 0$, $[h, F_{\Lambda_{i_0}}] \neq 0$.

PROOF. For convenience, we suppose $i=i_0=1$. We now suppose that $[h, E_{M_1}]=0$. By transitivity, there is a weight vector v_{λ} of g_0 -module g_{-1} with a weight λ such that $[h, v_{\lambda}] \neq 0$. We put $\mathfrak{b} = CE_{M_1} \oplus Ch \oplus CF_{\Lambda_1}$ and $N = \mathrm{Ad}(U(\mathfrak{b}))v_{\lambda}$. Then we have $0 = \mathrm{tr}(\mathrm{ad} \ h|N) = (\mathrm{dim} \ N)\lambda(h)$, which is a contradiction. Q. E. D

For the pair $(g_{-1}^{(k)}, g_1^{(i)})$ of g_0 -modules such that $[g_{-1}^{(k)}, g_1^{(i)}] \neq \{0\}$, we have

LEMMA 2.4. For each i $(1 \le i \le n(1))$, there is a unique integer k such

that $[g_{-1}^{(k)}, g_{1}^{(i)}] \neq \{0\}$. Furthermore, $\Lambda_{k'} + M_i \neq 0$ for any k' such that $k \neq k'$.

PROOF. We first suppose that there are two integers k_1 , k_2 such that $[E_{M_i}, F_{\Lambda_{i_i}}] \neq \{0\}$ and $[E_{M_i}, F_{\Lambda_{i_i}}] \neq \{0\}$. We put $\alpha_1^{\vee} = [E_{M_i}, F_{\Lambda_{i_i}}]$ and $\alpha_2^{\vee} = [E_{M_i}, F_{\Lambda_{i_i}}]$. Then, by Lemma 2.3, we have

$$[\alpha_1^{\vee}, E_{\mathbf{M}_i}] = c_1 E_{\mathbf{M}_i}, \ [\alpha_2^{\vee}, E_{\mathbf{M}_i}] = c_2 E_{\mathbf{M}_i}, \ c_1, \ c_2 \in \mathbf{C}^{\times}.$$

First suppose that $\{\alpha_1^{\vee}, \alpha_2^{\vee}\}$ is linearly independent. Replace $\phi_{-1}^{(k_1)}$ by the irreducible representation $\tilde{\phi}_{-1}^{(k_1)}$ with the highest weight Λ_{k_1} and corresponding weight vector $F_{\Lambda_{k_1}} - c_2^{-1}c_1F_{\Lambda_{k_2}}$. Then we have

$$\tilde{h} := [E_{\mathbf{M}_{i}}, F_{\Lambda_{k_{1}}} - c_{2}^{-1}c_{1}F_{\Lambda_{k_{2}}}] = \alpha_{1}^{\vee} - c_{2}^{-1}h_{1}\alpha_{2}^{\vee} \neq 0$$

[$\tilde{h}, E_{\mathbf{M}_{i}}$]=0,

which is a contradiction by Lemma 2.3. Thus $\{\alpha_1^{\vee}, \alpha_2^{\vee}\}$ is linearly dependent. Moreover, multiplying E_{M_i} and $F_{\Lambda_{k_2}}$ by some non-zero scalars, we may assume that $\alpha_1^{\vee} = \alpha_2^{\vee}$ and $c_1 = c_2 = 1$. Also we put $F_{\Lambda} = F_{\Lambda_{k_1}} - F_{\Lambda_{k_1}}$. Then, for $s \ge 0$, we obtain by induction:

(ad
$$E_{\mathbf{M}_i}$$
)(ad $F_{\Lambda_{\mathbf{M}_i}}$)^{s+1} $F_{\Lambda} = -(s+1)(s+2)/2(ad F_{\Lambda_{\mathbf{M}_i}})^s F_{\Lambda}$.

If s_0 is the last integer such that $(\text{ad } F_{\Lambda_{s_0}})^{s_0}F_{\Lambda} \neq 0$, then we have $s_0 = -1$ or $s_0 = -2$, which is a contradiction.

Next we suppose that there are two integers k_1 , k_2 such that $[E_{M_i}, F_{\Lambda_{k_1}}] \neq \{0\}$, $\Lambda_{k_2} + M_i = 0$ and $[E_{M_i}, F_{\Lambda_{k_2}}] = 0$. Using the notation above, for $s \ge 0$, we obtain by induction

$$(ad E_{M_i})(ad F_{\Lambda_{k_i}})^{s+1}F_{\Lambda_{k_i}} = -(s+1)(s+2)/2(ad F_{\Lambda_{k_i}})^sF_{\Lambda_{k_i}}$$

Similarly we can reach a contradiction as above.

2.3. Using our previous results, we prove the following proposition which will play a crucial role in the investigation of the pseudo-product graded Lie algebra.

PROPOSITION 2.5. Let $g = \bigoplus_{i \in \mathbb{Z}} g_i$ be a finite dimensional transitive \mathbb{Z} -graded Lie algebra over \mathbb{C} for which the representation of g_0 on g_{-1} is completely reducible. Then we have the following

(i) Let \tilde{g}_{-1} and g'_{-1} be as in (2.1.1) so that $g_{-1} = \tilde{g}_{-1} \oplus g'_{-1}$. Then the **Z**-graded subalgebra $\tilde{g} = \bigoplus_{i \in \mathbb{Z}} \tilde{g}_i$ of g generated by $\tilde{g}_{-1} \oplus [\tilde{g}_{-1}, g_1] \oplus g_1$ is a semisimple Lie algebra. Furthermore the subalgebra $\bigoplus_{i \geq 1} g_i$ of g is generated by g_1 .

(ii) The radical \mathfrak{r} of \mathfrak{g} is a Z-graded ideal in $\mathfrak{g}(i. e., \mathfrak{r}=\bigoplus_{i\in \mathbb{Z}}\mathfrak{r}_i, where \mathfrak{r}_i=\mathfrak{r}\cap\mathfrak{g}_i)$ and $\mathfrak{r}_i=\mathfrak{d}_i(i\leq 0)$ and $\mathfrak{r}_i=\{0\}(i\geq 1), where \mathfrak{d}_{-k}=\{x\in\mathfrak{g}_{-k}: (\mathrm{ad}\ \mathfrak{g}_1)^k x\}$

T. Yatsui

={0}}(k \ge 1) and $\mathfrak{b}_0 = \{x \in \mathfrak{c}(\mathfrak{g}_0) : (ad \mathfrak{g}_1)x = \{0\}\}$. Moreover we have $\mathfrak{r}_{-1} = \mathfrak{g}'_{-1}$ and $\mathfrak{g}_0 = \mathfrak{r}_0 \oplus [\tilde{\mathfrak{g}}_{-1}, \mathfrak{g}_1] \oplus \mathfrak{g}''_0$, where \mathfrak{g}''_0 is the centralizer of $\tilde{\mathfrak{g}}_{-1}$ in \mathfrak{g}'_0 .

PROOF. (i) Let *E* be the element of Dergr(g) such that

E(x) = px for $x \in g_p$.

Regarding $c(g_0)$ as the subalgebra of Dergr(g), $(c(g_0) + CE)$ -module g is completely reducible by Lemma 2.1. By O. Mathieu ([7], page 402, Lemma 34), there is a Levi subalgebra \mathfrak{F} of g such that $(c(g_0) + CE)(\mathfrak{F}) \subset \mathfrak{F}$. Then \mathfrak{F} is graded, which we write $\mathfrak{F} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{F}_p$. Also, the radical \mathfrak{r} of g is graded, which we write $\mathfrak{r} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{r}_p$. Then, since $c(g_0) \supset \mathfrak{r}_0$, \mathfrak{F} is a \mathfrak{g}_0 -submodule of g, so \mathfrak{F} is a completely reducible \mathfrak{g}_0 -submodule by Lmma 2.1. Hence we can decompose \mathfrak{F}_p into a direct sum of irreducible \mathfrak{g}_0 -submodules of \mathfrak{F}_p :

 $\mathfrak{F}_p = \bigoplus_{k=1}^{\mathfrak{s}(p)} \mathfrak{F}_p^{(k)}.$

Let W be an irreducible g_0 -submodule of r_1 . Then, by transitivity, there is an integer k such that $[g_{-1}^{(k)}, W] \neq \{0\}$. Let E_M be the highest weight vector of W with the highest weight M. By Lemma 2.3, the subspace $CF_{\Lambda_*} \oplus C[F_{\Lambda_*}, E_M] \oplus CE_M$ is a simple three dimensional Lie subalgebra of r, which is a contradiction. Thus we have $r_1 = \{0\}$, so, by transitivity, $r_p =$

($p \ge 1$). Hence we have $\mathfrak{F}_p = \mathfrak{g}_p(p \ge 1)$. For each $i(1 \le i \le t)$, $\mathfrak{g}_{-1}^{(i)}$ is contragredient to $\mathfrak{F}_1^{(j)}$ as a \mathfrak{g}_0 -module for some $j(1 \le j \le s(1))$. Also we remark that \mathfrak{F}_{-1} is contragredient to \mathfrak{F}_1 as a \mathfrak{g}_0 -module. Indeed, let (|) be the Killing form of \mathfrak{F} . Since the restriction of (|) on $\mathfrak{F}_1 \times \mathfrak{F}_{-1}$ is non-degenerate, we have an isomorphism $\nu:\mathfrak{F}_1 \longrightarrow \mathfrak{F}_{-1}^*$ defined by

$$< \nu(x), y > = (x|y), x \in \mathfrak{s}_1, y \in \mathfrak{s}_{-1}.$$

Since (|) is completely invariant (i. e, (x|Dy) + (Dx|y) = 0 for $x, y \in \mathfrak{F}$ and $D \in \operatorname{Der}(\mathfrak{F})$), we can prove easily that ν is an isomorphism of \mathfrak{g}_0 -modules, so \mathfrak{F}_1 is contragredient to \mathfrak{F}_{-1} as a \mathfrak{g}_0 -module. Thus $\mathfrak{g}_{-1}^{(i)}$ is isomorphic to $\mathfrak{F}_{-1}^{(k)}$ as a \mathfrak{g}_0 -module for some $k(1 \le k \le s(-1))$. However, since $\mathfrak{g}_{-1}^{(i)}$ is not isomorphic to $\mathfrak{g}_{-1}^{(i)}$ as a \mathfrak{g}_0 -module for all j such that $i \ne j$ by Lemma 2.4, we have $\mathfrak{g}_{-1}^{(i)} = \mathfrak{F}_{-1}^{(k)}$. In particular, we have $l(\mathfrak{F}_{-1}) \le l(\mathfrak{F}_{-1})$, where we denote by l(N) the number of the irreducible components of \mathfrak{g}_0 -module N. On the other hand, by Lemma 2.4, we have $l(\mathfrak{F}_{-1}) = l(\mathfrak{F}_{0}) \ge l(\mathfrak{F}_{-1})$. Thus we have $l(\mathfrak{F}_{-1}) = l(\mathfrak{F}_{-1})$, so $\mathfrak{F}_{-1} = \mathfrak{F}_{-1}$. Since the subalgebra $(\mathfrak{g}/\mathfrak{r})_-$ of $\mathfrak{g}/\mathfrak{r}$ is generated by $\mathfrak{g}_{-1}/\mathfrak{r}_{-1}$, the subalgebra \mathfrak{F}_- of \mathfrak{F} is generated by \mathfrak{F}_{-1} . Moreover, since an ideal in a semisimple \mathbb{Z} -graded Lie algebra is graded, we can decompose \mathfrak{F} into a direct sum of two semisimple ideals \mathfrak{t} and \mathfrak{u} (i. e., $\mathfrak{F}=\mathfrak{t}\oplus\mathfrak{u}$, $\mathfrak{t}=\oplus_{p\in\mathbb{Z}}\mathfrak{t}_p$ and $\mathfrak{u}= \oplus_{p\in\mathbb{Z}}\mathfrak{u}_p$) such that \mathfrak{t} is a semisimple transitive \mathbb{Z} -graded Lie algebra and $\mathfrak{u} =$

u₀. Then the subalgebra $\bigoplus_{i \ge 1} t_i$ of t is generated by t_1 , and we have $t_0 = [t_{-1}, t_1] = [\tilde{g}_{-1}, g_1]$ (see N. Tanaka [5], page 28). Also, since $\mathfrak{g}_p = t_p(p \ge 1)$, the subalgebra $\bigoplus_{i \ge 1} \mathfrak{g}_i$ of \mathfrak{g} is generated by \mathfrak{g}_1 . Thus we have $\tilde{\mathfrak{g}} = t$, so $\tilde{\mathfrak{g}}$ is semisimple.

(ii) We put $b = \bigoplus_{i \leq 0} b_i$. Then b is a solvable ideal in g, so $b \subset \mathbf{r}$. In particular, we have $g'_{-1} \subset b_{-1} \subset \mathbf{r}_{-1}$. Since $\tilde{g}_{-1} = \mathfrak{s}_{-1}$, we have $\dim g'_{-1} = \dim \mathbf{r}_{-1}$, so $\mathbf{r}_{-1} = g'_{-1}$. Moreover, since $(\mathrm{ad} \ g_1)^{i-1}\mathbf{r}_{-i} \subset \mathbf{r}_{-1} (i \geq 2)$ and $[\mathbf{r}_0, g_1] \subset \mathbf{r}_1 = \{0\}$, we have $\mathbf{r}_{-i} \subset b_{-i} (i \geq 0)$. Hence we have $b = \mathbf{r}_{-i} (i \geq 0)$. Finally, from the proof of (i), we have $u_0 = g''_0$ and $t_0 = [\tilde{g}_{-1}, g_1]$, so $g_0 = \mathbf{r}_0 \oplus [\tilde{g}_{-1}, g_1] \oplus g''_0$. Q. E. D

As a corollary of Proposition 2.5, we have

COROLLARY 2.5. Let $g = \bigoplus_{i \in \mathbb{Z}} g_i$ be a finite dimensional transitive \mathbb{Z} -graded Lie algebra over \mathbb{C} . Then following statements are equivalent.

(1) g is semisimple.

(2) (i) The representation of g_0 on g_{-1} is completely reducible, and (ii) there is no non-trivial g_0 -invariant subspace of g_{-1} contained in the centralizer of g_1 in g_0 .

(3) (i) The representation of g_0 on g_{-1} is completely reducible, and (ii) $g'_{-1} = \{0\}$.

PROOF. Let W be a \mathfrak{g}_0 -invariant subspace of \mathfrak{g}_{-1} such that $[W, \mathfrak{g}_1] = \{0\}$. Then an ideal in \mathfrak{g} generated by W is a solvable ideal in \mathfrak{g} ; thus $(1) \longrightarrow (2)$ (ii). It follows from I. L. Kantor ([3], page 44, Proposition 12) that (1) $\longrightarrow (2)$ (i). If (3) holds, then $\mathfrak{g}_{-1} = \mathfrak{g}_{-1}$. Since \mathfrak{g}_- is generated by \mathfrak{g}_{-1} , we have $\mathfrak{g}_- = \mathfrak{g}_-$. Moreover, since \mathfrak{g} is semisimple by Proposition 2.5., we have $\mathfrak{r}_i = \{0\}(i \leq -1)$, so, by transitivity, $\mathfrak{r}_p = \{0\}(p \geq 0)$. Hence \mathfrak{g} is semisimple, which proves $(3) \rightarrow (1)$. $(2) \rightarrow (3)$ is clear. Q. E. D

§ 3. Pseudo-product graded Lie algebras

3.1. Let $g = \bigoplus_{p \in \mathbb{Z}} g_p$ be a transitive \mathbb{Z} -graded Lie algebra over K, where K is \mathbb{R} or \mathbb{C} . Let $g_{-1}^{(1)}$ and $g_{-1}^{(2)}$ be subspaces of g_{-1} . Then the \mathbb{Z} -graded Lie algebra $g = \bigoplus_{p \in \mathbb{Z}} g_p$ is called a *pseudo-product graded Lie algebra*, if it satisfies the following conditions

```
(3.1.1) \quad \mathfrak{g}_{-1} = \mathfrak{g}_{-1}^{(1)} \oplus \mathfrak{g}_{-1}^{(2)}
```

 $(3.1.2) \quad [\mathfrak{g}_{-1}^{(1)}, \mathfrak{g}_{-1}^{(1)}] = [\mathfrak{g}_{-1}^{(2)}, \mathfrak{g}_{-1}^{(2)}] = \{0\}$

 $(3.1.3) \quad [g_0, g_{-1}^{(1)}] \subset g_{-1}^{(1)}, \ [g_0, g_{-1}^{(2)}] \subset g_{-1}^{(2)}$

Then we have the following

LEMMA 3.1. (see N. Tanaka [6], page 292) Let $g = \bigoplus_{p \in \mathbb{Z}} g_p$ be a

pseudo-product graded Lie algebra over K. If g_{-} is non-degenerate (that is, for any $x \in g_{-1}$, $[x, g_{-1}] = \{0\}$ implies x = 0), then the Lie algebra g is finite dimensional.

3.2. Now we give our main theorem.

THEOREM 3.2. Let $g = \bigoplus_{p \in \mathbb{Z}} g_p$ be a pseudo-product graded Lie algebra over C, and suppose that the subalgebra g_- of g is non-degenerate and the representations of g_0 on $g_{-1}^{(1)}$ and $g_{-1}^{(2)}$ are irreducible. Then we have:

(i) If the representation of g_0 on g_1 is reducible, then g is a simple Lie algebra.

(ii) If the representation of g_0 on g_1 is irreducible, then we have $g_2 = \{0\}$.

As a consequence of (i) and (ii), if $g_2 \neq \{0\}$, then g is a simple Lie algebra.

PROOF. By Lemma 3.1, we can apply all arguments in § 2.

(i) Using the notation of (2.1.1), we have $g'_{-1} = \{0\}$ by Lemma 2.4. Hence, by Corollary 2.5, g is semisimple. If g is not simple, then we have $g = \alpha^{(1)} \bigoplus \alpha^{(2)}$, where $\alpha^{(1)}(i=1,2)$ is a non-trivial semisimple ideal in g. Since $\alpha^{(1)}$ is graded, we can write $\alpha^{(1)} = \bigoplus_{p \in \mathbb{Z}} \alpha_p^{(1)}$. Here we remark that $\alpha_{-1}^{(1)} \neq \{0\}$ because of transitivity of g. Since $g^{(1)}_{-1}$ is not isomorphic to $g^{(2)}_{-1}$ as a g_0 -module by Lemma 2.4, we have $g^{(1)}_{-1} = \alpha_{-1}^{(1)}$, $g^{(2)}_{-1} = \alpha_{-1}^{(2)}$ or $g^{(1)}_{-1} = \alpha_{-1}^{(2)}$, $g^{(2)}_{-1} = \alpha_{-1}^{(1)}$. Thus $[g^{(1)}_{-1}, g^{(2)}_{-1}] = \{0\}$, which is a contradiction to the fact that g_- is non-degenerate. Hence g is a simple Lie algebra.

(ii) Now we can assume that $[\mathfrak{g}_{-1}^{(1)}, \mathfrak{g}_1] = \{0\}$. Then the subalgebra $\mathfrak{g}_{-1}^{(2)} \oplus [\mathfrak{g}_{-1}^{(2)}, \mathfrak{g}_1] \oplus \mathfrak{g}_1$ is a simple Lie algebra by Proposition 2.5, so $[\mathfrak{g}_1, \mathfrak{g}_1] = \{0\}$. Therefore it follows from Proposition 2.5 that $\mathfrak{g}_2 = \{0\}$. Q. E. D

3.3. We now prove the real version of Theorem 3.2.

THEOREM 3.3. Let $g = \bigoplus_{p \in \mathbb{Z}} g_k$ be a pseudo-product graded Lie algebra over \mathbb{R} , and suppose that its subalgebra g_- of g is non-degenerate and the representation of g_0 on $g_{-1}^{(1)}$ and $g_{-1}^{(2)}$ is irreducible. Then we have:

(i) If the representation of g_0 on g_1 is reducible, then g is a simple Lie algebra.

(ii) If the representation of g_0 on g_1 is irreducible, then we have $g_2 = \{0\}$.

As a consequence of (i) and (ii), if $g_2 \neq \{0\}$, then g is a simple Lie algebra over **R**.

PROOF. First of all, we note that g is finite dimentional by Lemma 3.1. Let $g^C = \bigoplus_{p \in \mathbb{Z}} g_p^C$ denote the complexification of $g = \bigoplus_{p \in \mathbb{Z}} g_p$. Then g^C is a transitive \mathbb{Z} -graded Lie algebra over \mathbb{C} . Then, since $g_{-1}^{(1)C}$ is not isomorphic to $g_{-1}^{(2)C}$ as a g_0^C module by Lemma 2.4, $g_{-1}^{(1)}$ is not isomorphic to $g_{-1}^{(2)}$ as a g₀-module. Let r be the radical of g. Then r is a \mathbb{Z} -graded ideal in g, which we write $r = \bigoplus_{p \in \mathbb{Z}} r_p$. Moreover its complexification r^c is the radical of \mathfrak{g}^c . Then r_{-1} is a \mathfrak{g}_0 -submodule of \mathfrak{g}_{-1} , so we have $r_{-1} = \mathfrak{g}_{-1}^{(1)}$ or $r_{-1} = \mathfrak{g}_{-1}^{(2)}$ or $r_{-1} = \{0\}$. Here we remark that $\mathfrak{g}_{-1}^c/r_{-1}^c$ is contragredient to \mathfrak{g}_1^c as a \mathfrak{g}_0^c module by Proposition 2.5, so \mathfrak{g}_{-1}/r_{-1} is contragredient to \mathfrak{g}_1 as a \mathfrak{g}_0 -module. If \mathfrak{g}_0 module \mathfrak{g}_1 is reducible, then \mathfrak{g}_0 -module $\mathfrak{g}_{-1}/\dot{r}_{-1}$ is reducible. Hence we have $r_{-1} = \{0\}$. By Corollary 2.5, \mathfrak{g}^c is semisimple, so \mathfrak{g} is semisimple. Then, by the same method of proof of theorem 3.2, we can prove the fact that \mathfrak{g} is simple. This proves (i). If \mathfrak{g}_0 -module \mathfrak{g}_1 is irreducible, then we have $\mathfrak{g}_{-1}^{(1)} =$ r_{-1} or $\mathfrak{g}_{-1}^{(2)} = r_{-1}$. Now we suppose that $\mathfrak{g}_{-1}^{(2)} = r_{-1}$. Then, by Proposition 2.5, the subalgebra generated by $\mathfrak{g}_{-1}^{(1)} \oplus \bigoplus \mathfrak{g}_1^{(1)} \mathfrak{g}_1 \oplus \mathfrak{g}_1^c$ is semisimple. However, since $[\mathfrak{g}_{-1}^{(1)}c, \mathfrak{g}_{-1}^{(1)}c] = \{0\}$, we have $[\mathfrak{g}_1^c, \mathfrak{g}_1^c] = \{0\}$. Hence, by Proposition 2.5, we have $\mathfrak{g}_2^c = \{0\}$, so $\mathfrak{g}_2 = \{0\}$. Similarly we can prove that $\mathfrak{g}_2 = \{0\}$ when $\mathfrak{g}_{-1}^{(1)} =$ r_{-1} . This proves (ii).

Reference

- [1] V. G. KAC: Simple irreducible graded Lie algebras of finite growth, Math USSR-Izvestija (1968) 1271-1311.
- [2] N. BOURBAKI: Groupes et algèbres de Lie, Chaps. 7, 8, Diffusion C. C. L. S Paris (1975).
- [3] I. L. KANTOR: Some generalizations of Jordan algebra, Trudy. sem. tenzor. anal. 17 (1974) 250-313 (in Russian)
- [4] N. TANAKA: On differential systems, graded Lie algebras and pseudo-groups, J. Math. Kyoto Univ. 10 (1970) 1-82.
- [5] N. TANAKA: On the equivalence problems associated with simple graded Lie algebras, Hokkaido Math. J. 8 (1979)23-84.
- [6] N. TANAKA: On affine symmetric spaces and the automorphism groups of product manifolds, Hokkaido Math. J. 14 (1985) 277-351.
- [7] O. MATHIEU: Classification des algèbras de Lie graduéss simples de croissance ≤1, Invent. math. 86 (1986) 371-426.

Department of Mathematics Hokkaido University