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§0. Introduction.

Let T be the circle group. Then the classical F. and M. Riesz theorem
is stated as follows: Let u be bounded regular (complex-valued) measure
2n
on T. Suppose u is of analytic type (.e., z(n)= A e~ " gy (e*) =0 for n<
0). Then

(A) pu is absolutely continuous with respect to the Lebesgue measure
on T.

Moreover, it is well-known that a measure of analytic type has the following
important property :

(B) u is quasi-invariant G.e., |u|*&<|ul| for all x€T).
Helson and Lowdenslager extended (A) as follows:

THEOREM 0.1 (cf. [20, 8.2.3. Theorem]).
Let G be a compact abelian group with ordered dual G. Let u be a bounded
regular measure on G that is of analytic type (i.e., ji(y)=0for y<0). Then

(i) uq and us arve of analytic type ;
(ii)  fs(0) =0,

where u, and us are the absolutely continuous part of u and th singular part
of u respectively.

On the other hand, as for (A) and (B), deLeeuw and Glicksberg ([2])
extended the classical F. and M. Riesz theorem to compact abelian groups
with certain ordered duals. Moreover, as an extension of the result of
deLeeuw and Glicksberg, Forelli ([7]) extended the F. and M. Riesz theo-
rem to a (topological) transformation group such that the reals R acts on a
locally compact Hausdorff space. Infact, he proved the following theorems.

THEOREM 0.2 ([7, Theorem 3]). Let (R, S) be a transformation
group such that the reals R acts on a locally compact Hausdorff space S. Let
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u be a bounded regular complex Baire measure on S. Suppose u is an analytic
measure. Then u is quasi-invariant.

THEOREM 0.3 ([7, Theorem4]). Let (R, S) and u be as in Theorem
0.2. Suppose (R, S) is equipped with the one-paramater group {T.}ier of
homemorphisms on S. Suppose u is an analytic measure. Then T,u moves
continuously in M(S).

THEOREM 0.4 ([7, Theorem5]). Let (R, S) and u be as in Theorem
0.2. Let o be a positive Radon measure on S that is quasi-invariant. Suppose
u is an analytic measure. Then both sp(u.) and sp(us) are contained in sp
(), where u, is the absolutely continuous part of u with respect to @ and us
is the singular part of u with respect to o respectively. In particular, if uis
an analytic measure, then u, and us ave also analytic measures.

In this paper we give results corresponding to Theorems 0.2-0.4 on a
transformation group with certain conditions (conditions (C.D and (C.
ID). We also extend Theorem 0.1 to such a transformation group. In
section 1 we state definitions and our theorems of this paper. In section 2 we
state several lemmas concerning properties of measures on certan transfor-
mation groups. In sections 3-5, we give the proofs of our theorems. In
section 6, we shall state that if (G, X) is a transformation group such that
a compact abelian group G acts freely on a locally compact Hausdorff space
X or a transformation group such that a compact abelian group G acts on a
locally compact metric space X, then (G, X) satisfies the conditions ((C.D
and (C.ID).

§1. Notations and results.

Let X be a locally compact Hausdorff space. Let C,(X) be the Banach
space of continuous functions on X which vanish at infinity, and let M (X)
be the Banach space of complex-valued bounded regular Borel measures on
X with the total variation norm. Let M*(X) be the set of nonnegative
measures in M(X). For u€M(X) and fE€L'(ul), we often write u(f)=

j;( f(x)du(x). Let X’ be another locally compact Hausdorff space, and let

S: X— X’ be a continuous map. For u€M (X)), let S(wEM(X") be the
continuous image of g under S. We denote by % (X) the o-algebra of
Borel sets in X. %,(X) means the o-algebra of Baire sets in X. In this
paper we employ the definition of Baire sets in or [19]. That is, %,
(X) is the o-algebra generated by compact Gs-sets in X.

Let G be a compact group and X a locally compact Hausdorff space.
Suppose there exists a continuous map (g, x)—g+x from GX X onto X with
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the following properties :

1.1 x—>g+x is a homeomorphism on X for each g=G
and e*x=x, where ¢ is the identity element in G,
1.2 gi* (g2 x)=(q1g2) *x for g1, G and xEX.

Then a pair (G, X) is called a (topological) transformation group such
that G acts on X. We say G acts freely on X if for any x€X, g—gexis a
one-to-one mapping. When G is commutative, we write customarily 0, ¢+
g» and —g instead of ¢, gig» and ¢! respectively. For a closed normal
subgroup H of G and x€ X, the set H (x)={h+x: h€ H} is called an orbit of
x under H. Then X/H={H(x): x€X} is also a locally compact Haus-
dorff space with respect to the quotient topology. Define an action of G/H
on X/H by gH+Hx)=H(g+x). Then, by this action, (G/H, X/H)
becomes a transformation group (cf. [14, Theorem 2.9, p.61]). Moreover,
if G acts freely, then G/H also acts freely.

Let Y =X/G be the quotient space, and let z: X— ¥ be the canonical
map. Then, since G is compact, Y is a locally compact Hausdorff space
and z is an open continuous map. A (Borel) measure ¢ on X is called
quasi-invariant if |¢/(F)=0 implies |¢|(g* F)=0 for all g=G. M(G) and
L'(G) denote the measure algebra and the group algebra respectively. m
means the Haar measure of G. By M,(G) we denote the set of measures in
M (G) which are absolutely continuous with respect to mc. Then by the
Radon-Nikodym theorem we can identify M,(G) with L'(G). When G is
commutative, for a subset E of G, M:(3) denotes the space of measures in
M (G) whose Fourier-Stieltjes transforms vanish off E Put Li(G)= Mg
(G)NLYG). For uEM(GR), g denotes the Fourier-Stieltjes transform of
u. For a closed subgroup H of G, H* means the annihilator of H.

Let f be a Baire measurable function on X. Then

1.3 (g, x)—f(gex) is a Baire function on GX X,

In fact, let L: GXX—>GXX be the map defined by L(g, x)= (g, g+x), and
let zx: GXX—X be the projection. Then L is a homeomorphism. Set
F={FCX: 2x*(F)E%,(GXX)}). Then ¥ is a o-algebra containing all
compact Gs-sets in X. Hence zx'(F) belongs to %,(GXX) for every F e
Zo(X). Thus, since f(gex)=fomxoL(g, x), (1.3) follows easily.

For y&€eM(X), A€M (G and a bounded Baire function f on X, we
define convolutions A*x and A*f as follows :

Q0 A= [ fgrnary,
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1.5 A= [( f h(gex)dA (g du (x)= f L h(gx) du(x)dr ()

for h=C,(X). Then A*uEM(X) and A*f is a bounded Baire function on
X (see Lemma 2.1 later). We note that (1.5) holds for all bounded Baire
functions # on X. Moreover we have

1.6 largl=Ial lul and [2+fle=]2] [l
For £eM (G), we also have

1.7 Ex(Axp)=(&ExA)*u.

In fact, for h€C,(X), we have

e W= [ [ h(g:0)d Ap) () dE Q)
= [ [ Jrg+ (o0 du () dn () dg (@)

:[(ﬁ[;h“g@'@dl ()d& (@) du (x)
=(&*A)*u(h).

DEFINITION 1.1. Suppose G is a compact abelian group and u€M
(X). Let J(u) be the collection of all fEL'(G) with f*u=0. We define
the spectrum of g, which is denoted by sp(x), as follows:

A

sp(u)= O FH0).

fEIJ(H)

REMARK 1.1. () By (1.6) and (1.7), J(u) becomes a closed ideal
in L'(G). Hence, since G is a compact abelian group, J(x) coincides with
Li(G), where E=sp(u) (cf. [20, p.158-159]).

(ID By (I we have
(1. 1) yEsp(u) if and only if y*p 0.7
In particular, for ¢, vEM(X), we have
(L 2) splu+v)Csplu) Usp(w).

In the sequel, (G, X) will denote a transformation group in which G is
a compact abelian group and X is a locally compact Hausdorff space except

in § 6. Before stating our results, we introduce two conditions (C.D and
(C.1ID. :

(C. I) For any closed subgroup H of G with H* countable and any u
eM*(X/H), put n==n(u), where =z: X/H-Y=X/H/G/H(=X/G) is
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the canonical map. Then there exists a family {A,},ey of measures in M+
(X/H) with the following properties :

(D y—4,(f) is n-measurable for each bounded Baire function f on X/
H,

@) l,0=1,

3 supp(1,) Cz~'(y),

4 u(f)= ,/:: Ay(f)dn(y) for each bounded Baire function f on X/H.

(C. ID Let H be any closed subgroup of G with H* countable. Let ¥
and z be as in (C.D. Let »€EM*(Y), and let {Al},er and {AZ},ey be
families of measures in M (X/H) satisfying the following properties :

(D y—>A3(f) is u-integrable for each bounded Baire function fon X/
H (=1,2),

2 supp(1}) Cz~'(y) (=1, 2),

3 /}:M(f) dn(y) nyli(f) dn(y) for all bounded Baire functions f on
X/H.

Then 13;=213 n-a.a.y€Y.

Now we state our results. We take the definition of Radon measure

from [6].

THEOREM 1.1.  Assume that (G, X) satisfies conditions (C.I) and
(C.II). Let P be a subsemigroup of G such that PU(—P)=0C.  Let o be
a positive Radon measure on X that is quasi-invariant. Let rEMX), and
let p=pq~+ps be the Lebesgue decomposition of u with respect to 6. Suppose
sp(u)CP. Then both sp(us) and sp(us) are also contained in P. If addi-
tion, PN (=P)={0} and z(u)<z(a), then sp(us) CP\{0}, where n: X —
X /G is the canonical map.

THEOREM 1.2. Let (G, X) be as in Theorem 1.1. Let E be a subset
of G satisfying the following

M@ for any 01 M:(G), |A| and me are mutually absolutely contin-
Uous.

Let p be a measure in M(X) with sp(u)CE. Then K 1S quasi-invariant.
DEFINITION 1.2. Let G be a LCA group, and let E be a closed subset

(1) On the left hand side, y means a character of G. And we consider v as an element in L'(G)
on the right hand side. More exactly, on the right hand side, y*u means (ymg)*pu.
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of G. E is called a Riesz set if Mz(G)CL'(G).

THEOREM 1.3. Let (G, X) be as in Theorem 1.1. Suppose EcGisa
Riesz set. Let u be a measure in M (X) with sp(u)CE. Then

lim e — Go*pel =0,
where 8y denotes the point mass at g€ G.

THEOREM 1.4. Let (G, X) be as in Theorem 1.1. Let o be a positive
Radon measure on X that is quasi-invariant, and let E be a Riesz set in G.
Let u be a measure in M(X) with sp(u) CE. Then both sp(us) and sp(us)

are contained in sp(u), where u=pa+us is the Lebesgue decomposition of u
with respect to o.

Theorem 1. 1] may be considered an extension of Theorem 0.1. And by
the classical F. and M. Riesz theorem, we can consider that Theorems [[. 2-1.
4 are compact analogues of Theorems 0.2-0.4. If we regard R* (non-
negative real numbers) as a semigroup with R*U(—R*)=R, [l'heorem 1. I
is also considered as one corresponding to Theorem 0. 4.

If (G, X) is a transformation group such that a compact abelian group
G acts freely on a locally compact Hausdorff space X or a transformation
group such that a compact abelian group G acts on a locally compact metric
space X, then (G, X) satisfies conditions (C.I) and (C.II) (see Theorem
6.4 and Remark 6.1). Hence the following corollary is obtained from
Theorems [.1-1. 4.

COROLLARY 1.1. Let (G, X) be a transformation group such that a
compact abelian group G acts freely on a locally compact Hausdorff space X
or a transformation group such that a compact abelian group G acts on a

locally compact metric space X. Then the conclusions of Theorvems 1.1-1.4
hold.

Next we give several examples of transformation groups that satisfy the
conditions in |Corollary 1. 1.

ExaMPLE 1.1. Let X be a locally compact group and G a compact
abelian subgroup of X. Then (g, x)—gx is a continuous map from GXX
onto X satisfying (1.1) and (1.2). Thus G and X form a transformation
group. Exidently G acts freely on X because X is a group.

Let C be the complex plane. A subset FCC is said to be circular if

(2 If E G satisfies condtion (¥), then E is a Riesz set. However the converse is false in
general (see Remark 5.1).
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ez€F for all z€F and <R.

EXAMPLE 1.2. Let T be the circle group G.e, T={e*:0<[0,22))).
Let XCC be a locally compact set that is cirular. Then (¢, z)—¢®z is a
continuous map from T'X X onto X satisfying (1.1) and (1.2). Thus T
and X form a transformation group. Evidently X is a locally compact
metric space. If the origin is not contained in X, T acts freely on X.

EXAMPLE 1.3. Let (G, X,) be a transformation group such that a
compact abelian group G, acts freely on a locally compact Hausdorff space
X;(i=1,2). Then ((g, g2), (%1, %))—>(g1*x, ge*x,) is a continuous map
from GG, XX, XX, onto X; XX, satisfying (1.1) and (1.2). Thus G
DG, and X, X X, form a transformation group. It is easy to see that G,®G,
acts freely on X, X X,.

EXAMPLE 1.4. Let (G, X)) be a transformation group such that a
compact abelian group G; acts on a locally compact metric space X; (i1=1,
2). Then G®G, and X, X X, form a transformation group as in the previous
example.

EXAMPLE 1.5. For each /€N (the natural numbers), let (G, X;) be

a transformation group such that a compact abelian group G; acts on a

compact metric space X;. Then .HN G; and Il X, form a transformation
1€

iEN
group by the action <g;>+<x>=<g;*x;>, where <gi>E_HN G; and
SS
<x,><]l X..
iEN

EXAMPLE 1.6. Let Abe anindex set. For each a €A, let (G, X.) be
a transformation group such that a compact abelian group G, acts freely on

a compact Hausdorff space X.,. Then HA Ge and Il X, form a transforma-
a< a€A

tion group by the action <ge>+<x,>=<ge*x.>, where <g.>E I Ga
a€A
and <x.>€ [l X.. Evidently HA Ge acts freely on I1 X..
ac<

a<A aEA

Combining [Corollary 1. 1 with Proposition 4. 3, which will be stated in
section 4, we obtain the following corollaries.

COROLLARY 1.2. Let A be an index set. For each a<A, let X, be a
compact circular set in C. Let X=11 Xo and G=TI T, where To=T for

a€A a€A

all @ € A. Let (G, X) be the transformation group defined by <e *>.
<xe>=<e%> for <e*>EG and <x.>€X. Put E={<m.><C:
ma=0 for all aEA}.  Suppose that the origin is not contained in Xa for every
aSA or Ais a countable set. Let u be a measure in M(X) with sp(u)CE.
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Then u is quasi-invariant.

PROOF. Since (G, X) satisfies the conditions in [Corollary 1.1, the
corollary follows from [Corollary 1. 1] (cf. [Theorem 1.2) and Proposition 4.
3.

COROLLARY 1.3. Let (G X) and E be as in Corollary 1.2. Let S be
a Sidon set in G. Let u be a measure in M (X) with sp(u) CEUS, and let

o be a positive Radon measure on X that is quasi-invariant. Then the
following hold.

(1) limle—a,ml=0

(i1)  let u=pa+us be the Lebesgue decomposition of u with respect to o.
Then both sp(us) and sp(us) are contained in EUS.

PrROOF. By Proposition 4. 3 and [16, Corollary 4], EUS is a Riesz set.
Hence the corollary follows from [Corollary 1.1 (cf. Theorems[I. 3 and I. 4D.

For a locally compact Hausdorff space X, C.(X) denotes the space of
all complex-valued continuous functions on X with compact supports. Let
C®(X) be the set of all real-valued functions in C,(X). Before we close
this section, we state several lemmas and propositions.

Let (G, X) be a transformation group such that a compact abelian
group G acts on a locally compact Hausdorff space X. Let z: X—=X/G be
the canonical map. For x€ X, we define a map By: G>G*x (CTX) by

(1.8)  B(g)=g-x.

Then B, is a continuous map. Put G,={9=G:gx=x}. Then G, is a
closed subgroup of G. Let II,: GG/ Gy be the canonical map. We define
a map By: G/G,—G-x by

(1.9) Blg+Go=g-x.

Then we have

(1.10) B,=B,°I,.

B,
Gex Fig. I

G
Hxl/ B,

G/ Gy

PROPOSITION 1.1. For each x<X, B.: G/G—>G+x is a homeomor-




The F. and M. Riesz theorem on certain transformation groups 297

phism.

PROOF. It is easy to see that B, is bijective. Since B, is continuous, B,

is also continuous. Moreover, since G/G, is compact, B3! is continuous.
This completes the proof.

PROPOSITION 1.2. For x€X, AEM(G/G,) and ECG, the following.
are equivalent.

(1) AEMenci(G/Gy ;
(II) sp(B.(1))CE.

PrOOF. For ¢g=G, let g denote the coset g+ G,. Then
sp(B,(A))CE

= [ [ 19BN (@ dme(g)=F+BA)W)=0
for all f€L:(G) and heC(X)
= [ [ 1gB()aA®) (@ dme(e)=0
for all fELk(G) and hE G (X)
= [ [ hBLG+DAAEf (@dme(9)=0
for all f€L:(G) and hEC,(X).
By [Proposition 1.1, we note that C,(X)|c.x=C(G*x)=C(G/G,). Hence

— ff F(G+5)drG5)f (@) dme(g) =0
GJG/Gx
for all fELz(G) and FEC(G/GY)
= [ | [ FG+Of (g+wdme.dmerc@dh (=0
for all f€Lt(G) and FEC(G/Gy)

= LILAOE=[ [ FG+OMG) @ dmore@dr (=0

for all fEL:(G) and FEC(G/Gy)
& AEMene:(G/Gy).
This completes the proof.
The following two propositions are well-known.

PROPOSITION 1.3. Let X be a locally compact Hausdorff space. For pu,
veEMH(X), let ula.xo and v]a,x) be the restrictions of u and v to & ,(X)
respectively. Then the following hold.

CI) The following are equivalent.
(1.D v<Ly;
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(1.2) vewo<uls.xo.

(I1)  The following are equivalent.
(II.1D ulvw;
(I1.2)  uls,0Lvle,o.

PROPOSITION 1.4. Let X be a locally compact Hausdorff space and 1 a
measure in M(X). Then there exists a unimodular Bairve function h on X
such that u=hlu|.

LEMMA 1.1.  Suppose c€EM+*(X) is quasi-invariant. Then o and
me*o are mutually absolutely continuous.

PrROOF. Let F be a Baire set in X with mc*o(F)=0. Then
0= [ [( 2,(g°%) do () dma(g)
= [0~ ) dme(o),

which yields ¢((—g)+F)=0 for some ¢g€G. Hence o(F)=0. Hence, by
[Proposition 1. 3, we have c<ms*6. Next suppose ¢(F)=0 for a Baire set

Fin X. Then 6((—¢)+F)=0 for all g=G, and so mc*a<F>=/Ga<<~g>-

F)dms(g)=0. It follows from Proposition 1. 3 that ms*c< o, and the proof
is complete.

LEMMA 1.2. Let x€X and g=G. Then the following hold.

(1) For u, AEM(G), we have By(u*A1)=u*B,(1).
(II) For AeM(G), we have

BQ'JC<A-> :Bxcé\g*/l> :d\g*Bx<l>
In particular, By.x(me)=Bx(mec).

ProoF. (1): For any f€C,(X), we have

w B = [ [ fCury)dBe(a) () de ()
= [ [ fCus(so)dA () ()

:ﬁf(u*x)dy*l(u)
=Bx(u*2) ().
Hence we have u*B:(1)=Bx(u*1).
(IID): For any f€C,(X), we have
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Byx(MD (= [ F(Byuc)dd ()
= [ f(Cu+gr-0)dr
= [ furmydoyr )
=Be(or (P,

which together with (1) yields By.x(1) =Bx(ds*1) =8,*Bx(1). This com-
pletes the proof.

DEFINITION 1.3. For x€X, put x=z(x). And define m; EM+(X)
by mix= Bx(meq).

REMARK 1.2. By Lemma 1.2 (II), m; is well-defined. That is,
By(m¢) = Bx(mg¢) for every yex(x).

LEMMA 1.3. Let u be a measure in M*(X) such that |ull=1 and supp
(W) Cx (%) for some xEX/G. Then me*u=ms.

PrROOF. Let x€x7'(x), and let NI,: G—G/G, be the canonical
map. Since supp(u)Cz (%), it follows from [Proposition 1.1 that
there exists a probability measure A€ M*(G/G,) such that u=B.(1).
Let & be a probability measure in M*(G) such that A =II,(&). Then
by (1.10) we have x=B,(I,(&))=B,(&). Hence, by Lemma 1.2 (D,

we have

Mc*u — mG*Bx(tf>
:Bx(mc*g)
= Bx(mc)

— M.

This completes the proof.
PROPOSITION 1.5. For xEx'(%), B.(mcicx) = ms.

PrROOF. For a Borel set BCG+x, put F=B3;'(B) and F=B;'(B). It
follows from (1.10) that F=I;'(¥). Hence we have

m;(B) = Bx(me) (B)
=me(F)

:/ (st ) dme.(t) dmeic.(S)
G/GxJGx

:/;/GxXF(:s)de/Gx(é>
:mG/Gx<F>
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= Bx(mG/Gx> (B).

This completes the proof.

For a locally compact Hausdorff space X, %,(X) is the smallest
o-algebra with respect to which every function in C,(X) is measurable.
Hence, by [4, 21 Theorem, 41-I], we get the following proposition.

PROPOSITION 1.6. Let X be a locally compact Hausdorff space. Let #
be a vector space of bounded real-valued functions on X, which contains the
constants, 1s closed under uniform convergence and has the following prop-
erty . for every uniformly bounded increasing sequence of positive functions f,
ex, the function f :Lizg fn belongs to 2. Suppose # DCE(X). Then #

contains all bounded real-valued Baive measurable functions on X.

§ 2. Several lemmas.

In this section we give several lemmas, which are used for proving our
theorems later on. For locally compact Hausdorff spaces X; and X;, .Z ,
(X, X X,) in general does not coincide with % ,(X;) X #,(X,) (cf. [6, ch.7,
Exercise 31, p.224]). However the following lemma holds. We give its
proof for completeness.

LEMMA 2.1. Let X, and X, be locally compact Hausdorrff spaces, and
let ueM*(X) and vEM*(X,). Then, for each bounded Baire function f
on X, XX, we have

(i) x1—>£( f(x, %)dv(x,) is Baire measurable on X,, and
B /); fCa, %)du(x) is Baive measurable on X,.

PrROOF. Let # ={f(x, x,) : bounded real-valued functions on X; XX,
satisfying (i) and (ii)}. Then &# is a vector space, which is closed under
uniform convergence and contains the constants and C*(X, X X,). More-
over, for every uniformly bounded increasing sequence of positive functions
HRE #, the function f :Liff.} f» belongs to #. Hence, by [Proposition 1.6, #

contains all bounded real-valued Baire functions on X;XX,. Thus, for
every bounded Baire function f on X; X X,, (i) and (ii) hold. This com-
pletes the proof.

LEMMA 2.2. Let n€M*(X/G) and A€M (G). Let {us}iexic be a
family of measures in M(X) such that x—u:(f) is n-measurable for each
bounded Baire function f on X. Then x—>A*u:(f) is n-measurable for each
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bounded Baive function f on X.

PrROOF. Since (g, x)—f (g, x) is a Baire measurable function on G X
X, it follows from Lemma 2.1 that x— fc f(g*x)dA(g) is a bounded Baire

function on X. Hence x— A *yk(f)zvﬁv/;f(gm)dl (@d u:(x) is  7-
measurable. This completes the proof.

LEMMA 2.3. Let u€M(X) and nEM*(X/G). Let {whexic be a
family in M (X) with the following properties :

(D x—>u(f) is n-integrable for each bounded Baive function f on X,
@) u(f)= [{ . w:(f)dn(x) for each bounded Baire function f on X.

Then, for AEM(G), the following hold.

(1) x—=2A*u:(f) is an n-integrable function for each bounded Baire
function f on X ;

(II) A=y U)Z[(/G A*u:(F)dn(x) for each bounded Baire function f on
X.

Proor. (I): Since (g, x)—f(g+x) is a bounded Baire function on
GX X, it follows from Lemma 2.1 that x— L f(g*x)dr(g) is a bounded

Baire function on X. Hence (1) implies that x—2 *,u;c(f)Z_[(/;f(g-x) dx
(¢)duz(x) is n-integrable.

(II) : Since x— /; f(g*x)dAr(g) is a bounded Baire function on X, it
follows from (2) that

vuH= [ [ Flg 0@ du
= [ | [ 70 ar @) dutdn
= [ AwDan®.

This completes the proof.

From Lemma 2.4 through m we assume that (G X) is a
transformation group such that a metrizable compact abelian group G acts
on a locally compact Hausdorff space X. For x€X/G, let m; be the
measure defined in Definition 1. 3, and let z: X— X /G be the canonical map.
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Moreover, from through [Lemma 2.8, we assume that (G, X)
satisfies the following conditions (D.I) and (D.ID.

(D.1) Forany u€M+(X), put y==n(u). Then there exists a family
{Ai}iex/c of measures in M*(X) with the following :

ey x—>A:(f) is z#-measurable for each bounded Baire function f on X,
(2) 12 =1,
3) supp(A:) Tz~ (%),

4 u(f)= /); o 1:(f)dn(x) for each bounded Baire function f on X.

(D.1I) Let veM*(X/G). Suppose {Ai}iex/c and {A%}icx/c are fam-
ilies of measures in M (X) with the following properties :

e9) x—1:(f) is a v-integrable function for each bounded Baire func-
tion f on X (i=1, 2),
2) supp(ADCz(x) (G=1,2),

3 _[{/G 1:(Fdv(x) Z[(/G 1:(f)dv(x) for all bounded Baire functions
f on X.

Then we have 1i=21% v-a.a. x€X/G.

Let u€M(X) and €M*(X/G). By an x-disintegration of u, we
mean a family {Ai}iex/c of measures in M (X) satisfying (1)" x—2A:(f) is
n-integrable for each bounded Baire function f on X and (3)-(4) in (D.D).
If, in addition, #==(«|) and |A:|=1 for all x€X /G, then we call {Ai}iex/c
a canonical disintegration of x. Thus condition (D.I) says that each u &

M+*(X) has a canonical disintegration {u}iex/c With mEM*(X).

REMARK 2.1. For u&€M*(X), let {As}iex/c be a canonical disintegra-
tion of g. Then L, EM*(X) n-aa. x€X/G.

REMARK 2.2. (i) For p€M(X), it follows from [Proposition 1.4
that there exists a unimodular Baire function % on X such that u=h|u|.
Suppose {Ai}rex/c is a canonical disintegration of |x|. Then {hAi}iex/c is a
canonical disintgration of 4. Hence the following are equivalent.

e9) every u€M*(X) has a canonical disintegration ;
2) every u€ M (X) has a canonical disintegration.

If (G, X) satisfiese (D.I), then every u€ M (X) has a canonical
disintegration.

LEMMA 2.4. Let uM(X) and n€M*(X/G). Let {As}iex/c be an
n-disintegration of u. Then {|A:llex/c s an n-disintegration of |u|. In
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particular,

W lel= [ Jrddn GO,

PROOF. Let % be a unimodular Baire function on X such that u = klu|.
Then {%As}rex/c is an n-disintegration of |u|. Therefore, to establish the
desired result, it will suffice to prove that 1; =0 for »-a.a. x€ X /G assuming
that ©=0. So suppose x=0. By (D.D, x4 has a canonical disintegration
{ustsex/c. By Remark 2.1, u is a probability measure for z(u)-a.a. xEX/
G. Moreover,

@ [ D@ =p= [ (PdrG G

for each bounded Baire function f on X. We claim that z(u)<#%. To see
this, pick any Baire set BCX/G with #(B)=0. Since supp(A) Cz~'(%),
A:(xzom) =0 for x£B. Hence we have, by (2) with f=y,°x,

7(u)(B)=u(xz°n)
= [ Ml dn®
= [ dn o+ [ Algyem dn ()
:0’

which establishes our claim. Finally let ¢ be the nonnegative Radon-
Nikodym derivative of #(u) with respect to . Then n(u)=4¢» by our
claim. So (2) ensures that

| aDdn= [ [(gomud(HdnG

for each bounded Baire function f on X. Therefore we have
L= (pem)u: =0 for y-a.a. x€X/G
by condition (D.II). This completes the proof.

LEMMA 2.5. Let cEM*(X) be a quasi-invariant measure. Let p&
M+(X) and n€M*(X/G). Let {whexic be an n-disintegration of u with
wEM+(X). Then the following hold.

(1) If n<=(0), then the following are equivalent.
(I.D u<ko;
(1.2 w<ms g-aa x€X/G.

(II) If n<=(o), then the following are equivalent.
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(II.1D ule;
(HZ) mJ_mk n-a.a. kEX/G

PrROOF. We first prove (I). (I.2)==1.1): Let E be a Baire set in
X with ¢(E)=0. Let {o63}:cx/c be a canonical disintegration of . Then by
Lemmas 1.1 and 2. 3 we have

0=mc*o(E)
= [ mera(E)dn()® ;
hence
me*0y(E)=0 n(s)-a.a. x€X/G.
Thus Lemma 1. 3 and the hypothesis yield

u(E)= [( By (=0,

which together with Proposition 1. 3 shows < o.

(I.1)=(I1.2): By Lemmas .1, 1.3 and 3.3, we have
(D u<me*o, and

@ mere(D= [ m(Hdro@®

for each bounded Baire function f on X. Since #<z(¢), there is a non-
negative real-valued Baire function F on X/G such that =Fx(s). Then

3 x—=>F () u(f) is a #(o)-integrable function

and

@ wHO=[ FOmdr®

for each bounded Baire function f on X. Moreover,
5) FOu:<my n(o)-a.a. x€X/G.

In fact, since u<mc*0o, there exists a nonnegative real-valued Baire function
K on X such that u=Kmec*o. It follows from and (2) that x—
my(K) is n(o)-integrable. Hence there exists a z(¢)-null set £ in X/G
such that |Kwme| <o for x&E. We define a family {Viliex/c of measures in
M+(X) by

© V= for €L
0 for x€E°
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Then {Viliex/c is a n(o)-disintegration of x. Hence, by (3)-(4) and the
hypothesis (D.ID), we get

Vi=F()us n(o)-a.a. x€X/G,

which shows that (5) holds. By (5), we have u: < -a.a. x€X/G.
Next we prove (). By (2) and (4), {ms—F (X ushiexc is a = (o)-
disintegration of mes*o—u. It follows from that

D mero—ul= [ Im—FGuldn(o) .

Notice that me*o Ly if and only if |me*o—u|=|me*ol+|xl since all of the
measures ¢, mc and g are nonnegative. It follows from (7) that me*o L u
if and only if

® = F GO sl = sl + | F GO s

for #(0)-a.a. x€X/G. But (8) is obvious for all x with F(¥)=0. There-
fore, since =Fr (o), (8) holds if and only if m; L F (X)us for y-a.a. x€X/
G. Hence (I follows from Lemma 1.1. This completes the proof.

LEMMA 2.6. Let ueM(X) and n€M*(X/G). Let E be a subset of
G. Let {ustrex/c be an n-disintegration of u. If sp(u)CE, then

(D sp(u) CE n-a.a. x€X/G.

PrROOF. Let & CC(G) be a countable dense set in Lk<(G). For f,€
s, it follows from that x—f,*u:(h) is z-integrable and 0=f,*u

(h)= [( o Jo*uz(h)dn(x) for each bounded Baire function %z on X. More-
over, we have supp(f,*u:) Cz~'(x). Hence the hypothesis (D.II) yields f,*
u:=0 n-a.a. x€X/G, and so

f*uz=0 n-aa. x€EX/G
for all f€LE(G). Thus we get (1), and the proof is complete.

LEMMA 2.7. Let c€M*(X) be a quasi-invariant measure and E a
subset of G. Then the following hold.

(1) Each u€M(X) can be uniquely represented as p=u,+u,, where
uy and p, are measures in M(X) such that =(u)<x (o) and =(w|) L=
(o)

(II) Let u and u, be as in (). If sp(u)CE, then sp(u,) CE.

ProorF. (I): Let y==z(ul). Choose disjoint Baire sets A and B so
that AUB=X/G, 5|a€z(c) and 5|z Lz (o). Define u = p|z-1a and u,=
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# |z-s). Plainly g and u, have the desired properties. The uniqueness is
obvious.

(ID: Let {w}iex/c be a canonical disintegration of u. Define mea-
sures @, @, EM(X) by

®  wd=[ wOdrlubd,
@)= [ w(PdrluD.®

for f€C,(X), where z(|u)=nul)o+zul)s is the Lebesgue decomposi-
tion of z(|u|) with respect to z(6). Then y=w + w, and we can verify
that 7 (e, |) <7z (6) and z(|w.]) Lz(c). Hence we have

2) =, and u, = w,.
On the other hand, it follows from that
sP(u)CE n(|uD-a.a. x*€X/G;
hence
sp(u) CE n(|ul)s-a.a. ¥ €X/G.
Hence
fr=0 z(|uDs-aa x€X/G
for all f€Lk(G). Thus we have, by (1)-(2) and Lemma 2.3,
F*uy=0 for all f€Lt(G),
which yields sp(u;) CE. This completes the proof.

LEMMA 2.8. Let n€M*(X/G) and K>0, and let {uliex/c be a
family of measures in M*+(X) with the following properties :

(1) x—us(f) is n-integrable for each bounded Baire function f on X,
(2) supp (uz) Tz (%),

@ sl [ wHdn@l: FECGXD, Ifl<D<EK.

Let puz=ui+ui be the Lebesgue decomposition of usx with respect to ms. Then

4 x=ui(f) and x—=ui(f) are n-integrable functions for each bounded
Baire function f on X.

PrROOF. We may assume that #+0. For any f€C,(X), we note that
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x— fc f(g*x)dms(g) is a function on X which belongs to C,(X) and is
constant on each orbit under G. For each f€C,(X), define a function [f]

€C(X/G) by U](k)ZLf(g'x)dmc(g), where x=z(x). We define a
measure € M*(X) by

o= [ [ 1@ar
for feC,(X).

Claim 1. ds*c=o0 for all geG.

For feCG(X), define f,€ C(X) by fo(x)=f(g*x). Then [fo]=[f].
Hence we have

sr0(N= [ fiwdo()
= [ 151 G@dn

= [ F1Godn (G
=o(f)
for all f€C,(X), and Claim 1 follows.
Claim 2. z(e)=2.
For FE(C,(X/G), we note that [Fez]=F. Hence

2(0)(F)= [ For(x)do (@)
= [ [FerlGdnGo
= [ FGodn(o

for all FEC,(X/G). Thus Claim 2 follows.
By Claims 1 and 2, we have

%) ¢ is quasi-invariant and z(¢) =7.

On account of (1) and (3), we can define a measure uEM*+(X) by

©®  wO=[ wPdnG for fECX).

We note that (6) holds for all bounded Baire functions f on X. Let u=pu,+
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us be the Lebesgue decomposition of ¢ with respect to . Since z(u,) <7, it
follows from (D.I) and Remark 2.1 that x, has an #-disintegration
(&Y sex/c With &EM*(X). Similary g, has an z-disintegration {&3iex/c
with &eM*(X). Then

M w=E&i+ & p-aa. x€X/G

by the uniqueness assumption (D.II). Moreover, ensures that
Ei<my and &% L mx

for -a.a. x€X/G. From this and (7), we have
pi=&: and pi=&;

for #-a.a. x€X/G. Thus (4) holds, and the proof is complete.

From through Lemma 2. 13, let (G, X) be a transformation
group such that a compact abelian group G acts on a locally compact
Hausdorff space X. For a closed subgroup H of G, let g» : G—G/H and
ny: X—X/H be the canonical maps respectively.

LEMMA 2.9. For u€M(X) and A€M (G), we have
7Z'H</1*,u>:CIH</1>*7IH</l>.
Proor. For FEC,(X/H), we have

(A (F) = [ F (o () dAou )
— [( / F(na(g+x))dA (¢)du(x)
:ﬁﬁF(qH(g)-nH(x))dl (9) du (%)
- [( f F (G2 (0)) dau () (§) du ()
= [ F CGemn G0 dpe G g () ()

:/;/H'/)‘(/HF(bok>dnH(y)(k)dq;;(l)(&)
=qu(A)*mu () (F).

Hence we have zy(A*u) =qu(1)*zx(u), and the proof is complete.

LEMMA 2.10. Put T=H*. Let u be a measure in M(X) with sp
(uw)=E. Then sp(za(u))CENT.

ProOF. By [Lemma 2.9, we have {gu(f): fE€J (W} J(malu)).
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Hence, noting gz (f)"=F|r, we get sp(zu(u)) CfeQ#)(QH N 0)=ENT.
This completes the proof.
LEMMA 2.11. Let u be a nonzero measure in M(X). Then there

exists a countable subgroup Ty of G such that mr-(u) #0 for all subgroups T' of
G with T DT,

PROOF.  Since x+0, there exists a compact set K is X such that g (K)
#(0. Put |¢(K)|=28>0. Then there exists an open set UDK in X such
that |¢|(U\K)<¢. Let V be an open neighborhood of 0 in G such that

D V-KCU.

Then there exists a countable subgroup ', of G such that T¢C V. Let T be
a subgroup of G such that 'DOT,. Then (1) yields

|70 () (e (KO | = | (T4 KO |

= || (KD —|u| CUNKD
> 4.

Thus #r:(u) =0, and the proof is complete.
The following lemma follows easily from the definition of transforma-
tion group.

LEMMA 2.12. Let K and F be disjoint compact sets in X. Then there
exists an open neighborhood V of 0 in G such that V- KNV -F=¢.

On account of Lemma 2. 12, the following lemma can be obtained as in
[18, Lemma 4. 1].

LEMMA 2.13 (cf. [18, Lemma 4.1]).
Let u and & be measures in M*(X) with u L& Then there exists a count-
able subgroup Ty of G such that

(D are(u) Lar(&)
for all subgroups T of G with TDT,.
§3 Proof of Theorem 1.1.
In this section we prove [['heorem 1. 1|

LEMMA 3.1. Let o be a measure in M~(X) that is quasi-invariant. If
G is a metrizable compact abelian group and (G, X) satisfies conditions (D.
I) and (D. II), then the conclusion of Theovem 1.1. holds.
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PROOF.  As for the first assertion, it is sufficient to prove that sp(u,) C
P because of Remark 1.1 (II). Moreover, by Lemma 2. 7, we may assume
that #(Ju|) <z (o). Let {Ai}rex/c be a canonical disintegration of |u|. Let %

be a unimodular Baire function on X with g ="%|u|. We define measures u;
EM(X) by ps=hAx. Then {us}iexc is a canonical disintegration of .

For each x€X/G, let A,=21{+ 21} and u= i+ uj be the Lebesgue decomposi-
tions of A; and u; with respect to m; respectively. Then

) pi=ha{ and pi=has.
Since sp(u) CP, it follows from that
2) sp(u) CP p-a.a. x€X/G,

where #=n(ul). Let xEx~'(x), and let & be the measure in M (G/Gy)
such that B,(&)=u, where B,: G/G,—>G-x is the homeomorphism defined
in (1.9). Then, by (2) and [Proposition 1.2, we have

(3) kaMPnG,}(G/Gx) n-a.da. kEX/G,

which together with [24, Corollary] yields
@) &4, Ei€EMpnc:(G/Gy) n-aa. x€X/G,

where &= &i+ &; is the Lebesgue decomposition of & whith respect to mec..
By Proposition 1.5, we note that B,(&)=pu¢ and B,(&)=us. If follows
from (4) and Proposition 1.2 that

(5) sp(ud), sp(ud) CP n-a.a. x€X/G
By Lemma 2. 8, we have

(6) x—A5(f) and x—13(f) are n-measurable for each bounded Baire
function f on X ;

hence (1) yields

D x—=ui(f) and x—ui(f) are -measurable for each bounded Baire
function f on X.

By (6) and (7), we can define measures w;,, w.€EM*(X) and u, €M
(X) as follows:

w (D= [ B, (D= [ 15(Hdn);
w = [ D@, = [ wi(Hdn@
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for f€(C,(X). Then, by (1), we have u; <, and p,<w,. Since <z (o),
it follows from that

@ <o and @, Lo ;

hence

€)) <o and u, Lo.

Since p=u1+u,, (8) yields uy=py,. For any y&P and fEC,(X), we have
Y ua(F)=y*u (f)

= J oy an ) (by
=0. (by (5) and Remark 1.1 (ID)

Hence, by Remark 1.1 (II), we get sp(u,) CP.
Next we prove the latter half. If PN(—P)={0}, then by (4) and
Theorem 0.1 (ii) we have

E(0)=0 y-aa ¥€X/G:

hence [Proposition 1. 2 yields
0&sp(ul) »-a.a. x€X/G
Thus, by Remark 1.1 (II), we have

1*p;=0 »-a.a. x€X/G

where 1 is the constant function on G with value one. On the other hand, (8)
yields us=u,. Hence, by and the construction of u,, we have

1*#6‘:07

which together with Remark 1.1 (II. 1) yields 0&sp(us). Thus sp(us) CP\
{0}, and the proof is complete

Now we prove [Theorem 1. 1. Since g is bounded regular, there exists a
o-compact open set X, in X with G+ X, =X, and a quasi-invariant measure ¢’
EM+*(X) satisfying the following :

3.D u is concentrated on X,,
(3.2) O"|Xo<<0‘|xo and G‘|X0<<o',|xo.

Hence u=pu,+us is the Lebesgue decomposition of x with respect to ¢
Thus we may assume that ¢ is a measure in M*(X) that is quasi-invariant.
As for the first assertion, it is sufficient to prove that sp(us) CP because of
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Remark 1.1 (II). We may assume us+0. Suppose there exists y& P such
that yoEsp(us). Then y*us+0. It follows from Lemmas2. 1T and 2. 13 that
there exists a countable subgroup T" of G with €T such that

(33) 7[’H(’)’0*ﬂs>:/:0
and
(3.4) u (s L wu (o),

where H=T"and 7w : X—X/H is the canonical map. By (3.4), zz(us) is
the singular part of zz () with respect to zz(o). Since ¢ is quasi-invariant,
7z (o) is also quasi-invariant. T'=H* is countable, and (G/H, X/H)
satisfies conditions (D.I) and (D.II). Hence we have

3.5  splau(us))CPNT

by Lemmas andB.1. It follows from (3.3) and that gu (y,)
«zun (us) +0. On the other hand, since % <T, we get gu(y) =7v. Hence y,
esp(au(us)). Thus, by (3.5), we have <P NT, which contradicts the
choice of y,.

As to the latter half, we may repeat a similar argument for »,=0 G.e,,
vo(x)=1 for x€G). This completes the proof of Theorem 1.1l

§4. Proof of Theorem 1.2.

In this section, we first prove [Theorem 1.2. The latter half of this
section is devoted to the consideration of the sets satisfying condition (*) in
Mheorem 1.2. (Such sets shall be defined in LCA groups.). For a LCA
group G, let M(G) and L'(G) be the measure algebra and the group alge-
bra respectively. For a subset E of G, M:(G) denotes the space of mea-
sures in M (G) whose Fourier-Stieltjes transforms vanish off E. m¢ means
the Haar measure on G. For a closed subgroup H of G, H* denotes the
annihilator of H.

DEFINITION 4.1. Let G be a LCA group, and let 4 be a measure in M
(G). u is said to be quasi-invariant if ||* 0K |u| for all x€G.

REMARK 4.1. Suppose there exists a nonzero measure nEM(G) that
is quasi-invariant. Then, by regularity of u, G must be o-compact. That
is, if G is not o-compact, M (G) has no nonzero quasi-invariant measures.

The following proposition is well-known.

PROPOSITION 4.1. Let G be a LCA group, and let 4 be a nonzero
measure in M(G). Then the following are equivalent.
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(i) u is quasi-invariant ;
(i) |u| and mc are mutually absolutely continuous.

DEFINITION 4.2. Let G be a LCA group, and let E be a closed subset
of G. We say that E satisfies condition (*) if the following holds.

(*) For u&€M:(G), u is quasi-invariant.

REMARK 4.2. When G=7T, Z* satisfies condition (*). When G=R,
R* also satisfies condition (*).

LEMMA 4.1. Let G be a LCA group, and let E be a closed subset of G
satisfying condition (*) in Definition 4.2. Then, for any open subgroup T of
G, the following (*)r holds.

(Mr For amy nonzero measure &€ Mpnr(G/H), |E| and wmgy arve
mutually absolutely continuous, wheve H=T".

PROOF. Let & be a nonzero measure in Menr(G/H). Let gy: G—>G/
H be the natural homomorphism. We note that H is compact.

Step 1. |§|<<mc/y.

In fact, there exists a nonzero measure A € Mgnr(G) such that A (y)=E(y)

for yeT and 1(y)=0 for y G\I'. Hence, by the hypothesis and Proposi-
tion 4.1, we have A€ L'(G), and so {=qy(A)EL*(G/H). Thus Step 1 is
obtained.

Step 2. |€| and m,,y are mutually absolutely continuous.
By [10, (28.54) Theorem (iv) and (28.55) Theorem (iii), (Vol.2)], we
note that the following (1) holds.

D geaeLl(G) and [ oGO dmen(D)= [ 9(an())dme )

for all geL'(G/H). We define a map J: L'(G/H)-L'(G) by J(g)=
geqs. Thenwehave J(&)eL'(G) by Step1l. Moreover, for any g L'(G/
H), we have

for y&T

) J@"(y) ={g<07) for y& G\I"

Hence, by the hypothesis, |/ (&)| and m are mutually absolutely continuous.

Hence

(3) gz (J (&)]) and myg,y are mutually absolutely continuous.

On the other hand, by the definition of the map, we have
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JAEh=U(&I.

Moreover, by (2), we have

g (J (|1€D)=1¢1,

which together with (3) yields that |&| and m,y; are mutually absolutely
continuous. This completes the proof.

LEMMA 4.2. If G is a metrizable compact abelian group and (G, X)

satisfies conditions (D. 1) and (D.II), then the conclusion of [Theorem 1.2
holds.

PrROOF. Put #==n(|u|). Let {u;};cx/c be a canonical disintegration of
4. Then, by Lemma 2.6, we have

€Y sp(uy) CE n-a.a. x€X/G.
Hence we have
(2) |z < m; and m;< || 7-a.a. x€X/G.

In fact, let xez (%), and let B,: G/G,—G+x be the homeomorphism
defined in (1.9). Let & be the measure in M (G/G,) such that B,(&) =,
Then, by (1) and [Proposition 1.2, we have

EEM:q6.(G/Gy) n-aa. x€X/G;
hence Lemma 4.1 yields
3) &l <mgc. and mg 6. <& n-a.a. ¥ €X/G.
Thus, since |B:(&)|=B:(&]), (2) follows from (3) and [Proposition 1.5,
Let F be a Baire set in X with |¢|(F)=0. Then, by Lemma 2.4, we have

[ Py Gy =0,
X/G

which yields
|u:(F)|=0 n-a.a. x€X/G.
For any g=G, it follows from (2) that
lu:| (g F)=0 n-a.a. x*€X/G,
which shows

kg F)= [ | (g Frdn ()
=0.
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This completes the proof.

Now we prove [I'heorem 1. 2. Suppose there exists a measure p= M (X)
with sp(u) CE such that u is not quasi-invariant. Then there exists gy G
such that || is not absolutely continuous with respect to dy*|u|. Let u=pu +
i be the Lebesgue decomposition of u with respect to d,*|u|, where u; < d,
*|u| and g, L 6go*||. Then u,#+0. By Lemmas 2. 11 and 2. 13, there exists a
countable subgroup T' of G such that

(4 . 1) Ty (ﬂZ) :'(:O’
4.2) ey (| ]) L e (Ju2]), and
(4.3) mn (pa]) L 7w (Sgox ),

where H =T* and ny: X—X/H is the canonical map. We note |zy(u,)|<

7y ([2])s |70 (go* )| K 7ty (Ogo* e |) and |7y (Ggo* )| = guigny*|ma (). It follows
from (4.3) that

(44) ITEH(#2>IJ‘6\QH(90)*|7[H</“>|'

Let (G/H, X/H) be the transformation group induced by (G, X). Then
(G/H, X/H) satisfies conditions (D.I) and (D.II). It follows from
Lemma 2. 10 that sp(zy(u))CI'NE. Hence, by Lemmas 4.1 and 4.2, we
have

(4.5) |7ZH<#>|<<§qn(go)*|75H<ﬂ>|-

On the other hand, zy(u)=7y(u) +7zu(uz), and (4.2) implies that |zy (u)|
1 |my(uz)|. Hence |my(u)|<|my(1)|. Thus, by (4.1) and (4.5), we have
0= |7y (u2) | K Sgueany*|ma ()|, which contradicts (4.4). This completes the
proof.

Before we close this section, we give several examples of sets satisfying
condition (*) in Definition 4. 2 together with propositions.

PROPOSITION 4.2. Let G be a LCA group, and let T' be an open sub-
group of G. Let E be a closed subset of G contained in T'. Suppose that E
satisfies condition (*) in T'. Then E also satisfies condition (*) in G.

PrROOF. Put H=Tt. For x&G, let x=q4(x). Let x be a nonzero
measure in M;(G). Then gy(u) is a nonzero measure in M;(G/H). We
note, by Remark 4. 1, that G is o-compact. By [Proposition 4.1, E is a Riesz
set in T. Hence E is a Riesz set in G. Thus we have

® reL'(G).

Let J : L*(G/H)—L'(G) be the map defined in the proof of Lemma 4. 1 (i.e.,

J(@=geqw). Then, for g€L'(G/H), J()"(y)=g(y) for yET and J(g)
A(y)=0 for yeG\I'. Hence, since supp(z) CE, we have
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2 J(qu(u)) =p.

Let K be a Borel set in G with |¢|(K)=0. Let F be the Radon-Nikodym
derivative of gy(u) with respect to m¢,s. Then, by (2), we have

Ozj;xx(x)IFlqu(demc(x)
:/(‘;/H,/}’{xx<x+y>|F|OQH<x+y>de<y>de/H<5C>(3)
= [ FIG [ 1, G4 9 dma ) dmern (),

which shows
® [ G+ dmg () =0 |Fldmeuraa. k€G/H

Since gy (W) EMz(G/H), |qu(x)| and mg,y are mutually absolutely continu-
ous. Hence (3) yields

Lx,{(x-i-y)dmg(y)zo mgp-a.a. x€G/H.

Hence we have

oK)= [ [, Gt 9) dma () dme ()
:O,

which shows mc<|u|. Thus, by (1), |«| and m are mutually absolutely
continuous. This completes the proof.

ExXAMPLE 4.1. Let G be a connected compact abelian group, and let £
be a finite subset of G. Since G is ordered, it follows from [20, 8.4.1
Theorem, p.206] that E satisfies condition (*).

ExXAMPLE 4.2. Let G be a compact abelian group, and let y, be an
element of G with infinite order. Put E={ny,: n€Z*}. Then, by Proposi-
tion 4. 2, E satisfies condition (*).

EXAMPLE 4.3. Let G= T" and let E={m;, m,, ..., my)EZ": m; =0
(i=1,2,3,...,m)}. Then, by [2, Main Theorem], we can verify that E
satisfies condtion (*).

(3) We noralize the Haar measures on G/H and H so that

Jreodmeeo= [ [ £G4y dmy) dmen
for all feL'(G).
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ExXAMPLE 4.4. Let G=T> (countable infinite dimensional torus), and
let E={(my, ms, ..., Mn, .. €T m;>0 (i =N)}. Then, by ([2, p.
191]), E satisfies condition (¥). ‘

Moreover, the following proposition holds.

PropPOSITION 4.3 (cf. [17, Corollary 2]).
For any index set A, let G=11 T, where T,=T for all acA. Let E={<

aE€EA

me>EG: me>0 for all acA}. Then E satisfies condition (*).

ProOOF. Let uM:(G). Then Examples 4.3 and 4. 4 ensure that |,
A(F):{f . feL'(G/TY)} for each countable subgroup T’ of G. It follows
from [16, Lemma 4] that u=L'(G). In particular, supp(z) is countable.
Hence u is quasi-invariant by Examples 4. 3 and 4. 4 combined with Proposi-
tion 4.2. This completes the proof.

In [23, Theorem 2], the author proved that the product set of two Riesz
sets is also a Riesz set. As for the sets satisfying condition (*), we prove
that an analogous result holds.

PROPOSITION 4.4. Let Gy, and G, be LCA groups. Let E; be a closed
subset of G; satisfying condition (*) (i1=1,2). Then E,XE, also satisfies
condition (*).

Proor. Let q;: GPG—G; be a projection (i=1,2). Let u be a
nonzero measure in Mg xg,(GPDG,).Put ;=q,(u|) and 7=¢(u|). First
we prove the proposition in case that G; and G, are metrizable LCA groups.
By the theory of disintegration, there exists a family {u,}ye¢, of measures in
M (Gi®G,) with the following properties (cf. [18, p. 114, (6)-(D]):

(D y—uy,(f) is n,-measurable for each bounded Borel function f on G,
DG,

2) leesl =1,

3 supp(uy) C Gy X {y},

(4) u(f)= /; uy(f)dn,(y) for each bounded Borel function f on G,
DG,.

By (3), there exists ,&M (G,) suchthat u,=21,Xd,. Sincesupp(z) CE, X
E,CE X G,, the argument in [18, p.115] implies that

5)  supp(A,)CE, 7-a.a. yEG,.
Hence we have

(6) |0, 6x K| Ay| 7p-a.a. yEG,
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for all x&G,. We note that y—|u,|(f) is #.-measurable and

@ WlO= [ |l dnw

for each bounded Borel function f on G@®G,. Let K be a Borel set in G
@G, with |u|(K)=0. Then, by (7), we have

|LICK) =0 n-aa. yEG,

where K,={x&G,: (x, y)€K}. Hence, for all x&G,, (6) yields
|Ay|*0%x(K,) =0 7,-a.a. yEG,.

Thus we have

|1t |* 8, 0 (KO = | (K — (x, 0))

= [ K = G5 0)dn (by (7
= [ K= dm
= [ I8 dna ()
—0,
which yields
€)) | |* S 00 1| for all xeG,.

On the other hand, we have supp(u#dy.0) CE, X E,C G X E, for all xG,.
Hence, by a similar argument, we have

Iﬂ*6\(x,0)}*(5\(0,y)<<|/~‘*6\(x,0)|
for all x&G, and y=G,. Hence we have, by (8),

|/‘|*‘5‘(x,y): (lﬂl*&x,0)>*‘)\(0,y)<<|ﬂ|

for all (x, y)€G®G,. Thus the proposition holds when G, and G, are
metrizable LCA groups.

Next we prove the proposition in case that G, and G, are LCA groups.
By [23, Theorem 2], E\ X E, is a Riesz set. So uL'(GDG,) ; in particu-
lar, there exists an open o-compact subgroup I'=T"; X T, of G1®Gz such that
supp(z)CI'. Then supp(z)C (T, NE) X (T, NE,) and GDG,/T+ is metr-
izable. Therefore u is quasi-invariant by the metrizable case combined with
and [Proposition 4. 2. This completes the proof.
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§5. Proofs of Theorems 1.3 and 1. 4.

In this section we prove Theorems [. 3 and . 4. We first prove
1.3. Let (G X) be a transformation group such that a compact abelian
group G acts on a locally compact Hausdorff space X. Let M,;(X) be an
L-subspace of M (X) defined by

Mo ={ue M) s # e for some pSLUG MG}

and veM*(X)

Put Me(XD)t={veM(X): viyu for all u&M,;(X)}. Then M, c(X)* is
also an L-subspace of M(X), and M (X)=M,c(X)PM,. (X)L

DEFINITION 5.1. We say that u& M (X) translates G-continuously if
lirrolll,u —dy*u||=0, where geG.
g—v

ProPOSITION 5.1. (cf. [18, Proposition 3.1]).
For neM (X)), the following are equivalent.

( I ) }“ E MZZG <X> ’
(II) u tramslates G-continuously.

Proor. (D=—={ID): Since u=M,;(X), there exist veM*(X) and
PEL'(G)NM*(G) such that u<Kp*v. For feC.(X) and g&G, we note

that &, ()= [ f((~1)-0)d8;(w)=f (—g)*HEC(X) and
(D limlf — 8, =0.

Claim. For f€C.(X), f(p*v) translates G-continuously.
In fact, we note d,*(f (p*v)) =(d,*f)(p*d,*v). Then we have

If Co*v) — g (f (p*v)|
<|If Gpxv) — (8o*f) (p*v)||
+[(0g*f) (prv) — (Gg+f ) (p*dy* )|
<|f = 6o+ f el * vl + I ool — o ol .

Hence, by (1) and the fact that 1g1r%1 lo—p*d,|=0, we have lgig(‘]l If (p*v) — 0,

«(f (p*v))||=0, and the claim follows.
For & >0, since u<p+*v, there exists f€C.(X) such that |u—f (p*v)|<
e. By Claim, there exists a neighborhood V of 0 in G such that

If Co*v) — 8,x (f (p*1))|| < e for all g V.

Hence, for any g& V, we have
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e — dgx el <l —f Qor )|+ f Coxw) — ox (f (p*w))|
+ |0 (f (o*v)) — Sp#pu
<3e,

which shows that g translates G-continuously.

(ID==({): By a similar method in [18, Proposition 3.1], we can
prove that (II) implies (I). This completes the proof.

For x& X, let G, be the closed subgroup of G defined by G,={g=G: g-
x=x}. LetIl,: G—G/Gy be the natural homomorphism. We define a map
Je: LG/ G)—LY(G) by J.(f)=f-I, (cf. [10, (28.54) Theorem (iv) and
(28.55) Theorem (iii), (Vol.2)]). Then, for f & L'(G/Gy), we have

Oli=If 1. Moreover, x()*(y)=F(y) on G¢ and J:(H)*(»)=0 on
G\G%. Let B, and B, be the maps defined in (1.8) and (1.9).

B,
LY(G) M(G-x)CM(X) Fig. II
. [/Bx
L(G/G

PROPOSITION 5.2. Let £€L'(G/Gy) and g=G. Then we have

(i) B(&)=B:(J(&)), and
(11) ]x(g>*6g:]x(€*6ﬂx(g)>°

Proor. Wefirst prove (i). Wenotethat II,(J,(&))=&. Hence, for
FeC(G+x), we have

B(&) (F)=B,(IL.(Jx(§)) (F)
= [ . F(Bi)dIUn(§)) (@)

_ f FoB (L)) dJ..(&) (u)

- fc FoBo(1)dJ(&) (w) (by (1.10))

Thus we have B.(&)=B,(J.(&)). Next we prove (ii). For y&G%, we
have

Jx(&* O, )" (7)) = (&* )" ()
=&y (—g v)
=Ly (—g V)
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= x(&E)*xd)"(y).
For ye G\G%, we have
]x(g*é\ﬂx(g)y\('}’):OZUx(&-)*‘Sg)A('y}-

Thus, by the uniqueness for Fourier-Stieltjes transforms, we have
J(&)*x0y=J(&*0n,»). This completes the proof.

LEMMA 5.1 If G is a metrizable compact abelian group and (G, X)
satisfies conditions (D.I) and (D. II), then the conclusion of Theovem 1.3
holds.

PrROOF. Put n==(|u|), and let {u;};cx,c be a canonical disintegration
of £. Then, by [Lemma 2.6, we have

ey sp(up) CE n-a.a. x€X/G.
Let g=G. Since {u;— dy*u3liex/c is an p-disintegration of u—d,*u, it fol-
lows from that ¥—|u,— dy*u;| is #-integrable and

@ Ae—drul= [ = rpldnGo.

For each x€X /G, choose an element x&z~'(x¥) and fix it. Let &, be the
measure in M (G/G,) such that B,(&)= ui. By (1) and |Proposition 1.2,
we have

3 EEMpnc:(G/Gy) n-aa. x€X/G.

Hence there exists a Borel set BC X /G such that (B¢ =0 and
4 &ELY(G/Gy for x€B

since E is a Riesz set. Define & L'(G) by

__{]x(g;c) for x€B
6= 0 for x¢ B

Then, by (4), Lemma 1.2 and [Proposition 5. 2, we have

”ﬂk‘" 6g*/~‘k“ = ”Bx(jx(gx)> - ()\Q*Bxe<g5c>> "
— nBix(]x(gx_ ‘fx* 6“;{(9))) "
=||Bx(&— &x* o)
=[&:— &* )l
=/x(&) —Jx(&) * 0|
=[1&:— &* &

(5)
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for xeB. Hence ¥—|&— &*dy| is u-intégrable, and (2) yields

©  le—derul= [ 16— GraldnGo
On the other hand, since &eL'(G), we have
Liml & — Gl =0
g-0

for all x€X/G. Hence, by (6) and Lebesgue’s dominated convergence
theorem, we have lirrO1||,u —dg*u||=0. This completes the proof.
g—¢

Now we prove [Theorem 1. 3. Let 4 be a measure in M (X) such that sp
(u)CE. Suppose u does not translate G-continuously. Let

M=+ pa,

where u € Moc(X) and p,e M,e(X)*. Then, by Proposition 5.1 and the
hypothesis, we have 4, #0. Since mex|us|E Muc(X), |ua| L mo*|ua|. Hence,
by Lemmas 2. 11 and 2. 13, there exists a countable subgroup I" of G such that

(5 . 1) Ty (ﬂz) #0, and
(5.2) 7IH(|,112DJ—7I'H(mG*|ﬂ2

),

where H =T"* and zy : X—X/H is the canonical map. Let gy : G—G/H be
the natural homomorphism. Since g5 (L'(G))=L'(G/H), we have

(5.3 7y (Mo (X)) CMpeu(X/H)
by Lemma 2.9. Next we calim that
(5.4) 7y (U) & Mociu(X/H).

On account of (5.3), it is sufficient to show that =y () E My n(X/H).
Suppose ny () E Mye,n(X/H). Then it follows from Proposition 5. 1 that |
my (up)| translates G/H-continuously. We note that

(5.5) |7ZH<112)|<<(IH(mc)*|7fH(ﬂ2>l-
In fact, let F° be a Baire set in X/H with g (me) *|my ()| (F)=0. Then,

since Mgy =qy(me), we have

,/G‘/H X/pr(u'z)d|”H(ﬂ2)|(Z)dmc,H(u) =0.

Hence, since G/H is metrizable, there exists a sequence {,} in G/H such
that lim #,=0 and

n-oo
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[ Ko Gt 2l )| (2) =0 (n=1,2,3,..).
Thus
Burt| 2 (1) | (F) =0 (n=1,2,3,..);

hence

|7 ()| (F) =1im Oun* | e (a2 | (F)
—0,

which shows that (5.5) holds. Since my (mc*|uz|) = qu(me) *mu (2|, (56.5)
contradicts (5.1) and (5.2). Thus (5.4) holds.

Let (G/H, X/H) be the transformation group induced by (G, X).
Then (G/H, X/H) satisfies conditions (D.I) and (D.II). It follows from
Lamma 2. 10 that sp(zyz(u))CT'NE. Since TNE is a Riesz set inT" and G/
H is a metrizable compact abelian group, it follows from that
zu(w) translates G/H-continuously. Hence, by Proposition 5. 1, we have zy
() E Myg;n (X /H), which contradicts (5.4). This completes the proof.

LEMMA 5.2. Let o be a measure in M*(X) that is quasi-invariant. If
G is a metrizable compact abelian group and (G, X) satisfies conditions (D.
D and (D.II), then the conclusion of Theorem 1.4 holds.

ProoF Let E,=sp(x). Then E,CE and E, is also a Riesz set. Put

n=n(u|), and let {u}cx/c be a canonical disintegration of x. Then, by
Lemma 2.6, we have

ey sp(u,) CEy n-a.a. x€X/G.

Since E, is a Riesz set, it follows from (1) and a similar argument below
(2) of Lemma 4. 2 that

) || < m;, y-a.a. x€X/G.

Let #=7.+7s be the Lebesgue decomposition of » with respect to z (o).
Then, for each bounded Baire function f on X, ¥—u:(f) and ¥—|u|(f) are

both 7.-measurable and zs-measurable. Hence we can define measures w;,
@ EMH(X) and &, &EM(X) as follows:

@ @=[ @, ah= [, k@ ;
5N = [ wHdno, &A= [, mdn®
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for feG(X). By Lemma 2.4, we note that |&|=w, and |&|=w,. By ()
and Lemma 2.5, we have @< 6. Itiseasy to see that @, L . Hence we get
He=& and us=4&, since u=& +&,. Note that (3) holds for all bounded
Baire functions f on X. Let y&E,. Then, by (1) and Remark 1.1 (1),
we have

Yorur=0 n-a.a. x&€X/G,
which together with yields
Yo*pa(h) = Yox&1 ()

= [ wrs (b dna()
=0

for all k&G (X). Hence y*u,=0. Thus, by Remark 1.1 (II), we have y,
&sp(uq), which shows sp(u,) CEy,=sp(x). By Remark 1.1 (II), we also
have sp(us) =sp(u—us) Csp(u). This completes the proof.

Now we prove [Theorem 1.4 As seen in the proof of [Theorem 1.1, we
may assume that ¢ is a measure in M*(X) that is quasi-invariant. Let x be
a measure in M (X) such that sp(u) CE. Let E,=sp(x). We may assume
us#0. Suppose there exists y,& G\E, with y*us#0. Then there exists a
countable subgroup T of G with ¥ €T satisfying (3.3) and (3.4). Let H=
I't, and let z : X—X/H be the canonical map. Then zy(us) is the singu-
lar part of zyz(u) with respect to zy (o), and zyz (o) is also quasi-invariant.
It follows from Lemma 2. 10| that sp(zy («)) CE,NT. Since E,NT is a Riesz
set in I' and G/H is a metrizable compact abelian group, it follows from

that
(5.6)  sp(my(us)) CENT.

On the other hand, as in the proof of [Theorem 1.1, we get y,&sp(zy (us)).
Hence, by (5.6), we have y,€E, T, which contradicts the choice of Yo.
This completes the proof.

REMARK 5.1. Let G be a compact abelian group and E a subset of G
satisfying condition (*). Then E is a Riesz set. However the converse is
false in general. In fact, suppose G has a nonzero element %o of finite order.
Let E={0, yo}. Then E;is a Riesz set. But it does not satisfy condition (*).

REMARK 5.2. Let G be a compact abelian group with dual G. It is
known that a Sidon set in G is a Riesz set. It is also known that the union
of a Riesz set and a Sidon set is a Riesz set (cf. [16, Corollary 4]). Thus it
seems that there exist many Riesz sets. We can find appropriate references
in [12, 10.5, p. 162-163].
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§ 6. Transformation groups that satisfy conditions (C.I) and (C.II).

In this section, we shall show that, if (G, X) is a transformation group
such that a compact abelian group G acts freely on a locally compact
Hausdorff space X, then (G, X) satisfies conditins (C.D) and (C.ID).

Let X be a locally compact Hausdorff space and C.(X) the space of all
continuous functions on X with compact supports, with the topology of
uniform convergence on compact sets. Let C*(X) be the dual space of C,
(X). Then C*(X) coincides with the space of Radon measures on X. We
will assume C*(X) is given the vague topology.

DEFINITION 6.1. Let W be a locally compact Hausdorff space and # a
positive measure on W. A map A: W—-C*(X) is called »-Lusin measur-
able if, for each compact set K C W, there is a sequence {K;} of pairewise

disjoint compact sets such that (i) #(K \QK,-) =0and (ii) A|x, iscontinu-

ous (z=1).
The following theorem is obtained from [11, 3.6. Theorem].

THEOREM 6.1. Let (G, X) be a transformation group such that a
compact metrizable group G acts freely on a locally compact Hausdorff space
X. Let n: X—X/G be the canonical map. Let u be a measure in M*(X),
and put v==n(u). Then there exists a map A : X/G->M*(X) (y—>A,) with
the following properties :

(L A is v-Lusin measurable,
2) 141=1,
3 supp (X,) Czx~' (),

@ whH=[ L) for FECLXD.

The following theorem follows from [Theorem 6.1] and [Proposition 1. 6,

THEOREM 6.2. Under the assumption in the previous theorem, there
exists a family {A}sex/c of measures in M*(X) with the following properties :

(D y— A, (f) is v-measurable for each bounded Baire function f on X,
2 14, =1,
®), supp (Ay) Ca = (),

4) w(fH= '/); /Glyﬁf)dv(y) for each bounded Baire function f on X.

Johnson ([1I]) also obtained a uniqueness theorem of wv-Lusin-

measurable disintegration. However the following uniqueness theorem
holds.
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THEOREM 6.3. Let (G, X) be as in Theorem 6.1, and let veM~
(Y), where Y=X/G. Suppose {A)}yey and {Al},ey are families of mea-
sures in M (X) with the following properties :

(D y—A3(f) is a v-integrable function for each bounded Baire function
fon X (1=1,2),
) supp(A) Ca~'(y) (1=1,2),

3 '/Yl;(f) dv(y)z_/;li(f) dv(y) for all bounded Baire functions f on
X

Then 1,=212% v-a.a. yeY.

We prove [[heorem 6. 3 by modifying Johnson’s method slightly. Before
giving the proof, we prepare several lemmas.

LEMMA 6.1. Let (G, X) be a transformation group such that a com-
pact Lie group G acts freely on a compact Hausdorff space X. Let n: X—>X/
G be the canonmical map. Then, for each x&X, there exists a compact
neighborhood U, of x, which is a Gs-set, and a compact set F,C U, such that
x '*WONF, is a single point whenever yerx(U,). Moreover U, can be
chosen to that G+U,=U,.

Proor. By [11, 1.1. Theorem, p.251], there exists a compact neigh-
borhood U’ of x and a compact F’C U’ such that GeU’=U" and z"'(y) N F’
is a single point whenever y&z(U’). Then there exists a compact neighbor-
hood W of x, which is a Gs-set, suchthat W U’. Put U,=G-W and F,=
F'NG+W. Then we can easily verify that U, and Fy are the desired sets.
This completes the proof.

Let (G, X) be as in [Lemma 6.1. For x€X, let U, and F, be the sets
obtained in Lemma 6.1, and choose sets U,, (1<i<7) which cover X. Put

Ui=Us, Fi=Fyand Vi=r(U). Andlet A=V, A,=VAU Vi @<j<n
and B;=z"'(V;) (1<i<7). Thn B; are Baire sets. In fact, since G-U,=
U;, we have B,=U, and B;= Ui\g U; (2<i<r). Hence B; are Baire sets
because U; are compact Gs-sets. Moreover A;(1<i<r) are pairewise dis-
joint and Y:iL:JI A;. Define maps 7;: V.- U; by {z;:(»)}=F:N=z"'(y), and
define 7: Y—>X by 7|s,=7: (1<i<7). Then the following lemma holds.

LEMMA 6.2 (cf. [11, 1.3. Lemma, p. 252]).
The maps (g, x)—>gex: GXF>U; and v;: (g, y)—>g7:(y): GX V> U; are
homeomorphisms (1<i<7r).
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DEFINITION 6.2. Let z,: X—G be a map defined by

m(x) 1Y) =1,
where x&X and y=7n(x).

LEMMA 6.3. For each heC(G), hom, is a Baire measurable function
on X.

PrOOF. By Lemma 6. 2, we can define continuous maps zi: U,—~G by
ni=mntovi!, where n&: GX V,—G are the projections (1<7<#). Then we
have

.

~

hom,=73) xs:*hons,
=1

where yz, are the characteristic functions of B; and /h°zi are continuous
extensions of hexi to X (1<i<7). Hence, by the fact that B; are Baire
sets, the lemma is obtained.

DEFINITION 6.3. A locally compact group G is said to have no small
subgroups if there is a neighborhood of the identity e which has no other
subgroups than {e}.

DEFINITION 6.4. Let G be a locally compact group and {G)%, a

sequence of normal closed subgroups of G. We write G, | e if the following
hold :

<1> GlDGL+1 (lzlyzy 3)))
for any neighborhood U of e, there exists G, such that G,C U.

The following lemma, which was stated in [11, p.255] without proof,
will be needed later on. We give its proof for completeness.

LEMMA 6.4. Let G be a metrizable compact group. Then there exists a
sequence {G,} of closed novmal subgroups of G such that G, | e and G/G, are
Lie groups (1=1,2,3,...).

Proor. First we note, by [22, Thorem 3], that a locally compact
group which has no small subgroups is a Lie group. Let {U,} be a countable
base of e. Then, for each /€N, it follows from [14, 4.6 Theorem, p. 175]
that there exists a closed normal subgroup H, of G, which is included in U,
such that G/H, has no small subgroups. Put Gi=H,, G,=H,NH,, ...,
G,=H,N...NH, .... Then G, are closed normal subgroups of G and G, |
e. Moreover, by [14, 4.7.1 Lemma, p. 177], G/G, have no small subgroups
(n=1,2,3,...). Hence G/G,are Lie groups (n=1,2,3,...). This completes
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the proof.

We return to the proof of [[heorem 6.3. We first consider the case that
X is compact and G is a compact Lie group. Let {11},cy and {12},cy be
families of measures in M (X) satisfying (1)-(3) in [Theorem 6.3. For
each ye Y, we define ;=M (G) (i=1,2) by

4) wi=m(di) (e, @i(h)=Ai(hom) for heC(G)).
Then we have, by Lemma 6. 3,
(5) y—wi(h) is a v-integrable function for each heC(G).

Let feC(Y) and heC(G). It follows from that (for) (hom,)
is a bounded Baire function on X ; hence (3) yields

® [ AFm o) dv3) = [A3(Fom) hom))du ().

On the other hand, we have

D JAGEem hemav )= [ FODAiUer)dv(y)
= [ feimdvy).

Hence, by (6) and (7), we get

[ romesmave)= [ f@eitnd

for all feC(Y). Since C(G) is separable, it follows from (5) that
€D wy=w?’ v-aa. yeY.

For yev, let x&z~'(y). Then x==n,(x).7(y). Let B;y,: G>G-7(y)(C
X) be the homeomorphism defined by B, (¢g)=g+z(y). For any FeC
(X), define heC(G) by h=FoB;y. Then, since hom(x)=FoB;y(n,
() =F(m(x)+7(y))=F(x), we have

@ (W) =AL(hom) =AL(F).
Hence we have, by (8),

A(F)=wy(h)
=wi(h)
=A3(F)

for v-a.a. y€Y and any Fe(C(Y), and so

A,=1% v-aa. yeY.
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Thus, in this case, the theorem is obtained.
Next we consider the case that G is a metrizable compact group and X

is a compact Hausdorff space. It follows from that there exists
a sequence {G;} of closed normal subgroups of G such that

9 G, | e, and
aom G/ G, are Lie groups (/=1,2,3,..).

Let m,: X—X /G, be the canonical maps, and put X;=X/G,. Then, by (9)
and the Stone-Weierstrass theorem, we have

1D g{fom: feC(X)} is dense in C(X).

On the other hand, (G, X) vields a new transformation group (G/G, X)).
Evidently, G/G, acts freely on X, and G/G, is a Lie group by (10). We

note that X,/G/G,=X/G=Y. For yeY, we define a measure Aste M (X))
by

A ) =2(fom)
for feC(X)(i=1,2). We note that

12 fem is a bounded Baire function on X for every bounded Baire
function f on X,.

In fact, put
F ={ACX,: n7'(A) is a Baire set in X}.

Then we can verify that . is a ¢-algebra containing all compact G;-sets in
X,. Hence #,(X)) isincludedin .. Therefore n;7'(A) isa Bairesetin X
for each Baire set A in X,, which shows that (12) holds.

Let zx,: X,>X,/G/G,= Y be the canonical map. Then, by (1)-(3) and
(12), we have

(13) y—A3'(f) is a v-integrable function for each bounded Baire func-
tion f on X, (1=1,2),

(14) supp(15) Czx; () (=m(z'(»)))(i=1,2), and

(15) fyl}"(f)dv(y):_/;li"(f) dv(y) for all bounded Baire functions f
on X,.

Since G/G, is a compact Lie group, it follows from (13)-(15) and the last
case that there exists a Borel set B, in Y such that v(BY)=0and A}‘=21%for

yEB, Put B= :ﬁlBl. Then »v(B9=0. For any fC(X), choose f,,&C
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(X,) so that lim|[f —fuc#u|e=0. Then, for y&B, we have

A;U) :liml}vmnoﬂer

n-oo

=limAy (/i)

n-oo

=1limA% " (fi,)

n-—oo

=1imA5(fiom,)
n-—oo

= A5,

which shows that A}=212% v-a.a. y&Y. Hence, in this case, the theorem is
also obtained.

Finally we consider the case that G is a metrizable compact group and
X is a locally compact Hausdorff space. Since v is bounded regular, there
exists a sequence {K;} of pairewise disjoint compact G;-sets in ¥’ such that

v(Y\ C)lKj) —=0. Put L,=n"'(K;). Then L, are compact Gs-setsin X (j=
1,2,3,..). For each j&N, we have, by (1)-(3),

(16) y—>Ai(f) is a v|x-integrable function on K; for each bounded Baire
function f on L,

an supp(13) C(z.)7'(y) for yEK;, and
(18) j;A}(f)d(le,)(y):j;Ai(f)d(le,)(y) for all bounded Baire

functions f on L;.

Since (G, X) yields a transformation group (G, L;) such that G acts freely
on L, it follows from (16)-(18) and the last case that

A1=21% v|g,a.a. yEK;,
which yields

1=21% p-a.a. yeY

because v( Y\QIKJ-) =0. This completes the proof of [Theorem 6. 3.
By Theorems and 6.3, we obtain the following theorem.

THEOREMSG. 4. Let (G, X) be a transformation group such that a com-
pact abelian group G acts freely on a locally compact Hausdorff space X.
Then (G, X) satisfies conditions (C. 1) and (C.II).

REMARKG. 1. Let (G, X) be a transformation group such that a com-
pact abelian group G acts on a locally compact metric space X. Then (G,
X) satisfies conditions (C.I) and (C.ID.
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In fact, since every measure in M(X) is bounded regular, we may
assume that X is o-compact. Then, for any closed subgroup H of G, X/H
is a o-compact metric space. Hence (G, X) satisfies conditions (C.I) and
(C. ID.

REMARK 6.2. If conditions (D.I) and (D.II) are satisfied for any
transformation group such that a metrizable compact abelian group acts on
a locally compact Hausdorff space, then conditions (C.I) and (C.II) are
satisfied for any transformation group such that a compact abelian group
acts on a locally compact Hausdorff space. The author does not know
whether conditions (D.I) and (D.ID) are satisfied or not for any transfor-
mation group such that a metrizable compact abelian group acts on a locally
compact Hausdorff space.

Finally the author wishes to express his thanks to the referee for his
valuable comments and suggestions.
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