
Hokkaido Mathematical Journal Vol. 171988), p. 279-288

A test for membership in Lorentz spaces
and some applications

T. S. QUEK and Leonard Y. H. Yap
(Received October 2, 1986, Revised March 14, 1988)

1. Introduction
Throughout this paper G will denote a locally compact Abelian groupwith Haar measure \lambda . For 1\leq r\leq\infty , L_{r}(G) will denote the usual Lebesguespace, with norm ||\cdot||_{r} , defined on the measure space (G, \mathcal{A}) . Let M(G)denote the space of all bounded complex-valued regular Borel measures on G.For p=1=q, or 1<p<\infty and 1\leq q\leq\infty , let L_{p,q}(G) denote the Lorentzspace defined on (G, \lambda) with norm ||\cdot||_{(p,q)} (see Section 2for the definition ofthe Lorentz spaces and some useful facts about these spaces). Let \Gamma denotethe dual group of G and \theta the Haar measure on \Gamma . The spaces L_{r}(\Gamma) and

L_{p,q}(\Gamma) are defifined similarly. The main purpose of this paper is to proveTheorem 1 below.

THEOREM 1. Lel(e_{a})_{a\in D} be an approximate identity in L_{1}(G) with
\sup_{a}||e_{a}||_{1}\leq 1 .

(i) If 1<p, q<\infty or p=1=q, and if k is a continuous function on
\Gamma such that each k\hat{e}_{a}\in L_{p,q}(\Gamma) and \sup_{a}||k\hat{e}_{a}||_{(p,q)}<\infty , then k\in L_{p,q}(\Gamma) and
||k||_{(p,q)}= \sup_{a}||k\hat{e}_{a}||_{(p,q)} , where in the case p=1=q it is further assumed that k
is bounded.

(ii) If p=1=q, 1<p<2 and 1<q<\infty , or 1<q\leq p=2 , and if \mu\inM(G) such that each \hat{\mu}\hat{e}_{a}\in L_{p,q}(\Gamma) and \sup_{a}||\hat{\beta}\hat{e}_{a}||_{(p,q)}<\infty , then \mu is absolutely
continuous.

Theorem 1 arises partly from our effort to fill some gaps in the proof ofTheorem 1 in Burnham, Krogstad and Larsen [1] (see lines -11 and-2, p.96), and partly from our effort to give simpler proofs of the main results inChen and Lai [2]. In addition to obtaining the main results in Chen and Lai[2] as an easy consequence of Theorem 1 (see Theorem 2below), we alsoapply Theorem 1 to obtain a partial converse of H\"older’s inequality (see
Theorem 3). By applying the method used in the proof of Theorem 1, wealso give in the final section a characterization of the Fourier transforms of
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functions in L_{p}(G) for 1<p\leq 2 (see Theorem 4).

2. Preliminaries

DEFINITION 1. Let f be a measurable function defined on the measure
space (G, \mathcal{A}) . For y\geq 0 , we define

\mathcal{A}_{f}(y)=\lambda\{x\in G. |f(x)|>y\} .

The non-increasing rearrangement f^{*} of f is defined by

f^{*}(x)= \inf{y y>0 and \mathcal{A}_{f}(y)\leq x }
= \sup{\mathcal{Y}- y>0 and \mathcal{A}_{f}(y)>x },

with the conventions inf \phi=\infty and sup \phi=0 . For x>0 , we define

f^{**}(x)=x^{-1} \int_{0}^{\chi}f^{*}(t)dt .

We also define

||f||_{(p,q)}^{*}= \{\int_{0}^{\infty}[x^{1/p}f^{*}(x)]^{q}\frac{dx}{x}\}^{1/q}1\leq p<\infty , 1\leq q<\infty ;

||f||_{(p,\infty)}^{*}=s_{\chi}u_{>}P^{x^{1/p}f^{*}(x)} , 1\leq p<\infty ;

L_{p,q}(G)=\{f ||f||_{(p,q\rangle}^{*}<\infty\} .

The spaces L_{p,q}(\Gamma) are defined in the same way. For p\neq 1 , q\neq 1 , if we
replace f^{*}(x) by f^{**}(x) in the definition of ||f||_{(p,q)}^{*} , the resulting number
will be denoted by ||f||_{(p,q);} and we define ||f||_{(1,1)}=||f||_{(1,1)}^{*} which is equal to
||f||_{1} .

The facts given in the following proposition are well-known (see O’Neil
[5] or Yap [7] ) and they are stated here for easy reference.

PROPOSITION 1. ( i) For 1\leq p<\infty , we have L_{p,p}(G)=L_{p}(G) and
||\cdot||_{(p,p)}^{*}=||\cdot||_{p}\leq||\cdot||_{(p,p)} .

(ii) For 1\leq p<\infty and 1\leq q_{1}\leq q_{2}\leq\infty , we have L_{p,q1}(G)\subset L_{p,q2}(G) .
(iii) For 1<p<\infty and 1\leq q\leq\infty , we have

||\cdot||_{(p,q)}^{*}\leq||\cdot||_{(p,q)}\leq p/(p-1)||\cdot||_{(p,q)}^{*}

and L_{p,q}(G) is a Banach space with respect to the norm ||\cdot||_{(p,q)} .

NOTATIONAL CONVENTION. In the sequel when we refer to the space
L_{p,q}(G) with 1<p<\infty and 1\leq q\leq\infty , it is tacitly assumed that L_{p,q}(G) is

endowed with the norm ||\cdot||_{(p,q)} (not ||\cdot||_{(p,q)}^{*} : in fact ||\cdot||_{(p,q)}^{*} is not a norm)

and the space L_{1,1}(G)=L_{1}(G) is given the norm ||\cdot||_{(1,1)}=||\cdot||_{1} . A similar
convention holds when G is replaced by \Gamma_{-} If f is an extended real-valued
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or complex-valued function on a set X, we will use supp(f) to denote the set
\{x\in X:f(x)\neq 0\} . For 1\leq r\leq\infty , r’ will denote the number such that 1/r
+1/r’=1 . All terms and notation not explained in this paper are as in
Hewitt and Ross [3].

Since every non-discrete locally compact topological group G that is not
\sigma-compact contains a locally null non-null subset (see Hewitt and Ross [3,
(16. 14) ]) , the following lemma is needed in the proof of our main result.

LEMMA 1. If g\in L_{1,1}(\Gamma) , or g\in L_{p,q}(\Gamma) with 1<p<\infty and 1\leq q

\leq\infty , and if f is a complex-valued continuous function on \Gamma such that g=f
locally almost everywhere (with respect to the Hmr measure \theta on \Gamma), then g
=f almost everywhere

PROOF. It is easy to see that the set supp(g)\equiv\{x\in\Gamma:g(x)\neq 0\} has
\sigma-finite measure. Define

A_{1}=\{x : \frac{1}{2}<|f(x)|<\infty\} ,

A_{n}= \{x:\frac{1}{n+1}<|f(x)|<\frac{1}{n-1}\} for n=2,3,

B=\{x:f(x)=g(x)\neq 0\} .

Note that, for each positive integer n,

|g(x)|=|f(x)|> \frac{1}{n+1} for all x\in A_{n}\cap B ,

and so \theta(A_{n}\cap B)<\infty . Since A_{n} is an open set and \theta is regular, we have
\theta(A_{n})=\sup { \theta(F):F\subset A_{n} and F compact}

= \sup\{\theta(F\cap B)+\theta(F\cap(supp(f)\backslash B)):F\subset A_{n} and F com-
pact}.

Since g=f1. a . e. , supp(f)\backslash B is a locally null set. Hence
\theta(A_{n})=\sup { \theta(F\cap B):F\subset A_{n} and F compact} \leq\theta(A_{n}\cap B)<\infty .

Since we obviously have supp(f)=\bigcup_{n=1}^{\infty}A_{n} , supp(f)\backslash B is a locally null set
with \sigma-finite measure. Hence supp(f)\backslash B has measure zero. The set supp
(g)\backslash B is also a locally null set with \sigma-finite measure, and so it has measure
zero. Hence g=fa. e.

3. Proof of Theorem 1

Before we give our proof of Theorem 1, we recall that Hunt [4, (2. 7)]
has proved the following theorem for L_{p,q} space, 1<p , q<\infty : If g\in L_{pq}’, ’
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and T_{g} is defined on L_{p,q} by T_{g}(f)= \int fg , then T_{g} is a bounded linear func-

tional on L_{p,q} ; conversely, if T is a bounded linear functional on L_{p,q} , then
there exists a function g in L_{p\prime,q’} such that T=T_{g} . Thus the conjugate
space of L_{p.q} is L_{p^{r},q^{r}} and hence L_{p,q} is reflexive. [It should be noted here
that the norm used by Hunt is equivalent to ours and that his theorem is
indeed applicable.]

PROOF OF THEOREM 1. ( i) Our first task is to show that k\in L_{p,q}(\Gamma)

for the case 1<p , q<\infty . Since (k\hat{e}_{a})_{a\in D} is a bounded net in L_{p,q}(\Gamma) and
L_{p,q}(\Gamma) is reflexive, Alaoglu’s theorem tells us that (k\hat{e}_{a})_{a\in D} has a subnet
(which we continue to write as (k\hat{e}_{a})_{a\in D}) such that k\hat{e}_{a}arrow h weakly in
L_{p,q}(\Gamma) for some h\in L_{p,q}(\Gamma) . Hence, by Hunt’s theorem [1oc. cit] , we
have

(1) \int_{\Gamma}k\hat{e}_{a}garrow\int_{\Gamma}hg

for every g\in L_{p^{r},q^{r}}(\Gamma) . We will show that k=ha. e . In view of Lemma 1,

it suffices to show that k=h1 . a . e . Now let \Delta be any compact subset of \Gamma .

Let \phi be a function in C_{oo}(\Gamma) such that \phi=1 on \Delta and \phi(\Gamma)\subset[0,1] . (Here

C_{oo}(\Gamma) denotes the space of all continuous functions f on \Gamma such that the
closure of supp(f) is compact.) Let \Delta_{1} denote the compact closure of supp
(\phi) . Since

\hat{e}_{a}arrow 1 uniformly on \Delta_{1} and \int_{\Delta_{1}}|k|<\infty ,

we have
\int_{\Delta_{1}}k\hat{e}_{a}sgn(h-k)\phiarrow\int_{\Delta_{1}}ksgn(h-k)\phi .

By (1) we also have
\int_{\Delta_{1}}k\hat{e}_{a}sgn(h-k)barrow\int_{\Delta_{1}}hsgn(h-k)\phi .

Hence we have
\int_{\Delta_{1}}hsgn(h-k)\phi=\int_{\Delta_{1}}ksgn(h-k)\phi,

and it follows that
\int_{\Delta_{1}}|h-k|\phi=0 and \int_{\Delta}|h-k|=0 .

Thus h=ka. e. on \Delta . Since \Delta is an arbitrary compact subset of \Gamma_{:}h=k

1 . a.e. By Lemma 1, k\in L_{p,q}(\Gamma) .
Our next task is to show that ||k||_{(p,q)}= \sup_{a}||k\hat{e}_{a}||_{(p,q)} for 1<p , q<\infty .

Since ||\hat{e}_{a}||_{\infty}\leq||e_{a}||_{1}\leq 1 for all \alpha , it is clear that \sup_{a}||k\hat{e}_{a}||_{(p,q)}\leq||k||_{(p,q)} . Next
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we write supp(k)=\bigcup_{n=1}^{\infty}K_{n}\cup B , where B is a set of measure zero, and (K_{n})_{n=1}^{\infty}

is an increasing sequence of compact sets of positive measure. Since |k\chi_{\kappa_{n}}|

\uparrow|k| , where \chi_{Kn} denotes the characteristic function of K_{n} , it is easy to see
that ||k||_{(p,q)}= \lim||k\chi_{Kn}||_{(p,q)} . Now let \epsilon>0 . Then there exists a positive
integer N such that

(1) ||k||_{(p,q)} \leq||k\chi_{K_{N}}||_{(p,q)}+\frac{\epsilon}{2}.

Since k\hat{e}_{a}arrow k uniformly on K_{N} , there exists \alpha_{N}\in D such that
|k\hat{e}_{a_{N}}-k|\leq\delta on K_{N} ,

where

\delta=(q/pp’)^{1/q}\frac{\epsilon}{2\theta(K_{N})^{1/p}} .
Now put

g=|k\hat{e}_{a_{N}}\chi_{K_{N}}-k\chi_{K_{N}}| .
A straightforward computation shows that

g^{**}(t)\leq\{\begin{array}{l}\delta\frac{\delta\theta(K_{N})}{t}\end{array}
ifif\theta(K_{N})<t0<t\leq\theta(,K_{N})

,

and
||g||_{(p,q)}<\epsilon/2 .

Hence, by (1), we have
||k||_{(p,q)}\leqq||k\chi_{K_{N}}||_{(p,q)}+\epsilon/2

\leq||g||_{(p,q)}+||k\hat{e}_{a_{N}}\chi_{K_{N}}||_{(p,q)}+\epsilon/2

<\epsilon/2+||k\hat{e}_{a_{N}}||_{(p,q)}+\epsilon/2

\leq\sup_{a}||k\hat{e}_{a}||_{(p,q)}+\epsilon .

This completes the proof that ||k||_{(p,q\rangle} \leq\sup_{a}||k\hat{e}_{a}||_{(p,q)} and hence ||k||_{(p,q)}= \sup_{a}

||k\hat{e}_{a}||_{(p,q)} for 1<p , q<\infty .
We now turn to the case p=1=q. Recall that L_{1,1}(\Gamma)=L_{1}(\Gamma) and this

space is given the norm ||\cdot||_{1} . Since \sup_{a}||k\hat{e}_{a}||_{1}\equiv C<\infty , we have ||k\hat{e}_{a}||_{2}^{2}\leq

C||k||_{\infty} for all \alpha . Hence, by Proposition 1, \sup_{a}||k\hat{e}_{a}||_{(2,2)}<\infty and so k\in

L_{2,2}(\Gamma)=L_{2}(\Gamma) . Since k is continuous and Haar measure is regular, we can
write supp(k) as \bigcup_{n=1}^{\infty}K_{n}\cup B , where each K_{n} is compact, B has measure
zero, and K_{n}\subset K_{n+1} . For each positive integer n , k\hat{e}_{a}arrow k uniformly on K_{n}
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and so there exists \alpha_{n}\in D such that

|k \hat{e}_{a}-k|<\frac{1}{n} on K_{n} for all \alpha\geq\alpha_{n} .

We may assume that \alpha_{n}\leq\alpha_{n+1} . It is easy to verify that k\hat{e}_{an}arrow ka . e . on \Gamma .

Hence, by Fatou’s Lemma, we have

\int_{\Gamma}|k|\leq\varliminf\int_{\Gamma}|k\hat{e}_{a_{n}}|\leq C<\infty .

This shows that k\in L_{1}(\Gamma) and ||k||_{1} \leq\sup_{a}||k\hat{e}_{a}||_{1} . Since \sup_{a}||k\hat{e}_{a}||_{1}\leq||k||_{1} is

obvious, we have proved ( i) when p=1=q .
We now prove part ( ii) . By Hewitt and Ross [3, (31. 33)], it suffices

to show that \hat{\mu}\in L_{2}(\Gamma) . If p=1=q , then the hypothesis says that \sup_{a}||\hat{\mu}\hat{e}_{a}||_{1}

\equiv C<\infty . It follows that \sup_{a}||\hat{\mu}\hat{e}_{a}||_{2}^{2}\leq C||\hat{\mu}||_{\infty}<\infty , and so \sup||\hat{\mu}\hat{e}_{a}||_{(2,2)}<\infty by

Proposition 1. Hence, by part ( i) , we conclude that \hat{\mu}\in L_{2}(\Gamma) . The case
1<q\leq p=2 is an easy consequence of part ( i) and the fact that L_{p,q}(\Gamma)\subset

L_{2,2}(\Gamma)=L_{2}(\Gamma) . It remains to consider the case 1<p<2 and 1<q<\infty .

Since \hat{\mu}\in L_{p,q}(\Gamma)\subset L_{p,\infty}(\Gamma) (by Proposition 1) and the non-increasing re-
arrangement \hat{\mu}^{*} of \hat{\mu} is bounded, there exist constants C_{1} and C_{2} such

that \hat{\mu}^{*}t^{1/p}\leq C_{1} and \hat{\mu}^{*}\leq C_{2} . Hence

\int_{\Gamma}|\hat{\mu}|^{2}=\int_{0}^{\infty}\hat{\mu}^{*}(t)^{2}dt\leq\int_{0}^{1}C_{2}^{2}+\int_{1}^{\infty}C_{1}^{2}t^{-2/p}dt<\infty .

REMARK 1. Theorem 1 ( i) with p=q provides the details which jus-

tify the assertion in line -11 of [1, p. 96], while Lemma 1 fills the gap in

line -2 of [1, p. 96].

4. Applications

In this section we give two consequences (see Theorems 2 and 3 below)

of Theorem 1: Theorem 2 contains the main results in Chen and Lai [2,

Theorems 3.12 and 3.13]; Theorem 3 gives a partial converse of H\"older’s

inequality.
Throughout this section, let

A(p, q)(G)=\{f\in L_{1}(G) : \hat{f}\in L_{p,q}(\Gamma)\} ,
M(p, q)(G)=\{\mu\in M(G) : \hat{\mu}\in L_{p,q}(\Gamma)\} ,

where 1<p , q<\infty , or p=1=q . We define anorm ||\cdot||_{A(p,q)} in A(p, q)(G)

by
||f||_{A(p,q)}= \max\{||f||_{1}, |\hat{\psi}||_{(p,q\rangle}\} .
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Similarly, we define a norm ||\cdot||_{M(p,q)} in M(p, q)(G) by
|| \mu||_{M(p,q)}=\max\{||\mu||, ||\hat{\mu}||_{(p,q)}\} .

By a multiplier from L_{1}(G) to A(p, q)(G) we mean a bounded linear opera-
tor from L_{1}(G) to A(p, q)(G) that commutes with convolution. The collec-
tion of all multipliers from L_{1}(G) to A(p, q)(G) will be denoted by
\mathfrak{M}(L_{1}(G), A(p, q)(G)) . The space \mathfrak{M}(L_{1}(G), M(p, q)(G)) is defined in the
same way.

THEOREM 2. Let F(p, q)(G)=A(p, q)(G) or M(p, q)(G) . For 1<p,
q<\infty or p=1=q, the space \mathfrak{M}(L_{1}(G),F(p, q)(G)) is isometrically isomor-
phic to M(p, q)(G) . More precisely, if \mu\in M(p, q)(G) and T_{\mu} is defined
on L_{1}(G) by T_{\mu}(f)=\mu*f, then T_{\mu}\in \mathfrak{M}(L_{1}(G), F(p, q)(G))with||T_{\mu}||_{\mathfrak{M}(L_{1},F(p,q))}

=||\mu||_{M(p,q)} : and, conversely, if T\in \mathfrak{M}(L_{1}(G), F(p, q)(G)) , then T=T_{\mu}

for some \mu\in M(p, q)(G) .
PROOF. Let (e_{a})_{a\in D} be an approximate identity in L_{1}(G) such that

\vee‘\backslash ,up||e_{a}||_{1}\leq 1a . We note that for \mu\in M(G) , we have

(1) || \mu||=\sup_{a}||\mu*e_{a}||_{1} .

We now prove that \mathfrak{M}(L_{1}(G), A(p, q)(G))\approx M(p, q)(G) , where\approx means that
the two spaces are isometrically isomorphic under the correspondence T_{\mu}rightarrow

\mu with T_{\mu} defined by T_{\mu}(f)=\mu*f for all f\in L_{1}(G) . It is clear that if \mu\in

M(p, q)(G) , then T_{\mu}\in \mathfrak{M}(L_{1}(G), A(p, q)(G)) . Conversely, by using
\mathfrak{M}(L_{1}(G), A(p, q)(G))\subset \mathfrak{M}(L_{1}(G), L_{1}(G))\approx M(G) and Theorem 1, we see
that every T\in \mathfrak{M}(L_{1}(G), A(p, q)(G)) is of the form T_{\mu} for some \mu\in

M(p, q)(G) . Thus it remains to verify that, for \mu\in M(p, q)(G) , the operator
norm ||T_{\mu}||_{\mathfrak{M}(L_{1},A(p,q))} is equal to ||\mu||_{M(p,q\rangle} . For \mu\in M(p, q)(G) , we have

||T_{\mu}||_{\mathfrak{M}(L_{1},A(p,q))}= \sup\{||\mu*f||_{A(p,q)} : ||f||_{1}\leq 1\}

\geq\sup_{a}||\mu*e_{a}||_{A(p,q)}

= \sup_{a}\max\{||\mu*e_{a}||_{1}, ||\hat{\mu}\hat{e}_{a}||_{(p,q)}\}

\geq\max\{||\mu||, |\hat{\mu}||_{(p,q)}\} (by (1) above and Theorem 1)
=||\mu||_{M(p,q)} .

On the other hand, it is easy to verify that
||T_{\mu}(f)||_{A(p,q)}=||\mu*f||_{A(p.q\rangle}\leq||\mu||_{M(p,q\rangle}||f||_{1}

for \mu\in M(p, q)(G) and f\in L_{1}(G) . Thus ||T_{\mu}||_{\mathfrak{M}(L_{1},A(p,q))}\leq||\mu||_{M(p,q)} . This
completes the proof that \mathfrak{M}(L_{1}(G), A(p, q)(G))\approx M(p, q)(G) . The proof of
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\mathfrak{M}(L_{1}(G), M(p, q)(G))\approx M(p, q)(G) is similar: one uses \mathfrak{M}(L_{1}(G), M(G))\approx

M(G) instead of \mathfrak{M}(L_{1}(G), L_{1}(\dot{G}))\approx M(G) .
The following remark generalizes Theorem 3.6(i) in Chen and Lai

[2]; it also settles the problem posed therein (see p. 255).

REMARK 2. We note here that if ( i) p=1=q , ( ii)1<P<2 and 1<
q<\infty , or (iii) 1<a\leq p=2 , then M(p, q)(G)=A(p, q)(G) . [Let \mu\in M(p ,

q)(G) . By Hewitt and Ross [3, (31.33)], it suffices to show that \hat{\mu}\in L_{2}(\Gamma) .
Case ( _{i}) is obvious; the last two sentences in the proof of Theorem 1
verify case ( _{ii}) ; and case (iii) follows from L_{p,q}(\Gamma)\subset L_{2,2}(\Gamma)=L_{2}(\Gamma).]

As another application of Theorem 1 we give the following partial

converse of H\"older’s inequality.

THEOREM 3. Let 1<p<\infty and let f be a complex-valued continuous

function defined on G such that

| \int_{G}f\phi|\leq C||\phi||_{p} ,

for all \phi\in C_{oO}(G) , where C is a constant. Then f\in L_{p}(G) and ||f||_{p}\leq C.

PROOF. Let (e_{a})_{a\in D} be an approximate identity in L_{1}(\Gamma) such that
||e_{a}||\leq 1 for all \alpha\in D , and each \hat{e}_{a} has compact support. Clearly f\hat{e}_{a}\in

L_{p}(G) , and so

|V \hat{e}_{a}||_{p}=\sup { | \int J\hat{e}_{a}\phi| : \phi\in C_{oo}(G) and ||\phi||_{p^{r}}\leq 1 }

by Theoren (12. 13) in Hewitt and Ross [3]. Hence |\psi\hat{e}_{a}||_{p}\leq C for all \alpha\in

D. By Theorem 1, we have f\in L_{p}(G) and ||f||_{p}= \sup_{a}|\int\hat{e}_{a}||_{p}\leq C .

5. Fourier transforms of L_{p}(G) functions

In this section we use the method of Theorem 1 to give a characterization
of functions on \Gamma which are Fourier transforms of functions in L_{p}(G) , 1<p
\leq 2 .

THEOREM 4. Let 1<p\leq 2 , and let (e_{a})_{a\in D} be a bounded approximate
identity in L_{1}(G) . Suppose k\in L_{p\prime}(\Gamma) , where 1/p+1/p^{r}=1 . Then k is the

Fourier transform of some function in L_{p}(G) if and only if ((k\hat{e}_{a})^{\vee})_{a\in D} is a

norm-bounded net in L_{p}(G) .

PROOF. Suppose k=\hat{h} with h\in L_{p}(G) . Then we have

\sup_{a}||(k\hat{e}_{a})^{\vee}||_{p}=\sup_{a}||h*e_{a}||_{p}\leq\sup_{a}||h||_{p}||e_{a}||_{1}<\infty .
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Now suppose that ((k\hat{e}_{a})^{\vee})_{a\in D} is a norm-bounded net in L_{p}(G) . Then, by
Alaoglu’s theorem, ((k\hat{e}_{a})^{\vee})_{a\in D} has a subnet ((k\hat{e}_{\beta})^{\vee})_{\beta\in B} such that (k\hat{e}_{\beta})^{\vee}arrow h

weakly in L_{p}(G) for some function h in L_{p}(G) . Thus

(1) \int_{G}(k\hat{e}_{\beta})^{\vee}g^{v}arrow\int_{G}hg\vee for all g\in L_{p}(\Gamma) .

By the generalized Parseval identity (see Hewitt and Ross [3, (31. 48)]), we
have

\int_{G}(k\hat{e}_{\beta})^{\vee}g^{\vee}=\int_{\Gamma}(k\hat{e}_{\beta})^{\#}g and \int_{G}h^{\vee}g=\int_{\Gamma}\hat{h}^{\#}g,

where f^{\#}(\gamma)=f(-\gamma) for \gamma\in\Gamma . Hence we have

(2) \int_{\Gamma}k\hat{e}_{\beta}garrow\int_{\Gamma}\hat{h}g for all g\in L_{p}(\Gamma) .

We now show that k=\hat{h}a . e . Since k and \hat{h} are in L_{p\prime}(\Gamma) , it suffices to
show that k=\hat{h}1 . a . e . Now let \Delta be any compact subset of \Gamma . Then there
is a function \phi:\Gammaarrow[0,1] such that \phi\in C_{oo}(\Gamma) and \phi=1 on \Delta . Let \Delta_{1}

denote the (compact) closure of supp(\phi) . Since

\hat{e}_{\beta}arrow 1 uniformly on \Delta_{1} and \int_{\Delta_{1}}|k|\phi<\infty ,

we have
(3) \int_{\Delta_{1}}k\hat{e}_{\beta}sgn(\hat{h}-k)\phiarrow\int_{\Delta_{1}}ksgn(\hat{h}-k)\phi .
By (2) we have
(4) \int_{\Delta_{1}}k\hat{e}_{\beta}sgn(\hat{h}-k)\phiarrow\int_{\Delta_{1}}\hat{h}sgn(\hat{h}-k)\phi .
Hence we have

\int_{\Delta_{1}}\hat{h}sgn(\hat{h}-k)\phi=\int_{\Delta_{1}}ksgn(\hat{h}-k)\phi

and so
\int_{\Delta_{1}}|\hat{h}-k|\phi=0 .

Thus
\int_{\Delta}|\hat{h}-k|=\int_{\Delta}|\hat{h}-k|\phi=0 .

Hence \hat{h}=ka . e . on \Delta . Since \Delta is an arbitrary compact subset of \Gamma . we see
that \hat{h}=k1 . a . e . and hence \hat{h}=ka . e .

REMARK 3. Pigno [6] proved the following result: Let 1<p\leq 2 , and
let k\in L_{p^{r}}(\Gamma) . Let (e_{n})_{n=1}^{\infty} be a sequence in L_{1}(G) such that ||e_{n}||_{1}\leq 2,\hat{e}_{n}

has compact support and k\hat{e}_{n}arrow ka . e . Then k=\hat{h}a . e . for some h\in L_{p}(G)
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if ((k\hat{e}_{n})^{\vee})_{n=1}^{\infty} is a norm-bounded sequence in L_{p}(G) . Pigno proved his result
by using regular Toeplitz summation matrices. It can also be proved as
follows: There exist h in L_{p}(G) and a subsequence (e_{n_{J}})_{j=1}^{\infty} of (e_{n})_{n=1}^{\infty} such
that

(1) \int_{\Gamma}k\hat{e}_{n_{f}}garrow\int_{\Gamma}\hat{h}g

for every g\in L_{p}(\Gamma) (see (2) in the proof of Theorem 4). By H\"older’s in-
equality and the Dominated Convergence Theorem, we have

(2) \int_{\Gamma}k\hat{e}_{n_{f}}garrow\int_{\Gamma}kg for every g\in L_{p}(\Gamma) .

It follows from (1) and (2), as in the proof of Theorem 4, that k=\hat{h}a . e .
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