A test for membership in Lorentz spaces and some applications

T. S. QUEK and Leonard Y. H. YAP (Received October 2, 1986, Revised March 14, 1988)

1. Introduction

Throughout this paper G will denote a locally compact Abelian group with Haar measure λ . For $1 \le r \le \infty$, $L_r(G)$ will denote the usual Lebesgue space, with norm $\|\cdot\|_r$, defined on the measure space (G, λ) . Let M(G)denote the space of all bounded complex-valued regular Borel measures on G. For p=1=q, or $1 and <math>1 \le q \le \infty$, let $L_{p,q}(G)$ denote the Lorentz space defined on (G, λ) with norm $\|\cdot\|_{(p,q)}$ (see Section 2 for the definition of the Lorentz spaces and some useful facts about these spaces). Let Γ denote the dual group of G and θ the Haar measure on Γ . The spaces $L_r(\Gamma)$ and $L_{p,q}(\Gamma)$ are defined similarly. The main purpose of this paper is to prove Theorem 1 below.

THEOREM 1. Let $(e_{\alpha})_{\alpha \in D}$ be an approximate identity in $L_1(G)$ with $\sup_{\alpha} ||e_{\alpha}||_1 \leq 1$.

(i) If $1 < p, q < \infty$ or p=1=q, and if k is a continuous function on Γ such that each $k\hat{e}_{\alpha} \in L_{p,q}(\Gamma)$ and $\sup_{\alpha} ||k\hat{e}_{\alpha}||_{(p,q)} < \infty$, then $k \in L_{p,q}(\Gamma)$ and $||k||_{(p,q)} = \sup_{\alpha} ||k\hat{e}_{\alpha}||_{(p,q)}$, where in the case p=1=q it is further assumed that k is bounded.

(ii) If p=1=q, $1 and <math>1 < q < \infty$, or $1 < q \le p=2$, and if $\mu \in M(G)$ such that each $\hat{\mu}\hat{e}_{a} \in L_{p,q}(\Gamma)$ and $\sup_{a} \|\hat{\mu}\hat{e}_{a}\|_{(p,q)} < \infty$, then μ is absolutely continuous.

Theorem 1 arises partly from our effort to fill some gaps in the proof of Theorem 1 in Burnham, Krogstad and Larsen [1] (see lines -11 and -2, p. 96), and partly from our effort to give simpler proofs of the main results in Chen and Lai [2]. In addition to obtaining the main results in Chen and Lai [2] as an easy consequence of Theorem 1 (see Theorem 2 below), we also apply Theorem 1 to obtain a partial converse of Hölder's inequality (see Theorem 3). By applying the method used in the proof of Theorem 1, we also give in the final section a characterization of the Fourier transforms of

functions in $L_p(G)$ for 1 (see Theorem 4).

2. Preliminaries

DEFINITION 1. Let *f* be a measurable function defined on the measure space (G, λ) . For $y \ge 0$, we define

$$\lambda_f(y) = \lambda \{ x \in G : |f(x)| > y \}.$$

The non-increasing rearrangement f^* of f is defined by

$$f^*(x) = \inf\{y : y > 0 \text{ and } \lambda_f(y) \le x\}$$

= sup{y : y > 0 and $\lambda_f(y) > x$ },

with the conventions inf $\phi = \infty$ and sup $\phi = 0$. For x > 0, we define

$$f^{**}(x) = x^{-1} \int_0^x f^*(t) dt$$

We also define

$$\|f\|_{(p,q)}^{*} = \left\{ \int_{0}^{\infty} [x^{1/p} f^{*}(x)]^{q} \frac{dx}{x} \right\}^{1/q}, \ 1 \le p < \infty, \ 1 \le q < \infty; \\ \|f\|_{(p,\infty)}^{*} = \sup_{x>0} x^{1/p} f^{*}(x), \ 1 \le p < \infty; \\ L_{p,q}(G) = \{f : \|f\|_{(p,q)}^{*} < \infty\}.$$

The spaces $L_{p,q}(\Gamma)$ are defined in the same way. For $p \neq 1$, $q \neq 1$, if we replace $f^*(x)$ by $f^{**}(x)$ in the definition of $||f||_{(p,q)}^*$, the resulting number will be denoted by $||f||_{(p,q)}$; and we define $||f||_{(1,1)} = ||f||_{(1,1)}^*$ which is equal to $||f||_1$.

The facts given in the following proposition are well-known (see O'Neil [5] or Yap [7]) and they are stated here for easy reference.

PROPOSITION 1. (i) For $1 \le p \le \infty$, we have $L_{p,p}(G) = L_p(G)$ and $\|\cdot\|_{(p,p)}^* = \|\cdot\|_p \le \|\cdot\|_{(p,p)}$.

(ii) For
$$1 \le p < \infty$$
 and $1 \le q_1 \le q_2 \le \infty$, we have $L_{p,q_1}(G) \subset L_{p,q_2}(G)$.

(iii) For $1 and <math>1 \le q \le \infty$, we have

$$\|\cdot\|_{(p,q)}^* \leq \|\cdot\|_{(p,q)} \leq p/(p-1)\|\cdot\|_{(p,q)}^*$$

and $L_{p,q}(G)$ is a Banach space with respect to the norm $\|\cdot\|_{(p,q)}$.

NOTATIONAL CONVENTION. In the sequel when we refer to the space $L_{p,q}(G)$ with $1 and <math>1 \le q \le \infty$, it is tacitly assumed that $L_{p,q}(G)$ is endowed with the norm $\|\cdot\|_{(p,q)}$ (not $\|\cdot\|_{(p,q)}^*$; in fact $\|\cdot\|_{(p,q)}^*$ is not a norm) and the space $L_{1,1}(G) = L_1(G)$ is given the norm $\|\cdot\|_{(1,1)} = \|\cdot\|_1$. A similar convention holds when G is replaced by Γ . If f is an extended real-valued

280

or complex-valued function on a set X, we will use $\operatorname{supp}(f)$ to denote the set $\{x \in X : f(x) \neq 0\}$. For $1 \leq r \leq \infty$, r' will denote the number such that 1/r + 1/r' = 1. All terms and notation not explained in this paper are as in Hewitt and Ross [3].

Since every non-discrete locally compact topological group G that is not σ -compact contains a locally null non-null subset (see Hewitt and Ross [3, (16.14)]), the following lemma is needed in the proof of our main result.

LEMMA 1. If $g \in L_{1,1}(\Gamma)$, or $g \in L_{p,q}(\Gamma)$ with $1 and <math>1 \le q \le \infty$, and if f is a complex-valued continuous function on Γ such that g=f locally almost everywhere (with respect to the Haar measure θ on Γ), then g = f almost everywhere.

PROOF. It is easy to see that the set $supp(g) \equiv \{x \in \Gamma : g(x) \neq 0\}$ has σ -finite measure. Define

$$A_{1} = \left\{ x : \frac{1}{2} < |f(x)| < \infty \right\},\$$

$$A_{n} = \left\{ x : \frac{1}{n+1} < |f(x)| < \frac{1}{n-1} \right\} \text{ for } n = 2, 3, \dots,\$$

$$B = \left\{ x : f(x) = g(x) \neq 0 \right\}.$$

Note that, for each positive integer n,

$$|g(x)| = |f(x)| > \frac{1}{n+1}$$
 for all $x \in A_n \cap B$,

and so $\theta(A_n \cap B) < \infty$. Since A_n is an open set and θ is regular, we have

$$\theta(A_n) = \sup\{\theta(F) : F \subset A_n \text{ and } F \text{ compact}\}\$$

= sup{ $\theta(F \cap B) + \theta(F \cap (\operatorname{supp}(f) \setminus B)) : F \subset A_n \text{ and } F \text{ compact}\}.$

Since g=f l. a. e., $supp(f) \setminus B$ is a locally null set. Hence

$$\theta(A_n) = \sup\{\theta(F \cap B) : F \subset A_n \text{ and } F \text{ compact}\} \le \theta(A_n \cap B) < \infty$$
.

Since we obviously have $\operatorname{supp}(f) = \bigcup_{n=1}^{\infty} A_n$, $\operatorname{supp}(f) \setminus B$ is a locally null set with σ -finite measure. Hence $\operatorname{supp}(f) \setminus B$ has measure zero. The set $\operatorname{supp}(g) \setminus B$ is also a locally null set with σ -finite measure, and so it has measure zero. Hence g=f a.e.

3. Proof of Theorem 1

Before we give our proof of Theorem 1, we recall that Hunt [4, (2.7)] has proved the following theorem for $L_{p,q}$ space, 1 < p, $q < \infty$: If $g \in L_{p',q'}$

and T_g is defined on $L_{p,q}$ by $T_g(f) = \int fg$, then T_g is a bounded linear functional on $L_{p,q}$; conversely, if T is a bounded linear functional on $L_{p,q}$, then there exists a function g in $L_{p',q'}$ such that $T = T_g$. Thus the conjugate space of $L_{p,q}$ is $L_{p',q'}$ and hence $L_{p,q}$ is reflexive. [It should be noted here that the norm used by Hunt is equivalent to ours and that his theorem is indeed applicable.]

PROOF OF THEOREM 1. (i) Our first task is to show that $k \in L_{p,q}(\Gamma)$ for the case $1 < p, q < \infty$. Since $(k\hat{e}_a)_{a \in D}$ is a bounded net in $L_{p,q}(\Gamma)$ and $L_{p,q}(\Gamma)$ is reflexive, Alaoglu's theorem tells us that $(k\hat{e}_a)_{a \in D}$ has a subnet (which we continue to write as $(k\hat{e}_a)_{a \in D}$) such that $k\hat{e}_a \rightarrow h$ weakly in $L_{p,q}(\Gamma)$ for some $h \in L_{p,q}(\Gamma)$. Hence, by Hunt's theorem [loc. cit.], we have

(1)
$$\int_{\Gamma} k \hat{e}_{\alpha} g \longrightarrow \int_{\Gamma} h g$$

for every $g \in L_{p',q'}(\Gamma)$. We will show that k=h a.e. In view of Lemma 1, it suffices to show that k=h l. a. e. Now let Δ be any compact subset of Γ . Let ϕ be a function in $C_{oo}(\Gamma)$ such that $\phi=1$ on Δ and $\phi(\Gamma) \subset [0, 1]$. (Here $C_{oo}(\Gamma)$ denotes the space of all continuous functions f on Γ such that the closure of supp(f) is compact.) Let Δ_1 denote the compact closure of supp (ϕ) . Since

$$\hat{e}_{\alpha} \longrightarrow 1$$
 uniformly on Δ_1 and $\int_{\Delta_1} |k| < \infty$,

we have

$$\int_{\Delta_1} k \hat{e}_{\alpha} \, sgn(h-k) \phi \longrightarrow \int_{\Delta_1} k \, sgn(h-k) \phi.$$

By (1) we also have

$$\int_{\Delta_1} k \hat{e}_{\alpha} \operatorname{sgn}(h-k) \phi \longrightarrow \int_{\Delta_1} h \operatorname{sgn}(h-k) \phi$$

Hence we have

$$\int_{\Delta_1} h \, \operatorname{sgn}(h-k)\phi = \int_{\Delta_1} k \, \operatorname{sgn}(h-k)\phi,$$

and it follows that

$$\int_{\Delta_1} |h-k|\phi=0$$
 and $\int_{\Delta} |h-k|=0.$

Thus h=k a.e. on Δ . Since Δ is an arbitrary compact subset of Γ , h=k l.a.e. By Lemma 1, $k \in L_{p,q}(\Gamma)$.

Our next task is to show that $||k||_{(p,q)} = \sup_{\alpha} ||k\hat{e}_{\alpha}||_{(p,q)}$ for $1 < p, q < \infty$. Since $||\hat{e}_{\alpha}||_{\infty} \le ||e_{\alpha}||_{1} \le 1$ for all α , it is clear that $\sup_{\alpha} ||k\hat{e}_{\alpha}||_{(p,q)} \le ||k||_{(p,q)}$. Next we write $\operatorname{supp}(k) = \bigcup_{n=1}^{\infty} K_n \cup B$, where *B* is a set of measure zero, and $(K_n)_{n=1}^{\infty}$ is an increasing sequence of compact sets of positive measure. Since $|k\chi_{K_n}| \uparrow |k|$, where χ_{K_n} denotes the characteristic function of K_n , it is easy to see that $||k||_{(p,q)} = \lim ||k\chi_{K_n}||_{(p,q)}$. Now let $\varepsilon > 0$. Then there exists a positive integer *N* such that

(1)
$$||k||_{(p,q)} \leq ||k\chi_{K_N}||_{(p,q)} + \frac{\varepsilon}{2}.$$

Since $k\hat{e}_{\alpha} \rightarrow k$ uniformly on K_N , there exists $\alpha_N \in D$ such that

$$|k\hat{e}_{\alpha_N}-k|\leq\delta$$
 on K_N ,

where

$$\delta = (q/pp')^{1/q} \frac{\varepsilon}{2\theta(K_N)^{1/p}}.$$

Now put

$$g=|k\hat{e}_{\alpha_N}\chi_{K_N}-k\chi_{K_N}|.$$

A straightforward computation shows that

$$g^{**}(t) \leq \begin{cases} \delta & \text{if } 0 < t \leq \theta(K_N), \\ \frac{\delta \theta(K_N)}{t} & \text{if } \theta(K_N) < t, \end{cases}$$

and

$$\|g\|_{(p,q)} \leq \varepsilon/2.$$

Hence, by (1), we have

$$\begin{aligned} \|k\|_{(p,q)} &\leq \|k\chi_{K_N}\|_{(p,q)} + \varepsilon/2 \\ &\leq \|g\|_{(p,q)} + \|k\hat{e}_{a_N}\chi_{K_N}\|_{(p,q)} + \varepsilon/2 \\ &< \varepsilon/2 + \|k\hat{e}_{a_N}\|_{(p,q)} + \varepsilon/2 \\ &\leq \sup_{\alpha} \|k\hat{e}_{\alpha}\|_{(p,q)} + \varepsilon. \end{aligned}$$

This completes the proof that $||k||_{(p,q)} \leq \sup_{\alpha} ||k\hat{e}_{\alpha}||_{(p,q)}$ and hence $||k||_{(p,q)} = \sup_{\alpha} ||k\hat{e}_{\alpha}||_{(p,q)}$ for $1 < p, q < \infty$.

We now turn to the case p=1=q. Recall that $L_{1,1}(\Gamma)=L_1(\Gamma)$ and this space is given the norm $\|\cdot\|_1$. Since $\sup_{\alpha} \|k\hat{e}_{\alpha}\|_1 \equiv C < \infty$, we have $\|k\hat{e}_{\alpha}\|_2^2 \le C \|k\|_{\infty}$ for all α . Hence, by Proposition 1, $\sup_{\alpha} \|k\hat{e}_{\alpha}\|_{(2,2)} < \infty$ and so $k \in L_{2,2}(\Gamma)=L_2(\Gamma)$. Since k is continuous and Haar measure is regular, we can write $\operatorname{supp}(k)$ as $\bigcup_{n=1}^{\infty} K_n \cup B$, where each K_n is compact, B has measure zero, and $K_n \subset K_{n+1}$. For each positive integer n, $k\hat{e}_{\alpha} \to k$ uniformly on K_n and so there exists $\alpha_n \in D$ such that

$$|k\hat{e}_{\alpha}-k| < \frac{1}{n}$$
 on K_n for all $\alpha \ge \alpha_n$.

We may assume that $\alpha_n \leq \alpha_{n+1}$. It is easy to verify that $k\hat{e}_{\alpha_n} \rightarrow k$ a.e. on Γ . Hence, by Fatou's Lemma, we have

$$\int_{\Gamma} |k| \leq \underline{\lim} \int_{\Gamma} |k \hat{e}_{\alpha_n}| \leq C < \infty.$$

This shows that $k \in L_1(\Gamma)$ and $||k||_1 \leq \sup_{\alpha} ||k\hat{e}_{\alpha}||_1$. Since $\sup_{\alpha} ||k\hat{e}_{\alpha}||_1 \leq ||k||_1$ is obvious, we have proved (i) when p=1=q.

We now prove part (ii). By Hewitt and Ross [3, (31.33)], it suffices to show that $\hat{\mu} \in L_2(\Gamma)$. If p=1=q, then the hypothesis says that $\sup_{\alpha} \|\hat{\mu}\hat{e}_{\alpha}\|_1 \equiv C < \infty$. It follows that $\sup_{\alpha} \|\hat{\mu}\hat{e}_{\alpha}\|_2^2 \leq C \|\hat{\mu}\|_{\infty} < \infty$, and so $\sup_{\alpha} \|\hat{\mu}\hat{e}_{\alpha}\|_{(2,2)} < \infty$ by Proposition 1. Hence, by part (i), we conclude that $\hat{\mu} \in L_2(\Gamma)$. The case $1 < q \le p=2$ is an easy consequence of part (i) and the fact that $L_{p,q}(\Gamma) \subset L_{2,2}(\Gamma) = L_2(\Gamma)$. It remains to consider the case $1 and <math>1 < q < \infty$. Since $\hat{\mu} \in L_{p,q}(\Gamma) \subset L_{p,\infty}(\Gamma)$ (by Proposition 1) and the non-increasing rearrangement $\hat{\mu}^*$ of $\hat{\mu}$ is bounded, there exist constants C_1 and C_2 such that $\hat{\mu}^* t^{1/p} \le C_1$ and $\hat{\mu}^* \le C_2$. Hence

$$\int_{\Gamma} |\hat{\mu}|^2 = \int_0^{\infty} \hat{\mu}^*(t)^2 dt \le \int_0^1 C_2^2 + \int_1^{\infty} C_1^2 t^{-2/p} dt < \infty.$$

REMARK 1. Theorem 1(i) with p=q provides the details which justify the assertion in line -11 of [1, p. 96], while Lemma 1 fills the gap in line -2 of [1, p. 96].

4. Applications

In this section we give two consequences (see Theorems 2 and 3 below) of Theorem 1: Theorem 2 contains the main results in Chen and Lai [2, Theorems 3.12 and 3.13]; Theorem 3 gives a partial converse of Hölder's inequality.

Throughout this section, let

$$A(p, q)(G) = \{ f \in L_1(G) : \hat{f} \in L_{p,q}(\Gamma) \}, \\ M(p, q)(G) = \{ \mu \in M(G) : \hat{\mu} \in L_{p,q}(\Gamma) \},$$

where $1 < p, q < \infty$, or p=1=q. We define a norm $\|\cdot\|_{A(p,q)}$ in A(p,q)(G) by

$$||f||_{A(p,q)} = \max\{||f||_1, ||\hat{f}||_{(p,q)}\}.$$

284

Similarly, we define a norm $\|\cdot\|_{M(p,q)}$ in M(p,q)(G) by

 $\|\mu\|_{M(p,q)} = \max\{\|\mu\|, \|\hat{\mu}\|_{(p,q)}\}.$

By a multiplier from $L_1(G)$ to A(p,q)(G) we mean a bounded linear operator from $L_1(G)$ to A(p,q)(G) that commutes with convolution. The collection of all multipliers from $L_1(G)$ to A(p,q)(G) will be denoted by $\mathfrak{M}(L_1(G), A(p,q)(G))$. The space $\mathfrak{M}(L_1(G), M(p,q)(G))$ is defined in the same way.

THEOREM 2. Let F(p, q)(G) = A(p, q)(G) or M(p, q)(G). For 1 < p, $q < \infty$ or p=1=q, the space $\mathfrak{M}(L_1(G), F(p, q)(G))$ is isometrically isomorphic to M(p, q)(G). More precisely, if $\mu \in M(p, q)(G)$ and T_{μ} is defined on $L_1(G)$ by $T_{\mu}(f) = \mu * f$, then $T_{\mu} \in \mathfrak{M}(L_1(G), F(p, q)(G))$ with $||T_{\mu}||_{\mathfrak{M}(L_1, F(p, q))}$ $= ||\mu||_{\mathcal{M}(p,q)}$; and, conversely, if $T \in \mathfrak{M}(L_1(G), F(p, q)(G))$, then $T = T_{\mu}$ for some $\mu \in M(p, q)(G)$.

PROOF. Let $(e_{\alpha})_{\alpha \in D}$ be an approximate identity in $L_1(G)$ such that $\sup_{\alpha} ||e_{\alpha}||_1 \leq 1$. We note that for $\mu \in M(G)$, we have

(1)
$$\|\mu\| = \sup_{\alpha} \|\mu * e_{\alpha}\|_{1}.$$

We now prove that $\mathfrak{M}(L_1(G), A(p, q)(G)) \approx M(p, q)(G)$, where \approx means that the two spaces are isometrically isomorphic under the correspondence $T_{\mu} \leftrightarrow \mu$ with T_{μ} defined by $T_{\mu}(f) = \mu * f$ for all $f \in L_1(G)$. It is clear that if $\mu \in M(p, q)(G)$, then $T_{\mu} \in \mathfrak{M}(L_1(G), A(p, q)(G))$. Conversely, by using $\mathfrak{M}(L_1(G), A(p, q)(G)) \subset \mathfrak{M}(L_1(G), L_1(G)) \approx M(G)$ and Theorem 1, we see that every $T \in \mathfrak{M}(L_1(G), A(p, q)(G))$ is of the form T_{μ} for some $\mu \in M(p, q)(G)$. Thus it remains to verify that, for $\mu \in M(p, q)(G)$, the operator norm $\|T_{\mu}\|_{\mathfrak{M}(L_1,A(p,q))}$ is equal to $\|\mu\|_{M(p,q)}$. For $\mu \in M(p, q)(G)$, we have

$$\|T_{\mu}\|_{\mathfrak{M}(L_{1,A}(p,q))} = \sup\{\|\mu^{*}f\|_{A(p,q)} : \|f\|_{1} \le 1\}$$

$$\geq \sup_{a} \|\mu^{*}e_{a}\|_{A(p,q)}$$

$$= \sup_{a} \max\{\|\mu^{*}e_{a}\|_{1}, \|\hat{\mu}\hat{e}_{a}\|_{(p,q)}\}$$

$$\geq \max\{\|\mu\|, |\hat{\mu}\|_{(p,q)}\} \text{ (by (1) above and Theorem 1)}$$

$$= \|\mu\|_{M(p,q)}.$$

On the other hand, it is easy to verify that

$$\|T_{\mu}(f)\|_{A(p,q)} = \|\mu * f\|_{A(p,q)} \le \|\mu\|_{M(p,q)} \|f\|_{1}$$

for $\mu \in M(p, q)(G)$ and $f \in L_1(G)$. Thus $||T_{\mu}||_{\mathfrak{M}(L_1, A(p,q))} \leq ||\mu||_{M(p,q)}$. This completes the proof that $\mathfrak{M}(L_1(G), A(p,q)(G)) \approx M(p,q)(G)$. The proof of

 $\mathfrak{M}(L_1(G), M(p, q)(G)) \approx M(p, q)(G)$ is similar: one uses $\mathfrak{M}(L_1(G), M(G)) \approx M(G)$ instead of $\mathfrak{M}(L_1(G), L_1(\dot{G})) \approx M(G)$.

The following remark generalizes Theorem 3.6(i) in Chen and Lai [2]; it also settles the problem posed therein (see p. 255).

REMARK 2. We note here that if (i) p=1=q, (ii) $1 and <math>1 < q < \infty$, or (iii) $1 < q \le p=2$, then M(p, q)(G) = A(p, q)(G). [Let $\mu \in M(p, q)(G)$. q(G). By Hewitt and Ross [3, (31.33)], it suffices to show that $\hat{\mu} \in L_2(\Gamma)$. Case (i) is obvious; the last two sentences in the proof of Theorem 1 verify case (ii); and case (iii) follows from $L_{p,q}(\Gamma) \subset L_{2,2}(\Gamma) = L_2(\Gamma)$.]

As another application of Theorem 1 we give the following partial converse of Hölder's inequality.

THEOREM 3. Let 1 and let f be a complex-valued continuous function defined on G such that

$$|\int_G f\phi| \leq C \|\phi\|_p,$$

for all $\phi \in C_{oo}(G)$, where C is a constant. Then $f \in L_p(G)$ and $||f||_p \leq C$.

PROOF. Let $(e_{\alpha})_{\alpha \in D}$ be an approximate identity in $L_1(\Gamma)$ such that $||e_{\alpha}|| \leq 1$ for all $\alpha \in D$, and each \hat{e}_{α} has compact support. Clearly $\hat{fe}_{\alpha} \in L_p(G)$, and so

$$\|f\hat{e}_{\alpha}\|_{p} = \sup\{|\int_{G} f\hat{e}_{\alpha}\phi|: \phi \in C_{oo}(G) \text{ and } \|\phi\|_{p'} \le 1\}$$

by Theorem (12.13) in Hewitt and Ross [3]. Hence $||f\hat{e}_{\alpha}||_{p} \leq C$ for all $\alpha \in D$. By Theorem 1, we have $f \in L_{p}(G)$ and $||f||_{p} = \sup_{\alpha} ||f\hat{e}_{\alpha}||_{p} \leq C$.

5. Fourier transforms of $L_p(G)$ functions

In this section we use the method of Theorem 1 to give a characterization of functions on Γ which are Fourier transforms of functions in $L_p(G)$, 1 .

THEOREM 4. Let $1 , and let <math>(e_{\alpha})_{\alpha \in D}$ be a bounded approximate identity in $L_1(G)$. Suppose $k \in L_{p'}(\Gamma)$, where 1/p+1/p'=1. Then k is the Fourier transform of some function in $L_p(G)$ if and only if $((k\hat{e}_{\alpha})^{\vee})_{\alpha \in D}$ is a norm-bounded net in $L_p(G)$.

PROOF. Suppose
$$k = \hat{h}$$
 with $h \in L_p(G)$. Then we have

$$\sup_{\alpha} ||(k\hat{e}_{\alpha})^{\vee}||_p = \sup_{\alpha} ||h^*e_{\alpha}||_p \le \sup_{\alpha} ||h||_p ||e_{\alpha}||_1 < \infty.$$

Now suppose that $((k\hat{e}_{\alpha})^{\vee})_{\alpha \in D}$ is a norm-bounded net in $L_{p}(G)$. Then, by Alaoglu's theorem, $((k\hat{e}_{\alpha})^{\vee})_{\alpha \in D}$ has a subnet $((k\hat{e}_{\beta})^{\vee})_{\beta \in B}$ such that $(k\hat{e}_{\beta})^{\vee} \to h$ weakly in $L_{p}(G)$ for some function h in $L_{p}(G)$. Thus

(1)
$$\int_{G} (k \hat{e}_{\beta})^{\vee} \overset{\vee}{g} \longrightarrow \int_{G} h \overset{\vee}{g} \text{ for all } g \in L_{p}(\Gamma).$$

By the generalized Parseval identity (see Hewitt and Ross [3, (31.48)]), we have

$$\int_{G} (k \hat{e}_{\beta})^{\vee} \overset{\vee}{g} = \int_{\Gamma} (k \hat{e}_{\beta})^{*} g \text{ and } \int_{G} h \overset{\vee}{g} = \int_{\Gamma} \hat{h}^{*} g,$$

where $f^*(\gamma) = f(-\gamma)$ for $\gamma \in \Gamma$. Hence we have

(2)
$$\int_{\Gamma} k \hat{e}_{\beta} g \longrightarrow \int_{\Gamma} \hat{h} g \text{ for all } g \in L_{p}(\Gamma).$$

We now show that $k = \hat{h}$ a.e. Since k and \hat{h} are in $L_{p'}(\Gamma)$, it suffices to show that $k = \hat{h}$ l.a.e. Now let Δ be any compact subset of Γ . Then there is a function $\phi: \Gamma \rightarrow [0, 1]$ such that $\phi \in C_{oo}(\Gamma)$ and $\phi = 1$ on Δ . Let Δ_1 denote the (compact) closure of supp(ϕ). Since

$$\hat{e}_{\beta} \longrightarrow 1$$
 uniformly on Δ_1 and $\int_{\Delta_1} |k| \phi < \infty$,

we have

(3)
$$\int_{\Delta_1} k \hat{e}_{\beta} \operatorname{sgn}(\hat{h} - k) \phi \longrightarrow \int_{\Delta_1} k \operatorname{sgn}(\hat{h} - k) \phi$$

By (2) we have

(4)
$$\int_{\Delta_1} k \hat{e}_{\beta} \operatorname{sgn}(\hat{h} - k) \phi \longrightarrow \int_{\Delta_1} \hat{h} \operatorname{sgn}(\hat{h} - k) \phi.$$

Hence we have

$$\int_{\Delta_1} \hat{h} \, sgn(\hat{h} - k)\phi = \int_{\Delta_1} k \, sgn(\hat{h} - k)\phi$$

and so

$$\int_{\Delta_1} |\hat{h} - k| \phi = 0.$$

Thus

$$\int_{\Delta} |\hat{h} - k| = \int_{\Delta} |\hat{h} - k| \phi = 0.$$

Hence $\hat{h} = k$ a. e. on Δ . Since Δ is an arbitrary compact subset of Γ , we see that $\hat{h} = k$ l. a. e. and hence $\hat{h} = k$ a. e.

REMARK 3. Pigno [6] proved the following result: Let 1 , and $let <math>k \in L_{p'}(\Gamma)$. Let $(e_n)_{n=1}^{\infty}$ be a sequence in $L_1(G)$ such that $||e_n||_1 \le 2$, \hat{e}_n has compact support and $k\hat{e}_n \rightarrow k$ a.e. Then $k = \hat{h}$ a.e. for some $h \in L_p(G)$ if $((k\hat{e}_n)^{\vee})_{n=1}^{\infty}$ is a norm-bounded sequence in $L_p(G)$. Pigno proved his result by using regular Toeplitz summation matrices. It can also be proved as follows: There exist *h* in $L_p(G)$ and a subsequence $(e_{n_j})_{j=1}^{\infty}$ of $(e_n)_{n=1}^{\infty}$ such that

(1)
$$\int_{\Gamma} k \hat{e}_{n_j} g \longrightarrow \int_{\Gamma} \hat{h} g$$

for every $g \in L_p(\Gamma)$ (see (2) in the proof of Theorem 4). By Hölder's inequality and the Dominated Convergence Theorem, we have

(2)
$$\int_{\Gamma} k \hat{e}_{n,g} \longrightarrow \int_{\Gamma} kg \text{ for every } g \in L_{p}(\Gamma).$$

It follows from (1) and (2), as in the proof of Theorem 4, that $k = \hat{h}$ a.e.

References

- [1] J. T. BURNHAM, H. E. KROGSTAD and R. LARSEN, Multipliers and the Hilbert distribution, Nanta Math., 8 (1975), 95-103.
- [2] Y.K. CHEN and H.C. LAI, Multipliers of Lorentz spaces, Hokkaido Math. J., 4 (1975), 247-260.
- [3] E. HEWITT and K. A. ROSS, Abstract harmonic analysis, Vols. I and II, Springer-Verlag, Berlin, 1963 and 1970.
- [4] R. A. HUNT, On L(p, q) spaces, L'Enseignment Math., 12 (1966), 249-276.
- [5] R. O'NEIL, Convolution operators and L(p, q) spaces, Duke Math. J., 30 (1963), 129-142.
- [6] L. PIGNO, Restrictions of L^{P} transforms, Proc. Amer. Math. Soc., 29 (1971), 511-515.
- [7] L. Y. H. YAP, Some remarks on convolution operators and L(p, q) spaces, Duke Math. J., 36 (1969), 647-658.

Department of Mathematics National University of Singapore

Department of Mathematics and Statistics State University of New York at Albany

288