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\S 0. Introduction.

Let $T$ be the circle group. Then the classical F. and M. Riesz theorem
is stated as follows: Let $\mu$ be bounded regular (complex-valued) measure
on $T$ Suppose $\mu$ is of analytic type (i.e., $\hat{\mu}(n)=\int_{0}^{2\pi}e^{-inx}d\mu(e^{ix})=0$ for $n<$

$0)$ . Then
(A) $\mu$ is absolutely continuous with respect to the Lebesgue measure

on $T$

Moreover, it is well-known that a measure of analytic type has the following
important property:

(B) $\mu$ is quasi-invariant (i.e., $|\mu|*\delta_{x}\ll|\mu|$ for all $x\in T$).

Helson and Lowdenslager extended (A) as follows:

THEOREM 0. 1 (cf. [20, 8.2.3. Theorem]).
Let $G$ be a compact abelian group with ordered dual $\hat{G}$. Let $\mu$ be a bounded
regular measure on $G$ that is of analytic type $(i.e.,\hat{\mu}(_{\gamma})=0$ for $\gamma<0$). Then

$(i)$
$\mu_{a}$ and $\mu_{s}$ are of analytic type ;

(ii) $\hat{\mu}_{s}^{(o)=0}$ ,

where $\mu_{a}$ and $\mu_{s}$ are the absolutely continuous part of $\mu$ and th singular part
of $\mu$ respectively.

On the other hand, as for (A) and (B), deLeeuw and Glicksberg ([2])
extended the classical F. and M. Riesz theorem to compact abelian groups
with certain ordered duals. Moreover, as an extension of the result of
deLeeuw and Glicksberg, Forelli ([7]) extended the F. and M. Riesz the0-
rem to a (topological) transformation group such that the reals $R$ acts on a
locally compact Hausdorff space. In fact, he proved the following theorems.

THEOREM 0. 2 ([7, Theorem 3]). Let $(R, S)$ be a transformation
group such that the reals $R$ acts on a locally compact Hausdorff space S. Let
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$\mu$ be a bounded regular complex Baire measure on S. Suppose $\mu$ is an analytic

measure. Then $\mu$ is quasi-invariant.

THEOREM 0. 3 ([7, Theorem 4]). Let $(R, S)$ and $\mu$ be as in Theorem

0. 2. Suppose $(R, S)$ is equipped with the one-paramater group $\{T_{t}\}_{t\in R}$ of
homemorphisms on S. Suppose $\mu$ is an analytic measure. Then $T_{t}\mu$ moves
continuously in $M(S)$ .

THEOREM 0. 4 ([7, Theorem 4]). Let $(R, S)$ and $\mu$ be as in Theorem
0. 2. Let $\sigma$ be a positive Radon measure on $S$ that is quasi-invariant. Suppose

$\mu$ is an analytic measure. Then both $sp(_{\mu_{a}})$ and $sp(\mu_{s})$ are contained in $sp$

$(_{\mu})$ , where $\mu_{a}$ is the absolutely continuous part of $\mu$ with respect to $\sigma$ and $\mu_{s}$

is the singular part of $\mu$ with respect to $\sigma$ respectively. In particular, if $\mu$ is
an analytic measure, then $\mu_{a}$ and $\mu_{s}$ are also analytic measures.

In this paper we give results corresponding to Theorems 0. 2-0. 4 on a
transformation group with certain conditions (conditions (C. I) and (C.

$II))$ . We also extend Theorem 0. 1 to such a transformation group. In
section 1 we state definitions and our theorems of this paper. In section 2 we
state several lemmas concerning properties of measures on certan transfor-
mation groups. In sections 3-5, we give the proofs of our theorems. In
section 6, we shall state that if $(G, X)$ is a transformation group such that
a compact abelian group $G$ acts freely on a locally compact Hausdorff space
$X$ or a transformation group such that a compact abelian group $G$ acts on a
locally compact metric space $X$, then $(G, X)$ satisfies the conditions $((C. I)$

and (C. $II$) $)$ .

\S 1. Notations and results.

Let $X$ be a locally compact Hausdorff space. Let $C_{0}(X)$ be the Banach
space of continuous functions on $X$ which vanish at infinity, and let $M(X)$

be the Banach space of complex-valued bounded regular Borel measures on
$X$ with the total variation norm. Let $M^{+}(X)$ be the set of nonnegative

measures in $M(X)$ . For $\mu\in M(X)$ and $f\in L^{1}(|\mu|)$ , we often write $\mu\sigma$ ) $=$

$\int_{X}f(x)d\mu(x)$ . Let $X’$ be another locally compact Hausdorff space, and let

$S:Xarrow X’$ be a continuous map. For $\mu\in M(X)$ , let $S(\mu)\in M(X’)$ be the
continuous image of $\mu$ under S. We denote by $\mathscr{B}(X)$ the $\sigma$-algebra of
Borel sets in X. $\mathscr{B}_{0}(X)$ means the $\sigma$-algebra of Baire sets in $X$. In this
paper we employ the definition of Baire sets in [6] or [19]. That is, $\mathscr{B}_{0}$

$(X)$ is the $\sigma$-algebra generated by compact $G_{8}$ sets in $X$.
Let $G$ be a compact group and $X$ a locally compact Hausdorff space.

Suppose there exists a continuous map $(\#, x)arrow g\cdot x$ from $G\cross X$ onto $X$ with
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the following properties:

(1.1) $xarrow g\cdot x$ is a homeomorphism on $X$ for each $g\in G$

and $e\cdot x=x$, where $e$ is the identity element in $G$,
(1.2) $g_{1}\cdot(g_{2}\cdot x)=(g_{1}g_{2})\cdot x$ for $g_{1}$ , $g_{2}\in G$ and $x\in X$.
Then a pair $(G, X)$ is called a (topological) transformation group such
that $G$ acts on $X$. We say $G$ acts freely on $X$ if for any $x\in X$, $garrow g\cdot x$ is a
one-t0-0ne mapping. When $G$ is commutative, we write customarily 0, $g_{1}+$

$g_{2}$ and $-g$ instead of $e$, $g_{1}g_{2}$ and $g^{-1}$ respectively. For a closed normal
subgroup $H$ of $G$ and $x\in X$, the set $H(x)=\{h\cdot x:h\in H\}$ is called an orbit of
$x$ under $H$. Then $X/H=\{H(x):x\in X\}$ is also a locally compact Haus-
dorff space with respect to the quotient topology. Define an action of $G/H$
on $X/H$ by $gH\cdot H(x)=H(g\cdot x)$ . Then, by this action, $(G/HX/H)$
becomes a transformation group (cf. [14, Theorem 2. 9, p. 61]). Moreover,
if $G$ acts freely, then $G/H$ also acts freely.

Let $Y=X/G$ be the quotient space, and let $\pi:Xarrow Y$ be the canonical
map. Then, since $G$ is compact, $Y$ is a locally compact Hausdorff space
and $\pi$ is an open continuous map. A (Borel) measure $\sigma$ on $X$ is called
quasi-invariant if $|\sigma|(F)=0$ implies $|\sigma|(g\cdot F)=0$ for all $g\in G$. $M(G)$ and
$L^{1}(G)$ denote the measure algebra and the group algebra respectively. $m_{G}$

means the Haar measure of $G$. By $M_{a}(G)$ we denote the set of measures in
$M(G)$ which are absolutely continuous with respect to $m_{G}$ . Then by the
Radon-Nikodym theorem we can identify $M_{a}(G)$ with $L^{1}(G)$ . When $G$ is
commutative, for a subset $E$ of $\hat{G}$, $M_{E}(G)$ denotes the space of measures in
$M(G)$ whose Fourier-Stieltjes transforms vanish off $E$. Put $L_{E}^{1}(G)=M_{E}$

$(G)\cap L^{1}(G)$ . For $\mu\in M(G),\hat{\mu}$ denotes the Fourier-Stieltjes transform of
$\mu$ . For a closed subgroup $H$ of $G$, $H^{\perp}$ means the annihilator of $H$.

Let $f$ be a Baire measurable function on $X$. Then
(1.3) $(g, x)arrow f(g\cdot x)$ is a Baire function on $G\cross X$.
In fact, let $L:G\cross X$ -$arrow G\cross X$ be the map defined by $L(g, x)=(g, g\cdot x)$ , and
let $\pi_{X}$ : $G\cross Xarrow X$ be the projection. Then $L$ is a homeomorphism. Set
$\mathscr{F}=\{F\subset X:\pi_{X}^{-1}(F)\in(\mathscr{B}_{0}(G\cross X)\}$ . Then $\mathscr{F}$ is a $\sigma$-algebra containing all
compact $G_{8}$-sets in $X$. Hence $\pi_{X}^{-1}(F)$ belongs to $\mathscr{B}_{0}(G\cross X)$ for every $F\in$

$\mathscr{B}_{0}(X)$ . Thus, since $f(g\cdot x)=f\circ\pi_{X}\circ L(g, x)$ , (1. 3) follows easily.
For $\mu\in M(X)$ , $\lambda\in M(G)$ and a bounded Baire function $f$ on $X$, we

define convolutions $\lambda^{*}\mu$ and $\lambda*f$ as follows:

(1.4) $\lambda*f(x)=\int_{G}f(g^{-1}\cdot x)d\lambda(g)$ ,
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(1.5) $\lambda*\mu(h)=\int_{X}\int_{G}h(g\cdot x)d\lambda(g)d\mu^{(x)=\int_{G}\int_{X}(x)d\lambda(g)}h(g\cdot x)d\mu$

for $h\in C_{0}(X)$ . Then $\lambda*\mu\in M(X)$ and $\lambda*f$ is a bounded Baire function on
$X$ (see Lemma 2. 1 later). We note that (1. 5) holds for all bounded Baire
functions $h$ on $X$. Moreover we have

(1.6) $||\lambda*\mu||\leqq||\lambda||||_{\mu}||$ and $||\lambda*f||_{\infty}\leqq||\lambda|||V||_{\infty}$ .

For $\xi\in M(G)$ , we also have

(1.7) $\xi*(\lambda^{*\mu})=(\xi*\lambda)*\mu$ .

In fact, for $h\in C_{0}(X)$ , we have

$\xi*(\lambda*\mu)(h)=\int_{G}\int_{X}h(g\cdot x)d(\lambda*\mu)(x)d\xi(g)$

$= \int_{G}\int_{G}\int_{X}h(g\cdot(s\cdot x))d\mu(x)d\lambda(s)d\xi(g)$

$= \int_{X}\int_{G}\int_{G}h((gs)\cdot x)d\lambda(s)d\xi(g)d\mu^{(}x)$

$=(\xi*\lambda)*\mu^{(h)}$ .

DEFINITION 1. 1. Suppose $G$ is a compact abelian group and $\mu\in M$

$(X)$ . Let $J(\mu)$ be the collection of all $f\in L^{1}(G)$ with $f*\mu=0$ . We define
the spectrum of $\mu$ , which is denoted by $sp(_{\mu})$ , as follows:

sp $(_{\mu})= \bigcap_{f\in\int(\mu)}\hat{f}^{-1}(0)$ .

REMARK 1. 1. (I) By (1. 6) and (1. 7), $J(\mu)$ becomes a closed ideal
in $L^{1}(G)$ . Hence, since $G$ is a compact abelian group, $J(\mu)$ coincides with
$L_{E^{C}}^{1}(G)$ , where $E=sp(\mu)$ (cf. [20, p. 158-159]).

(II) By (I) we have

$(II. 1)$ $\gamma\in sp(\mu)$ if and only if $\gamma^{*}\mu\neq 0^{(1\rangle}$.

In particular, for $\mu$ , $\nu\in M(X)$ , we have

$(II. 2)$ sp $(_{\mu} + _{\nu)\subset sp(_{\mu})\cup sp(\nu)}$ .

In the sequel, $(G, X)$ will denote a transformation group in which $G$ is
a compact abelian group and $X$ is a locally compact Hausdorff space except

in \S 6. Before stating our results, we introduce two conditions (C. I) and
(C. $II$).

(C. I) For any closed subgroup $H$ of $G$ with $H^{\perp}$ countable and any $\mu$

$\in M^{+}(X/H)$ , put $\eta=\pi(\mu)$ , where $\pi:X/Harrow Y=X/H/G/H(\cong X/G)$ is
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the canonical map. Then there exists a family $\{\lambda_{y}\}_{y\in Y}$ of measures in $M^{+}$

$(X/H)$ with the following properties:

(1) $yarrow\lambda_{y}\varphi)$ is $\eta$ -measurable for each bounded Baire function $f$ on $X/$

$H$,
(2) $||\lambda_{y}||=1$ ,
(3) supp $(\lambda_{y})\subset\pi^{-1}(y)$ ,

(4) $\mu\sigma)=\int_{Y}\lambda_{\mathcal{Y}}\varphi)d\eta(y)$ for each bounded Baire function $f$ on $X/H$.
(C. $II$) Let $H$ be any closed subgroup of $G$ with $H^{\perp}$ countable. Let $Y$

and $\pi$ be as in (C. $I$). Let $\eta\in M^{+}(Y)$ , and let $\{\lambda_{y}^{1}\}_{y\in Y}$ and $\{\lambda_{y}^{2}\}_{y\in Y}$ be
families of measures in $M(X/H)$ satisfying the following properties:
(1) $yarrow\lambda y{}^{t}(f)$ is $\eta$ -integrable for each bounded Baire function $f$ on $X/$

$H(i=1,2)$ ,
(2) supp $(\lambda_{y}^{i})\subset\pi^{-1}(y)(i=1,2)$ ,

(3) $\int_{Y}\lambda_{y}^{1}\varphi)d\eta(y)=\int_{Y}\lambda_{y}^{2}(f)d\eta(y)$ for all bounded Baire functions $f$ on
$X/H$.

Then $\lambda_{y}^{1}=\lambda_{y}^{2}\eta- a$ . $a.y\in Y$.

Now we state our results. We take the definition of Radon measure
from [6].

THEOREM 1. 1. Assume that $(G, X)$ satisfifies conditions (C. $I$ ) and
(C. $II$ ). Let $P$ be a subsemigroup of $\hat{G}$ such that $P\cup(-P)=\hat{G}$. Let $\sigma$ be
a positive Radon measure on $X$ that is quasi-invariant. Let $\mu\in M(X)$ , and
let $\mu=\mu_{a}+\mu_{s}$ be the Lebesgue decomposition of $\mu$ with respect to $\sigma$. Suppose
$sp(_{\mu})\subset P$. Then both $sp(\mu_{a})$ and $sp(\mu_{s})$ are also contained in P. If addi-
tion, $P\cap(-P)=\{0\}$ and $\pi(|\mu|)\ll\pi(\sigma)$ , then $sp(\mu_{s})\subset P\backslash \{0\}$ , where $\pi:Xarrow$

$X/G$ is the canonical map.
THEOREM 1. 2. Let $(G, X)$ be as in Theorem 1. 1. Let $E$ be a subset

of $G$ satisfying the following :
$(^{*})^{(2)}$ for any $0\neq\lambda\in M_{E}(G)$ , $|\lambda|$ and $m_{G}$ are mutually absolutely contin-

uous.

Let $\mu$ be a measure in $M(X)$ with $sp(_{\mu})\subset E$. Then $\mu$ is quasi-invariant.

DEFINITION 1. 2. Let $G$ be a LCA group, and let $E$ be a closed subset
(1) On the left hand side, $\gamma$ means a character of $G$. And we consider 7 as an element in $L^{1}(G)$

on the right hand side. More exactly, on the right hand side, $\gamma*\mu$ means $(\gamma m_{G})*\mu$ .
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of $\hat{G}$. $E$ is called a Riesz set if $M_{E}(G)\subset L^{1}(G)$ .

THEOREM 1. 3. Let $(G, X)$ be as in Theorem 1. 1. Suppose $E\subset\hat{G}$ is $a$

Riesz set. Let $\mu$ be a measure in $M(X)$ with $sp(\mu)\subset E$. Then

$\lim_{garrow 0}||\mu-\delta_{g^{*}}\mu||=0$ ,

where $\delta_{g}$ denotes the point mass at $g\in G$.

THEOREM 1. 4. Let $(G, X)$ be as in Theorem 1. 1. Let $\sigma$ be a positive
Radon measure on $X$ that is quasi-invariant, and let $E$ be a Riesz set in $\hat{G}$.
Let $\mu$ be a measure in $M(X)$ with $sp(\mu)\subset E$. Then both $sp(\mu_{a})$ and $sp(\mu_{S})$

are contained in $sp(_{\mu})$ , where $\mu=\mu_{a}+\mu_{S}$ is the Lebesgue decomposition of $\mu$

with respect to $\sigma$.

Theorem 1. 1 may be considered an extension of Theorem 0. 1. And by
the classical F. and M. Riesz theorem, we can consider that Theorems 1. 2-1.
4 are compact analogues of Theorems 0. 2-0. 4. If we regard $R^{+}$ (non-

negative real numbers) as a semigroup with $R^{+}\cup(-R^{+})=R$ , Theorem 1. 1
is also considered as one corresponding to Theorem 0. 4.

If $(G, X)$ is a transformation group such that a compact abelian group
$G$ acts freely on a locally compact Hausdorff space $X$ or a transformation
group such that a compact abelian group $G$ acts on a locally compact metric
space $X$, then $(G, X)$ satisfies conditions (C. I) and (C. $II$) (see Theorem
6. 4 and Remark 6. 1). Hence the following corollary is obtained from
Theorems 1. 2-1. 4.

COROLLARY 1. 1. Let $(G, X)$ be a transformation group such that $a$

compact abelian group $G$ acts freely on a locally compact Hausdorff space $X$

or a transformation group such that a compact abelian group $G$ acts on $a$

locally compact metric space X. Then the conclusions of Theorems 1. 2-1. 4
hold.

Next we give several examples of transformation groups that satisfy the
conditions in Corollary 1. 1.

EXAMPLE 1. 1. Let $X$ be a locally compact group and $G$ a compact
abelian subgroup of $X$. Then $(g, x)arrow gx$ is a continuous map from $G\cross X$

onto $X$ satisfying (1. 1) and (1. 2). Thus $G$ and $X$ form a transformation
group. Exidently $G$ acts freely on $X$ because $X$ is a group.

Let $C$ be the complex plane. A subset $F\subset C$ is said to be circular if

(2) If $E\subset\hat{G}$ satisfies condtion $(^{*})$ , then $E$ is a Riesz set. However the converse is false in
general (see Remark 5. 1).
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$e^{i\theta}z\in F$ for all $z\in F$ and $\theta\in R$ .

EXAMPLE 1. 2. Let $T$ be the circle group (i.e., $T=\{e^{i\theta}$ : $\theta\in[0,2\pi$) $\})$ .
Let $X\subset C$ be a locally compact set that is cirular. Then $(e^{i\theta}. z)arrow e^{i\theta}z$ is a
continuous map from $T\cross X$ onto $X$ satisfying (1. 1) and (1. 2). Thus $T$

and $X$ form a transformation group. Evidently $X$ is a locally compact
metric space. If the origin is not contained in $X$, $T$ acts freely on $X$.

EXAMPLE 1. 3. Let $(G_{i}, X_{i})$ be a transformation group such that a
compact abelian group $G_{1}$ acts freely on a locally compact Hausdorff space
$X_{i}(i=1,2)$ . Then $((g_{1}, g_{2}),$ $(x_{1}, x_{2}))-arrow(g_{1}\cdot x_{1}, g_{2}\cdot x_{2})$ is a continuous map
from $G_{1}\oplus G_{2}\cross X_{1}\cross X_{2}$ onto $X_{1}\cross X_{2}$ satisfying (1. 1) and (1. 2). Thus $G_{1}$

$\oplus G_{2}$ and $X_{1}\cross X_{2}$ form a transformation group. It is easy to see that $G_{1}\oplus G_{2}$

acts freely on $X_{1}\cross X_{2}$ .

EXAMPLE 1. 4. Let $(G_{i}, X_{i})$ be a transformation group such that a
compact abelian group $G_{i}$ acts on a locally compact metric space $X_{i}(i=1$ ,
2). Then $G_{1}\oplus G_{2}$ and $X_{1}\cross X_{2}$ form a transformation group as in the previous
example.

EXAMPLE 1. 5. For each $i\in N$ (the natural numbers), let $(G_{i}, X_{i})$ be
a transformation group such that a compact abelian group $G_{i}$ acts on a
compact metric space $X_{i}$ . Then $\prod_{i\in N}G_{i}$ and $\prod_{i\in N}X_{i}$ form a transformation
group by the action $<g_{i}>\circ<x_{i}>=<g_{i}\cdot x_{i}>$ , where $<g_{i}> \in\prod_{i\in N}G_{i}$ and
$<x_{i}> \in\prod_{i\in N}X_{i}$ .

EXAMPLE 1. 6. Let $\Lambda$ be an index set. For each $\alpha\in\Lambda$ , let $(G_{a}, X_{a})$ be
a transformation group such that a compact abelian group $G_{a}$ acts freely on
a compact Hausdorff space $X_{a}$ . Then $\prod_{a\in\Lambda}G_{a}$ and $\prod_{a\in\Lambda}X_{a}$ form a transforma-
tion group by the action $<g_{a}>\cdot<x_{a}>=<g_{a}\cdot x_{a}>$ , where $<g_{a}> \in\prod_{a\in\Lambda}G_{a}$

and< $x_{a}> \in\prod_{a\in\Lambda}X_{a}$ . Evidently $\prod_{a\in\Lambda}G_{a}$ acts freely on $\prod_{a\in\Lambda}X_{a}$ .
Combining Corollary 1. 1 with Proposition 4. 3, which will be stated in

section 4, we obtain the following corollaries.

COROLLARY 1. 2. Let $\Lambda$ be an index set. For each $\alpha\in\Lambda$ , let $X_{a}$ be $a$

compact circular set in C. Let $X= \prod_{a\in\Lambda}X_{a}$ and $G= \prod_{a\in\Lambda}T_{a}$, where $T_{a}=T$ for
all $\alpha\in\Lambda$ . Let $(G, X)$ be the transformation group defifined by $<e>it\alpha$ .
$<x_{a}>=<e^{it\alpha}x_{a}>for<e^{ita}>\in G$ $and<x_{a}>\in X$. Put $E=\{<m_{a}>\in\hat{G}$ :
$m_{a}\geq 0$ for all $\alpha\in\Lambda$}. Suppose that the origin is not contained in $X_{a}$ for every
$\alpha\in\Lambda$ or $\Lambda$ is a countable set. Let $\mu$ be a measure in $M(X)$ with $sp(_{\mu})\subset E$.



296 H. Yamaguchi

Then $\mu$ is quasi-invariant.

PROOF. Since $(G, X)$ satisfies the conditions in Corollary 1. 1, the
corollary follows from Corollary 1. 1 (cf. Theorem 1. 2) and Proposition 4.
3.

COROLLARY 1. 3. Let $(G, X)$ and $E$ be as in Corollary 1. 2. Let $S$ be
a Sidon set in $\hat{G}$. Let $\mu$ be a measure in $M(X)$ with $sp(\mu)\subset E\cup S$, and let
$\sigma$ be a positive Radon measure on $X$ that is quasi-invariant. Then the
following hold.

$(i)$ $\lim_{garrow 0}||\mu-\delta_{g}*\mu||=0$ ;

(ii) let $\mu=\mu_{a}+\mu_{s}$ be the Lebesgue decomposition of $\mu$ with respect to $\sigma$.
Then both $sp(_{\mu_{a}})$ and $sp(_{\mu_{s}})$ are contained in $E\cup S$.

PROOF. By Proposition 4. 3 and [16, Corollary 4], $E\cup S$ is a Riesz set.
Hence the corollary follows from Corollary 1. 1 (cf. Theorems 1. 3 and 1. 4).

For a locally compact Hausdorff space $X$, $C_{c}(X)$ denotes the space of
all complex-valued continuous functions on $X$ with compact supports. Let
$C_{c}^{R}(X)$ be the set of all real-valued functions in $C_{c}(X)$ . Before we close
this section, we state several lemmas and propositions.

Let $(G, X)$ be a transformation group such that a compact abelian
group $G$ acts on a locally compact Hausdorff space $X$. Let $\pi:Xarrow X/G$ be
the canonical map. For $x\in X$, we define a map $B_{x}$ : $Garrow G\cdot x(\subset X)$ by

(1.8) $B_{x}(g)=g\cdot x$.

Then $B_{x}$ is a continuous map. Put $G_{x}=\{g\in G:g\cdot x=x\}$ . Then $G_{x}$ is a
closed subgroup of $G$. Let $\Pi_{x}$ : $Garrow G/G_{x}$ be the canonical map. We define
a map $\tilde{B}_{x}$ : $G/G_{x}arrow G\cdot x$ by

(1.9) $\tilde{B}(g+G_{x})=g\cdot x$.

Then we have

(1. 10) $B_{x}=\tilde{B}_{x}\circ\Pi_{x}$ .

Fig. I

$G/G_{x}$

PROPOSITION 1. 1. For each $x\in X,\tilde{B}_{x}$ : $G/G_{x}arrow G\cdot x$ is a homeomor-
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phism.

PROOF. It is easy to see that $\tilde{B}_{x}$ is bijective. Since $B_{x}$ is continuous, $\tilde{B}_{x}$

is also continuous. Moreover, since $G/G_{x}$ is compact, $\tilde{B}_{\overline{x}^{1}}$ is continuous.
This completes the proof.

PROPOSITION 1. 2. For $x\in X$, $\lambda\in M(G/G_{x})$ and $E\subset\hat{G}$, the following,
are equivalent.

(I) $\lambda\in M_{E\cap G_{\chi}^{\perp}}(G/G_{x})$ :
(II) $\phi(\tilde{B}_{x}(\lambda))\subset E$.

PROOF. For $g\in G$, let $\dot{g}$ denote the coset $g+G_{x}$ . Then
sp $(\tilde{B}_{x}(\lambda))\subset E$

$\Leftrightarrow\int_{G}\int_{G\cdot X}h(g\cdot y)d\tilde{B}_{x}(\lambda)(y)f(g)dm_{G}(g)=f*\tilde{B}_{x}(\lambda)(h)=0$

for all $f\in L_{E^{C}}^{1}(G)$ and $h\in C_{0}(X)$

$\Leftrightarrow\int_{G}\int_{c/Gx}h(g\cdot\tilde{B}_{x}(\dot{s}))d\lambda(\dot{s})f(g)dm_{G}(g)=0$

for all $f\in L_{E^{c}}^{1}(G)$ and $h\in C_{0}(X)$

$\Leftrightarrow\int_{G}\int_{G/Gx}h(\tilde{B}_{x}(g.+\dot{s}))d\lambda(\dot{s})f(g)dm_{G}(g)=0$

for all $f\in L_{E^{c}}^{1}(G)$ and $h\in C_{0}(X)$ .

By Proposition 1. 1, we note that $C_{0}(X)|_{G\cdot X}=C(G\cdot x)\cong C(G/G_{x})$ . Hence

$\Leftrightarrow\int_{G}\int_{c/Gx}F(\dot{g}+\dot{s})d\lambda(\dot{s})f(g)dm_{G}(g)=0$

for all $f\in L_{E^{c}}^{1}(G)$ and $F\in C(G/G_{x})$

$\Leftrightarrow\int_{G/Gx}\int_{G/Gx}\int_{Gx}F(g.+\dot{s})f(g+u)dm_{Gx}(u)dm_{G/Gx}(g.)d\lambda(\dot{s})=0$

for all $f\in L_{E^{C}}^{1}(G)$ and $F\in C(G/G_{x})$

$\Leftrightarrow\lambda*\Pi_{x}(f)(F)=\int_{G/Gx}\int_{G/Gx}F(\dot{g}+\dot{s})\Pi_{x}\sigma)(g.)dm_{G/Gx}(\dot{g})d\lambda(\dot{s})=0$

for all $f\in L_{E^{C}}^{1}(G)$ and $F\in C(G/G_{x})$

$\Leftrightarrow\lambda\in M_{E\cap G_{\chi}^{\perp}}(G/G_{x})$ .

This completes the proof.
The following two propositions are well-known.

PROPOSITION 1. 3. Let $X$ be a locally compact Hausdorff space. For $\mu$,
$\nu\in M^{+}(X)$ , let $\mu|_{9_{0}(X)}$ and $\nu|_{g_{0}(X)}$ be the restrictions of $\mu$ and $\nu lo\mathscr{B}_{0}(X)$

respectively. Then the following hold.

(I) The following are equivalent.
(I. 1) $\nu\ll\mu$ ;



298 H. Yamaguchi

(I. 2) $\nu|_{ff_{0}(X)}\ll\mu|_{g_{0}(X)}$ .
(II) The following are equivalent.

$(II.1)$ $\mu\perp\nu$ ;
$(II.2)$ $\mu|_{9_{0}(X)}\perp\nu|_{g_{0}(X)}$ .

PROPOSITION 1. 4. Let $X$ be a locally compact Hausdorff space and $\mu a$

measure in $M(X)$ . Then there exists a unimodular Baire function $h$ on $X$

such that $\mu=h|\mu|$ .

LEMMA 1. 1. Suppose $\sigma\in M^{+}(X)$ is quasi-invariant. Then $\sigma$ and
$m_{G^{*}}\sigma$ are mutually absolutely continuous.

PROOF. Let $F$ be a Baire set in $X$ with $m_{G}*\sigma(F)=0$ . Then

$0= \int_{G}\int_{X}\chi_{F}(g\cdot x)d\sigma(x)dm_{G}(g)$

$= \int_{G}\sigma((-g)\cdot F)dm_{G}(g)$ ,

which yields $\sigma((-g)\cdot F)=0$ for some $g\in G$. Hence $\sigma(F)=0$ . Hence, by
Proposition 1. 3, we have $\sigma\ll m_{G}*\sigma$. Next suppose $\sigma(F)=0$ for a Baire set
$F$ in $X$. Then $\sigma((-g)\cdot F)=0$ for all $g\in G$, and so $m_{G}* \sigma(F)=\int_{G}\sigma((-g)$ .
$F)dm_{G}(g)=0$ . It follows from Proposition 1. 3 that $m_{G}*\sigma\ll\sigma$, and the proof
is complete.

LEMMA 1. 2. Let $x\in X$ and $g\in G$. Then the following hold.
(I) For $\mu$, $\lambda\in M(G)$ , we have $B_{x}(\mu*\lambda)=\mu*B_{x}(\lambda)$ .
(II) For $\lambda\in M(G)$ , we have

$B_{g\cdot x}(\lambda)=B_{x}(\delta_{g}*\lambda)=\delta_{g}*B_{x}(\lambda)$ .

In particular, $B_{g}$ . $x(m_{G})$ Bx(mc).

PROOF. ( I): For any $f\in C_{0}(X)$ , we have

$\mu*B_{x}(\lambda)\sigma)=\int_{G}\int_{X}f(u\cdot y)dB_{x}(\lambda)(y)d\mu(u)$

$= \int_{G}\int_{G}f(u\cdot(s\cdot x))d\lambda(s)d\mu(u)$

$= \int_{G}f(u\cdot x)d\mu^{*}\lambda(u)$

$=B_{x}(\mu^{*}\lambda)\sigma)$ .

Hence we have $\mu*B_{x}(\lambda)=B_{x}(\mu^{*}\lambda)$ .
(II): For any $f\in C_{0}(X)$ , we have
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$B_{g\cdot\chi}( \lambda)\sigma)=\int_{G}f(B_{g\cdot\chi}(u))d\lambda(u)$

$= \int_{G}f((u+g)\cdot x)d\lambda(u)$

$= \int_{G}f(u\cdot x)d\delta_{g^{*}}\lambda(u)$

$=B_{x}(\delta_{g^{*}}\lambda)(f)$ ,

which together with ( I) yields $B_{g\cdot x}(\lambda)=B_{x}(\delta_{g}*\lambda)=\delta_{g}*B_{x}(\lambda)$ . This com-
pletes the proof.

DEFINITION 1. 3. For $x\in X$, put $\dot{x}=\pi(x)$ . And define $m_{\dot{x}}\in M^{+}(X)$

by $m_{\dot{x}}=B_{x}(m_{G})$ .

REMARK 1. 2. By Lemma 1. 2 $(I)$ , $m_{\dot{x}}$ is well-defined. That is,
$B_{\mathcal{Y}}(m_{G})=B_{x}(m_{G})$ for every $y\in\pi^{-1}(\dot{x})$ .

Lemma 1. 3. Let $\mu$ be a measure in $M^{+}(X)$ such that $||\mu||=1$ and supp
$(_{\mu})\subset\pi^{-1}(\dot{x})$ for some $\dot{x}\in X/G$. Then $m_{G^{*}}\mu=m_{\dot{x}}$ .

PROOF. Let $x\in\pi^{-1}(\dot{x})$ , and let $\Pi_{X}$ : $Garrow G/G_{x}$ be the canonical
map. Since $supp(\mu)\subset\pi^{-1}(\dot{x})$ , it follows from Proposition 1. 1 that
there exists a probability measure $\lambda\in M^{+}(G/G_{x})$ such that $\mu=\tilde{B}_{x}(\lambda)$ .
Let $\xi$ be a probability measure in $M^{+}(G)$ such that $\lambda=\Pi_{x}(\xi)$ . Then
by (1. 10) we have $\mu=\tilde{B}_{x}(\Pi_{x}(\xi))=B_{x}(\xi)$ . Hence, by Lemma 1. 2 (I),
we have

$m_{G^{*}}\mu=m_{G}*B_{x}(\xi)$

$=B_{x}(m_{G}*\xi)$

$=B_{x}(m_{G})$

$=m_{\dot{x}}$ .

This completes the proof.

PROPOSITION 1. 5. For $x\in\pi^{-1}(\dot{x}),\tilde{B}_{x}(m_{G/Gx})=m_{\dot{x}}$ .

PROOF. For a Borel set $B\subset G\cdot x$, put $\tilde{F}=\tilde{B}_{\overline{x}^{1}}(B)$ and $F=B_{\overline{x}^{1}}(B)$ . It
follows from (1. 10) that $F=\Pi_{\overline{x}}^{1}(\tilde{F})$ . Hence we have

$m_{\dot{x}}(B)=B_{x}(m_{G})(B)$

$=m_{G}(F)$

$= \int_{G/Gx}\int_{Gx}\chi_{F}(s+t)dm_{Gx}(t)dm_{G/Gx}(\dot{s})$

$= \int_{G/Gx}\chi_{F}(\dot{s})dm_{G/Gx}(\dot{s})$

$=m_{G/Gx}(\tilde{F})$
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$=\tilde{B}_{x}(m_{G/Gx})(B)$ .

This completes the proof.
For a locally compact Hausdorff space $X$, $\mathscr{B}_{0}(X)$ is the smallest

$\sigma$-algebra with respect to which every function in $C_{c}(X)$ is measurable.
Hence, by [4, 21 Theorem, 41-1], we get the following proposition.

PROPOSITION 1. 6. Let $X$ be a locally compact Hausdorff space. Let $\mathscr{H}$

be a vector space of bounded real-valued functions on $X$, which contains the
constants, is closed under uniform convergence and has the following prop-
erty: for every uniformly bounded increasing sequence of positive functions $f_{n}$

$\in \mathscr{H}$ . the function $f= \lim_{narrow\infty}f_{n}$ belongs to $\mathscr{H}$ Suppose $\mathscr{H}\supset C_{c}^{R}(X)$ . Then $\mathscr{H}$

contains all bounded real-valued Baire measurable functions on $X$.
\S 2. Several lemmas.

In this section we give several lemmas, which are used for proving our
theorems later on. For locally compact Hausdorff spaces $X_{1}$ and $X_{2}$ , $\mathscr{B}_{0}$

$(X_{1}\cross X_{2})$ in general does not coincide with $\mathscr{B}_{0}(X_{1})\cross \mathscr{B}_{0}(X_{2})$ (cf. [6, $ch$ . 7,
Exercise 31, p. 224]). However the following lemma holds. We give its
proof for completeness.

Lemma 2. 1. Let $X_{1}$ and $X_{2}$ be locally compact Hausdorrff spaces, and
let $\mu\in M^{+}(X_{1})$ and $\nu\in M^{+}(X_{2})$ . Then, for each bounded Baire function $f$

on $X_{1}\cross X_{2}$ , we have

$(i)$ $x_{1} arrow\int_{x_{2}}f(x_{1}, x_{2})d\nu(x_{2})$ is Baire measurable on $X_{1}$ , and

(ii) $n arrow\int_{x_{1}}f(x_{1}, x_{2})d\mu(x_{1})$ is Baire measurable on $X_{2}$ .

PROOF. Let $\mathscr{H}=\{f(x_{1}, x_{2})$ : bounded real-valued functions on $X_{1}\cross X_{2}$

satisfying $( i)$ and $( ii)\}$ . Then $\mathscr{H}$ is a vector space, which is closed under
uniform convergence and contains the constants and $C_{c}^{R}(X_{1}\cross X_{2})$ . More-
over, for every uniformly bounded increasing sequence of positive functions
$f_{n}\in \mathscr{H}$ . the function $f= \lim_{narrow\infty}f_{n}$ belongs to $\mathscr{H}_{-}$ Hence, by Proposition 1. 6, $\mathscr{H}$

contains all bounded real-valued Baire functions on $X_{1}\cross X_{2}$ . Thus, for
every bounded Baire function $f$ on $X_{1}\cross X_{2}$ , $( i)$ and $( ii)$ hold. This com-
pletes the proof.

LEMMA 2. 2. Let $\eta\in M^{+}(X/G)$ and $\lambda\in M(G)$ . Let $\{\mu_{\dot{x}}\}_{\dot{x}\in X/G}$ be $a$

family of measures in $M(X)$ such that $\dot{x}arrow\mu_{\dot{x}}\sigma$) is $\eta$-measurable for each
bounded Baire function $f$ on X. Then $\dot{x}arrow\lambda^{*\mu_{\dot{x}}}(f)$ is $\eta$-measurable for each
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bounded Baire function $f$ on $X$.

PROOF. Since $(g, x)arrow f(g, x)$ is a Baire measurable function on $G\cross$

$X$, it follows from Lemma 2. 1 that $x arrow\int_{G}f(g\cdot x)d\lambda(g)$ is a bounded Baire

function on $X$. Hence $\dot{x}$ $- arrow\lambda*\mu_{\dot{x}}(f)=\int_{X}\int_{G}f(g\cdot x)d\lambda(g)d\mu_{\dot{x}}(x)$ is $\eta$
-

measurable. This completes the proof.

LEMMA 2. 3. Let $\mu\in M(X)$ and $\eta\in M^{+}(X/G)$ . Let $\{\mu_{\dot{x}}\}_{\dot{x}\in X/G}$ be $a$

family in $M(X)$ with the following properties:

(1) $\dot{x}arrow\mu_{\dot{x}}(f)$ is $\eta$-integrable for each bounded Baire function $f$ on $X$,

(2) $\mu\sigma)=\int_{x/G}\mu_{\dot{x}}\sigma)d\eta(\dot{x})$ for each bounded Baire function $f$ on $X$.

Then, for $\lambda\in M(G)$ , the following hold.

(I) $\dot{x}arrow\lambda*\mu_{\dot{x}}\sigma)$ is an $\eta$-integrable function for each bounded Baire
function $f$ on $X$ ;

(II) $\lambda^{*}\mu(f)=\int_{x/c}\lambda*\mu_{\dot{x}}\sigma)d\eta(\dot{x})$ for each bounded Baire function $f$ on
$X$.

PROOF. $( I)$ : Since $(\#, x)arrow f(g\cdot x)$ is a bounded Baire function on
$G\cross X$, it follows from Lemma 2. 1 that $x arrow\int_{G}f(g\cdot x)d\lambda(g)$ is a bounded

Baire function on $X$. Hence (1) implies that $\dot{x}arrow\lambda*\mu_{\dot{x}}(f)=\int_{X}\int_{G}f(g\cdot x)d\lambda$

$(g)$ $d_{\mu_{\dot{x}}}(x)$ is $\eta$ -integrable.

(II): Since $x arrow\int_{G}f(g\cdot x)d\lambda(g)$ is a bounded Baire function on $X$, it

follows from (2) that

$\lambda*\mu\sigma)=\int_{X}\int_{G}f(g\cdot x)d\lambda(g)d\mu^{(\chi)}$

$= \int_{X/G}\int_{X}\int_{G}f(g\cdot x)d\lambda(g)d\mu_{\dot{x}}(x)d\eta(\dot{x})$

$= \int_{x/c}\lambda*\mu_{\dot{x}}\sigma)d\eta(\dot{x})$ .

This completes the proof.
From Lemma 2. 4 through Lemma 2. 8, we assume that $(G, X)$ is a

transformation group such that a metrizable compact abelian group $G$ acts
on a locally compact Hausdorff space $X$. For $\dot{x}\in X/G$, let $m_{\dot{x}}$ be the
measure defined in Definition 1. 3, and let $\pi:Xarrow X/G$ be the canonical map.



302 H. Yamaguchi

Moreover, from Lemma 2. 4 through Lemma 2. 8, we assume that $(G, X)$

satisfies the following conditions (D. I) and (D. $II$).

(D. I) For any $\mu\in M^{+}(X)$ , put $\eta=\pi(\mu)$ . Then there exists a family
$\{\lambda_{\dot{x}}\}_{\dot{x}\in X/G}$ of measures in $M^{+}(X)$ with the following:
(1) $\dot{x}arrow\lambda_{\dot{x}}(f)$ is $\eta$ -measurable for each bounded Baire function $f$ on $X$,
(2) $||\lambda_{\dot{x}}||=1$ ,
(3) supp $(\lambda_{\dot{x}})\subset\pi^{-1}(\dot{x})$ ,

(4) $\mu\sigma)=\int_{x/c}\lambda_{\dot{x}}y)d\eta(\dot{x})$ for each bounded Baire function $f$ on $X$.

(D. $II$ ) Let $\nu\in M^{+}(X/G)$ . Suppose $\{\lambda_{x}!\}_{\dot{x}\in X/G}$ and $\{\lambda_{\dot{x}}^{2}\}_{\dot{x}\in X/G}$ are fam-
ilies of measures in $M(X)$ with the following properties:
(1) $\dot{x}arrow\lambda_{\dot{x}}^{i}\varphi)$ is a $\nu$-integrable function for each bounded Baire func-
tion $f$ on $X(i=1,2)$ ,
(2) supp $(\lambda_{\dot{x}}^{i})\subset\pi^{-1}(\dot{x})(i=1,2)$ ,

(3) $\int_{x/c}\lambda_{x}!(f)d\nu(\dot{x})=\int_{x/c}\lambda_{\dot{x}}^{2}y)d\nu(\dot{x})$ for all bounded Baire functions
$f$ on $X$.

Then we have $\lambda_{x}!=\lambda_{\dot{x}}^{2}\nu- a.a.\dot{x}\in X/G$.

Let $\mu\in M(X)$ and $\eta\in M^{+}(X/G)$ . By an $\eta$ -disintegration of $\mu$ , we
mean a family $\{\lambda_{\dot{x}}\}_{\dot{x}\in X/G}$ of measures in $M(X)$ satisfying (1)’ $\dot{x}arrow\lambda_{\dot{x}}(f)$ is
$\eta$ -integrable for each bounded Baire function $f$ on $X$ and $(3)-(4)$ in (D. $I$).

If, in addition, $\eta=\pi(|\mu|)$ and $||\lambda_{\dot{x}}||=1$ for all $\dot{x}\in X/G$, then we call $\{\lambda_{\dot{x}}\}_{\dot{x}\in X/G}$

a canonical disintegration of $\mu$ . Thus condition (D. I) says that each $\mu\in$

$M^{+}(X)$ has a canonical disintegration $\{\mu_{\dot{x}}\}_{\dot{x}\in X/G}$ with $\mu_{\dot{x}}\in M^{+}(X)$ .

REMARK 2. 1. For $\mu\in M^{+}(X)$ , let $\{\lambda_{\dot{x}}\}_{\dot{x}\in X/G}$ be a canonical disintegra-
tion of $\mu$ . Then $\lambda_{\dot{x}}\in M^{+}(X)\eta- a.a.\dot{x}\in X/G$.

REMARK 2. 2. $( i)$ For $\mu\in M(X)$ , it follows from Proposition 1. 4
that there exists a unimodular Baire function $h$ on $X$ such that $\mu=h|\mu|$ .
Suppose $\{\lambda_{\dot{x}}\}_{\dot{x}\in X/G}$ is a canonical disintegration of $|_{\mu}|$ . Then $\{h\lambda_{\dot{x}}\}_{\dot{x}\in X/G}$ is a
canonical disintgration of $\mu$ . Hence the following are equivalent.

(1) every $\mu\in M^{+}(X)$ has a canonical disintegration;
(2) every $\mu\in M(X)$ has a canonical disintegration.

(ii) If $(G, X)$ satisfiese (D. $I$), then every $\mu\in M(X)$ has a canonical
disintegration.

LEMMA 2. 4. Let $\mu\in M(X)$ and $\eta^{\in}M^{+}(X/G)$ . Let $\{\lambda_{\dot{x}}\}_{\dot{x}\in X/G}$ be an
$\eta$-disintegration of $\mu$ . Then $\{|\lambda_{\dot{x}}|\}_{\dot{x}\in X/G}$ is an $\eta$-disintegration of $|_{\mu}|$ . In
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particular,

(1) $||_{\mu}||= \int_{X/G}||\lambda_{\dot{x}}||d\eta(\dot{x})$ .

PROOF. Let $h$ be a unimodular Baire function on $X$ such that $\mu=h|\mu|$ .
Then $\{ \overline{h}\lambda_{\dot{x}}\}_{\dot{x}\in X/G}$ is an $\eta$ disintegration of $|\mu|$ . Therefore, to establish the
desired result, it will suffice to prove that $\lambda_{\dot{x}}\geq 0$ for $\eta- a.a.\dot{x}\in X/G$ assuming
that $\mu\geq 0$ . So suppose $\mu\geq 0$ . By (D. $I$), $\mu$ has a canonical disintegration
$\{\mu_{\dot{x}}\}_{\dot{x}\in X/G}$ . By Remark 2. 1, $\mu_{\dot{x}}$ is a probability measure for $\pi(_{\mu})$ -a.a. $\dot{x}\in X/$

$G$. Moreover,

(2) $\int_{X/G}\lambda_{\dot{x}}\varphi)d\eta(\dot{x})=\mu\sigma)=\int_{X/G}\mu_{\dot{x}}\sigma)d\pi(\mu)(\dot{\chi})$

for each bounded Baire function $f$ on $X$. We claim that $\pi(_{\mu})\ll\eta$ . To see
this, pick any Baire set $B\subset X/G$ with $\eta(B)=0$ . Since $supp(\lambda_{\dot{x}})\subset\pi^{-1}(\dot{x})$ ,
$\lambda_{\dot{x}}(\chi_{B}\circ\pi)=0$ for $\dot{x}\not\in B$. Hence we have, by (2) with $f=\chi_{B}\circ\pi$,

$\pi(_{\mu})(B)=\mu(\chi_{B}\circ\pi)$

$= \int_{x/c}\lambda_{\dot{x}}(\chi_{B}\circ\pi)d\eta^{(\dot{\chi})}$

$= \int_{B}\lambda_{\dot{x}}(\chi_{B}\circ\pi)d\eta(\dot{x})+\int_{B^{C}}\lambda_{\dot{x}}(\chi_{B}\circ\pi)d\eta^{(\dot{x})}$

$=0$ ,

which establishes our claim. Finally let $\phi$ be the nonnegative Radon-
Nikodym derivative of $\pi(_{\mu})$ with respect to $\eta$ . Then $\pi(\mu)=\phi\eta$ by our
claim. So (2) ensures that

$\int_{X/G}\lambda_{\dot{x}}(f)d\eta(\dot{x})=\int_{X/G}[(\phi\circ\pi)\mu_{\dot{x}}](f)d\eta(\dot{x})$

for each bounded Baire function $f$ on $X$. Therefore we have

$\lambda_{\dot{x}}=(\phi\circ\pi)\mu_{\dot{x}}\geq 0$ for $\eta- a.a.\dot{x}\in X/G$

by condition (D. $II$). This completes the proof.

LEMMA 2. 5. Let $\sigma\in M^{+}(X)$ be a quasi-invariant measure. Let $\mu\in$

$M^{+}(X)$ and $\eta\in M^{+}(X/G)$ . Let $\{\mu_{\dot{x}}\}_{\dot{x}\in X/G}$ be an $\eta$ disintegration of $\mu$ with
$\mu_{\dot{x}}\in M^{+}(X)$ . Then the following hold.

(I) If $\eta\ll\pi(\sigma)$ , then the following are equivalent.
(I. 1) $\mu\ll\sigma$ ;
(I. 2) $\mu_{\dot{x}}\ll m_{\dot{x}}\eta- a.a.\dot{x}\in X/G$.

(II) If $\eta\ll\pi(\sigma)$ , then the following are equivalent.
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$(II.1)$ $\mu\perp\sigma$ ;
$(II.2)$ $\mu_{\dot{x}}\perp m_{\dot{x}}\eta- a.a.\dot{x}\in X/G$.

PROOF. We first prove (I). (I. $2$) $\supset(I.1)$ : Let $E$ be a Baire set in
$X$ with $\sigma(E)=0$ . Let $\{\sigma_{\dot{x}}\}_{\dot{x}\in X/G}$ be a canonical disintegration of $\sigma$ . Then by
Lemmas 1. 1 and 2. 3 we have

$0=m_{G^{*}}\sigma(E)$

$= \int_{x/c}m_{G}*\sigma_{\dot{x}}(E)d\pi(\sigma)(\dot{x})$ ;

hence

$m_{G}*\sigma_{\dot{x}}(E)=0\pi(\sigma)- a.a.\dot{x}\in X/G$.

Thus Lemma 1. 3 and the hypothesis yield

$\mu(E)=\int_{x/c}\mu_{\dot{x}}(E)d\eta(\dot{x})=0$ ,

which together with Proposition 1. 3 shows $\mu\ll\sigma$ .

(I. $1$ )$\supset(I.2)$ : By Lemmas 1. 1, 1. 3 and 3. 3, we have
(1) $\mu\ll m_{G}*\sigma$, and
(2) $m_{G}* \sigma U)=\int_{X/G}m_{\dot{x}}(f)d\pi(\sigma)(\dot{x})$

for each bounded Baire function $f$ on $X$. Since $\eta\ll\pi(\sigma)$ , there is a non-
negative real-valued Baire function $F$ on $X/G$ such that $\eta=F\pi(\sigma)$ . Then
(3) $\dot{\chi}arrow F(\dot{\chi})_{\mu_{\dot{x}}}\sigma)$ is a $\pi(\sigma)$ -integrable function

and

(4) $\mu(f)=\int_{x/c}F(\dot{x})\mu_{\dot{x}}\sigma)d\pi(\sigma)(\dot{x})$

for each bounded Baire function $f$ on $X$. Moreover,

(5) $F(\dot{x})_{\mu_{\dot{x}}}\ll m_{\dot{x}}\pi(\sigma)- a.a.\dot{x}\in X/G$.

In fact, since $\mu\ll m_{G}*\sigma$, there exists a nonnegative real-valued Baire function
$K$ on $X$ such that $\mu=Km_{G}*\sigma$. It follows from Lemma 2. 2 and (2) that $\dot{x}arrow$

$m_{\dot{x}}(K)$ is $\pi(\sigma)$ -integrable. Hence there exists a $\pi(\sigma)$ -null set $\tilde{E}$ in $X/G$

such that $||Km_{\dot{x}}||<\infty$ for $\dot{x}\not\in\tilde{E}$. We define a family $\{ V_{\dot{x}}\}_{\dot{x}\in X/G}$ of measures in
$M^{+}(X)$ by

(6) $V_{\dot{x}}=\{$

$Km_{\dot{x}}$ for $\dot{x}\not\in\tilde{E}$

0 for $\dot{x}\in\tilde{E}$
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Then $\{ V_{\dot{x}}\}_{\dot{x}\in X/G}$ is a $\pi(\sigma)$ -disintegration of $\mu$ . Hence, by $(3)-(4)$ and the
hypothesis (D. $II$), we get

$V_{\dot{x}}=F(\dot{x})\mu_{\dot{x}}\pi(\sigma)- a.a.\dot{x}\in X/G$,

which shows that (5) holds. By (5), we have $\mu_{\dot{x}}\ll m_{\dot{x}}\eta- a.a.\dot{x}\in X/G$.
Next we prove (II). By (2) and (4), $\{m_{\dot{x}}-F(\dot{x})_{\mu_{\dot{x}}}\}_{\dot{x}\in X/G}$ is a $\pi(\sigma)$ -

disintegration of $m_{G}*\sigma-\mu$ . It follows from Lemma 2. 4 that

(7) $||m_{G}* \sigma-\mu||=\int_{x/c}||m_{\dot{x}}-F(\dot{x})_{\mu_{\dot{x}}}||d\pi(\sigma)(\dot{x})$ .

Notice that $m_{G}*\sigma\perp\mu$ if and only if $||m_{G}*\sigma-\mu||=||m_{G}*\sigma||+||\mu||$ since all of the
measures $\sigma$ , $m_{G}$ and $\mu$ are nonnegative. It follows from (7) that $m_{G^{*}}\sigma\perp_{\mu}$

if and only if

(8) $||m_{\dot{x}}-F(\dot{x})_{\mu_{\dot{x}}}||=||m_{\dot{x}}||+||F(\dot{x})\mu_{\dot{x}}||$

for $\pi(\sigma)- a.a.\dot{x}\in X/G$. But (8) is obvious for all $\dot{x}$ with $F(\dot{x})=0$ . There-
fore, since $\eta=F\pi(\sigma)$ , (8) holds if and only if $m_{\dot{x}}\perp F(\dot{x})_{\mu_{\dot{x}}}$ for $\eta- a.a.\dot{x}\in X/$

$G$. Hence (II) follows from Lemma 1. 1. This completes the proof.

LEMMA 2. 6. Let $\mu\in M(X)$ and $\eta\in M^{+}(X/G)$ . Let $E$ be a subset of
$\hat{G}$. Let $\{\mu_{\dot{x}}\}_{\dot{x}\in X/G}$ be an $\eta$-disintegration of $\mu$ . If $sp(_{\mu})\subset E$, then

(1) $sp(\mu_{\dot{x}})\subset E\eta- a.a.\dot{x}\in X/G$.

PROOF. Let $\mathscr{A}\subset C(G)$ be a countable dense set in $L_{E^{C}}^{1}(G)$ . For $f_{n}\in$

$\mathscr{A}$ it follows from Lemma 2. 3 that $\dot{x}arrow f_{n^{*\mu_{\dot{x}}}}(h)$ is $\eta$ -integrable and $0=f_{n}*\mu$

$(h)= \int_{x/c}f_{n^{*\mu_{\dot{x}}}}(h)d\eta(\dot{x})$ for each bounded Baire function $h$ on $X$. More-
over, we have $supp(f_{n}*\mu_{\dot{x}})\subset\pi^{-1}(\dot{x})$ . Hence the hypothesis (D. $II$) yields $f_{n}*$

$\mu_{\dot{x}}=0\eta- a.a.\dot{x}\in X/G$, and so
$f*\mu_{\dot{x}}=0\eta- a.a.\dot{x}\in X/G$

for all $f\in L_{E^{C}}^{1}(G)$ . Thus we get (1), and the proof is complete.

LEMMA 2. 7. Let $\sigma\in M^{+}(X)$ be a quasi-invariant measure and $Ea$

subset of $\hat{G}$. Then the following hold.
(I) Each $\mu\in M(X)$ can be uniquely represented as $\mu=\mu_{1}+\mu_{2}$ , where

$\mu_{1}$ and $\mu_{2}$ are measures in $M(X)$ such that $\pi(|\mu_{1}|)\ll\pi(\sigma)$ and $\pi(|\mu_{2}|)\perp\pi$

$(\sigma)$ ;
(II) Let $\mu$ and $\mu_{1}$ be as in (I). If $sp(\mu)\subset E$, then $sp(\mu_{1})\subset E$.

PROOF. $( I)$ : Let $\eta=\pi(|\mu|)$ . Choose disjoint Baire sets A and $B$ so
that $A\cup B=X/G$, $\eta|_{A}\ll\pi(\sigma)$ and $\eta|_{B}\perp\pi(\sigma)$ . Define $\mu_{1}=\mu|_{\pi^{-1}(A)}$ and $\mu_{2}=$
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$\mu|_{\pi^{-1}(B)}$ . Plainly $\mu_{1}$ and $\mu_{2}$ have the desired properties. The uniqueness is
obvious.

(II): Let $\{\mu_{\dot{x}}\}_{\dot{x}\in X/G}$ be a canonical disintegration of $\mu$ . Define mea-
sures $\omega_{1}$ , $\omega_{2}\in M(X)$ by

(1) $\omega_{1}(f)=\int_{X/G}\mu_{\dot{x}}\sigma)d\pi(|\mu|)_{a}(\dot{x})$ ,

$\omega_{2}(f)=\int_{X/G}\mu_{\dot{x}}(f)d\pi(|\mu|)_{s}(\dot{x})$

for $f\in C_{0}(X)$ , where $\pi(|\mu|)=\pi(|\mu|)_{a}+\pi(|\mu|)_{s}$ is the Lebesgue decomposi-
tion of $\pi(|\mu|)$ with respect to $\pi(\sigma)$ . Then $\mu=\omega_{1}+\omega_{2}$ , and we can verify
that $\pi(|\omega_{1}|)\ll\pi(\sigma)$ and $\pi(|\omega_{2}|)\perp\pi(\sigma)$ . Hence we have
(2) $\mu_{1}=\omega_{1}$ and $\mu_{2}=\omega_{2}$ .

On the other hand, it follows from Lemma 2. 6 that

sp $(\mu_{\dot{x}})\subset E\pi(|\mu|)- a.a.\dot{x}\in X/G$ ;

Hence

sp $(\mu_{\dot{x}})\subset E\pi(|\mu|)_{a}- a.a.\dot{x}\in X/G$.

Hence
$f*\mu_{\dot{x}}=0\pi(|\mu|)_{a}- a.a.\dot{x}\in X/G$

for all $f\in L_{E^{C}}^{1}(G)$ . Thus we have, by $(1)-(2)$ and Lemma 2. 3,

$f*\mu_{1}=0$ for all $f\in L_{E^{c}}^{1}(G)$ ,

which yields $sp(_{\mu_{1}})\subset E$. This completes the proof.

LEMMA 2. 8. Let $\eta\in M^{+}(X/G)$ and $K>0$ , and let $\{\mu_{\dot{x}}\}_{\dot{x}\in X/G}$ be $a$

family of measures in $M^{+}(X)$ with the following properties:

(1) $\dot{x}arrow\mu_{\dot{x}}(f)$ is $\eta$ -integrable for each bounded Baire function $f$ on $X$ ,
(2) $supp(\mu_{\dot{x}})\subset\pi^{-1}(\dot{x})$ ,

(3) $\sup\{|\int_{X/G}\mu_{\dot{x}}U)d\eta(\dot{x})|: f\in C_{0}(X), |\triangleright^{}||_{\infty}\leq 1\}\leq K$.

Let $\mu_{\dot{x}}=\mu_{\dot{x}}^{a}+\mu_{\dot{x}}^{s}$ be the Lebesgue decomposition of $\mu_{\dot{x}}$ with respect to $m_{\dot{x}}$ . Then

(4) $\dot{x}arrow\mu_{\dot{x}}^{a}(f)$ and $\dot{x}arrow\mu_{\dot{x}}^{s}\sigma$ ) are $\eta$-integrable functions for each bounded
Baire function $f$ on $X$.

PROOF. We may assume that $\eta\neq 0$ . For any $f\in C_{0}(X)$ , we note that
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$x arrow\int_{G}f(g\cdot x)dm_{G}(g)$ is a function on $X$ which belongs to $C_{0}(X)$ and is

constant on each orbit under $G$. For each $f\in C_{0}(X)$ , define a function $[f]$

$\in C_{0}(X/G)$ by $[f]( \dot{x})=\int_{G}f(g\cdot x)dm_{G}(g)$ , where $\dot{x}=\pi(x)$ . We define a

measure $\sigma\in M^{+}(X)$ by

$\sigma(f)=\int_{x/c}[f](\dot{x})d\eta^{(\dot{\chi})}$

for $f\in C_{0}(X)$ .

Claim 1. $\delta_{g}*\sigma=\sigma$ for all $g\in G$.

For $f\in C_{0}(X)$ , define $f_{g}\in C_{0}(X)$ by $f_{g}(x)=f(g\cdot x)$ . Then $[f_{g}]=[f]$ .
Hence we have

$\delta_{g}*\sigma U)=\int_{G}f_{g}(x)d\sigma(x)$

$= \int_{x/c}[f_{g}](\dot{x})d\eta(\dot{x})$

$= \int_{X/G}[f](\dot{x})d\eta^{(\dot{\chi})}$

$=\sigma U)$

for all $f\in C_{0}(X)$ , and Claim 1 follows.

Claim 2. $\pi(\sigma)=\eta$ .

For $F\in C_{0}(X/G)$ , we note that $[F\circ\pi]=F$. Hence

$\pi(\sigma)(F)=\int_{X}F\circ\pi(x)d\sigma(x)$

$= \int_{x/c}[F\circ\pi](\dot{x})d\eta^{(\dot{\chi})}$

$= \int_{x/c}F(\dot{x})d\eta^{(\dot{\chi})}$

for all $F\in C_{0}(X/G)$ . Thus Claim 2 follows.
By Claims 1 and 2, we have

(5) $\sigma$ is quasi-invariant and $\pi(\sigma)=\eta$ .

On account of (1) and (3), we can define a measure $\mu\in M^{+}(X)$ by

(6) $\mu(f)=\int_{X/G}\mu_{\dot{x}}\sigma)d\eta(\dot{x})$ for $f\in C_{0}(X)$ .

We note that (6) holds for all bounded Baire functions $f$ on $X$. Let $\mu=\mu_{a}+$
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$\mu_{s}$ be the Lebesgue decomposition of $\mu$ with respect to $\sigma$ . Since $\pi(_{\mu_{a}})\ll\eta$ , it
follows from (D. I) and Remark 2. 1 that $\mu_{a}$ has an $\eta$ -disintegration
$\{\xi_{x}!\}_{\dot{x}\in X/c}$ with $\xi_{x}!\in M^{+}(X)$ . Similary $\mu_{s}$ has an $\eta$ -disintegration $\{\xi_{\dot{x}}^{2}\}_{\dot{x}\in X/G}$

with $\xi_{\dot{x}}^{2}\in M^{+}(X)$ . Then

(7) $\mu_{\dot{x}}=\xi_{x}!+\xi_{\dot{x}}^{2}\eta- a.a.\dot{x}\in X/G$

by the uniqueness assumption (D. $II$). Moreover, Lemma 2. 5 ensures that
$\xi_{x}!\ll m_{\dot{x}}$ and $\xi_{\dot{x}}^{2}\perp m$.

for $\eta- a.a.\dot{x}\in X/G$. From this and (7), we have
$\mu_{\dot{x}}^{a}=\xi_{x}!$ and $\mu_{\dot{x}}^{S}=\xi_{\dot{x}}^{2}$

for $\eta- a.a.\dot{x}\in X/G$. Thus (4) holds, and the proof is complete.

From Lemma 2. 9 through Lemma 2. 13, let $(G, X)$ be a transformation
group such that a compact abelian group $G$ acts on a locally compact
Hausdorff space $X$. For a closed subgroup $H$ of $G$, let $q_{H}$ : $Garrow G/H$ and
$\pi_{H}$ : $Xarrow X/H$ be the canonical maps respectively.

LEMMA 2. 9. For $\mu\in M(X)$ and $\lambda\in M(G)$ , we have
$\pi_{H}(\lambda*\mu)=q_{H}(\lambda)*\pi_{H}(\mu)$ .

PROOF. For $F\in C_{0}(X/H)$ , we have

$\pi_{H}(\lambda^{*\mu})(F)=\int_{X}F(\pi_{H}(x))d\lambda*\mu(x)$

$= \int_{X}\int_{G}F(\pi_{H}(g\cdot x))d\lambda(g)d\mu(x)$

$= \int_{X}\int_{G}F(q_{H}(g)\cdot\pi_{H}(x))d\lambda(g)d\mu(x)$

$= \int_{X}\int_{c/H}F(\dot{g}\cdot\pi_{H}(x))dq_{H}(\lambda)(\dot{g})d\mu(x)$

$= \int_{c/H}\int_{X}F(\dot{g}\cdot\pi_{H}(x))d\mu(x)dq_{H}(\lambda)(\dot{g})$

$= \int_{G/H}\int_{x/H}F(\dot{g}\cdot x.)d\pi_{H}(\mu)(x.)dq_{H}(\lambda)(\dot{g})$

$=q_{H}(\lambda)*\pi_{H}(\mu)(F)$ .
Hence we have $\pi_{H}(\lambda*\mu)=q_{H}(\lambda)*\pi_{H}(_{\mu})$ , and the proof is complete.

LEMMA 2. 10. Put $\Gamma=H^{\perp}$ . Let $\mu$ be a measure in $M(X)$ with $sp$

$(\mu)=E$. Then $sp(\pi_{H}(\mu))\subset E\cap\Gamma$

PROOF. By Lemma 2. 9, we have $\{q_{H}(f) : f\in f(\mu)\}\subset f(\pi_{H}(\mu))$ .
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Hence, noting $q_{H}(f)^{\wedge}=\hat{f}|_{\Gamma}$ , we get sp $( \pi_{H}(\mu))\subset\bigcap_{f\in f(\mu)}(q_{H}\sigma)^{\wedge})^{-1}(0)=E\cap\Gamma$

This completes the proof.

LEMMA 2. 11. Let $\mu$ be a nonzero measure in $M(X)$ . Then there
exists a countable subgroup $\Gamma_{0}$ of $\hat{G}$ such that $\pi_{\Gamma}\perp(\mu)\neq 0$ for all subgroups $\Gamma$ of
$\hat{G}$ with $\Gamma\supset\Gamma_{0}$ .

PROOF. Since $\mu\neq 0$ , there exists a compact set $K$ is $X$ such that $\mu(K)$

$\neq 0$ . Put $|\mu(K)|=2\delta>0$ . Then there exists an open set $U\supset K$ in $X$ such
that $|\mu|(U\backslash K)<\delta$. Let $V$ be an open neighborhood of 0 in $G$ such that

(1) $V\cdot K\subset U$.

Then there exists a countable subgroup $\Gamma_{0}$ of $\hat{G}$ such that $\Gamma_{0}^{\perp}\subset V$. Let $\Gamma$ be
a subgroup of $\hat{G}$ such that $\Gamma\supset\Gamma_{0}$ . Then (1) yields

$|\pi_{\Gamma^{\perp}}(_{\mu})(\pi_{\Gamma^{\perp}}(K))|=|_{\mu}(\Gamma^{\perp}\cdot K)|$

$\geq|\mu|(K)-|\mu|(U\backslash K)$

$>\delta$.

Thus $\pi_{\Gamma^{\perp}}(\mu)\neq 0$ , and the proof is complete.
The following lemma follows easily from the definition of transforma-

tion group.

LEMMA 2. 12. Let $K$ and $F$ be disjoint compact sets in X. Then there
exists an open neighborhood $V$ of 0 in $G$ such that $V\cdot K\cap V\cdot F=\phi$ .

On account of Lemma 2. 12, the following lemma can be obtained as in
[18, Lemma 4. 1].

LEMMA 2. 13 (cf. [18, Lemma 4. 1]).
Let $\mu$ and $\xi$ be measures in $M^{+}(X)$ with $\mu\perp\xi$. Then there exists a count-
able subgroup $\Gamma_{0}$ of $\hat{G}$ such that

(1) $\pi_{\Gamma^{\perp}}(\mu)\perp\pi_{\Gamma^{\perp}}(\xi)$

for all subgroups $\Gamma$ of $\hat{G}$ with $\Gamma\supset\Gamma_{0}$ .

\S 3 Proof of Theorem 1. 1.

In this section we prove Theorem 1. 1.

LEMMA 3. 1. Let $\sigma$ be a measure in $M^{+}(X)$ that is quasi-invariant. If
$G$ is a metrizable compact abelian group and $(G, X)$ satisfifies conditions $(D$.
$I)$ and (D. $II$ ), then the conclusion of Theorem 1. 1. holds.
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PROOF. As for the first assertion, it is sufficient to prove that $sp(\mu_{a})\subset$

$P$ because of Remark 1. 1 (II). Moreover, by Lemma 2. 7, we may assume
that $\pi(|\mu|)\ll\pi(\sigma)$ . Let $\{\lambda_{\dot{x}}\}_{\dot{x}\in X/G}$ be a canonical disintegration of $|\mu|$ . Let $h$

be a unimodular Baire function on $X$ with $\mu=h|\mu|$ . We define measures $\mu_{\dot{x}}$

$\in M(X)$ by $\mu_{\dot{x}}=h\lambda_{\dot{x}}$ . Then $\{\mu_{\dot{x}}\}_{\dot{x}\in X/G}$ is a canonical disintegration of $\mu$ .
For each $\dot{x}\in X/G$, let $\lambda_{\dot{x}}=\lambda_{\dot{x}}^{a}+\lambda_{\dot{x}}^{s}$ and $\mu_{\dot{x}}=\mu_{\dot{x}}^{a}\dagger\mu_{\dot{x}}^{s}$ be the Lebesgue decomposi-
tions of $\lambda_{\dot{x}}$ and $\mu_{\dot{x}}$ with respect to $m_{\dot{x}}$ respectively. Then

(1) $\mu_{\dot{x}}^{a}=h\lambda_{\dot{x}}^{a}$ and $\mu_{\dot{x}}^{s}=h\lambda_{\dot{x}}^{s}$ .

Since $sp(\mu)\subset P$, it follows from Lemma 2. 6 that

(2) sp $(\mu_{\dot{x}})\subset P\eta- a.a.\dot{x}\in X/G$,

where $\eta=\pi(|\mu|)$ . Let $x\in\pi^{-1}(\dot{x})$ , and let $\xi_{\dot{x}}$ be the measure in $M(G/G_{x})$

such that $\tilde{B}_{x}(\xi_{\dot{x}})=\mu_{\dot{x}}$, where $\tilde{B}_{x}$ : $G/G_{x}arrow G\cdot x$ is the homeomorphism defined
in (1. 9). Then, by (2) and Proposition 1. 2, we have

(3) $\xi_{\dot{x}}\in M_{P}nc_{X}\perp(G/G_{x})\eta- a.a.\dot{x}\in X/G$,

which together with [24, Corollary] yields

(4) $\xi_{\dot{x}}^{a}$ , $\xi_{\dot{x}}^{s}\in M_{P}nc_{x}\perp(G/G_{x})\eta- a.a.\dot{x}\in X/G$,

where $\xi_{\dot{x}}=\xi_{\dot{x}}^{a}+\xi_{\dot{x}}^{s}$ is the Lebesgue decomposition of $\xi_{\dot{x}}$ $with$ respect to $m_{G/Gx}$ .
By Proposition 1. 5, we note that $\tilde{B}_{x}(\xi_{\dot{x}}^{a})=\mu_{\dot{x}}^{a}$ and $\tilde{B}_{x}(\xi_{\dot{x}}^{s})=\mu_{\dot{x}}^{s}$ . If follows
from (4) and Proposition 1. 2 that

(5) sp $(_{\mu_{\dot{x}}^{a}})$ , sp $(_{\mu_{\dot{x}}^{s}})\subset P\eta- a.a.\dot{x}\in X/G$.

By Lemma 2. 8, we have

(6) $\dot{x}arrow\lambda_{\dot{x}}^{a}\varphi)$ and $\dot{x}arrow\lambda_{\dot{x}}^{s}(f)$ are $\eta$ -measurable for each bounded Baire
function $f$ on $X$ ;

hence (1) yields

(7) $\dot{x}arrow\mu_{\dot{x}}^{a}\sigma)$ and $\dot{x}arrow\mu_{\dot{x}}^{s}\sigma$ ) are $\eta$ -measurable for each bounded Baire
function $f$ on $X$.

By (6) and (7), we can define measures $\omega_{1}$ , $\omega_{2}\in M^{+}(X)$ and $\mu_{1}$ , $\mu_{2}\in M$

$(X)$ as follows:

$\omega_{1}U)=\int_{x/c}\lambda_{\dot{x}}^{a}\varphi)d\eta(\dot{x})$ , $\omega_{2}U)=\int_{x/c}\lambda_{\dot{x}}^{s}\sigma)d\eta(\dot{x})$ ;

$\mu_{1}(f)=\int_{x/c}\mu_{\dot{x}}^{a}U)d\eta(\dot{x})$ , $\mu_{2}U)=\int_{x/c^{\mu_{\dot{x}}^{s}}}(f)d\eta(\dot{\chi})$
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for $f\in C_{0}(X)$ . Then, by (1), we have $\mu_{1}\ll\omega_{1}$ and $\mu_{2}\ll\omega_{2}$ . Since $\eta\ll\pi(\sigma)$ ,
it follows from Lemma 2. 5 that

$\omega_{1}\ll\sigma$ and $\omega_{2}\perp\sigma$ ;

hence

(8) $\mu_{1}\ll\sigma$ and $\mu_{2}\perp\sigma$ .
Since $\mu=\mu_{1}+\mu_{2}$ , (8) yields $\mu_{1}=\mu_{a}$ . For any $\gamma\not\in P$ and $f\in C_{0}(X)$ , we have

$\gamma^{*}\mu_{a}\sigma)=\gamma^{*}\mu_{1}\sigma)$

$= \int_{x/c}\gamma^{*}\mu_{\dot{x}}^{a}\sigma)d\eta(\dot{x})$ (by Lemma 2. 3)

$=0$ . (by (5) and Remark 1. 1 (II))

Hence, by Remark 1. 1 (II), we get $sp(\mu_{a})\subset P$.
Next we prove the latter half. If $P\cap(-P)=\{0\}$ , then by (4) and

Theorem 0. 1 $( ii)$ we have
$\hat{\xi}_{\dot{x}}^{s}(0)=0\eta- a.a.\dot{x}\in X/G$ ;

hence Proposition 1. 2 yields

$0\not\in sp(\mu_{\dot{x}}^{s})\eta- a.a.\dot{x}\in X/G$.
Thus, by Remark 1. 1 (II), we have

$1*^{s}\mu_{\dot{x}}=0\eta- a.a.\dot{x}\in X/G$,

where 1 is the constant function on $G$ with value one. On the other hand, (8)
yields $\mu_{s}=\mu_{2}$ . Hence, by Lemma 2. 3 and the construction of $\mu_{2}$ , we have

$1*\mu_{s}=0$ ,

which together with Remark 1. 1 $(II. 1)$ yields $0\not\in sp(\mu_{s})$ . Thus $sp(\mu_{s})\subset P\backslash$

$\{0\}$ , and the proof is complete
Now we prove Theorem 1. 1. Since $\mu$ is bounded regular, there exists a

$\sigma$-compact open set $X_{0}$ in $X$ with $G\cdot X_{0}=X_{0}$ and a quasi-invariant measure $\sigma’$

$\in M^{+}(X)$ satisfying the following:

(3.1) $\mu$ is concentrated on $X_{0}$ ,
(3.2) $\sigma’|_{X_{0}}\ll\sigma|_{X_{0}}$ and $\sigma|_{x_{0}}\ll\sigma’|_{X_{0}}$ .

Hence $\mu=\mu_{a}+\mu_{s}$ is the Lebesgue decomposition of $\mu$ with respect to $\sigma’$

Thus we may assume that $\sigma$ is a measure in $M^{+}(X)$ that is quasi-invariant.
As for the first assertion, it is sufficient to prove that $sp(_{\mu_{s}})\subset P$ because of



312 H. Yamaguchi

Remark 1. 1 (II). We may assume $\mu_{s}\neq 0$ . Suppose there exists $\gamma_{0}\not\in P$ such
that $\gamma_{0}\in sp(\mu_{s})$ . Then $\gamma_{0^{*}}\mu_{s}\neq 0$ . It follows from Lemmas 2. 11 and 2. 13 that
there exists a countable subgroup $\Gamma$ of $\hat{G}$ with $\gamma_{0}\in\Gamma$ such that

(3.3) $\pi H(\gamma_{0^{*}}\mu_{S})\neq 0$

and

(3.4) $\pi_{H}(|\mu_{S}|)\perp\pi_{H}(\sigma)$ ,

where $H=\Gamma^{\perp}$ and $\pi_{H}$ : $Xarrow X/H$ is the canonical map. By (3. 4), $\pi_{H}(\mu_{s})$ is
the singular part of $\pi_{H}(\mu)$ with respect to $\pi_{H}(\sigma)$ . Since $\sigma$ is quasi-invariant,
$\pi_{H}(\sigma)$ is also quasi-invariant. $\Gamma=H^{\perp}$ is countable, and $(G/H, X/H)$

satisfies conditions (D. I) and (D. $II$). Hence we have

(3.5) sp $(\pi_{H}(\mu_{s}))\subset P\cap\Gamma$

by Lemmas 2. 10 and 3. 1. It follows from (3. 3) and Lemma 2. 9 that $q_{H}(\gamma_{0})$

$*\pi_{H}(\mu_{s})\neq 0$ . On the other hand, since $\gamma_{0}\in\Gamma$ , we get $q_{H}(\gamma_{0})=\gamma_{0}$ . Hence $\gamma_{0}$

$\in sp(\pi_{H}(\mu_{s}))$ . Thus, by (3. 5), we have $\gamma_{0}\in P\cap\Gamma$ . which contradicts the
choice of $\gamma_{0}$ .

As to the latter half, we may repeat a similar argument for $\gamma_{0}=0$ (i.e.,
$\gamma_{0}(x)=1$ for $x\in G$). This completes the proof of Theorem 1. 1.

\S 4. Proof of Theorem 1. 2.

In this section, we first prove Theorem 1. 2. The latter half of this

section is devoted to the consideration of the sets satisfying condition $(^{*})$ in

Theorem 1. 2. (Such sets shall be defined in LCA groups.). For a LCA
group $G$, let $M(G)$ and $L^{1}(G)$ be the measure algebra and the group alge-

bra respectively. For a subset $E$ of $\hat{G}$, $M_{E}(G)$ denotes the space of mea-
sures in $M(G)$ whose Fourier-Stieltjes transforms vanish off E. $m_{G}$ means
the Haar measure on $G$. For a closed subgroup $H$ of $G$, $H^{\perp}$ denotes the

annihilator of $H$.

DEFINITION 4. 1. Let $G$ be a LCA group, and let $\mu$ be a measure in $M$

$(G)$ . $\mu$ is said to be quasi-invariant if $|\mu|*\delta_{x}\ll|\mu|$ for all $x\in G$.

REMARK 4. 1. Suppose there exists a nonzero measure $\mu\in M(G)$ that

is quasi-invariant. Then, by regularity of $\mu$ , $G$ must be $\sigma$-compact. That

is, if $G$ is not $\sigma$-compact, $M(G)$ has no nonzero quasi-invariant measures.
The following proposition is well-known.

PROPOSITION 4. 1. Let $G$ be a $LCA$ group, and let $\mu$ be a nonzero
measure in $M(G)$ . Then the following are equivalent.
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$(i)$ $\mu$ is quasi-invariant ;
(ii) $|\mu|$ and $m_{G}$ are mutually absolutely continuous.

DEFINITION 4. 2. Let $G$ be a LCA group, and let $E$ be a closed subset
of $\hat{G}$. We say that $E$ satisfies condition $(^{*})$ if the following holds.

$(^{*})$ For $\mu\in M_{E}(G)$ , $\mu$ is quasi-invariant.

REMARK 4. 2. When $G=T$, $Z^{+}$ satisfies condition $(^{*})$ . When $G=R$,
$R^{+}$ also satisfies condition $(^{*})$ .

LEMMA 4. 1. Let $G$ be a $LCA$ group, and let $E$ be a closed subset of $\hat{G}$

satisfying condition $(^{*})$ in Defifinition 4. 2. Then, for any open subgroup $\Gamma$ of
$\hat{G}$, the following $(^{*})_{\Gamma}$ holds.

$(^{*})_{\Gamma}$ For any nonzero measure $\zeta\in M_{E\cap\Gamma}(G/H)$ , $|\zeta|$ and $m_{G/H}$ are
mutually absolutely continuous, where $H=\Gamma^{\perp}$ .

PROOF. Let $\zeta$ be a nonzero measure in $ME\cap\Gamma(G/H)$ . Let $q_{H}$ : $Garrow G/$

$H$ be the natural homomorphism. We note that $H$ is compact.

Step 1. $|\zeta|\ll m_{G/H}$ .

In fact, there exists a nonzero measure $\lambda\in M_{E\cap\Gamma}(G)$ such that $\hat{\lambda}(\gamma)=\hat{\zeta}(\gamma)$

for $\gamma\in\Gamma$ and $\hat{\lambda}(\gamma)=0$ for $\gamma\in\hat{G}\backslash \Gamma$ . Hence, by the hypothesis and Proposi-
tion 4. 1, we have $\lambda\in L^{1}(G)$ , and so $\zeta=q_{H}(\lambda)\in L^{1}(G/H)$ . Thus Step 1 is
obtained.

Step 2. $|\zeta|$ and $m_{G/H}$ are mutually absolutely continuous.

By [10, (28.54) Theorem (iv) and (28.55) Theorem (iii), (Vol. 2)], we
note that the following (1) holds.

(1) $g\circ q_{H}\in L^{1}(G)$ and $\int_{c/H}g(\dot{x})dm_{G/H}(\dot{x})=\int_{G}g(q_{H}(x))dm_{G}(x)$

for all $g\in L^{1}(G/H)$ . We define a map $J:L^{1}(G/H)arrow L^{1}(G)$ by $J(g)=$

$g\circ q_{H}$ . Then we have $J(\zeta)\in L^{1}(G)$ by Step 1. Moreover, for any $g\in L^{1}(G/$

$H)$ , we have

(2) $J(g)^{\wedge}(\gamma)=\{$

$\hat{g}(\gamma)$ for $\gamma\in\Gamma$

0 for $\gamma\in\hat{G}\backslash \Gamma^{\cdot}$

Hence, by the hypothesis, $|J(\zeta)|$ and $m_{G}$ are mutually absolutely continuous.
Hence

(3) $q_{H}(\psi(\zeta)|)$ and $m_{c/H}$ are mutually absolutely continuous.

On the other hand, by the definition of the map, we have
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$J(|\zeta|)=\psi(\zeta)|$ .

Moreover, by (2), we have

$q_{H}(J(|\zeta|))=|\zeta|$ ,

which together with (3) yields that $|\zeta|$ and $m_{c/H}$ are mutually absolutely
continuous. This completes the proof.

Lemma 4. 2. If $G$ is a metrizable compact abelian group and $(G, X)$

satisfifies conditions (D. $I$ ) and (D. $II$ ), then the conclusion of Theorem 1. 2
holds.

PROOF. Put $\eta=\pi(|\mu|)$ . Let $\{\mu_{x}.\}_{x\in X/G}$. be a canonical disintegration of
$\mu$ . Then, by Lemma 2. 6, we have

(1) sp $(\mu_{k})\subset E\eta- a.a.\dot{x}\in X/G$.

Hence we have

(2) $|\mu_{x}.|\ll m_{x}$. and $m_{x}.\ll|\mu_{x}.|\eta- a.a.\dot{x}\in X/G$.

In fact, let $x\in\pi^{-1}(\dot{x})$ , and let $\tilde{B}_{x}$ : $G/G_{x}arrow G\cdot x$ be the homeomorphism
defined in (1. 9). Let $\xi_{\dot{\chi}}$ be the measure in $M(G/G_{x})$ such that $\tilde{B}_{x}(\xi_{\dot{x}})=\mu_{\dot{x}}$ .
Then, by (1) and Proposition 1. 2, we have

$\xi_{k}\in M_{E\cap G_{\chi}^{\perp}}(G/G_{x})\eta- a.a.\dot{x}\in X/G$ ;

hence Lemma 4. 1 yields

(3) $|\xi_{\dot{x}}|\ll m_{G/Gx}$ and $m_{G/Gx}\ll|\xi_{\dot{x}}|\eta- a.a.\dot{x}\in X/G$.

Thus, since $|\tilde{B}_{x}(\xi_{x}.)|=\tilde{B}_{x}(|\xi_{\dot{x}}|)$ , (2) follows from (3) and Proposition 1. 5.
Let $F$ be a Baire set in $X$ with $|\mu|(F)=0$ . Then, by Lemma 2. 4, we have

$\int_{X/G}|\mu_{x}.|(F)d\eta(\dot{x})=0$ ,

which yields

$|\mu_{x}.(F)|=0\eta- a.a.\dot{x}\in X/G$.

For any $g\in G$, it follows from (2) that

$|\mu_{x}.|(g\cdot F)=0\eta- a.a.\dot{x}\in X/G$,

which shows

$| \mu|(g\cdot F)=\int_{X/G}|\mu_{\dot{x}}|(g\cdot F)d\eta(\dot{x})$

$=0$ .
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This completes the proof.
Now we prove Theorem 1. 2. Suppose there exists a measure $\mu\in M(X)$

with $sp(\mu)\subset E$ such that $\mu$ is not quasi-invariant. Then there exists $g_{0}\in G$

such that $|\mu|$ is not absolutely continuous with respect to $\delta_{g0}*|\mu|$ . Let $\mu=\mu_{1}+$

$\mu_{2}$ be the Lebesgue decomposition of $\mu$ with respect to $\delta_{g0}*|\mu|$ , where $\mu_{1}\ll\delta_{g0}$

$*|\mu|$ and $\mu_{2}\perp\delta_{g0}*|\mu|$ . Then $\mu_{2}\neq 0$ . By Lemmas 2. 11 and 2. 13, there exists a
countable subgroup $\Gamma$ of $\hat{G}$ such that

(4. 1) $\pi_{H}(\mu_{2})\neq 0$ ,
(4.2) $\pi_{H}(|\mu_{1}|)\perp\pi_{H}(|\mu_{2}|)$ , and
(4.3) $\pi_{H}(|\mu_{2}|)\perp\pi_{H}(\delta_{g0}*|\mu|)$ ,

where $H=\Gamma^{\perp}$ and $\pi_{H}$ : $Xarrow X/H$ is the canonical map. We note $|\pi_{H}(\mu_{2})|\ll$

$\pi_{H}(|\mu_{2}|)$ , $|\pi_{H}(\delta_{g0}*\mu)|\ll\pi_{H}(\delta_{g0}*|\mu|)$ and $|\pi_{H}(\delta_{g0}*\mu)|=\delta_{qH(go)}*|\pi_{H}(\mu)|$ . It follows
from (4. 3) that

(4.4) $|\pi_{H}(\mu_{2})|\perp\delta_{qH(go)}*|\pi_{H}(\mu)|$ .

Let $(G/H, X/H)$ be the transformation group induced by $(G, X)$ . Then
$(G/H, X/H)$ satisfies conditions (D. I) and (D. $II$). It follows from
Lemma 2. 10 that $sp(\pi_{H}(\mu))\subset\Gamma\cap E$. Hence, by Lemmas 4. 1 and 4. 2, we
have

(4.5) $|\pi_{H}(\mu)|\ll\delta_{q_{H}(g0)}*|\pi_{H}(\mu)|$ .

On the other hand, $\pi_{H}(\mu)=\pi_{H}(\mu_{1})+\pi_{H}(\mu_{2})$ , and (4. 2) implies that $|\pi_{H}(\mu_{1})|$

$\perp|\pi_{H}(\mu_{2})|$ . Hence $|\pi_{H}(\mu_{2})|\ll|\pi_{H}(\mu)|$ . Thus, by (4. 1) and (4. 5), we have
$0\neq|\pi_{H}(\mu_{2})|\ll\delta_{qH(go)}*|\pi_{H}(\mu)|$ , which contradicts (4. 4). This completes the
proof.

Before we close this section, we give several examples of sets satisfying
condition $(^{*})$ in Definition 4. 2 together with propositions.

PROPOSITION 4. 2. Let $G$ be a $LCA$ group, and let $\Gamma$ be an open sub-
group of $\hat{G}$. Let $E$ be a closed subset of $\hat{G}$ contained in $\Gamma$ . Suppose that $E$

satisfifies condition $(^{*})$ in $\Gamma_{-}$ Then $E$ also satisfifies condition $(^{*})$ in $\hat{G}$.

PROOF. Put $H=\Gamma^{\perp}$ . For $x\in G$, let $\dot{x}=q_{H}(x)$ . Let $\mu$ be a nonzero
measure in $M_{E}(G)$ . Then $q_{H}(\mu)$ is a nonzero measure in $M_{E}(G/H)$ . We
note, by Remark 4. 1, that $G$ is $\sigma$-compact. By Proposition 4. 1, $E$ is a Riesz
set in $\Gamma r$ Hence $E$ is a Riesz set in $\hat{G}$. Thus we have

(1) $\mu\in L^{1}(G)$ .

Let $J:L^{1}(G/H)arrow L^{1}(G)$ be the map defined in the proof of Lemma 4. 1 (i.e.,
$J(g)=g\circ q_{H})$ . Then, for $g\in L^{1}(G/H)$ , $f(g)^{\wedge}(\gamma)=\hat{g}(\gamma)$ for $\gamma\in\Gamma$ and $f(g)$

$\wedge(\gamma)=0$ for $\gamma\in\hat{G}\backslash \Gamma\ulcorner$ Hence, since $supp(\hat{\mu})\subset E$, we have



316 H. Yamaguchi

(2) $J(q_{H}(\mu))=\mu$ .

Let $K$ be a Borel set in $G$ with $|\mu|(K)=0$ . Let $F$ be the Radon-Nikodym
derivative of $q_{H}(\mu)$ with respect to $m_{G/H}$ . Then, by (2), we have

$0= \int_{G}\chi_{K}(x)|F|\circ q_{H}(x)dm_{G}(x)$

$= \int_{G/H}\int_{H}\chi_{K}(x+y)|F|\circ q_{H}(x+y)dm_{H}(y)dm_{G/H}(\dot{x})^{(3)}$

$= \int_{c/H}|F|(\dot{x})\int_{H}\chi_{K}(x+y)dm_{H}(y)dm_{G/H}(\dot{x})$ ,

which shows

(3) $\int_{H}\chi_{K}(x+y)dm_{H}(y)=0|F|dm_{G/H^{-}}a.a.\dot{x}\in G/H$.

Since $q_{H}(\mu)\in M_{E}(G/H)$ , $|q_{H}(\mu)|$ and $m_{G/H}$ are mutually absolutely continu-
ous. Hence (3) yields

$\int_{H}\chi_{K}(x+y)dm_{H}(y)=0m_{G/H^{-}}a.a.\dot{x}\in G/H$.

Hence we have

$m_{G}(K)= \int_{G/H}\int_{H}\chi_{K}(x+y)dm_{H}(y)dm_{G/H}(\dot{x})$

$=0$ ,

which shows $m_{G}\ll|\mu|$ . Thus, by (1), $|\mu|$ and $m_{G}$ are mutually absolutely
continuous. This completes the proof.

EXAMPLE 4. 1. Let $G$ be a connected compact abelian group, and let $E$

be a finite subset of $\hat{G}$. Since $\hat{G}$ is ordered, it follows from [20, 8.4.1
Theorem, p. 206] that $E$ satisfies condition $(^{*})$ .

EXAMPLE 4. 2. Let $G$ be a compact abelian group, and let 70 be an
element of $\hat{G}$ with infinite order. Put $E=\{n\gamma_{0} : n\in Z^{+}\}$ . Then, by Proposi-
tion 4. 2, $E$ satisfies condition $(^{*})$ .

EXAMPLE 4. 3. Let $G=T^{n}$, and let $E=\{m_{1}$ , $m_{2}$ , .. . $m_{n}$) $\in Z^{n}$ : $m_{i}\geq 0$

$(i=1,2,3, \ldots ,n)\}$ . Then, by [2, Main Theorem], we can verify that $E$

satisfies condtion $(^{*})$ .

(3) We noralize the Haar measures on $G/H$ and $H$ so that

$\int f(x)dm_{G}(x)=\int_{G’ H}\int_{H}f(x+y)dm_{H}(y)dm_{G’ H}(\dot{x})$

for all $f\in L^{1}(G)$ .
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EXAMPLE 4. 4. Let $G=T^{\infty}$ (countable infinite dimensional torus), and
let $E=\{(m_{1}, m_{2}, . . _{\tau} m_{n}, , . .)\in\hat{T}^{\infty} : m_{i}\geq 0(i\in N)\}$ . Then, by ([2, $p$ .
191]), $E$ satisfies condition $(^{*})$ .

Moreover, the following proposition holds.

PROPOSITION 4. 3 (cf. [17, Corollary 2]).
For any index set $\Lambda$ , let $G= \prod_{a\in\Lambda}T_{a}$, where $T_{a}=T$ for all $\alpha\in\Lambda$ . Let $E=\{<$

$m_{a}>\in\hat{G}$ : $m_{a}\geq 0$ for all $\alpha\in\Lambda$}. Then $E$ satisfifies condition $(^{*})$ .

PROOF. Let $\mu\in M_{E}(G)$ . Then Examples 4. 3 and 4. 4 ensure that $\hat{\mu}|_{\Gamma}\in$

$A(\Gamma)=\{f:f\in L^{1}(G/\Gamma^{\perp})\}$ for each countable subgroup $\Gamma$ of $\hat{G}$. It follows
from [16, Lemma 4] that $\mu\in L^{1}(G)$ . In particular, $supp(\hat{\mu})$ is countable.
Hence $\mu$ is quasi-invariant by Examples 4. 3 and 4. 4 $comb\dot{l}ned$ with Proposi-
tion 4. 2. This completes the proof.

In [23, Theorem 2], the author proved that the product set of two Riesz
sets is also a Riesz set. As for the sets satisfying condition $(^{*})$ , we prove
that an analogous result holds.

PROPOSITION 4. 4. Let $G_{1}$ and $G_{2}$ be $LCA$ groups. Let $E_{i}$ be a closed
subset of $\hat{G}_{i}$ satisfying condition $(^{*})(i=1,2)$ . Then $E_{1}\cross E_{2}$ also satisfifies
condition $(^{*})$ .

PROOF. Let $q_{i}$ : $G_{1}\oplus G_{2}arrow G_{i}$ be a projection $(i=1,2)$ . Let $\mu$ be a
nonzero measure in $M_{E_{1}\cross E_{2}}(G_{1}\oplus G_{2})$ .Put $\eta_{1}=q_{1}(|\mu|)$ and $\eta_{2}=q_{2}(|\mu|)$ . First
we prove the proposition in case that $G_{1}$ and $G_{2}$ are metrizable LCA groups.
By the theory of disintegration, there exists a family $\{\mu_{y}\}_{y\in G_{2}}$ of measures in
$M(G_{1}\oplus G_{2})$ with the following properties (cf. [18, p. 114, $(6)-(9)]$ ):

(1) $yarrow\mu_{y}(f)$ is $\eta_{2}$ -measurable for each bounded Borel function $f$ on $G_{1}$

$\oplus G_{2}$ ,

(2) $||\mu_{y}||=1$ ,
(3) supp $(\mu_{y})\subset G_{1}\cross\{y\}$ ,

(4) $\mu(f)=\int_{G_{2}}\mu_{y}(f)d\eta_{2}(y)$ for each bounded Borel function $f$ on $G_{1}$

$\oplus G_{2}$ .

By (3), there exists $\lambda_{y}\in M(G_{1})$ such that $\mu_{y}=\lambda_{y}X\delta_{y}$ . Since supp $(\hat{\mu})\subset E_{1}\cross$

$E_{2}\subset E_{1}\cross\hat{G}_{2}$ , the argument in [18, p. 115] implies that

(5) supp $(\hat{\lambda}_{y})\subset E_{1}\eta_{2}- a.a$ . $y\in G_{2}$ .

Hence we have

(6) $|\lambda_{y}|*\delta_{x}\ll|\lambda_{y}|\eta_{2}- a.a$ . $y\in G_{2}$
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for all $x\in G_{1}$ . We note that $yarrow|\mu_{y}|(f)$ is $\eta_{2}$ -measurable and

(7) $| \mu|(f)=\int_{c_{2}}|\mu_{y}|(f)d\eta_{2}(y)$

for each bounded Borel function $f$ on $G_{1}\oplus G_{2}$ . Let $K$ be a Borel set in $G_{1}$

$\oplus G_{2}$ with $|\mu|(K)=0$ . Then, by (7), we have
$|\lambda_{y}|(K_{y})=0\eta_{2}- a.a$ . $y\in G_{2}$ ,

where $K_{y}=\{x\in G_{1} : (x, y)\in K\}$ . Hence, for all $x\in G_{1}$ , (6) yields

$|\lambda_{y}|*\delta_{x}(K_{y})=0\eta_{2}- a.a$ . $y\in G_{2}$ .
Thus we have

$|\mu|*\delta_{(X,0)}(K)=|\mu|(K-(x, 0))$

$= \int_{G_{2}}|\mu_{y}|K-(x, 0))d\eta_{2}(y)$ (by (7))

$= \int_{Gz}|\lambda_{y}|(K_{y}-x)d\eta_{2}(y)$

$= \int_{c_{2}}|\lambda_{y}|*\delta_{x}(K_{y})d\eta_{2}(y)$

$=0$ ,

which yields

(8) $|\mu|*\delta_{(X,0)}\ll|\mu|$ for all $x\in G_{1}$ .

On the other hand, we have $supp(\mu*\delta_{(x,0)}\wedge)\subset E_{1}\cross E_{2}\subset\hat{G}_{1}\cross E_{2}$ for all $x\in G_{1}$ .
Hence, by a similar argument, we have

$|\mu*\delta_{(X,0)}|*\delta_{(0,\mathcal{Y})}\ll|\mu*\delta_{(\chi,0)}|$

for all $x\in G_{1}$ and $y\in G_{2}$ . Hence we have, by (8),

$|\mu|*\delta_{(x,y)}=(|\mu|*\delta_{(x,0)})*\delta_{(0,y)}\ll|\mu|$

for all $(x, y)\in G_{1}\oplus G_{2}$ . Thus the proposition holds when $G_{1}$ and $G_{2}$ are
metrizable LCA groups.

Next we prove the proposition in case that $G_{1}$ and $G_{2}$ are LCA groups.
By [23, Theorem 2], $E_{1}\cross E_{2}$ is a Riesz set. So $\mu\in L^{1}(G_{1}\oplus G_{2})$ ; in particu-
lar, there exists an open $\sigma$-compact subgroup $\Gamma=\Gamma_{1}X\Gamma_{2}$ of $G_{1}\oplus G_{2}\wedge$ such that
supp $(\hat{\mu})\subset\Gamma r$ Then supp $(\hat{\mu})\subset(\Gamma_{1}\cap E_{1})\cross(\Gamma_{2}\cap E_{2})$ and $G_{1}\oplus G_{2}/\Gamma^{\perp}$ is metr-
izable. Therefore $\mu$ is quasi-invariant by the metrizable case combined with
Lemma 4. 1 and Proposition 4. 2. This completes the proof.
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\S 5. Proofs of Theorems 1. 3 and 1. 4.

In this section we prove Theorems 1. 3 and 1. 4. We first prove Theorem
1. 3. Let $(G, X)$ be a transformation group such that a compact abelian
group $G$ acts on a locally compact Hausdorff space $X$. Let $M_{aG}(X)$ be an
$L$-subspace of $M(X)$ defined by

$M_{aG}(X)=\{\mu\in M(X)$ : $\mu\ll\rho*\nu forsome\rho\in L^{1}(G)\cap M^{+}(G)and\nu\in M^{+}(X)\}$ .

Put $M_{aG}(X)^{\perp}=$ { $\nu\in M(X)$ : $\nu\perp\mu$ for all $\mu\in M_{aG}(X)$ }. Then $M_{aG}(X)^{\perp}$ is
also an $L$ -subspace of $M(X)$ , and $M(X)=M_{aG}(X)\oplus M_{aG}(X)^{\perp}$ .

DEFINITION 5. 1. We say that $\mu\in M(X)$ translates $G$-continuously if
$\lim_{garrow 0}||\mu-\delta_{g}*\mu||=0$ , where $g\in G$.

PROPOSITION 5. 1. (cf. [18, Proposition 3. 1]).
For $\mu\in M(X)$ , the following are equivalent.

(I) $\mu\in M_{aG}(X)$ ,
(II) $\mu$ translates G-continuously.

PROOF. $(I)\Rightarrow(II)$ : Since $\mu\in M_{aG}(X)$ , there exist $\nu\in M^{+}(X)$ and
$\rho\in L^{1}(G)\cap M^{+}(G)$ such that $\mu\ll\rho*\nu$ . For $f\in C_{c}(X)$ and $g\in G$, we note

that $\delta_{g}*f(x)=\int_{G}f((-u)\cdot x)d\delta_{g}(u)=f((-g)\cdot x)\in C_{c}(X)$ and

(1) $\lim_{garrow 0}|\psi-\delta_{g}*f||_{\infty}=0$ .

Claim. For $f\in C_{c}(X)$ , $f(\rho*\nu)$ translates G-continuously.

In fact, we note $\delta_{g}*(f(\rho*\nu))=(\delta_{g}*f)(\rho*\delta_{g}*\nu)$ . Then we have
$|\psi(\rho*\nu)-\delta_{g}*(f(\rho*\nu))||$

$\leq|y^{}(\rho*\nu)-(\delta_{g}*f)(\rho*\nu)||$

$+||(\delta_{g}*f)(\rho*\nu)-(\delta_{g}*f)(\rho*\delta_{g}*\nu))||$

$\leq|\psi-\delta_{g}*f||_{\infty}||\rho*\nu||+|\psi||_{\infty}||\rho-\rho*\delta_{g}||||\nu||$ .

Hence, by (1) and the fact that $\lim_{garrow 0}||\rho-\rho*\delta_{g}||=0$ , we have $\lim_{g\sim 0}|\psi(\rho*\nu)-\delta_{g}$

$*(f(\rho*\nu))||=0$ , and the claim follows.
For $\epsilon>0$ , since $\mu\ll\rho*\nu$ , there exists $f\in C_{c}(X)$ such that $||\mu-f(\rho*\nu)||<$

$\epsilon$ . By Claim, there exists a neighborhood $V$ of 0 in $G$ such that

$|\psi(\rho*\nu)-\delta_{g}*(f(\rho*\nu))||<\epsilon$ for all $g\in V$.

Hence, for any $g\in V$, we have
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$||\mu-\delta_{g}*\mu||\leq||\mu-f(\rho*\nu)||+|\psi(\rho*\nu)-\delta_{g}*(f(\rho*\nu))||$

$+||\delta_{g}*(f(\rho*\nu))-\delta_{g}*\mu||$

$<3\epsilon$ ,

which shows that $\mu$ translates G-continuously.
$(II)\Rightarrow(I)$ : By a similar method in [18, Proposition 3. 1], we can

prove that (II) implies (I). This completes the proof.
For $x\in X$, let $G_{x}$ be the closed subgroup of $G$ defined by $G_{x}=\{g\in G:g$ .

$x=x\}$ . Let $\Pi_{x}$ : $Garrow G/G_{x}$ be the natural homomorphism. We define a map
$J_{X}$ : $L^{1}(G/G_{x})-L^{1}(G)$ by $J_{x}(f)=f\circ\Pi_{x}$ (cf. [10, (28.54) Theorem (iv) and
(28.55) Theorem (iii), (Vol. 2) $])$ . Then, for $f\in L^{1}(G/G_{x})$ , we have
$|\psi_{x}(f)||_{1}=|\psi||_{1}$ . Moreover, $J_{x}(f)^{\wedge}(\gamma)=f(\gamma)$ on $G_{x}^{\perp}$ and $J_{x}(f)^{\wedge}(\gamma)=0$ on
$\hat{G}\backslash G_{x}^{\perp}$ . Let $B_{x}$ and $\tilde{B}_{x}$ be the maps defined in (1. 8) and (1. 9).

$B_{x}$

Fig. II

$L_{1}(G/G_{x})$

PROPOSITION 5. 2. Let $\xi\in L^{1}(G/G_{x})$ and $g\in G$. Then we have

$(i)$ $B\sim x(\xi)=B_{x}(J_{x}(\xi))$ , and
(ii) $f_{x}(\xi)*\delta_{g}=f_{x}(\xi*\delta_{\Pi_{X}(g)})$ .

PROOF. We first prove $( i )$ . We note that $\Pi_{x}(J_{x}(\xi))=\xi$. Hence, for
$F\in C(G\cdot x)$ , we have

$\tilde{B}_{x}(\xi)(F)=\tilde{B}_{x}(\Pi_{x}(J_{x}(\xi)))(F)$

$= \int_{G/Gx}F(\tilde{B}_{x}(u. ))d\Pi_{x}(J_{x}(\xi))(\dot{u})$

$= \int_{G}F\circ\tilde{B}_{x}(\Pi_{x}(u))dJ_{x}(\xi)(u)$

$= \int_{G}F\circ B_{x}(u)df_{x}(\xi)(u)$ (by (1. 10))

$=B_{x}(J_{x}(\xi))(F)$ .

Thus we have $\tilde{B}_{x}(\xi)=B_{x}(J_{x}(\xi))$ . Next we prove $( ii)$ . For $\gamma\in G_{x}^{\perp}$ , we
have

$J_{x}(\xi*\delta_{\Pi_{x}(g)})^{\wedge}(\gamma)=(\xi*\delta_{\Pi_{\chi}(g)})^{\wedge}(\gamma)$

$=\xi(\gamma)(-g, \gamma)$

$=f_{x}(\xi)^{\wedge}(\gamma)(-g, \gamma)$
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$=\zeta\Gamma_{x}(\xi)*\delta_{g})^{\wedge}(\gamma)$ .

For $\gamma\in\hat{G}\backslash G_{x}^{\perp}$ , we have

$J_{x}(\xi*\delta_{II_{x}(g)})^{\wedge}(\gamma)=0=(J_{x}(\xi)*\delta_{g})^{\wedge}(\gamma)$ .

Thus, by the uniqueness for Fourier-Stieltjes transforms, we have
$J_{x}(\xi)*\delta_{g}=J_{x}(\xi*\delta_{n_{x}(g)})$ . This completes the proof.

LEMMA 5. 1 If $G$ is a metrizable compact abelian group and $(G, X)$

satisfifies conditions (D. $I$ ) and (D. $II$ ), then the conclusion of Theorem 1. 3
holds.

PROOF. Put $\eta=\pi(|\mu|)$ , and let $\{\mu_{x}.\}_{\dot{x}\in X/G}$ be a canonical disintegration
of $\mu$ . Then, by Lemma 2. 6, we have

(1) sp $(\mu_{x}.)\subset E\eta- a.a.\dot{x}\in X/G$.

Let $g\in G$. Since $\{\mu_{x}.-\delta_{g}*\mu_{x}.\}_{x\in X/G}$. is an $\eta$ disintegration of $\mu-\delta_{g}*\mu$ , it fol-
lows from Lemma 2. 4 that $\dot{x}arrow||\mu_{k}-\delta_{g}*\mu_{\dot{x}}||$ is $\eta$ -integrable and

(2) $|| \mu-\delta_{g}*\mu||=\int_{x/c}||\mu_{\dot{x}}-\delta_{g}*\mu_{x}.||d\eta(\dot{x})$ .

For each $\dot{x}\in X/G$, choose an element $x\in\pi^{-1}(\dot{x})$ and fix it. Let $\xi_{\dot{x}}$ be the
measure in $M(G/G_{x})$ such that $\tilde{B}_{x}(\xi_{\dot{x}})=\mu_{x}.$ . By (1) and Proposition 1. 2,
we have

(3) $\xi_{k}\in M_{E\cap G_{\chi}^{\perp}}(G/G_{x})\eta- a.a.\dot{x}\in X/G$.

Hence there exists a Borel set $\tilde{B}\subset X/G$ such that $\eta(\tilde{B}^{c})=0$ and

(4) $\xi_{\dot{x}}\in L^{1}(G/G_{x})$ for $\dot{x}\in\tilde{B}$

since $E$ is a Riesz set. Define $\zeta_{x}.\in L^{1}(G)$ by

(5) $\zeta_{x}.=\{$

$f_{x}(\xi_{x}.)$ for $\dot{x}\in B$

0 for $\dot{x}\not\in\tilde{B}$

.

Then, by (4), Lemma 1. 2 and Proposition 5. 2, we have

$||\mu_{\dot{x}}-\delta_{g}*\mu_{\dot{x}}||=||B_{x}(J_{x}(\xi_{\dot{x}}))-\delta_{g}*B_{x}(J_{x}(\xi_{\dot{x}}))||$

$=||B_{x}(J_{x}(\xi_{x}.-\xi_{\dot{x}}*\delta_{\Pi_{\chi}(g)}))||$

$=||\tilde{B}_{x}(\xi_{\dot{x}}-\xi_{x}.*\delta_{\Pi_{\chi}(g)})||$

$=||\xi_{x}.-\xi_{x}.*\delta_{\mathbb{I}_{x}(g)})||$

$=|[^{\gamma_{x}}(\xi_{x}.)-f_{x}(\xi_{\dot{x}})*\delta_{g}||$

$=||\zeta_{x}.-\zeta_{x}.*\delta_{g}||$
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for $\dot{x}\in\tilde{B}$. Hence $\dot{x}arrow||\zeta_{x}.-\zeta_{\dot{x}}*\delta_{g}||$ is $\eta$ -intdgrable, and (2) yields

(6) $|| \mu-\delta_{g}*\mu||=\int_{x/c}||\zeta_{x}.-\zeta_{x}.*\delta_{g}|||d\eta(\dot{x})$

On the other hand, since $\zeta_{x}.\in L^{1}(G)$ , we have

$\lim_{garrow 0}||\zeta_{x}.-\zeta_{x}.*\delta_{g}||=0$

for all $\dot{x}\in X/G$. Hence, by (6) and Lebesgue’s dominated convergence
theorem, we have $\lim_{garrow 0}||\mu-\delta_{g}*\mu||=0$ . This completes the proof.

Now we prove Theorem 1. 3. Let $\mu$ be a measure in $M(X)$ such that sp
$(\mu)\subset E$. Suppose $\mu$ does not translate $G$-continuously. Let

$\mu=\mu_{1}+\mu_{2}$ ,

where $\mu_{1}\in M_{aG}(X)$ and $\mu_{2}\in M_{aG}(X)^{\perp}$ . Then, by Proposition 5. 1 and the
hypothesis, we have $\mu_{2}\neq 0$ . Since $m_{G}*|\mu_{2}|\in M_{aG}(X)$ , $|\mu_{2}|\perp m_{G}*|\mu_{2}|$ . Hence,
by Lemmas 2. 11 and 2. 13, there exists a countable subgroup $\Gamma$ of $\hat{G}$ such that
(5. 1) $\pi_{H}(\mu_{2})\neq 0$ , and
(5.2) $\pi_{H}(|\mu_{2}|)\perp\pi_{H}(m_{G}*|\mu_{2}|)$ ,

where $H=\Gamma^{\perp}$ and $\pi_{H}$ : $Xarrow X/H$ is the canonical map. Let $q_{H}$ : $Garrow G/H$ be
the natural homomorphism. Since $q_{H}(L^{1}(G))=L^{1}(G/H)$ , we have
(5.3) $\pi_{H}(M_{aG}(X))\subset M_{aG/H}(X/H)$

by Lemma 2. 9. Next we calim that

(5.4) $\pi_{H}(\mu)\not\in M_{aG/H}(X/H)$ .

On account of (5. 3), it is sufficient to show that $\pi_{H}(\mu_{2})\not\in M_{aG/H}(X/H)$ .
Suppose $\pi_{H}(\mu_{2})\in M_{aG/H}(X/H)$ . Then it follows from Proposition 5. 1 that $|$

$\pi_{H}(\mu_{2})|$ translates $G/H$ continuously. We note that
(5.5) $|\pi_{H}(\mu_{2})|\ll q_{H}(m_{G})*|\pi_{H}(\mu_{2})|$ .

In fact, let $F$ be a Baire set in $X/H$ with $q_{H}(m_{G})*|\pi_{H}(\mu_{2})|(F)=0$ . Then,
since $mG/H$ $q_{H}(m_{G})$ , we have

$\int_{G/H}\int_{X/H}\chi_{F}(u\cdot z)d|\pi_{H}(\mu_{2})|(z)dm_{G/H}(u)=0$ .

Hence, since $G/H$ is metrizable, there exists a sequence $\{u_{n}\}$ in $G/H$ such
that $\lim_{narrow\infty}u_{n}=0$ and
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$\int_{x/H}\chi_{F}(u_{n}\cdot z)d|\pi_{H}(\mu_{2})|(z)=0$ $(n=1,2,3, \ldots)$ .

Thus
$\delta_{un}*|\pi_{H}(\mu_{2})|(F)=0$ $(n=1,2, 3, \ldots)$ :

hence

$| \pi_{H}(\mu_{2})|(F)=\lim_{narrow\infty}\delta_{u_{n}}*|\pi_{H}(\mu_{2})|(F)$

$=0$ ,

which shows that (5. 5) holds. Since $\pi_{H}(m_{G}*|\mu_{2}|)=q_{H}(m_{G})*\pi_{H}(|\mu_{2}|)$ , (5. 5)

contradicts (5. 1) and (5. 2). Thus (5. 4) holds.
Let $(G/H, X/H)$ be the transformation group induced by $(G X)$ .

Then $(G/H, X/H)$ satisfies conditions (D. I) and (D. $II$). It follows from
Lamma 2. 10 that $sp(\pi_{H}(\mu))\subset\Gamma\cap E$. Since $\Gamma\cap E$ is a Riesz set in $\Gamma$ and $G/$

$H$ is a metrizable compact abelian group, it follows from Lemma 5. 1 that
$\pi_{H}(\mu)$ translates $G/H$-continuously. Hence, by Proposition 5. 1, we have $\pi_{H}$

$(\mu)\in M_{aG/H}(X/H)$ , which contradicts (5. 4). This completes the proof.

LEMMA 5. 2. Let $\sigma$ be a measure in $M^{+}(X)$ that is quasi-invariant. If
$G$ is a metrizable compact abelian group and $(G, X)$ satisfifies conditions $(D$.
$I)$ and (D. $II$ ), then the conclusion of Theorem 1. 4 holds.

PROOF Let $E_{0}=sp(\mu)$ . Then $E_{0}\subset E$ and $E_{0}$ is also a Riesz set. Put
$\eta=\pi(|\mu|)$ , and let $\{\mu_{x}.\}_{k\in X/G}$ be a canonical disintegration of $\mu$ . Then, by

Lemma 2. 6, we have

(1) sp $(\mu_{\dot{x}})\subset E_{0}\eta- a.a.\dot{x}\in X/G$.

Since $E_{0}$ is a Riesz set, it follows from (1) and a similar argument below
(2) of Lemma 4. 2 that

(2) $|\mu_{\dot{x}}|\ll m_{x}$. $\eta- a.a.\dot{x}\in X/G$.

Let $\eta=\eta_{a}+\eta_{S}$ be the Lebesgue decomposition of $\eta$ with respect to $\pi(\sigma)$ .
Then, for each bounded Baire function $f$ on $X,\dot{x}arrow\mu_{x}.(f)$ and $\dot{x}arrow|\mu_{\dot{x}}|(f)$ are
both $\eta_{a}$-measurable and $\eta_{s}$-measurable. Hence we can define measures $\omega_{1}$ ,

$\omega_{2}\in M^{+}(X)$ and $\xi_{1}$ , $\xi_{2}\in M(X)$ as follows:

(3) $\omega_{1}(f)=\int_{x/c}|\mu_{\dot{x}}|(f)d\eta_{a}(\dot{x})$ , $\omega_{2}(f)=\int_{x/G}|\mu_{\dot{x}}|(f)d\eta_{s}(\dot{x})$ ;

$\xi_{1}(f)=\int_{x/c}\mu_{k}(f)d\eta_{a}(\dot{x})$ , $\xi_{2}(f)=\int_{x/c}\mu_{\dot{x}}(f)d\eta_{s}(\dot{x})$
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for $f\in C_{0}(X)$ . By Lemma 2. 4, we note that $|\xi_{1}|=\omega_{1}$ and $|\xi_{2}|=\omega_{2}$ . By (2)
and Lemma 2. 5, we have $\omega_{1}\ll\sigma$ . It is easy to see that $\omega_{2}\perp\sigma$ . Hence we get
$\mu_{a}=\xi_{1}$ and $\mu_{S}=\xi_{2}$ since $\mu=\xi_{1}+\xi_{2}$ . Note that (3) holds for all bounded
Baire functions $f$ on $X$. Let $\gamma_{0}\not\in E_{0}$ . Then, by (1) and Remark 1. 1 (II),
we have

$\gamma_{0}*\mu_{k}=0\eta- a.a.\dot{x}\in X/G$,

which together with Lemma 2. 3 yields

$\gamma_{0}*\mu_{a}(h)=\gamma_{0}*\xi_{1}(h)$

$= \int_{x/c}\gamma_{0}*\mu_{k}(h)d\eta_{a}(\dot{x})$

$=0$

for all $h\in C_{0}(X)$ . Hence $\gamma_{0}*\mu_{a}=0$ . Thus, by Remark 1. 1 (II), we have $\gamma_{0}$

$\not\in sp(\mu_{a})$ , which shows $sp(\mu_{a})\subset E_{0}=sp(\mu)$ . By Remark 1. 1 (II), we also
have $sp(\mu_{s})=sp(\mu-\mu_{a})\subset sp(\mu)$ . This completes the proof.

Now we prove Theorem 1. 4. As seen in the proof of Theorem 1. 1, we
may assume that $\sigma$ is a measure in $M^{+}(X)$ that is quasi-invariant. Let $\mu$ be
a measure in $M(X)$ such that $sp(\mu)\subset E$. Let $E_{0}=sp(\mu)$ . We may assume
$\mu_{S}\neq 0$ . Suppose there exists $\gamma_{0}\in\hat{G}\backslash E_{0}$ with $\gamma_{0}*\mu_{S}\neq 0$ . Then there exists a
countable subgroup $\Gamma$ of $\hat{G}$ with $\gamma_{0}\in\Gamma$ satisfying (3. 3) and (3. 4). Let $H=$
$\Gamma^{\perp}$ , and let $\pi_{H}$ : $Xarrow X/H$ be the canonical map. Then $\pi_{H}(\mu_{S})$ is the singu-
lar part of $\pi_{H}(\mu)$ with respect to $\pi_{H}(\sigma)$ , and $\pi_{H}(\sigma)$ is also quasi-invariant.
It follows from Lemma 2. 10 that $sp(\pi_{H}(\mu))\subset E_{0}\cap\Gamma$ . Since $E_{0}\cap\Gamma$ is a Riesz
set in $\Gamma$ and $G/H$ is a metrizable compact abelian group, it follows from
Lemma 5. 2 that

(5.6) sp $(\pi_{H}(\mu_{s}))\subset E_{0}\cap\Gamma$

On the other hand, as in the proof of Theorem 1. 1, we get $\gamma_{0}\in sp(\pi_{H}(\mu_{s}))$ .
Hence, by (5. 6), we have $\gamma_{0}\in E_{0}\cap\Gamma$ . which contradicts the choice of $\gamma_{0}$ .
This completes the proof.

REMARK 5. 1. Let $G$ be a compact abelian group and $E$ a subset of $\hat{G}$

satisfying condition $(^{*})$ . Then $E$ is a Riesz set. However the converse is
false in general. In fact, suppose $\hat{G}$ has a nonzero element $\gamma_{0}$ of finite order.
Let $E=\{0, \gamma_{0}\}$ . Then $E_{0}$ is a Riesz set. But it does not satisfy condition $(^{*})$ .

REMARK 5. 2. Let $G$ be a compact abelian group with dual $\hat{G}$. It is
known that a Sidon set in $\hat{G}$ is a Riesz set. It is also known that the union
of a Riesz set and a Sidon set is a Riesz set (cf. [16, Corollary 4]). Thus it
seems that there exist many Riesz sets. We can find appropriate references
in [12, 10.5, p. 162-163].
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\S 6. Transformation groups that satisfy conditions (C. I) and (C. II).

In this section, we shall show that, if $(G, X)$ is a transformation group
such that a compact abelian group $G$ acts freely on a locally compact

Hausdorff space $X$, then $(G, X)$ satisfies conditins (C. I) and (C. $II$).

Let $X$ be a locally compact Hausdorff space and $C_{c}(X)$ the space of all
continuous functions on $X$ with compact supports, with the topology of
uniform convergence on compact sets. Let $C^{*}(X)$ be the dual space of $C_{c}$

$(X)$ . Then $C^{*}(X)$ coincides with the space of Radon measures on $X$. We
will assume $C^{*}(X)$ is given the vague topology.

DEFINITION 6. 1. Let $W$ be a locally compact Hausdorff space and $\eta$ a
positive measure on $W$. A map $\lambda$ : $Warrow C^{*}(X)$ is called $\eta$ -Lusin measur-
able if, for each compact set $K\subset W$, there is a sequence $\{K_{i}\}$ of pairewise

disjoint compact sets such that $( i)$ $\eta(K\backslash \bigcup_{i=1}^{\infty}K_{i})=0$ and $( ii)\lambda|_{K\iota}$ is continual

ous $(i\geq 1)$ .
The following theorem is obtained from [11, 3.6. Theorem].

THEOREM 6. 1. Let $(G, X)$ be a transformation group such that $a$

compact metrizable group $G$ acts freely on a locally compact Hausdorff space
X. Let $\pi:Xarrow X/G$ be the canonical map. Let $\mu$ be a measure in $M^{+}(X)$ ,

and put $\nu=\pi(\mu)$ . Then there exists a map $\lambda$ : $X/Garrow M^{+}(X)(yarrow\lambda_{y})$ with
the following properties :

(1) $\lambda$ is $\nu$-Lusin measurable,
(2) $||\lambda_{y}||=1$ ,
(3) supp $(\lambda_{y})\subset\pi^{-1}(y)$ ,

(4) $\mu(f)=\int_{X/G}\lambda_{y}(f)d\nu(y)$ for $f\in C_{c}(X)$ .

The following theorem follows from Theorem 6. 1 and Proposition 1. 6.

THEOREM 6. 2. Under the assumption in the previous theorem, there
exists a family $\{\lambda_{k}\}_{k:\in X/c}$ of measures in $M^{+}(X)$ with the following properties:

(1) $yarrow\lambda_{y}(f)$ is $\nu$ immeasurable for each bounded Baire function $f$ on $X$ ,

(2) $||\lambda_{y}||=1$ ,
(3) supp $(\lambda_{y})\subset\pi^{-1}(y)$ ,

(4) $\mu(f)=\int_{X/G}\lambda_{y}(f)d\nu(y)$ for each bounded Baire function $f$ on $X$.

Johnson ([11]) also obtained a uniqueness theorem of $\nu$ -Lusin-
measurable disintegration. However the following uniqueness theorem
holds.
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THEOREM 6. 3. Let $(G, X)$ be as in Theorem 6. 1, and let $\nu\in M^{+}$

$(Y)$ , where $X/G$. Suppose $\{\lambda_{y}^{1}\}_{y\in Y}$ and $\{\lambda_{y}^{1}\}_{y\in Y}$ are families of mea-
sures in $M(X)$ with the following properties:

(1) $yarrow\lambda_{y}^{i}(f)$ is a $\nu$-integrable function for each bounded Baire function
$f$ on $X(i=1,2)$ ,

(2) supp $(\lambda_{y}^{i})\subset\pi^{-1}(y)(i=1,2)$ ,

(3) $\int_{Y}\lambda_{y}^{1}(f)d\nu(y)=\int_{Y}\lambda_{y}^{2}(f)d\nu(y)$ for all bounded Baire functions $f$ on
$X$.

Then $\lambda_{y}^{1}=\lambda_{y}^{2}$ v-a. $a$ . $y\in Y$.
We prove Theorem 6. 3 by modifying Johnson’s method slightly. Before

giving the proof, we prepare several lemmas.

LEMMA 6. 1. Let $(G, X)$ be a transformation group such that a com-
pact Lie group $G$ acts freely on a compact Hausdorjf space X. Let $\pi$ : $Xarrow X/$

$G$ be the canonical map. Then, for each $x\in X$, there exists a compact
neighborhood $U_{x}$ of $x$, which is a $G_{8}$-set, and a compact set $F_{x}\subset U_{x}$ such that
$\pi^{-1}(y)\cap F_{x}$ is a single point whenever $y\in\pi(U_{x})$ . Moreover $U_{x}$ can be
chosen to that $G\cdot U_{x}=U_{x}$ .

PROOF. By [11, 1. 1. Theorem, p. 251], there exists a compact neigh-
borhood $U’$ of $x$ and a compact $F’\subset U’$ such that $G\cdot U’=U’$ and $\pi^{-1}(y)\cap F’$

is a single point whenever $y\in\pi(U’)$ . Then there exists a compact neighbor-
hood $W$ of $x$, which is a $G_{8}$-set, such that $W\subset U’$ . Put $U_{x}=G\cdot W$ and $F_{x}=$

$F’\cap G\cdot W$. Then we can easily verify that $U_{x}$ and $F_{x}$ are the desired sets.
This completes the proof.

Let $(G, X)$ be as in Lemma 6. 1. For $x\in X$, let $U_{x}$ and $F_{x}$ be the sets
obtained in Lemma 6. 1, and choose sets $U_{x_{i}}(1\leq i\leq r)$ which cover $X$. Put
$U_{i}=U_{x\iota}$ , $F_{i}=F_{x\iota}$ and $V_{i}=\pi(U_{i})$ . And let $A_{1}=V_{1}$ , $A_{j}=V_{j} \backslash \bigcup_{k=1}^{j-1}V_{k}(2\leq j\leq r)$

and $B_{i}=\pi^{-1}$ $( V_{i})(1\leq i\leq r)$ . Thn $B_{i}$ are Baire sets. In fact, since $G\cdot U_{i}=$

$U_{i}$, we have $B_{1}=U_{1}$ and $B_{i}=U_{i} \backslash \bigcup_{j=1}^{i-1}U_{j}(2\leq i\leq r)$ . Hence $B_{i}$ are Baire sets

because $U_{i}$ are compact $G_{8}$-sets. Moreover $A_{i}(1\leq i\leq r)$ are pairewise dis-
$j$ oint and $Y=\bigcup_{i=1}^{r}A_{i}$ . Define maps $\tau_{i}$ : $V_{i}arrow U_{i}$ by $\{\tau_{i}(y)\}=F_{i}\cap\pi^{-1}(y)$ , and

define $\tau:Yarrow X$ by $\tau|_{A\iota}=\tau_{i}(1\leq i\leq r)$ . Then the following lemma holds.

Lemma 6. 2 (cf. [11, 1. 3. Lemma, p. 252]).
The maps $(g, x)arrow g\cdot x$ : $G\cross F_{i}arrow U_{i}$ and $\nu_{i}$ : $(g, y)arrow g\cdot\tau_{i}(y)$ : $G\cross V_{i}arrow U_{i}$ are
homeomorphisms $(1\leq i\leq r)$ .



The F. and M. Riesz theorem on certain transformation groups 327

DEFINITION 6. 2. Let $\pi_{2}$ : $Xarrow G$ be a map defined by

$\pi_{2}(x)\cdot\tau(y)=x$,

where $x\in X$ and $y=\pi(x)$ .

LEMMA 6. 3. For each $h\in C(G)$ , $h\circ\pi_{2}$ is a Baire measurable function
on $X$.

PROOF. By Lemma 6. 2, we can define continuous maps $\pi_{2}^{i}$ : $U_{i}arrow G$ by
$\pi_{2}^{i}=\pi_{G}^{i}\circ\nu_{i}^{-1}$ , where $\pi_{G}^{i}$ : $G\cross V_{i}arrow G$ are the projections $(1 \leq i\leq r)$ . Then we
have

$h \circ\pi_{2}=\sum_{i=1}^{r}\chi_{B_{i}}\cdot h\tilde{\circ\pi}_{2}i$ ,

where $\chi_{B_{i}}$ are the characteristic functions of $B_{i}$ and $h\tilde{\circ\pi}_{2}i$ are continuous
extensions of $h\circ\pi_{2}i$ to $X(1\leq i\leq r)$ . Hence, by the fact that $B_{i}$ are Baire
sets, the lemma is obtained.

DEFINITION 6. 3. A locally compact group $G$ is said to have no small
subgroups if there is a neighborhood of the identity $e$ which has no other
subgroups than $\{e\}$ .

DEFINITION 6. 4. Let $G$ be a locally compact group and $\{G_{l}\}_{l=1}^{\infty}$ a
sequence of normal closed subgroups of $G$. We write $G_{l}\downarrow e$ if the following
hold:

$(i)$ $G_{l}\supset G_{l+1}(l=1,2,3, \ldots)$ :
(ii) for any neighborhood $U$ of $e$, there exists $G_{l}$ such that $G_{l}\subset U$.

The following lemma, which was stated in [11, p. 255] without proof,
will be needed later on. We give its proof for completeness.

LEMMA 6. 4. Let $G$ be a metrizable compact group. Then there exists $a$

sequence $\{G_{l}\}$ of closed normal subgroups of $G$ such that $G_{l}\downarrow e$ and $G/G_{l}$ are
Lie groups $(l=1,2,3, \ldots)$ .

PROOF. First we note, by [22, Thorem 3], that a locally compact
group which has no small subgroups is a Lie group. Let $\{ U_{n}\}$ be a countable
base of $e$ . Then, for each $l\in N$, it follows from [14, 4. 6 Theorem, p. 175]
that there exists a closed normal subgroup $H_{l}$ of $G$, which is included in $U_{l}$,

such that $G/H_{l}$ has no small subgroups. Put $G_{1}=H_{1}$ , $G_{2}=H_{1}\cap H_{2}$ , ... .
$G_{n}=H_{1}\cap\ldots\cap H_{n}$, $\ldots$ Then $G_{n}$ are closed normal subgroups of $G$ and $G_{n}\downarrow$

$e$ . Moreover, by [14, 4.7.1 Lemma, p. 177], $G/G_{n}$ have no small subgroups
$(n=1,2,3, \ldots)$ . Hence $G/G_{n}$ are Lie groups $(n=1,2,3, \ldots)$ . This completes
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the proof.
We return to the proof of Theorem 6. 3. We first consider the case that

$X$ is compact and $G$ is a compact Lie group. Let $\{\lambda_{y}^{1}\}_{y\in Y}$ and $\{\lambda_{y}^{2}\}_{y\in Y}$ be
families of measures in $M(X)$ satisfying $(1)-(3)$ in Theorem 6. 3. For
each $y\in Y$, we define $\omega_{y}^{i}\in M(G)(i=1,2)$ by

(4) $\omega_{y}^{i}=\pi_{2}(\lambda_{y}^{i})$ (i.e., $\omega_{y}^{i}(h)=\lambda_{y}^{i}(h\circ\pi_{2})$ for $h\in C(G)$ ).

Then we have, by Lemma 6. 3,

(5) $yarrow\omega_{y}^{i}(h)$ is a $\nu$ -integrable function for each $h\in C(G)$ .

Let $f\in C$ $( Y)$ and $h\in C(G)$ . It follows from Lemma 6. 3 that $(f\circ\pi)(h\circ\pi_{2})$

is a bounded Baire function on $X$ : hence (3) yields

(6) $\int_{Y}\lambda_{y}^{1}((f\circ\pi)(h\circ\pi_{2}))d\nu(y)=\int_{Y}\lambda_{y}^{2}(\propto\circ\pi)(h\circ\pi_{2}))d\nu(y)$ .

On the other hand, we have

(7) $\int_{Y}\lambda_{y}^{i}(\sigma\circ\pi)(h\circ\pi_{2}))d\nu(y)=\int_{Y}f(y)\lambda_{y}^{i}(h\circ\pi_{2})d\nu(y)$

$= \int_{Y}f(y)\omega_{y}^{i}(h)d\nu(y)$ .

Hence, by (6) and (7), we get

$\int_{Y}f(y)\omega_{y}^{1}(h)d\nu(y)=\int_{Y}f(y)\omega_{y}^{2}(h)d\nu(y)$

for all $f\in C$ $( Y)$ . Since $C(G)$ is separable, it follows from (5) that

(8) $\omega_{y}^{1}=\omega_{y}^{2}\nu- a.a$ . $y\in Y$.

For $y\in Y$, let $x\in\pi^{-1}(y)$ . Then $x=\pi_{2}(x)\cdot\tau(y)$ . Let $B_{\tau(y)}$ : $Garrow G\cdot\tau(y)(\subset$

$X)$ be the homeomorphism defined by $B_{\tau(y)}(g)=g\cdot\tau(y)$ . For any $F\in C$

$(X)$ , define $h\in C(G)$ by $h=F\circ B_{\tau(y)}$ . Then, since $h\circ\pi_{2}(x)=F\circ B_{\tau(\mathcal{Y})}(\pi_{2}$

$(x))=F(\pi_{2}(x)\cdot\tau(y))=F(x)$ , we have
$\omega_{y}^{i}(h)=\lambda_{y}^{i}(h\circ\pi_{2})=\lambda_{y}^{i}(F)$ .

Hence we have, by (8),

$\lambda_{y}^{1}(F)=\omega_{y}^{1}(h)$

$=\omega_{y}^{2}(h)$

$=\lambda_{y}^{2}(F)$

for i/-a.a. $y\in Y$ and any $F\in C$ $( Y)$ , and so
$\lambda_{y}^{1}--\lambda_{y}^{2}$ i/-a.a. $y\in Y$.
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Thus, in this case, the theorem is obtained.
Next we consider the case that $G$ is a metrizable compact group and $X$

is a compact Hausdorff space. It follows from Lemma 6. 4 that there exists
a sequence $\{G_{l}\}$ of closed normal subgroups of $G$ such that
(9) $G_{l}\downarrow e$, and
(10) $G/G_{l}$ are Lie groups $(l=1,2, 3, \ldots)$ .

Let $\pi_{l}$ : $Xarrow X/G_{l}$ be the canonical maps, and put $X_{l}=X/G_{l}$ . Then, by (9)
and the Stone-Weierstrass theorem, we have

(11) $l \bigcup_{=1}^{\infty}\{f\circ\pi_{l} : f\in C(X_{l})\}$ is dense in $C(X)$ .

On the other hand, $(G, X)$ yields a new transformation group $(G/G_{l}, X_{l})$ .
Evidently, $G/G_{l}$ acts freely on $X_{l}$, and $G/G_{l}$ is a Lie group by (10). We
note that $X_{l}/G/G_{l}\cong X/G=Y$. For $y\in Y$, we define a measure $\lambda_{\acute{y}}^{il}\in M(X_{l})$

by

$\lambda_{y}^{i},{}^{t}(f)=\lambda_{y}^{i}(f\circ\pi_{l})$

for $f\in C(X_{t})(i=1,2)$ . We note that
(12) $f\circ\pi_{t}$ is a bounded Baire function on $X$ for every bounded Baire

function $f$ on $X_{l}$ .

In fact, put

$\mathscr{F}=$ {$A\subset X_{l}$ : $\pi_{l}^{-1}(A)$ is a Baire set in $X$ }.
Then we can verify that $\mathscr{F}$ is a $\sigma$-algebra containing all compact $G_{8}$-sets in
$X_{l}$ . Hence $\mathscr{B}_{0}(X_{l})$ is included in $\mathscr{F}$ Therefore $\pi_{l}^{-1}(A)$ is a Baire set in $X$

for each Baire set $A$ in $X_{l}$, which shows that (12) holds.
Let $\pi_{X\iota}$ : $X_{l}arrow X_{l}/G/G_{t}\cong Y$ be the canonical map. Then, by $(1)-(3)$ and

(12), we have

(13) $yarrow\lambda_{y}^{i},{}^{t}(f)$ is a $\nu$-integrable function for each bounded Baire func-
tion $f$ on $X_{l}(i=1,2)$ ,

(14) supp $(\lambda_{J}^{i}i^{l})\subset\pi_{X_{l}}^{-1}(y)(=\pi_{l}(\pi^{-1}(y)))(i=1,2)$ , and
(15) $\int_{Y}\lambda_{y}^{1,l}\varphi)d\nu(y)=\int_{Y}\lambda_{y}^{2},{}^{t}(f)d\nu(y)$ for all bounded Baire functions $f$

on $X_{l}$ .
Since $G/G_{l}$ is a compact Lie group, it follows from (13)-(15) and the last
case that there exists a Borel set $B_{l}$ in $Y$ such that $\nu(B_{l}^{c})=0$ and $\lambda_{y}^{1,l}=\lambda_{y}^{2,l}$ for
$y\in B_{l}$ . Put $B= \bigcap_{l=1}^{\infty}B_{l}$ . Then $\nu(B^{c})=0$ . For any $f\in C(X)$ , choose $f_{ln}\in C$
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$(X_{ln})$ so that $\lim_{narrow\infty}|\psi-f_{ln}\circ\pi_{ln}||_{\infty}=0$ . Then, for $y\in B$, we have

$\lambda_{y}^{1}(f)=\lim_{narrow\infty}\lambda_{y}^{1}(f_{ln}\circ\pi_{ln})$

$= \lim_{narrow\infty}\lambda_{y}^{1,ln}(f_{ln})$

$= \lim_{narrow\infty}\lambda_{y}^{2,ln}(f_{ln})$

$= \lim_{narrow\infty}\lambda_{y}^{2}(f_{ln}\circ\pi_{ln})$

$=\lambda_{y}^{2}(f)$ ,

which shows that $\lambda_{y}^{1}=\lambda_{y}^{2}$ i/-a.a. $y\in Y$. Hence, in this case, the theorem is
also obtained.

Finally we consider the case that $G$ is a metrizable compact group and
$X$ is a locally compact Hausdorff space. Since $\nu$ is bounded regular, there
exists a sequence $\{K_{j}\}$ of pairewise disjoint compact $G_{8}$-sets in $Y$ such that

$\nu(Y\backslash \bigcup_{j=1}^{\infty}K_{j})=0$ . Put $L_{j}=\pi^{-1}(K_{j})$ . Then $L_{j}$ are compact $G_{8}$-sets in $X(j=$

$1$ , 2, 3, $\ldots$ ). For each $j\in N$ we have, by $(1)-(3)$ ,

(16) $yarrow\lambda_{y}^{i}(f)$ is a $\nu|_{K_{i}}$-integrable function on $K_{j}$ for each bounded Baire
function $f$ on $L_{j}$,

(17) $supp(\lambda_{y}^{i})\subset(\pi|_{L_{J}})^{-1}(y)$ for $y\in K_{j}$, and

(18) $\int_{K_{j}}\lambda_{y}^{1}(f)d(\nu|_{K_{j}})(y)=\int_{K_{j}}\lambda_{y}^{2}(f)d(\nu|_{K_{j}})(y)$ for all bounded Baire

functions $f$ on $L_{j}$ .

Since $(G, X)$ yields a transformation group $(G, L_{j})$ such that $G$ acts freely

on $L_{j}$, it follows from (16)-(18) and the last case that

$\lambda_{y}^{1}=\lambda_{y}^{2}\nu|_{K_{J}}- a.a$ . $y\in K_{j}$,

which yields

$\lambda_{y}^{1}=\lambda_{y}^{2}$ i/-a.a. $y\in Y$

because $\nu(Y\backslash \bigcup_{j=1}^{\infty}K_{j})=0$ . This completes the proof of Theorem 6. 3.

By Theorems 6. 2 and 6. 3, we obtain the following theorem.

THEOREM6. 4. Let $(G, X)$ be a transformation group such that a com-
pact abelian group $G$ acts freely on a locally compact Hausdorff space $X$.
Then $(G, X)$ satisfifies conditions (C. $I$ ) and (C. $II$ ).

REMARK6. 1. Let $(G, X)$ be a transformation group such that a com-
pact abelian group $G$ acts on a locally compact metric space $X$. Then $(G$,

$X)$ satisfies conditions (C. I) and (C. $II$).
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In fact, since every measure in $M(X)$ is bounded regular, we may
assume that $X$ is $\sigma$-compact. Then, for any closed subgroup $H$ of $G$, $X/H$
is a $\sigma$-compact metric space. Hence $(G, X)$ satisfies conditions (C. I) and
(C. $II$).

REMARK 6. 2. If conditions (D. I) and (D. $II$) are satisfied for any
transformation group such that a metrizable compact abelian group acts on
a locally compact Hausdorff space, then conditions (C. I) and (C. $II$) are
satisfied for any transformation group such that a compact abelian group
acts on a locally compact Hausdorff space. The author does not know
whether conditions (D. I) and (D. $II$) are satisfied or not for any transfor-
mation group such that a metrizable compact abelian group acts on a locally
compact Hausdorff space.

Finally the author wishes to express his thanks to the referee for his
valuable comments and suggestions.
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