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1. Introduction

Throughout this paper G will denote a locally compact Abelian group
with Haar measure A. For 1< r <o, L,(G) will denote the usual Lebesgue
space, with norm |-|,, defined on the measure space (G, ). Let M(G)
denote the space of all bounded complex-valued regular Borel measures on G.
For p=1=g¢4, or 1<p< o and 1<g<co, let Ly4(G) denote the Lorentz
space defined on (G, 1) with norm |+||.4y (see Section 2 for the definition of
the Lorentz spaces and some usefu] facts about these spaces). Let T denote
the dual group of G and 6 the Haar measure on I The spaces L,(T") and
Ls,o(T") are defined similarly. The main purpose of this paper is to prove

Theorem 1| below.

THEOREM 1. Let (ea)aco be an approximate identity in L,(G) with
sz:pllea”1£1.

(1) If 1<p, g<oo or p=1=q, and if k is a continuous Junction on
I' such that each ké.=L,,T) and s%pllke‘all(p,qKOO, then RE Ly, o(T') and

Vellio,0y=supl kéa)p,0, where in the case b=1=gq it is further assumed that k

1s bounded.
(i) If p=1=gq 1<p<2 and 1<g<, or 1<q¢<p=2, and if pe
M(G) such that each 6.E Ly o(T) and szgpllﬁe‘all<p,q)<00, then w1 is absolutely

continuous.

arises partly from our effort to fill some gaps in the proof of
in Burnham, Krogstad and Larsen (see lines —11 and —2, p.
96), and partly from our effort to give simpler proofs of the main results in
Chen and Lai [2]. In addition to obtaining the main results in Chen and Lai
as an easy consequence of (see below), we also
apply to obtain a partial converse of Héslder’s inequality (see
[Theorem 3). By applying the method used in the proof of [Theorem 1, we

also give in the final section a characterization of the Fourier transforms of
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functions in L,(G) for 1<p<2 (see [Theorem 4.
2. Preliminaries

DEFINITION 1. Let 7 be a measurable function defined on the measure
space (G, A). For y=0, we define

A(»)=AxEG ! |f(x)]>y}.
The non-increasing rearrangement f* of f is defined by

*(x)=inf{y : y>0 and A,(y)<x}
=sup{y : ¥y>0 and A,(y)>x},

with the conventions inf ¢=oc and sup ¢$=0. For x>0, we define
ok )= -1 [ %
¥ (x)=x /of (t)dt.

We also define

o 1/
lt.0={ [ ool L, 12 p<oo, 120 <00,
||f||2“p,w>=sxggx1“’f*(x), 1<p<oo;
Lp.q(G)Z{f : “f"zkp,Q)<OO}-

The spaces Ly ') are defined in the same way. For p#1, ¢#1, if we
replace f*(x) by f**(x) in the definition of [f|&.¢, the resulting number
will be denoted by | fl.e; and we define |flon=I[fI%1 which is equal to
11

The facts given in the following proposition are well-known (see O'Neil
or Yap [7]) and they are stated here for easy reference.

PROPOSITION 1. (i) For 1<p<oo, we have Lppo(G)=Lp(G) and
I-1.0=1 o<l .-

(ii) For 1<p<o and 1<q1<q:<00, we have Ly, G)C Lp,o,(G).

(iii) For 1<p<oo and 1<g<0, we have

I-1%.0 <1 lo.0 <5/ (0= DI 1.0
and Lp.o(G) is a Banach space with respect to the norm ||w.q.

NOTATIONAL CONVENTION. In the sequel when we refer to the space
Lp.o(G) with 1<p<oo and 1<g<oo, it is tacitly assumed that Ly.o(G) is
endowed with the norm ||*llp.ey (not I+l&,qe ; in fact ||+1%.o is not a norm)
and the space L11(G)=Li\(G) is given the norm Ilan=Il:. A similar
convention holds when G is replaced by I". If f is an extended real-valued
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or complex-valued function on a set X, we will use supp(f) to denote the set
{xE€X: f(x)#0}. For 1<r<oo, »’ will denote the number such that 1/~
+1/r’=1. All terms and notation not explained in this paper are as in
Hewitt and Ross [3].

Since every non-discrete locally compact topological group G that is not
o-compact contains a locally null non-null subset (see Hewitt and Ross [3
(16.14)], the following lemma is needed in the proof of our main result.

’

LEMMA 1. If g€L.1.(T), or gE L, o(T) with 1<p<oo gnd 1<gq
<00, and if f is a complex-valued continuous function on T such that g=f
locally almost everywhere (with respect to the Haar measure 0 on T), then g
=f almost everywhere.

PROOF. It is easy to see that the set supp(g)={xET: g(x)+0} has
o-finite measure. Define

A1={x :%<lf(x)|<00},

. .1 1 _
An~{x. n+1<|f(x)|< n—l} for n=2,3, ...,
B={x: f(x)=g(x)+0).
Note that, for each positive integer #,

lg()|=f(x)| > n—li—l for all x€A,NB,

and so 9(A,NB)<co. Since A, is an open set and 4 is regular, we have

0(An)=sup{6(F): FCA. and F compact}
= sup{@(FNB)+ 6(FN{supp(f)\B)): FCA, and F com-
pact}.

Since g=f 1. a. e, supp()\B is a locally null set. Hence
6(Az)=sup{0(FNB): FCA, and F compact}< (AN B)< o,

Since we obviously have supp(f)=n@1An, supp(f/)\B is a locally null set

with o-finite measure. Hence supp(f)\B has measure zero. The set supp
(9)\B is also a locally null set with o-finite measure, and so it has measure
zero. Hence g=f a.e.

3. Proof of Theorem 1

Before we give our proof of [Theorem 1, we recall that Hunt [4, (2.7)]
has proved the following theorem for L, 4 space, 1<p, g<oo: If gE Ly o
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and 7, is defined on Lyq by To(f)= / fg, then T, is a bounded linear func-

tional on Lp.q; conversely, if T is a bounded linear functional on Ly.q, then
there exists a function g in Ly.¢ such that T=7T,. Thus the conjugate
space of Ly,q is Ly, and hence Ly,q is reflexive. [It should be noted here
that the norm used by Hunt is equivalent to ours and that his theorem is
indeed applicable.]

PROOF OF THEOREM 1. (i) Our first task is to show that A€ Ly,q(T")
for the case 1<p, g<o. Since (kés)eep is a bounded net in Lp,q(I") and
L,.o(T) is reflexive, Alaoglu’s theorem tells us that (ké:)eep has a subnet
(which we continue to write as (kés)acp) such that ké.—h weakly in
Lpo(T) for some hEL, ). Hence, by Hunt’s theorem [loc. cit.], we
have

W [kag— [ho

for every g=Lp.(T). We will show that k=% a.e. In view of Lemma 1|
it suffices to show that £#=#h l.a.e. Now let A be any compact subset of T.
Let ¢ be a function in Coo(T") such that ¢=1 on A and ¢(I')CI0, 1]. (Here
Coo(T") denotes the space of all continuous functions f on T’ such that the
closure of supp(f) is compact.) Let A: denote the compact closure of supp

(¢). Since

é.— 1 uniformly on A; and /A‘ || < 0,
we have

ﬁ ke sen(h—Fk)p— K k sgn(h—h)¢,
By (1) we also have

ﬁ Kb sgn(h—k)¢— £ I sgn(h—B)$.
Hence we have

Lh sgn(h—k)¢=/;lk san(h—k) ¢,
and it follows that

L|h—k|¢=0 and L‘Ih—kl=0.

Thus #=F a.e. on A. Since A is an arbitrary compact subset of I, 2=k
l.a.e. By Lemma 1, A€ Ly,q(T).
Our next task is to show that ||k||(p,q)=51§p||kéal|(p,q) for 1< p, g<oo.

Since ||Galle<|leali <1 for all a, it is clear that sgpllke‘allw,q)é||k||<p,q). Next
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we write supp(k)=nL_J1Kn UB, where B is a set of measure zero, and (K;)3-.

is an increasing sequence of compact sets of positive measure. Since | Bxcal
1 |k|, where xx, denotes the characteristic function of K., it is easy to see
that [l =lim| k... Now let €>0. Then there exists a positive
integer N such that

D &l o, 0) < I xanllo,0) +§-

Since ké.— k uniformly on Ky, there exists av€D such that
|kéay—E|< 68 on Ky,
where
— \1/q 6____
8=(q/pp") 20K

Now put
g= IkédNXKN— kaNl .

A straightforward computation shows that

) if 0<t<6(Ky),
kk
g ("‘)S{L(f{”) if O(Ky)<t,
and
lglle,0y< /2.

Hence, by (1), we have

1l co,00 < I exrcnll 0,00+ £/2
<llglo,0)+ | Bban il 0,0y + €/2
< 5/2 + IlkéaNll(P,Q) + 6/2
SSgplméa“(p,q) +e.

This completes the proof that Ilkll(p,q)Ssgpllkéall(p,m and hence ||k”(p,q):SIiD

|%2cllp,0) for 1< p, g<oo.
We now turn to the case p=1=g¢. Recall that L;;(T)=Ly(T") and this
space is given the norm |-]i. Since sup| k2.J,=C<co, we have | kél3<

Cl#l- for all a. Hence, by [Proposition 1, S%Dllkéa||(2,2)<oo and so k€

L25(T)=Ly(T"). Since £ is continuous and Haar measure is regular, we can
write supp(k) as nQIKnUB, where each K, is compact, B has measure

zero, and K,CKu+1. For each positive integer n, ké,- k uniformly on K,
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and so there exists a»€D such that
|ke‘a—k|<—}¢— on K, for all a=an.

We may assume that a»<az+1. It is easy to verify that ké.,~k a.e. on I
Hence, by Fatou’s Lemma, we have

Jir<lim [|k2u) < C<oo.

This shows that A€ Li(T") and Ilklllésgpﬂkéalll. Since sgpllkéalhéukﬂl is

obvious, we have proved (i) when p=1=g¢.
We now prove part (ii). By Hewitt and Ross [3, (31.33)], it suffices
to show that A€ Ly(T). If p=1=g, then the hypothesis says that sgpllﬁéalll

=(C<oo, It follows that sgp"ﬁe)\l%é Cllle< oo, and so supl|Zéalez<oo by

Proposition I Hence, by part (i), we conclude that Z€ LoT). The case
1< g<p=2 is an easy consequence of part (i) and the fact that Lp,qo(T)C
Los(T)=LyT). It remains to consider the case 1<p<2 and 1<g<<.
Since A€ Lp,o(T)C Lp(T") (by Proposition 1) and the non-increasing re-
arrangement Z* of # is bounded, there exist constants Ci and C: such
that #*tY?<C: and #*<C.. Hence

ﬁlﬁl2=fﬁ*(t>2dtstHfC%t—”dt<oo.

REMARK 1. [MTheorem 1(i) with p=g provides the details which jus-
tify the assertion in line —11 of [1, p.96], while fills the gap in
line —2 of [1, p. 96].

4. Applications

In this section we give two consequences (see Theorems 2 and 3 below)
of Theorem 1: Theorem 2 contains the main results in Chen and Lai [2,
Theorems 3.12 and 3.13]; Theorem 3 gives a partial converse of Holder’s
inequality.

Throughout this section, let

Alp, )G ={fEL(G): FELa(T)},
M(p, )(G)={vEM(G) : AE Lp,o(T)},

where 1<p, g<oo, or p=1=q. We define a norm I*llapa) in A(p, )(G)
by

“f”A(p,q):maX{“fnl, |lf||(p,q)}-
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Similarly, we define a norm [*|uw.o) in M(p, ¢)(G) by

"ﬂ”M(p,q)ZmaX{"#”, ”ﬂ”(p,q)}-

By a multiplier from Li(G) to A(p, ¢)(G) we mean a bounded linear opera-
tor from Li(G) to A(p, ¢)(G) that commutes with convolution. The collec-
tion of all multipliers from Li(G) to A(p, ¢)(G) will be denoted by
M(L(G), A(p, ¢)(G)). The space M(L«(G), M(p, q)(G)) is defined in the
same way.

THEOREM 2. Let F(p, ¢)(G)=A(p, ¢)(G) or M(p, ¢)(G). For 1<p,
q< or p=1=q, the space M(L(G),F(p, ¢)(G)) is isometrically isomor-
phic to M(p, g)(G). More precisely, if nEM(p, ¢)(G) and T is defined
on Li(G) by Tf)=px*f then T.EM(L:G), F(p, q)(G)) with | Tillmer, s, o)
=lplucs,0); and, conversely, if TEM(L.(G), F(p, 9)(G)), then T=T.
for some nEM(p, q)(G).

PROOF.  Let (es)een be an approximate identity in Li(G) such that
sgplleaulél. We note that for xM(G), we have

(D llull=sgp||ﬂ*ealll-

We now prove that M(L.(G), A(p, 9)(G))=M(p, ¢)(G), where ~ means that
the two spaces are isometrically isomorphic under the correspondence 7.«
¢ with Ty defined by Tu(f)=p*f for all fEL\(G). It is clear that if p<
M(p, ¢)(G), then T.€M(L:(G), A(p, 9)(G)). Conversely, by using
M(L:(G), Alp, )(G)CTM(L(G), Li(G))~M(G) and Theorem 1, we see
that every TEM(Li(G), A(p, q)(G)) is of the form 7. for some =
M(p,q)(G). Thus it remains to verify that, for u€M(p, ¢)(G), the operator
norm | Tulwe,ac0) is equal to |eluep.o. For u€M(p, ¢)(G), we have

| Tullmer, acoy =supf{ll e* flaco,or : | L <1}
=supl u* allace,q)

=sup max{lz+eals, |20}

>max{||ul, |40} (by (1) above and [Theorem 1)

=“ﬂ||M(p,q)-

On the other hand, it is easy to verify that

| Tl N oy =1 12* flas.ay < I eellaeco, ol £lls

for k€M(p, ¢9)(G) and f€L.(G). Thus | Tullmer, acsan <lglweo,ar.  This
completes the proof that M(L.(G), A(p, ¢)(G))=M(p, ¢)(G). The proof of
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M(L(G), M(p, ¢)(G))=M(p, ¢)(G) is similar : one uses ML(G), M(G))=
M(G) instead of M(Li(G), Li(G)=M(G).

The following remark generalizes Theorem 3.6(i) in Chen and Lai
[2]; it also settles the problem posed therein (see p. 255).

REMARK 2. We note here that if (i) p=1=¢q, (ii) 1<p<2 and 1<
g<oo, or (i) 1<g<p=2, then M(p, 9)(G)=A(p, ¢)(G). [Let rEM(p,
7)(G). By Hewitt and Ross [3, (31.33)], it suffices to show that Z€ LaT).
Case (i) is obvious; the last two sentences in the proof of
verify case (ii); and case (iii) follows from Lp.o(T)C Lyo(T)=LoAT").]

As another application of we give the following partial
converse of Holder’s inequality.

THEOREM 3. Let 1<p<oo and let f be a complex-valued continuous
function defined on G such that

| /8= Clels,

for all ¢$E Coo(G), where C is a constant. Then FELNG) and |flo<C.

PrROOF. Let (es)aep be an approximate identity in L.(T') such that

lea|<1 for all €D, and each & has compact support. Clearly fé.E
L»(G), and so

fouls=supll [ f2et] : $E ool G) and gl <1)

by Theoren (12.13) in Hewitt and Ross [3]. Hence If2.ll,<C for all a€
D. By [Theorem 1, we have f€Lx(G) and [f]s=supl/zl»<C.

5. Fourier transforms of L,(G) functions

In this section we use the method of to give a characterization

of functions on T" which are Fourier transforms of functions in L,(G), 1<p
<2.

THEOREM 4. Let 1<p<2, and let (ea)aep be a bounded approximate
identity in Li(G). Suppose kE Ly(T"), where 1/p+1/p'=1. Then k is the
Fourier transform of some function in Ly(G) if and only if ((kéa)")aep is a
norm-bounded net in Lp(G).

PROOF. Suppose k=h with h€L,(G). Then we have

sgpﬂ(kéa)vﬂp=sgp||h*eallpSsgpllhllpll eall1 < 0.
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Now suppose that ((%2z)")eep is a norm-bounded net in L,(G). Then, by
Alaoglu’s theorem, ((k2:)")eep has a subnet ((kés)")ses such that (k&)Y k
weakly in L,(G) for some function % in L,(G). Thus

(D L(kép)vé"_’ﬁhé for all g L,(I).

By the generalized Parseval identity (see Hewitt and Ross [3, (31.48)]), we
have

Sk 5= [(ka)*g and [ni=[ivg,

where f*(y)=f(—7) for y&I'. Hence we have
@) /;kéﬂg—ﬁ/jzg for all g L,(I").

We now show that k=7% a.e. Since % and % are in Ly(T'), it suffices to
show that #=% l.a.e. Now let A be any compact subset of I'.  Then there
is a function ¢:T~[0,1] such that #¢=Cow(T) and ¢=1 on A. Let A,
denote the (compact) closure of supp(¢$). Since

é—1 uniformly on A, and [ |l¢<o,
we have
3 Lkép sgn(ﬁ—k)qﬁ—»llk sgn(h—E)¢.
By (2) we have
@ [kt sen(h—)p— [ hsgn(h—h)s.
Hence we have

Ail sgn(fz—k)¢=/4k son(h—k) ¢

and so

[13—klg=o0.

ﬂﬁ—kl:ﬁﬁ—k)qs:o.

Hence =k a.e. on A. Since A is an arbitrary compact subset of ', we see
that =% l.a.e. and hence A=#Fk a.e.

Thus

REMARK 3. Pigno [6] proved the following result: Let 1< »<2, and
let RELy(T). Let (en)7-1 be a sequence in Li(G) such that |eq]i<2, &
has compact support and ké,—% a.e. Then k=% a.e. for some 2E L,y(G)
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if ((k8,)")z=1 is a norm-bounded sequence in Ly(G). Pigno proved his result
by using regular Toeplitz summation matrices. It can also be proved as
follows : There exist % in L,(G) and a subsequence (ex,)i=1 of (en)7=1 such
that

W [kng— [ho

for every gELy(T") (see (2) in the proof of [Theorem 4). By Holder’s in-
equality and the Dominated Convergence Theorem, we have

@) /; kén,g— /; kg for every g Ly(T).

It follows from (1) and (2), as in the proof of Theorem 4, that k=% a.e.
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