On pseudo-product graded Lie algebras

Tomoaki Yatsui
(Received April 13, 1987, Revised April 27, 1988)

Introduction.

For several years, N. Tanaka has worked on the geometry of pseudoproduct manifolds in connection with the geometric study of systems of k-th order ordinary differential equations, where $k \geqq 2$. A study in this line can be found in his recent paper [6]. His theory shows that the geometry is closely related to the study of pseudo-product graded Lie algebras, which we will explain later on.

The main purpose of this paper is to prove structure theorems on some restricted types of pseudo-product graded Lie algebras.

Let $\mathfrak{m}=\oplus_{p<0} g_{p}$ be a graded Lie algebra with $0<\operatorname{dim} \mathfrak{m}<\infty$. Then \mathfrak{m} is called a fundamental graded Lie algebra or simply an FGLA, if m is generated by g_{-1}. Let e and f be subspaces of g_{-1}. Then the triplet ($m ; e, f$) is called a pseudo-product FGLA if the following conditions are satisfied:
(1) m is an FGLA.
(2) $\quad g_{-1}=e \oplus f$ and $[e, e]=[f, f]=\{0\}$

A pseudo-product FGLA ($\mathfrak{m} ; \mathrm{e}, \mathfrak{f}$) is called non-degenerate, if the condition " $x \in_{g_{-1}}$ and $\left[x, \mathfrak{g}_{-1}\right]=\{0\}$ " implies $x=0$.

Now let $g=\bigoplus_{p \in \boldsymbol{z} g_{p}}$ be a graded Lie algebra and let e and \mathfrak{f} be subspaces of \mathfrak{g}_{-1}. Set $\mathfrak{m}=\oplus_{p<0} g_{p}$. Then g (together with e and f) is called a pseudoproduct graded Lie algebra if the following conditins are satisfied :
(1) ($m ; e, f)$ is a pseudo-product FGLA.
(2) g is transitive, i. e. the condition " $p \geqq 0, x \in g_{p}$ and $\left[x, g_{-1}\right]=\{0\}$ " implies $x=0$.
(3) $\left[g_{0}, e\right] \subset e$ and $\left[g_{0}, f\right] \subset f$

Let ($m ; e, f$) be an FGLA and g_{0} be its derivations of the graded Lie algebra m leaving both e and f invariant. Then the prolongation $g \mathfrak{g}=\oplus_{p \in Z}{ }_{g}{ }_{p}$ of the pair $\left(\mathfrak{m} ; g_{0}\right)$ is called the prolongation of ($\mathfrak{m} ; e, f$) (see [4] and [6]), which may be characterized as the maximum pseudo-product graded Lie algebra $g=\oplus_{p \in Z} g_{p}$ such that $\bigoplus_{p \leq 0 g_{p}}=\mathfrak{m} \bigoplus_{g}^{\vee}$ (as graded Lie algebras). It is known that if ($m ; e, f$) is non-degenerate, then g is of finite dimension (see
N. Tanaka [6], page 292).

These being prepared, our main theorems Theorem 3.2 and 3.3) together may be stated as follows : let $g=\bigoplus_{p \in z g_{p}}$ be a pseudo-product graded Lie algebra over the field \boldsymbol{C} of complex numbers or the field \boldsymbol{R} of real numbers. Assume that the natural representations of g_{0} on both e and f are irreducible and that the pseudo-product FGLA ($\mathfrak{m} ; \mathrm{e}, \mathrm{f}$) is non-degenerate. If $g_{2} \neq\{0\}$, the Lie algebra g is of finite dimension and simple.

Following N. Tanaka (see [5] and [6]), we will explain how the geometry of pseudo-product manifolds is related to the study of pseudo-product graded Lie algebras, as we promised. Let R be a manifold, and E and F be two differential systems on R. Then the triplet $(R ; E, F)$ is called a pseudo-product manifold, if both E and F are completely integrable, and E $\cap F=\{0\}$. Let $(R ; E, F)$ be a pseudo-product manifold. Assuming that the differential system $D=E+F$ is regular, let us consider the symbol algebra $(\mathfrak{m}(x) ; E(x), F(x))$ of $(R ; E, F)$ at each point $x \in R$, which is a pseudo-product FGLA. Note that $\mathfrak{m}(x)$ is the symbol algebra of D at x, and $\mathrm{g}_{-1}=D(x)$. Given a pseudo-product FGLA, ($\mathfrak{m} ; \mathrm{e}, \mathfrak{f}$), the pseudo-product manifold ($R ; E, F$) is called of type ($\mathfrak{m} ; \mathrm{e}, \mathrm{f}$), if D is regular, the symbol algebra $(\mathfrak{m}(x) ; E(x), F(x))$ of ($R ; E, F$) at each $x \in R$ is isomorphic with the given $(\mathfrak{m} ; \mathrm{e}, \mathrm{f}$), and $\operatorname{dim} R=\operatorname{dim} \mathfrak{m}$.

Now, let ($\mathfrak{m} ; \mathrm{e}, \mathrm{f}$) be a non-degenerate pseudo-product FGLA, and let g $=\oplus_{p \in z g_{p}}$ be its prolongation. Then N. Tanaka showed that to every pseudo-product manifold ($R ; E, F$) of type ($\mathfrak{m} ; \mathrm{e}, \mathrm{f}$) there is associated, in canonical manner, a manifold (P, ω) with absolutely parallelism satisfying the following conditions: 1) $\operatorname{dim} P=\operatorname{dim} g$ 2) P is a fibred manifold over M, and 3) ω is a g -valued 1 -form on P, and gives the absolutely parallelism. In particular, it follows that the Lie algebra \mathfrak{a} of all infinitesimal automorphisms of ($R ; E, F$) is of finite dimension, and $\operatorname{dim} \mathfrak{a} \leqq \operatorname{dim} \mathfrak{g}$. Futhermore, he showed that if g is simple, to every pseudo-product manifold ($R ; E, F$) of type ($\mathfrak{m} ; \mathrm{e}, \mathrm{f}$) there is associated a connection of type g on R in natural manner. Recently he has generalized this fact to the case where g is not semisimple (and satisfies certain conditions), and has applied the result to the geometric study of systems of k-th order ordinary differential equations, where $k \geqq 3$.

We have thus seen that our main theorems are applicable to the geometry of pseudo-product manifolds. It should be remarked that our main theorems are likewise applicable to the geometry of pseudo-complex manifolds, which is based on N. Tanaka's work [4] and the fact that the complexification of a pseudo-complex FGLA becomes naturally a pseudoproduct FGLA (see also [6]).

We will now give a brief description of the varoius sections. Following V.G. Kac [1], we first give basic definitions on graded Lie algebras and minimal graded Lie algebras. In Section 2, we consider a finite dimensional transitive graded Lie algebra $\mathfrak{g}=\oplus_{p \in z g_{p}}$ over \boldsymbol{C} for which the natural representation of g_{0} on g_{-1} is completely reducible. Our main task in this section is to determine the structure of the local part $\mathrm{g}_{-1} \oplus \mathrm{~g}_{0} \oplus \mathrm{~g}_{1}$ of g , and discuss conditions for g to be semisimple (Corollary 2.5). To do these, we apply the reasonings, due to V.G. Kac [1], in the realization of graded Lie algebras, and use the fundamental representation theory of finite dimensional Lie algebras. In Section 3 we prove the main theorems by using the finite dimensionality of the pseudo-product graded Lie algebras and by applying the results in Section 2.

Finally I warmly thank Professor N. Tanaka for his kind suggestion of the problem and thank Dr. Yamaguchi for his invaluable help.

§ 1. Preliminaries

In this section, the ground field K is assumed to be of characteristic zero. In fact in our applications K will be the field \boldsymbol{C} of complex numbers or the field \boldsymbol{R} of real numbers.
1.1. Graded Lie algebras.

Let g be a Lie algebra. If \boldsymbol{Z} is the ring of integers, a \boldsymbol{Z}-gradation of g is, by definition, a direct decomposition

$$
\mathrm{g}=\oplus_{i \in \boldsymbol{Z}} \mathrm{~g}_{i} \text { such that }\left[\mathrm{g}_{i}, \mathrm{~g}_{j}\right]=\mathrm{g}_{i+j}, \operatorname{dim} \mathrm{~g}_{i}<\infty \quad(i \in \boldsymbol{Z})
$$

We will call a Lie algebra gat \boldsymbol{Z}-graded Lie algebra when g has such a \boldsymbol{Z}-gradation. A subalgebra (resp. an ideal) $\mathfrak{\xi} \subset g$ is called a \boldsymbol{Z}-graded
 algebras. Then, by definition, a homomorphism $\phi: g \rightarrow g^{\prime}$ of \boldsymbol{Z}-graded Lie algebras preserves the \boldsymbol{Z}-gradation in the sense that $\phi\left(\mathfrak{g}_{i}\right) \subset g_{i}^{\prime}$. Similarly isomorphisms and epimorphisms of \boldsymbol{Z}-graded Lie algebras are defined.

Let $\mathrm{g}=\oplus_{i \in \boldsymbol{Z} g_{i}}$ be a \boldsymbol{Z}-graded Lie algebra. We will denote by g - the subalgebra $\oplus_{i \leq-1} g_{i}$. Then a \boldsymbol{Z}-graded Lie algebra g is called transitive if it satisfies the following conditions:
(1.1.1) $g_{-1} \neq\{0\}$ and g_{-}is an FGLA.
(1.1.2) For $x \in g_{i}(i \geqq 0),\left[x, g_{-1}\right]=\{0\}$ implies $x=0$.

1. 2. Correspondence between local Lie algebra and graded Lie algebras (see V. G. Kac. [1]. page 1276-1277)

A direct sum of vector spaces $\mathrm{g}_{-1} \oplus \mathrm{~g}_{0} \oplus \mathrm{~g}_{1}$ is called a local Lie algebra if
one has bilinear maps : $\mathfrak{g}_{i} \times \mathfrak{g}_{j} \rightarrow \mathfrak{g}_{i+j}$ for $|i|,|j|,|i+j| \leqq 1$, such that anticommutativity and the Jacobi identity hold whenever they make sense. Homomorphisms and isomorphisms of local Lie algebras are defined as in the case of graded Lie algebras. Given a \boldsymbol{Z}-graded Lie algebra $g=\bigoplus_{i \in \boldsymbol{z}} \mathfrak{g}_{i}$, the subspace $g_{-1} \oplus g_{0} \oplus g_{1}$ is a local Lie algebra, which is called the local part of g.

Now, let $g=\oplus_{i \in \boldsymbol{Z}} g_{i}$ be a \boldsymbol{Z}-graded Lie algebra generated by $g_{-1} \oplus g_{0} \oplus g_{1}$. Then the \boldsymbol{Z}-graded Lie algebra g is called minimal if, for any other \boldsymbol{Z}-graded Lie algebra g^{\prime}, each isomorphism of the local parts \widehat{g} and \hat{g}^{\prime} extends to an epimorphism of g^{\prime} onto \mathfrak{g}. Indeed, for any local Lie algebra \hat{g}, there is a minimal \boldsymbol{Z}-graded Lie algebra g whose local part is isomorphic to \widehat{g} (see V. G. Kac [1], page 1276). We will utilize this fact in the proof of Lemma 2.2.

§ 2. Finite dimensional transitive graded Lie algebras

In this section, we state a necessary and sufficient condition under which a finite dimensional transitive \boldsymbol{Z}-graded Lie algebra over \boldsymbol{C} be semisimple. Also, throughout this section, we assume that the ground field is the field of complex numbers \boldsymbol{C}.
2.1. Throughout this section, $g=\oplus_{i \in Z} g_{i}$ will denote a finite dimensional transitive \boldsymbol{Z}-graded Lie algebra for which the representation of g_{0} on g_{-1} is completely reducible. We denote by ϕ_{i} the representation of g_{0} on g_{i} induced by restriction of the adjoint representation of g. By the assumption, we can decompose g_{-1} into a direct sum of g_{0}-submodules

$$
\begin{equation*}
\mathrm{g}_{-1}=\tilde{\mathrm{g}}_{-1} \oplus \mathrm{~g}_{-1}^{\prime}, \quad \tilde{\mathrm{g}}_{-1}=\bigoplus_{j=1}^{t} \mathrm{~g}_{-1}^{(j)}, \quad \mathrm{g}_{-1}^{\prime}=\bigoplus_{j=t+1}^{n(-1)} \mathrm{g}_{-1}^{(j)}, \tag{2.1.1}
\end{equation*}
$$

where each $g_{-1}^{(j)}$ is an irreducible g_{0}-submodule of g_{-1} such that

$$
\text { and } \quad \begin{aligned}
& {\left[g^{(j)} 1, g_{1}\right] \neq\{0\} \text { for } 1 \leqq j \leqq t} \\
& {\left[g_{-1}^{(j)}, g_{1}\right]=\{0\} \text { for } t<j \leqq n(-1) .}
\end{aligned}
$$

We denote by $\phi_{-1}^{(j)}$ the representation of g_{0} on $\mathfrak{g}_{-1}^{(j)}$ given by $\left[g_{0}, g_{-1}^{(j)}\right] \subset g_{-1}^{(j)}$. Since ϕ_{-1} is faithful and completely reducible, g_{0} is a reductive Lie algebra, i. e, $g_{0}=g_{0}^{\prime} \oplus c\left(g_{0}\right)$, where g_{0}^{\prime} denotes the semisimple part of g_{0} and $c\left(g_{0}\right)$ the conter of g_{0}.

From the assumption, we first deduce

LEMMA 2.1 The representation of g_{0} on \mathfrak{g} is completely reducible.

Proof. We first prove that g_{0}-module g_{-}is completely reducible. By transitivity, we can consider g_{0} as a subalgebra of the Lie algebra $\operatorname{Dergr}\left(g_{-}\right)$ of all the derivations of g_{-}preserving the gradation of g_{-}. On the other
hand, $\operatorname{Dergr}\left(g_{-}\right)$contains the semisimple and nilpotent components of its elements (see N. Bourbaki [2], Ch. VII, $\S 5, n^{0} 1$). Thus we can decompose the element x of $\mathfrak{c}\left(g_{0}\right)$ as follows:

$$
x=x_{s}+x_{n}, x_{s}, x_{n} \in \operatorname{Dergr}\left(g_{-}\right),
$$

where x_{s} (resp. x_{n}) is the semisimple (resp. nilpotent) component of x. Since $\left.x\right|_{g_{-1}}$ is semisimple and $\left.x_{n}\right|_{g_{-1}}$ is the nilpotent component of $\left.x\right|_{g_{-1}}$, we have $\left.x_{n}\right|_{g_{-1}}=0$. Since g_{-}is generated by g_{-1}, we have $x_{n}=0$, so $x=x_{s}$. Thus g_{0}-module g_{-}is completely reducible. Next we prove that $g_{p}(p \geqq 0)$ is a completely reducible g_{0}-module. We will use induction on p. Since g_{0} is reductive, the statement holds for $p=0$. We assume now that the statement holds for k. We consider the mapping

$$
\iota: \mathfrak{g}_{k+1} \longrightarrow \operatorname{Hom}\left(g_{-1}, \mathfrak{g}_{k}\right),
$$

where for $x \in_{g_{k+1}}, \iota(x)=\left.\operatorname{ad}(x)\right|_{g_{-1}}$. Then, by transitivity, it is easy to prove that ι is a monomorphism of g_{0}-modules, so we may regard g_{k+1} as a g_{0}-submodule of $\operatorname{Hom}\left(g_{-1}, g_{k}\right)$. Owing to the induction hypothesis, $\operatorname{Hom}\left(g_{-1}\right.$, g_{k}) is a completely reducible g_{0}-module, so g_{k+1} is a completely reducible g_{0}-module. This proves the Lemma. Q.E.D
2.2. Now we decompose g_{1} into a direct sum of irreducible g_{0} submodules:

$$
\mathrm{g}_{1}=\oplus_{j=1}^{n(1)} \mathrm{g}_{1}^{(j)},
$$

and we denote by $\phi_{1}^{(j)}$ the representation of g_{0} on $g_{1}^{(j)}$ given by $\left[g_{0}, g_{1}^{(j)}\right] \subset g_{1}^{(j)}$. In this paragraph, we will investigate the relation between $\phi_{1}^{(k)}$ and $\phi_{-1}^{(j)}$.

Here we note that the elements of $\mathfrak{c}\left(g_{0}\right)$ act on $\left.g_{i}{ }^{i}\right)(i=1, \ldots, n(1))$ by scalar multiplications.

Let \mathfrak{G} be a Cartan subalgebra of g_{0}. Then, associated to this choice is the system of weights of the representations $\phi_{p}, \phi_{-1}^{(i)}$ and $\phi_{1}^{(i)}$.

We now fix a Cartan subalgebra \mathfrak{h} and a Weyl chamber, and by Λ_{i} (resp. M_{i}) we will denote the highest (resp. lowest) weight of $\phi_{-1}^{(i)}\left(\right.$ resp. $\left.\phi_{1}^{(i)}\right)$. For each $\Lambda_{i}\left(\right.$ resp. $\left.\mathrm{M}_{i}\right), F_{\Lambda_{i}} \in g_{-1}^{(i)}$ (resp. $\left.E_{\mathrm{M}_{i}} \in g_{1}^{(i)}\right)$ denotes a non-zero weight vector for $\Lambda_{i}\left(\right.$ resp. $\left.M_{i}\right)$. Also, for a root α of g_{0}^{\prime}, we denote by e_{α} a root vector for α, and let h_{α} be the unique element of $\boldsymbol{C}\left[e_{\alpha}, e_{-\alpha}\right]$ for which $\alpha\left(h_{\alpha}\right)=2$. Fix $1 \leqq i \leqq n(1)$. Then there is an integer i_{0} such that $\left[g_{-1}^{\left(i_{0}\right)}, \mathrm{g}_{1}^{(i)}\right] \neq\{0\}$, since g is transitive. Here we remark that $\left[g_{-1}^{\left(i_{0}\right)}, g_{1}^{(i)}\right] \neq\{0\}$ if and only if $\left[E_{\mathrm{M}_{i}}, F_{\Lambda_{1 .}}\right] \neq$ $\{0\}$.

Then we have
LEmma 2.2. The representations of g_{0} on $g_{-1}^{\left(i_{0}\right)}$ and $g_{1}^{(i)}$ are contra-
gredient (i.e., $\Lambda_{i_{0}}+\mathrm{M}_{i}=0$). Consequently $h:=\left[E_{M_{1}}, F_{\Lambda_{i 0}}\right] \in \mathfrak{h}$.
Proof. For covenience, we suppose that $i_{0}=i=1$. We first suppose that $\Lambda_{1}+\mathrm{M}_{1}=\alpha$ is a root of $\mathrm{g}_{0}^{\prime}\left(\mathrm{i}\right.$. e., $\left.\left[E_{\mathrm{M}_{1}}, F_{\Lambda_{1}}\right]=e_{\alpha}\right)$. Then we have

$$
\mathfrak{g}_{0}^{\prime}=\mathfrak{a}_{1} \oplus \mathfrak{a}_{2} \oplus \mathfrak{a}_{3} \oplus \mathfrak{a}_{4}
$$

where each \mathfrak{a}_{i} is a semisimple ideal in g_{0}^{\prime} such that
Ker $\phi_{-1}^{(1)}=a_{1} \oplus a_{2}$ and Ker $\phi_{1}^{(1)}=a_{2} \oplus a_{3}$.
Here we consider four cases. If α is a root of \mathfrak{a}_{2}, then we have $\left[e_{\gamma}\left[E_{M_{1}}\right.\right.$, $\left.\left.F_{\Lambda_{1}}\right]\right]=\left[e_{-\gamma}\left[E_{\mathrm{M} 1}, F_{\Lambda_{1}}\right]\right]=0$ for any root γ of \mathfrak{a}_{2}, which is a contradiction because of the semisimplicity of \mathfrak{a}_{2}. Next suppose that α is a root of \mathfrak{a}_{3}. Since $\Lambda_{1}+\mathrm{M}_{1}=\alpha$ and $\mathrm{M}_{1}\left(h_{\alpha}\right)=0$, we have $\Lambda_{1}\left(h_{\alpha}\right) \neq 0$. Let \mathfrak{b} be the three dimensional subalgebra of g with a basis $\left\{\left[F_{\Lambda_{1}}, e_{-\alpha}\right], h_{\alpha}, E_{M_{1}}\right\}$. We consider \mathfrak{b}-submodule N of \mathfrak{b}-module g generated by $F_{\Lambda_{1}}\left(\right.$ i. e., $N=\operatorname{Ad}(U(\mathfrak{b})) F_{\Lambda_{1}}$, where $U(\mathfrak{b})$ is the universal enveloping algebra of $\mathfrak{b})$. Then we have $0=\operatorname{tr}(\operatorname{ad}$ $\left.h_{\alpha} \mid N\right)=(\operatorname{dim} N) \Lambda_{1}\left(h_{\alpha}\right)$, which is a contradiction. Similarly, when we suppose that α is a root of a_{1}, we reach a contradiction by applying the above arguments to $\mathfrak{b}=\boldsymbol{C} F_{\Lambda_{1}} \oplus \boldsymbol{C} h_{\alpha} \oplus \boldsymbol{C}\left[E_{\mathrm{M}_{1}}, e_{\alpha}\right]$ and $N=\operatorname{Ad}(U(\mathfrak{b})) E_{\mathrm{M}_{1}}$. Finally, we suppose that α is a root of a_{4}. Let a be a simple component of a_{4} such that α is a root of \mathfrak{a}, and $\hat{g}_{-1}^{(1)}$ (resp. $\widehat{g}_{1}^{(1)}$) be an irreducible \mathfrak{a}-submodule of $g_{-1}^{(1)}$ (resp. $g_{1}^{(1)}$) containing $F_{\Lambda_{1}}\left(\right.$ resp. $E_{M_{1}}$). Then the representations of \mathfrak{a} on $\hat{g}_{-1}^{(1)}$ and $\widehat{g}_{1}^{(1)}$ are faithful and irreducible. Since $\Lambda_{1}+M_{1}=\alpha$, by V. G. Kac ([1], page 1299 Theorem 2), we know that $\widehat{g}_{-1}^{(1)} \oplus \mathfrak{a} \oplus \hat{g}_{1}^{(1)}$ is isomorphic to the local part of the special algebra S_{n} or the Hamiltonian algebra H_{n} as a local Lie algebra. Since S_{n} and H_{n} is minimal, it follows that g contains a subalgebra whose factor algebra is isomorphic to S_{n} or H_{n}. But since S_{n} and H_{n} is infinite dimensional, we obtain that g is infinite dimensional, which is a contradiction due to the assumption.
Q. E. D

For the behavior of $h:=\left[E_{M_{i}}, F_{\Lambda_{i 0}}\right]$, we have
Lemma 2.3. $\quad \mathrm{M}_{i}(h)=-\Lambda_{i_{0}}(h) \neq 0$. Consequently $\left[h, E_{M_{i}}\right] \neq 0,\left[h, F_{\Lambda_{i_{0}}}\right]$ $\neq 0$.

Proof. For convenience, we suppose $i=i_{0}=1$. We now suppose that $\left[h, E_{\mathrm{M}_{1}}\right]=0$. By transitivity, there is a weight vector v_{λ} of g_{0}-module g_{-1} with a weight λ such that $\left[h, v_{\lambda}\right] \neq 0$. We put $\mathfrak{b}=\boldsymbol{C} E_{\mathrm{M}_{1}} \oplus \boldsymbol{C} h \oplus \boldsymbol{C} F_{\Lambda_{1}}$ and $N=$ $\operatorname{Ad}(U(\mathfrak{b})) v_{\lambda}$. Then we have $0=\operatorname{tr}(\operatorname{ad} h \mid N)=(\operatorname{dim} N) \lambda(h)$, which is a contradiction.
Q. E. D

For the pair $\left(g_{-1}^{(k)}, g_{1}^{(i)}\right)$ of g_{0}-modules such that $\left[g_{-1}^{(k)}, g_{1}^{(i)}\right] \neq\{0\}$, we have
LEMMA 2.4. For each $i(1 \leqq i \leqq n(1))$, there is a unique integer k such
that $\left[\mathrm{g}_{-1}^{(k)}, \mathrm{g}_{1}^{(i)}\right] \neq\{0\}$. Furthermore, $\Lambda_{k^{\prime}}+\mathrm{M}_{i} \neq 0$ for any k^{\prime} such that $k \neq k^{\prime}$.
Proof. We first suppose that there are two integers k_{1}, k_{2} such that $\left[E_{\mathrm{M}_{i}}, F_{\Lambda_{i}}\right] \neq\{0\}$ and $\left[E_{\mathrm{M}_{i}}, F_{\Lambda_{i 2}}\right] \neq\{0\}$. We put $\alpha_{1}^{\vee}=\left[E_{\mathrm{M}_{i}}, F_{\Lambda_{i i}}\right]$ and $\alpha_{2}^{\vee}=\left[E_{\mathrm{M}_{i}}\right.$, $F_{\Lambda_{i}}$]. Then, by Lemma 2.3, we have

$$
\left[\alpha_{1}^{\vee}, E_{\mathrm{M}_{i}}\right]=c_{1} E_{\mathrm{M}_{i}},\left[\alpha_{2}^{\vee}, E_{\mathrm{M}_{i}}\right]=c_{2} E_{\mathrm{M}_{i}}, c_{1}, c_{2} \in \boldsymbol{C}^{\times} .
$$

First suppose that $\left\{\alpha_{1}^{\vee}, \alpha_{2}^{\vee}\right\}$ is linearly independent. Replace $\phi_{-1}^{\left(k_{1}\right)}$ by the irreducible representation $\tilde{\phi}_{-1}^{\left(k_{1}\right)}$ with the highest weight $\Lambda_{k_{1}}$ and corresponding weight vector $F_{\Lambda_{k 1}}-c_{2}^{-1} c_{1} F_{\Lambda_{k 2}}$. Then we have

$$
\begin{aligned}
& \tilde{h}:=\left[E_{M_{i}}, F_{\Lambda_{k_{1}}}-c_{2}^{-1} c_{1} F_{\Lambda_{k_{2}}}\right]=\alpha_{1}^{\vee}-c_{2}^{-1} h_{1} \alpha_{2}^{\vee} \neq 0 \\
& {\left[\tilde{h}, E_{M_{i}}\right]=0,}
\end{aligned}
$$

which is a contradiction by Lemma 2.3. Thus $\left\{\alpha_{1}^{\vee}, \alpha_{2}^{\vee}\right\}$ is linearly dependent. Moreover, multiplying $E_{M_{i}}$ and $F_{\Lambda_{k i}}$ by some non-zero scalars, we may assume that $\alpha_{1}^{\vee}=\alpha_{2}^{\vee}$ and $c_{1}=c_{2}=1$. Also we put $F_{\Lambda}=F_{\Lambda_{k 2}}-F_{\Lambda_{k}}$. Then, for $s \geqq 0$, we obtain by induction:

$$
\left(\operatorname{ad} E_{\mathrm{M}_{i}}\right)\left(\operatorname{ad} F_{\Lambda_{k_{i}}}\right)^{s+1} F_{\Lambda}=-(s+1)(s+2) / 2\left(\operatorname{ad} F_{\Lambda_{k}}\right)^{s} F_{\Lambda} .
$$

If s_{0} is the last integer such that $\left(\operatorname{ad} F_{\Lambda_{k}}\right)^{s_{0}} F_{\Lambda} \neq 0$, then we have $s_{0}=-1$ or $s_{0}=-2$, which is a contradiction.

Next we suppose that there are two integers k_{1}, k_{2} such that [$E_{\mathrm{M}_{i}}, F_{\mathrm{A}_{1}}$] $\neq\{0\}, \Lambda_{k_{2}}+\mathrm{M}_{i}=0$ and $\left[E_{\mathrm{M}_{i}}, F_{\Lambda_{k_{2}}}\right]=0$. Using the notation above, for $s \geqq 0$, we obtain by induction

$$
\left(\operatorname{ad} E_{M_{i}}\right)\left(\operatorname{ad} F_{\Lambda_{k}}\right)^{s+1} F_{\Lambda_{k z}}=-(s+1)(s+2) / 2\left(\operatorname{ad} F_{\Lambda_{k}}\right)^{s} F_{\Lambda_{k 2}}
$$

Similarly we can reach a contradiction as above.
Q. E. D
2.3. Using our previous results, we prove the following proposition which will play a crucial role in the investigation of the pseudo-product graded Lie algebra.

PROPOSITION 2.5. Let $\mathrm{g}=\oplus_{i \in \boldsymbol{Z}} \mathrm{~g}_{i}$ be a finite dimensional transitive \boldsymbol{Z}-graded Lie algebra over \boldsymbol{C} for which the representation of g_{0} on g_{-1} is completely reducible. Then we have the following
(i) Let \tilde{g}_{-1} and $\mathfrak{g}_{-1}^{\prime}$ be as in (2.1.1) so that $g_{-1}=\tilde{g}_{-1} \oplus g_{-1}^{\prime}$. Then the \boldsymbol{Z}-graded subalgebra $\tilde{\mathfrak{g}}=\oplus_{i \in \boldsymbol{Z}} \tilde{\mathrm{~g}}_{i}$ of g generated by $\tilde{\mathrm{g}}_{-1} \oplus\left[\tilde{g_{-1}}, g_{1}\right] \oplus_{\mathrm{g}_{1}}$ is a semisimple Lie algebra. Furthermore the subalgebra $\oplus_{i \geqq 1} \mathfrak{g}_{i}$ of g is generated by g_{1}.
(ii) The radical \mathfrak{r} of g is a Z.graded ideal in $\mathrm{g}\left(i\right.$. e., $\mathfrak{r}=\oplus_{i \in \boldsymbol{Z}} \mathfrak{r}_{i}$, where $\left.\mathfrak{r}_{i}=\mathfrak{r} \cap g_{i}\right)$ and $\mathfrak{r}_{i}=\mathfrak{b}_{i}(i \leqq 0)$ and $\mathfrak{r}_{i}=\{0\}(i \geqq 1)$, where $\mathfrak{b}_{-k}=\left\{x \in g_{-k}:\left(\operatorname{ad~} g_{1}\right)^{k} x\right.$
$=\{0\}\}(k \geqq 1)$ and $\mathrm{D}_{0}=\left\{x \in \mathfrak{c}\left(\mathrm{~g}_{0}\right):\left(\operatorname{ad} \mathrm{g}_{1}\right) x=\{0\}\right\}$. Moreover we have $\mathrm{r}_{-1}=\mathrm{g}_{-1}^{\prime}$ and $g_{0}=\mathfrak{r}_{0} \oplus\left[\tilde{g}_{-1}, \mathfrak{g}_{1}\right] \oplus g_{0}^{\prime \prime}$, where $g_{0}^{\prime \prime}$ is the centralizer of \tilde{g}_{-1} in $\mathfrak{g}_{0}^{\prime}$.

Proof. (i) Let E be the element of $\operatorname{Dergr}(\mathrm{g})$ such that

$$
E(x)=p x \text { for } x \in g_{p} .
$$

Regarding $\mathrm{c}\left(\mathrm{g}_{0}\right)$ as the subalgebra of $\operatorname{Dergr}(\mathrm{g}),\left(\mathrm{c}\left(\mathrm{g}_{0}\right)+\boldsymbol{C E}\right)$-module g is completely reducible by Lemma 2.1. By O. Mathieu ([7], page 402, Lemma 34), there is a Levi subalgebra \mathfrak{z} of \mathfrak{g} such that $\left(\mathfrak{c}\left(g_{0}\right)+\boldsymbol{C} E\right)(\mathfrak{z}) \subset \mathfrak{g}$. Then \mathfrak{z} is graded, which we write $\mathfrak{\xi}=\oplus_{p \in Z} \mathfrak{g}_{p}$. Also, the radical \mathfrak{r} of g is graded, which we write $r=\oplus_{p \in z} \mathfrak{r}_{p}$. Then, since $c\left(g_{0}\right) \supset \mathfrak{r}_{0}, \mathfrak{Z}$ is a g_{0}-submodule of \mathfrak{g}, so \mathfrak{G} is a completely reducible g_{0}-submodule by Lmma 2.1. Hence we can decompose $\mathfrak{\zeta}_{p}$ into a direct sum of irreducible g_{0}-submodules of \mathfrak{g}_{p} :

$$
\mathfrak{S}_{p}=\bigoplus_{k=1}^{s(p) \mathfrak{S}_{p}^{(k)}} .
$$

Let W be an irreducible g_{0}-submodule of \mathfrak{r}_{1}. Then, by transitivity, there is an integer k such that $\left[g_{-1}^{(k)}, W\right] \neq\{0\}$. Let E_{M} be the highest weight vector of W with the highest weight M. By Lemma 2.3, the subspace
$\boldsymbol{C} F_{\Lambda_{t}} \oplus \boldsymbol{C}\left[F_{\Lambda_{\star}}, E_{\mathrm{M}}\right] \oplus \boldsymbol{C} E_{\mathrm{M}}$ is a simple three dimensional Lie subalgebra of \mathfrak{r}, which is a contradiction. Thus we have $\mathfrak{r}_{1}=\{0\}$, so, by transitivity, $\mathfrak{r}_{p}=$ $\{0\}(p \geqq 1)$. Hence we have $\mathfrak{\zeta}_{p}=g_{p}(p \geqq 1)$. For each $i(1 \leqq i \leqq t)$, $g_{-1}^{(i)}$ is contragredient to $\mathfrak{Z}^{(j)}$ as a go-module for some $j(1 \leqq j \leqq s(1))$. Also we remark that $\mathfrak{\zeta}_{-1}$ is contragredient to \mathfrak{S}_{1} as a g_{0}-module. Indeed, let (|) be the Killing form of \mathfrak{b}. Since the restriction of (\mid) on $\mathfrak{F}_{1} \times \mathfrak{F}_{-1}$ is non-degenerate, we have an isomorphism $\nu: \mathfrak{F}_{1} \longrightarrow \mathfrak{F}_{-1}^{*}$ defined by

$$
\langle\nu(x), y\rangle=(x \mid y), x \in \mathfrak{\zeta}_{1}, y \in \mathfrak{\zeta}_{-1} .
$$

Since (\mid) is completely invariant (i. e, $(x \mid D y)+(D x \mid y)=0$ for $x, y \in \mathfrak{Z}$ and $D \in \operatorname{Der}(\mathfrak{\xi})$), we can prove easily that ν is an isomorphism of g_{0}-modules, so $\mathfrak{\xi}_{1}$ is contragredient to $\mathfrak{\xi}_{-1}$ as a g_{0}-module. Thus $\mathfrak{g}_{-1}^{(i)}$ is isomorphic to $\mathfrak{S}_{-1}^{(k)}$ as a g_{0}-module for some $k(1 \leqq k \leqq s(-1))$. However, since $g_{-1}^{(i)}$ is not isomorphic to $g_{-1}^{(j)}$ as a g_{0}-module for all j such that $i \neq j$ by Lemma 2. 4, we have $\mathfrak{g}_{-1}^{(i)}=\mathfrak{Z}_{-1}^{(k)}$. In particular, we have $l\left(\mathfrak{g}_{-1}\right) \leqq l\left(\tilde{\mathfrak{g}}_{-1}\right)$, where we denote by $l(N)$ the number of the irreducible components of g_{0}-module N. On the other hand, by Lemma 2.4, we have $l\left(\mathfrak{g}_{-1}\right)=l\left(\mathfrak{g}_{1}\right) \geqq l\left(\tilde{\mathfrak{g}}_{-1}\right)$. Thus we have $l\left(\tilde{\mathfrak{g}}_{-1}\right)$ $=l\left(\mathfrak{\xi}_{-1}\right)$, so $\tilde{\mathfrak{g}}_{-1}=\mathfrak{\xi}_{-1}$. Since the subalgebra $(\mathfrak{g} / \mathrm{r})_{-}$of g / r is generated by $g_{-1} / \mathfrak{r}_{-1}$, the subalgebra \mathfrak{g}_{-}of \mathfrak{z} is generated by \mathfrak{g}_{-1}. Moreover, since an ideal in a semisimple \boldsymbol{Z}-graded Lie algebra is graded, we can decompose $\mathfrak{\xi}$ into a direct sum of two semisimple ideals t and \mathfrak{u} (i. e., $\mathfrak{z}=\mathrm{t} \oplus \mathfrak{u}, \mathrm{t}=\oplus_{p \in z} \mathrm{t}_{p}$ and $\mathfrak{u}=$ $\left.\oplus_{p \in \mathcal{Z}} \mathfrak{u}_{p}\right)$ such that t is a semisimple transitive \boldsymbol{Z}-graded Lie algebra and $\mathfrak{u}=$
\mathfrak{u}_{0}. Then the subalgebra $\oplus_{i \geq 1} t_{i}$ of t is generated by t_{1}, and we have $t_{0}=\left[t_{-1}\right.$, $\left.\mathrm{t}_{1}\right]=\left[\tilde{g}_{-1}, \mathfrak{g}_{1}\right]$ (see N. Tanaka [5], page 28). Also, since $\mathfrak{\zeta}_{p}=\mathrm{t}_{p}(p \geqq 1)$, the subalgebra $\oplus_{i \geq 1} g_{i}$ of g is generated by g_{1}. Thus we have $\tilde{g}=t$, so \tilde{g} is semisimple.
(ii) We put $\delta=\oplus_{i \leq 0} \mathcal{O}_{i}$. Then \mathfrak{D} is a solvable ideal in \mathfrak{g}, so $\mathfrak{d} \subset \mathfrak{r}$. In particular, we have $\mathfrak{g}_{-1}^{\prime} \subset \mathfrak{D}_{-1} \subset \mathfrak{r}_{-1}$. Since $\tilde{\mathfrak{g}}_{-1}=\mathfrak{g}_{-1}$, we have $\operatorname{dim} \mathfrak{g}_{-1}^{\prime}=\operatorname{dim}$ \mathfrak{r}_{-1}, so $\mathrm{r}_{-1}=\mathrm{g}_{-1}^{\prime}$. Moreover, since (ad $\left.\mathrm{g}_{1}\right)^{i-1} \mathrm{r}_{-i} \subset \mathfrak{r}_{-1}(i \geqq 2)$ and $\left[\mathfrak{r}_{0}, \mathrm{~g}_{1}\right] \subset \mathfrak{r}_{1}=$ $\{0\}$, we have $\mathfrak{r}_{-i} \subset \mathfrak{D}_{-i}(i \geqq 0)$. Hence we have $\delta=\mathfrak{r}_{-i}(i \geqq 0)$. Finally, from the proof of (i), we have $\mu_{0}=g_{0}^{\prime \prime}$ and $t_{0}=\left[\tilde{g}_{-1}, g_{1}\right]$, so $g_{0}=r_{0} \oplus\left[\tilde{g}_{-1}, g_{1}\right] \oplus g_{0}^{\prime \prime}$.
Q. E. D

As a corollary of Proposition 2.5, we have
Corollary 2.5. Let $\mathrm{g}=\oplus_{i \in Z \mathrm{~g}_{i}}$ be a finite dimensional transitive \boldsymbol{Z}-graded Lie algebra over \boldsymbol{C}. Then following statements are equivalent.
(1) g is semisimple.
(2) (i) The representation of g_{0} on g_{-1} is completely reducible, and (ii) there is no non-trivial g_{0}-invariant subspace of g_{-1} contained in the centralizer of g_{1} in g .
(3) (i) The representation of g_{0} on g_{-1} is completely reducible, and (ii) $g_{-1}^{\prime}=\{0\}$.

Proof. Let W be a g_{0}-invariant subspace of g_{-1} such that $\left[W, g_{1}\right]=\{0\}$. Then an ideal in g generated by W is a solvable ideal in g; thus (1) $\longrightarrow(2)$ (ii). It follows from I. L. Kantor ([3], page 44, Proposition 12) that (1) $\longrightarrow(2)$ (i). If (3) holds, then $\tilde{\mathfrak{g}}_{-1}=g_{-1}$. Since g_{-}is generated by g_{-1}, we have $\tilde{g}_{-}=g_{-}$. Moreover, since \tilde{g} is semisimple by Proposition 2.5., we have $\mathfrak{r}_{i}=\{0\}(i \leqq-1)$, so, by transitivity, $\mathfrak{r}_{p}=\{0\}(p \geqq 0)$. Hence g is semisimple, which proves $(3) \rightarrow(1)$. (2) \rightarrow (3) is clear. Q.E.D

§ 3. Pseudo-product graded Lie algebras

3.1. Let $g=\oplus_{p \in Z g_{p}}$ be a transitive \boldsymbol{Z}-graded Lie algebra over K, where K is \boldsymbol{R} or \boldsymbol{C}. Let $g_{-1}^{(1)}$ and $g_{-1}^{(2)}$ be subspaces of g_{-1}. Then the \boldsymbol{Z}-graded Lie algebra $\mathfrak{g}=\oplus_{p \in z g_{p}}$ is called a pseudo-product graded Lie algebra, if it satisfies the following conditions
(3.1.1) $\quad \mathrm{g}_{-1}=\mathrm{g}_{-1}^{(1)} \mathrm{g}_{\mathrm{g}}^{-1}{ }_{-1}^{(2)}$
(3.1.2) $\quad\left[\mathrm{g}_{-1}^{(1)}, \mathrm{g}_{-1}^{(1)}\right]=\left[\mathrm{g}_{-1}^{(2)}, \mathrm{g}_{-1}^{(2)}\right]=\{0\}$
(3.1.3) $\left[\mathrm{g}_{0}, \mathrm{~g}_{-1}^{(1)}\right] \subset \mathrm{g}_{-1}^{(1)},\left[\mathrm{g}_{0}, \mathrm{~g}_{-1}^{(2)}\right] \subset \mathfrak{g}_{-1}^{(2)}$

Then we have the following
Lemma 3.1. (see N. Tanaka [6], page 292) Let $\mathfrak{g}=\oplus_{p \in \boldsymbol{Z}} g_{p}$ be a
pseudo-product graded Lie algebra over K. If g- is non-degenerate (that is, for any $x \in g_{-1},\left[x, g_{-1}\right]=\{0\}$ implies $x=0$), then the Lie algebra g is finite dimensional.

3.2. Now we give our main theorem.

THEOREM 3.2. Let $g=\oplus_{p \in \boldsymbol{Z}} g_{p}$ be a pseudo-product graded Lie algebra over \boldsymbol{C}, and suppose that the subalgebra g_{-}of g is non-degenerate and the representations of g_{0} on $\mathrm{g}_{-1}^{(1)}$ and $\mathrm{g}_{-1}^{(2)}$ are irreducible. Then we have:
(i) If the representation of g_{0} on g_{1} is reducible, then g is a simple Lie algebra.
(ii) If the representation of \mathfrak{g}_{0} on \mathfrak{g}_{1} is irreducible, then we have $\mathrm{g}_{2}=\{0\}$.

As a consequence of (i) and (ii), if $\mathrm{g}_{2} \neq\{0\}$, then g is a simple Lie algebra.

Proof. By Lemma 3.1, we can apply all arguments in § 2.
(i) Using the notation of (2.1.1), we have $g_{-1}^{\prime}=\{0\}$ by Lemma 2.4. Hence, by Corollary 2. 5, g is semisimple. If g is not simple, then we have g $=\mathfrak{a}^{(1)} \oplus \mathfrak{a}^{(2)}$, where $\mathfrak{a}^{(1)}(i=1,2)$ is a non-trivial semisimple ideal in \mathfrak{g}. Since $\mathfrak{a}^{(1)}$ is graded, we can write $\mathfrak{a}^{(1)}=\oplus_{p \in \boldsymbol{Z}} \quad \mathfrak{a}_{p}^{(1)}$. Here we remark that $\mathfrak{a}_{-1}^{(1)} \neq\{0\}$ because of transitivity of g. Since $g_{-1}^{(1)}$ is not isomorphic to $g_{-1}^{(2)}$ as a g_{0}-module by Lemma 2.4, we have $\mathfrak{g}_{-1}^{(1)}=\mathfrak{a}_{-1}^{(1)}, \mathfrak{g}_{-1}^{(2)}=\mathfrak{a}_{-1}^{(2)}$ or $\mathfrak{g}_{-1}^{(1)}=\mathfrak{a}_{-1}^{(2)}, \mathfrak{g}_{-1}^{(2)}=\mathfrak{a}{ }_{-1}^{(1)}$. Thus $\left[g_{-1}^{(1)}, g_{-1}^{(2)}\right]=\{0\}$, which is a contradiction to the fact that g_{-}is non-degenerate. Hence g is a simple Lie algebra.
(ii) Now we can assume that $\left[g_{-1}^{(1)}, g_{1}\right]=\{0\}$. Then the subalgebra $g_{-1}^{(2)}$ $\oplus\left[g_{-1}^{(2)}, g_{1}\right] \oplus g_{1}$ is a simple Lie algebra by Proposition 2.5, so $\left[g_{1}, g_{1}\right]=\{0\}$. Therefore it follows from Proposition 2.5 that $g_{2}=\{0\}$.
Q. E. D
3.3. We now prove the real version of Theorem 3.2.

THEOREM 3.3. Let $\mathrm{g}=\oplus_{p \in \boldsymbol{Z}} \mathrm{~g}_{k}$ be a pseudo-product graded Lie algebra over \boldsymbol{R}, and suppose that its subalgebra g - of g is non-degenerate and the representation of g_{0} on $g_{-1}^{(1)}$ and $g_{-1}^{(2)}$ is irreducible. Then we have:
(i) If the representation of g_{0} on g_{1} is reducible, then g is a simple Lie algebra.
(ii) If the representation of g_{0} on g_{1} is irreducible, then we have $g_{2}=\{0\}$.

As a consequence of (i) and (ii), if $g_{2} \neq\{0\}$, then g is a simple Lie algebra over \boldsymbol{R}.

Proof. First of all, we note that g is finite dimentional by Lemma 3.1. Let $g^{C}=\oplus_{p \in \boldsymbol{Z}} g_{p}^{C}$ denote the complexification of $g=\bigoplus_{p \in \boldsymbol{Z}} g_{p}$. Then g^{C} is a transitive \boldsymbol{Z}-graded Lie algebra over \boldsymbol{C}. Then, since $g_{-1}^{(1) \boldsymbol{C}}$ is not isomorphic to $g_{-1}^{(2) C}$ as a g_{0}^{C} module by Lemma 2.4, $g_{-1}^{(1)}$ is not isomorphic to $g_{-1}^{(2)}$ as a
g_{0}-module. Let r be the radical of g . Then r is a \boldsymbol{Z}-graded ideal in g , which we write $\mathfrak{r}=\bigoplus_{p \in \boldsymbol{Z}} \mathfrak{r}_{p}$. Moreover its complexification \mathfrak{r}^{C} is the radical of \mathfrak{g}^{C}. Then r_{-1} is a g_{0}-submodule of g_{-1}, so we have $r_{-1}=g_{-1}^{(1)}$ or $r_{-1}=g_{-1}^{(2)}$ or $r_{-1}=\{0\}$. Here we remark that g_{-1}^{C} / r_{-1}^{C} is contragredient to g_{1}^{C} as a g_{0}^{C} module by Proposition 2.5, so g_{-1} / r_{-1} is contragredient to g_{1} as a g_{0}-module. If g_{0} module g_{1} is reducible, then g_{0}-module g_{-1} / \dot{r}_{-1} is reducible. Hence we have $r_{-1}=\{0\}$. By Corollary 2.5, g^{c} is semisimple, so g is semisimple. Then, by the same method of proof of theorem 3.2 , we can prove the fact that g is simple. This proves (i). If g_{0}-module g_{1} is irreducible, then we have $g_{-1}^{(1)}=$ r_{-1} or $g_{-1}^{(2)}=r_{-1}$. Now we suppose that $g_{-1}^{(2)}=r_{-1}$. Then, by Proposition 2.5, the subalgebra generated by $g_{-1}^{(1) C} \oplus\left[g_{-1}^{(1) C}, g_{1}^{C}\right] \oplus g_{1}^{C}$ is semisimple. However, since $\left[\mathfrak{g}_{-1}^{(1) C}, \mathfrak{g}_{-1}^{(1) C}\right]=\{0\}$, we have $\left[g_{1}^{C}, g_{1}^{C}\right]=\{0\}$. Hence, by Proposition 2.5, we have $g_{2}^{C}=\{0\}$, so $g_{2}=\{0\}$. Similarly we can prove that $g_{2}=\{0\}$ when $g_{-1}^{(1)}=$ r_{-1}. This proves (ii). Q.E.D

Reference

[1] V. G. KAC: Simple irreducible graded Lie algebras of finite growth, Math USSRIzvestija (1968) 1271-1311.
[2] N. Bourbaki: Groupes et algèbres de Lie, Chaps. 7, 8, Diffusion C. C. L. S Paris (1975).
[3] I. L. KANTOR: Some generalizations of Jordan algebra, Trudy. sem. tenzor. anal. 17 (1974) 250-313 (in Russian)
[4] N. TANAKA: On differential systems, graded Lie algebras and pseudo-groups, J. Math. Kyoto Univ. 10 (1970) 1-82.
[5] N. TANAKA: On the equivalence problems associated with simple graded Lie algebras, Hokkaido Math. J. 8 (1979)23-84.
[6] N. TANAKA: On affine symmetric spaces and the automorphism groups of product manifolds, Hokkaido Math. J. 14 (1985) 277-351.
[7] O. MATHIEU: Classification des algèbras de Lie graduéss simples de croissance $\leqq 1$, Invent. math. 86 (1986) 371-426.

