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§ 0. Introduction

The behavior of coefficients &, (¢), a,(¢), ..., a,(#) of a linear ordinary
differential equation

Z: (%)”Hal(t)(%)”_lwaeu)(%) wt ... Fan(Du=0

under a change of variables t=¢ (¢), u=2A(t)u satisfying ¢’(#)+0 and A (¢)
+0, was studied by Laguerre, Forsyth and others in the latter half of the 19
th century. Their fundamental results may be summarized as follows (cf.
5]

i ) There exists a change of variables which transforms .# into a form
a(t)=a(t)=0. (Such a form is called a Laguerre-Forsyth’s canonical form
of #.)

ii) If a change of variables (f u)——(f u) transforms a canonical
form into a canonical form, then there exists constants a, b, ¢, d and e such
that

_dt*f‘b _ e
WO=tra A O

iii) For each canonical form of %, let 6,(¢)(dt)?, p=3,..., n be the
tensor fields defined respectively by

_ @=2!p!
b () =5 =3 T nl
& @i =2 (m—p+)) !( d )f }
A B (o)
Then the definition of 6,(#)(dt)? does not depend on the choice of the
Laguerre-Forsyth’s canonical form of 2. Moreover 6,(t)(dt)* p=3, ...,n

form a fundamental system of invariants of .%.

The first purpose of this paper is to reformulate the classical Laguerre-
Forsyth’s theory of differential invariants of linear ordinary differential
equations, by applying the E. Cartan’s method. More precisely, we con-
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struct a Cartan connection and a complete system of differential invariants
associated with each linear ordinary differential equation.

The second purpose of this paper is to give an extension of the Laguerre-
Forsyth’s theory to integrable finite type linear partial differential equations
of a certain class, called the class of type ({, p).

By a linear differential equation, we mean a triple #=(M, E, R"),
where M is a manifold and E is a vector bundle over M and R” is a

subbundle of /*(E), the xn-th jet bundle of E. The symbol g,= p(—léo(gp)x of #

at x& M is defined as a subspace of pEiI—)OSp(T:)@)Ex.

Now we fix a semisimple graded Lie algebra [(=(_,P(,D!; of the first
kind and a representation p: ——g/(S) of [ on a finite dimensional vector
space S. Under the condition (4.3.1), S is decomposed into a direct sum

S= E}—)ZS,, such that S,+0 if and only if p=0, 1,..., n—1 for some positive
pe

integer #, and S, is imbedded into S*(V*)® W in a natural manner, where
V=(_,and W=S,. The subspace S= pGn_BOS,, of pél—_)oSp( V*X® W thus obtained

is called the typical symbol of type (I, p), and a linear differential equation
%# is said to be of type ({, p), if there exist a linear isomorphism z, of V' onto
T. and a linear isomorphism z of W onto Ex such that the induced
isomorphism %z;'Qzy : SP(VHQRQW —S?(T HQE, maps S, onto
(gp)x for every p. If % is of type (I, p) at each point of M, then we
say that # is of type (|, p).

In the special case where [~s/(2) and p is the irreducible represen-
tation with dim S=w#, a linear differential equation of type ({, p) is
nothing but a linear ordinary differential equation of order #.

Now let us proceed to the description of the main results of this
paper. Let #=(M, E, R™) be an integrable linear differential equation
of type (I,p). Let % (R™) be the frame bundle of the vector bundle
R"” over M. Since dim S=rank R”, each element of % (R"), x&M,
can be regarded as a linear isomorphism of S onto RY From the
integrability of .#, there is a fiat connection V in the vector bundle R”
such that for any solution s of %, the n-th jet extension ;" (s) is
parallel. Let & denote the connection form on % (R") corresponding
to the flat connection V in R”. The 1-form & can be considered as a
gl(S) valued 1-form on % (R").

For each integer p<u, let (R}),, x&M, be the kernel of the pro-
jection #}_,: RZ——R%71. It is easily shown that the associated graded
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vector space p(—li}ogr(RZ)x of the filtration {(R%).|p=0, ..., n} of R? is
naturally isomorphic to the symbol g,= p(—iBO(gp)x of # at x. Let {S*®)

p=0, ..., n} be the filtration of S defined by S“’)zq@ Sq. Clearly its
associated graded vector space is isomorphic to the typical symbol S=
p@i—)oSp. We first construct the reduction P(#) of % (R") which con-
sists of all frames z such that i) z(S®)=(R?), for every p, and ii)
the induced isomorphisms g¢»(z): S= pGZ—)OSp—mx: p@i—)o (gp)x of the

associated graded vector spaces are expressed as g7 (2)=1%27'®zw,
where zy is a linear isomorphism of V onto 7, and zy, is a linear
isomorphism of W onto E,. Let @ denote the pullback of & to the
reduction P (.%).

Our main theorems may be roughly stated as follows: there is a
unique normal reduction (Q(#), x) of (P(%), ), and the gl(S) val-
ued 1-form x decomposes into the two components x, and x,. The
former gives a Cartan connection in the principal bundle Q (%) and the latter
gives a fundamental system of invariants of #. In the construction of the
reduction Q(), the harmonic theory of the cochain complex (E{q—)C", 2)

associated with the adjoint representation of [_; on ¢/(S) plays an important
role. The l-form x,. induces a C! valued function c¢,.. By the definition of
the normal reduction, the function c,. satisfies 8*c,.=0. The harmonic part
Hc,. of ¢, gives the fundamental system of invariants of .%.

In the last part of this paper, we construct a fundamental system of
invariants of linear ordinary differential equations. OQur definition of invar-
iants is slightly different from that of Laguerre-Forsyth. In Example 5. 8. 2,
we show the relation between the two definitions of invariants in the case of
order 6.

In the forthcoming paper, we will apply our theory to various kinds of
linear partial differential equations.
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Preliminary remarks

1. In this paper we consider in either real C* category or complex
analytic category.

2. Let R and C denote the fields of real numbers or complex numbers
respectively, and let F' denote either R or C according as we consider in real
C* category or complex analytic category.
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3. For any vector bundle E, E denotes the sheaf of germs of local cross
sections of the vector bundle E.

4. As to Lie groups and principal bundles, we use the standard nota-
tions and terminolgy as in [1]. Especially let G be a Lie group and P be a
principal G bundle over a base manifold M. For a=G, R, denote the right
translation induced by a. Let g be the Lie algebra of G. For X&g, X*
denotes the vertical vector field on P induced by the 1-parameter group of
right transllations Rexpix. The vector field X* is called the fundamental
vector field corresponding to X.

§ 1. Linear differential equations.

1.1.  Jet bundles. Let M be a manifold. We denote by 7 and T'* the
tangent bundle of M and the cotangent bundle of M respectively. Let E be
a vector bundle over M. For every nonnegative integer p, let J?(E) denote
the p-th jet bundle of £. As usual, we identify J°(E) with E and for
convenience, we put J?(E)=M x{0} for every negative integer p. For each
s€k;, x&M, we denote by j4(s) the p-th jet of s at the point x& M.

For each pair of integers p, ¢ such that p>gq, =% denotes the natural
projection of J?(E) onto JY(E). For every p=1, we define a bundle
homomorphism ¢,: S?(T*)QE——J*?(E) in the following manner: For
every 6',...,0°€T% and e=E,, x&M, we take functions f, ..., f? and a
cross section s€FE, so that f/(x)=0, (df),=6 i=1,...,p and s(x)=e.
Then we put

&p(0' ... 07Qe) =75(f" ... fPs).

It is well known that the sequence

b
0—SP(THQE—2]#(E)—2=L [o-1(E)— 0

is exact. In the following, we will regard S?(7*)QE as a subbundle of
JE(E).

1.2.  Spencer operator D. As in [3], we introduce the first order
differential operater D : J?(E)—>T*®/J?"'(E) which is characterized by
the following properties :

1.2.1) DUo)=df@nb_10+f+Do, c=J?(E), fes(M);
> D
(1.2.2) 0—E—1 J?(E)ZT*®J*'(E)  (exact):
(1.2.3) For every pair of integers p, ¢ such that p>gq, the following dia-
gram commutes :
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D
JPE)—TQJ7I(E)
né’l [Id@nﬁ:}

D
JIE)—T*QJI(E).

Let x!, ..., x™ be a local coordinate system in an open subset U of M and
y1, ..., y" be a fiber coordinate system in the open subset z7'(U) of E. To
express the operater D in the local coordinate system x%, ..., x™, y', ...,
y7, we adopt the multi-index notation. For every multi-index a=(a, ...,
an) such that all a; are nonnegative integers, we put

la|=a1+ ... +an

al=a! ... an!

and
a+())=(ay, ..., ai_1, a;+1, ais1,..., an).

Furthermore, for x=(x!, ..., x™)&R™ and x%=(x¢, ..., x) ER™, we put
(x—%) = —xp) ... (x™—x5)m

If we express c=J?(E) as

otw)= 3 7 6w T—%)"

alsp
where a,(%) ER’, then we have

1.2.8) Do=F 5 dr'@— {28 (0) e (@) | (- 2)"

i=1la|sp-1

Let 6: S?(THRE—— T RSP 1(T* QRE, be the linear map defined by
I (ERe) (x)=1i(X)ERe,
where £ S?(T3%), eeE,, X& T, and {(X)stands for the inner multiplica-

tion. From (1.2.4), we easily see that the following diagram commutes :

S (THRE—— s T*®SP-1 (T QE

(1.2.5) & 1d®ep

JPE) T*QJI(E).

1.3. Linear differential equations. By a linear differential equation of
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order n, we mean a triple #=(M, E, R™), where M is a manifold, E is a
vector bundle over M and R”is a subbundle of the #-th jet bundle J*(E) of
E. By a solution of #, we mean a cross section s of E over an open subest
U of M which satisfies ji(s)ER?% at all x&eU. We denote by % (%) the
sheaf of germs of the solutions of .%#.

Let #=(M, E, R™) be a linear differential equation of order ». For

each nonnegative integer p <#, and each point x& M, we define a subspace
R% of JP(E)x by

(1.3.1) R2=zi(RD),
and a subspace (gp)x of S?(T XE, by
(1.3.2) (gp)x=RENS*(THRE,.

The subspace (gp)x of S?(T%)XE, (resp. the direct sum g,= g@o(gp)x) will
be called the p-th symbol (resp. the symbol) of the differential equation %
at the point x& M. Here we notice that dim R;’C:péodim(gp)x:dim Jx-

Let us give another description of the symbol g,. Let (R%). be the
subspace of R? defined by

(1.3.3) (Rp.=Rinker(zj-1x
Then the family of subspaces {(R2).|p=0, ..., n+1} of R% gives a filtration
of R Let gr(R™),= p(—i}o g7 (R}) . denote the associated graded vector space,
i.e,
g7 (Rp) x=(Rp)x/ (Rp+x
Now we recall the natural linear isomorphisms
ker(z3-1)x/ker(zh) »=ker(z5_1)»=S?(T?) QF,.

By using these isomorphisms, we regard gr (R}, as a subspace of S?(T%)
&XE,. Then it is easy to see that gr (R%),=(gp)x for all p and x&sM. We
will denote by 7, the projection of (R%), onto (gp)x.

1.4. Isomorphisms of linear differential equations. Let M (resp. M")
be a manifold of dimension m and let E (resp. E’) be a vector bundle over
M (resp. over M”) of rank ». Let ¢ be a bundle isomorphism of E onto E".
We denote by ¢, the diffeomorphism of M onto M’ induced by ¢. For any
cross section s’ of E’, ¢*s’ denotes the cross section of £ defined by

¢*s'(x)=(doS"o¢y") (2.
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The cross section ¢*s” will be called the pull back of s’.

Let J?(E) (resp.J?(E”)) denote the p-th jet bundle of £ (resp. of E”).
For any bundle isomorphism ¢ : E——FE’, there corresponds the natural
bundle isomorphism J?(¢) : J?(E) J?(E") such that

JE(P)GP () =72((p~D*s),

where s€E. It is easy to verify that the following diagram commutes :

b
LA 2N
1.4.1) ngj l,,g,,
Jo(Ey-L2 %) racpn
oL
(1.4.2) GPJ Je"' ,
p
JoE—2E0 e
p
JP(E) S 2NNY
(1.4.3) Dl ij ,
AR
T (B)2A T b) g ey

where 7’* stands for the cotangent bundle of M".

A bundle isomorphism of E onto itself is called a bundle automorphism
of E. A vector field on E is called an infinitesimal bundle automorphism if
it generates a local 1-parameter group of bundle automorphisms of £. If we
take a local coordinate system in E as in 1.2, every infinitesimal bundle
automorphism can be expressed in the form:

o
oy*

140 FFO2+3 3wy

J=1
where fi(x), 1<i<wm and ¢g*(x), 1=<j, k<r are functions on U.

Let #=(M, E, R®) (resp. #'=(M’, E’, R")) be a linear differential
equation of order » and let g= p(—ilDO gp (resp. g'= pé_l—)o g»") be the symbol of %

(resp. of #’). A bundle isomorphism ¢ of E onto E’ is said to be an
isomorphism of the differential equation .# onto the differential equation %’
if /*(¢) maps R" onto R".
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For every isomorphism ¢ of 2 onto .#’, we will denote by R"(¢) the
restriction of /”(¢) to R”. One should note that R*(¢) is a bundle isomor-
phism of R" onto R™. From (1.4.1) and (1.4.2), we see that R"(¢)x
maps (R}, onto (R})» and ($x')*®¢ maps (gp)x onto (gp)x, Where x'=
éu(x). Moreover, we have the following commutative diagram

7Tp
<RZ>X - (gp>x

(1.4.5 R”<¢>xJ } (63" Qs

T
(RY) ——s (g x

A

An isomorphism of % onto itself is called an automorphism of #. An
infinitesimal bundle automorphism of E is called an infinitesimal automor-
phism of % if it generates a local 1-parameter group of automorphisms of .%.

EXAMPLE 1.4.1. The Lie algebra of infinitesimal automorphisms of the

linear ordinary differential equation (%t)"u:o (n=2). Let X=f <t>%+

g(t)ua—i be an infinitesimal automorphism of the differential equation

dt
g(Hu(t), and hence

<%>H(Xu) :éo<z>f(p)u(n-p+1)+éo<’;> g =),

<i>nu:0. For any function u(t), we have (Xu)(t)=f(Hu (t)+

Since, for every 1<p <, the coefficient of #‘*~# of the right hand side of this
equality must be equal to 0, it follows that

(n—p) [P V4 (p+1)g®»=0 for every 1<p=<un.
Putting p =1, 2, we obtaimn;

(n—=1f"+2¢'=0, (n—=2)1"+3g"=0.
This implies that /=0 and ¢”=0. Therefore we see that

X:(a—I—th-I—ctz)%—l—{d—(n—l)ct}u——a%,

where a, b, ¢, d are constants. It should be noted that the Lie algebra of
infinitesimal automorphisms of the equation <%> #=0 is isomorphic to the

Lie algebra sl(2, F)QF, under the correspondence
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X—>(<_b

;) DESIC PSF.

1.5. Flat connection V. A linear differential equation #=(M, E, R")
of order # is said to be of finite type if (g,),=0 at all x&€M. A finite type
linear differential equation #=(M, E, R") is said to be integrable if there
exists a solution s& % (%), such that j%(s) =# for every point x&M and
every vector < R%. It should be noted that such a solution s is uniquely
determined by the initial condition #.

PROPOSITION 1.5.1. Let #=(M, E, R™) be an integrable finite lype
linear diffevential equation. Assume that R? is a subbundle of J*(E) for
every p<n—1. Then the Spencer operator D : JP(E)—T*QJ?'(E)
maps R? into T*QR?P™! for every p=n.

PROOF.  Since % is integrable, the & (M), module R% is generated by
the set {j"(s)|s€ % (#),}. Therefore by (1.2.1) and (1.2.2), we have
D(ROCTiQRE! for every p=n. q.e.d.

COROLLALLY 1.5.2.  Under the same assumption as in Proposition 1.5.
1, & maps (gp)x tnto TER(gp_1)x for every x&M

PrROOF.  This follows directly from the diagram (1.2.5). q.e.d.

For each integrable finite type linear differential equation %= (M, E,
R™), we introduce the flat connection V in the vector bundle R™ by the
following diagram

T*QR™
(1.5.1) D\\ / Id@=x?%_, . isomorphism
*®Rn 1

PROPOSITION 1.5.3.  Under the same assumption as in Proposition 1.5.
1, we have the following diagvams :

J" \Y

0— % () R »T*QR" (exact) ;
7
0 Ry R ! >Jp >0 (exact)

| e

0— T*QRI— T*QR} 2L T*Q gy ——0 (exact).
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PROOF. These diagrams follow from (1.2.2), (1.2.3) and (1.2.5).
q.e.d.

1.6. Characterization of the bundle isomorphisms R*(¢). Lt #=(M,
E, R") and #'=(M’, E’, R") be integrable finite type linear differential
equations. For every integer p such that 0<p<# and every point x&€M
(resp. x’€ M"), let (R}, (resp. (R%¥),) be the subspace of R? (resp. of
R%") defined asin 1.3. Let V (resp. V") be the flat connection in R* (resp.
in R™) defined by (1.5.1). Let ¢ be a bundle isomorphism of R” onto R"
which induces a diffeomorphism ¢y of M onto M’. Then we say that v is
filtration-preseving if ¥ maps (R}, onto (R¥)y,wx for every p, and v is
connection-preserving if the following diagram commutes ;

\Y%
E T*@Rn
v J } () * Q¢
Rnl V 5 T/*®Rn/

PROPOSITION 1.6.1.  For every isomorphism ¢ of # onto #’, the
induced bundle isomorphism R"(¢p): R™——R™ is filtration-preserving and
connection-preserving. Conversely, for every filtration-preserving and
connection-preserving bundle isomorphism R™($), there exists a unique
isomorphism ¢ of # onto R’ which induces the given R"().

PROOF. The first assertion follows from (1.4.1) and (1.4.3). Let
R"(¢) be a filtration-preserving and connection-preserving bundle isomor-
phism of R” onto R”™ which induces a diffeomorphism ¢, of M onto M’
Since R"(¢) is filtration-preserving, there exists a unique bundle isomor-
phism ¢ : E——FE’ such that ¢ o z§==n R*(¢). We claim that R"(¢)=
J"($)|R". For each n=J"(E), x€E, let s&€ % (%), be the solution of #
such that #=7%(s). Since j"(s) is a flat cross section of R*, R"(¢) (j"(s))
is a fiat cross section of R?”. Hence there exists a unique solution s'&
Ger (#) such that 7*(s")=R"($)(G"(s)). Then we have

S'=at' G*(s)) = R*"(¢) G"()) =i (G"(s)) =(™)*s.
Therefore we see that

R*(¢) () =R"($) Gi(s))=7%(sD=7%((¢™)*s)
=J"() () =T"($) (). q.e.d.

1.7.  Reduced equations. Let E be a vector bundle over a manifold M
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and let £’ be a subbundle of £. We remark that the p-th jet bundle J?(E")
of E’ can be regarded as a subbundle of the p-th jet bundle J?(E) of E.

PROPOSITION 1.7.1. Let #=(M, E, R™) be an integrable finite type
linear differential equation on E. Assume that 0-th symbol g, is a subbundle
of E, then R"CJ"(g).

PrROOF. For each n€ R} x=M, we take the solution s& %/ (%)«
such that j2(s)=#%. Then it follows that s=z§("(s)) Cxf(RD =(go)x, and
hence n=7%(s)&]J"(g) x- ' g.e.d.

Let M and M’ be manifolds and let ¢ : M—— M’ be a submersion. For
each linear differential equation #'=(M’, E’, R™), we define the linear
differential equatilon ¢* %' =(M, ¢*E’, $*R™) as follows. First we define
a vector bundle ¢*E’ over M by setting (¢*E)=FE%), x&M. For each
cross section s’ of E’, we assign the cross section ¢*s’ by setting ¢*s’(x) =
s'(¢(x)), x&M. Since ¢ is a submersion, for every point x&M, the
assignment '€ Ey——¢*s'Ed*E% induces an injective linear map J"($*)
of J"(E") ¢(x into J*(E),. Now we define the subbundle ¢*R"™ of /*($*E")
by

(@*R™)=]"(¢*) (R3x), xEM.

The differential equation ¢* %’ will be called the pull back of %"
Conversely let #= (M, E, R") be a linear differential equation of order
n. For each point x&M, let g+ be the subspace of 7, defined by

gr={XeET|6(XQE) =0 for all £&g.}.
We set gl:xLEJM Jx.

PROPOSITION 1.7.2. Let #=(M, E, R™) be an integrable finite type
linear differential equation. Assume that gg=FE and dim g* is constant on M.
Then,

(1) For every Xegz, x€M, V(RPDC(RDx p=0,..., 0

(2)  The distribution g~ is completely integrable, i. e., [g*, g*1Cg*.

(3) For each integral manifold N of g*, theve exists a unique flat
connection V in the vector bundle E|N over N such that the following
diagram commutes :

Vx
Ry

R,

Vi
(EIN)s——(E|N)y,




On differential invariants of integrable finite type linear diffevential equations 163

wherve X €gx, x&N.

(4) If there exist a manifold M’ and a submersion ¢ . M—— M’ such
that all fibers ¢='(x"), x’&M’ are simply connected integral manifolds of the
distribution g*, thenm there exists an integrable finite type linear differential
equation #'=(M’, E’, R") such that the pull back ¢*®’ s isomorphic to % .

PrOOF. (1) follows from (2) of Proposition 1.5. 3.
(2) Since V is a flat connection in R”, we have

Vi, =Vx(Vyn) =Vy(Vxn) €(RD

for every X, Yegs and 7= (Rpx By (2) of Proposition 1.5.3, we have
[X, Y]Egx.

(3) follows from (1).

(4) For each point x’€M’, let E’, be the space of all flat cross sections
of the vector bundle E|¢~', over ¢ '(x"). Since ¢~ '(x") is simply con-
nected, the assignment s’€E\——s'(x)EE, gives a linear isomorphism for
every point x&¢*(x’). We define the vector bundle £’ over M’ by setting
E’'= \J E’,. Clearly the vector bundle E can be identified with the vector

x'eM’
bundle ¢*E".

We define the subbundle R™ of J*(E’) as follows. For each point x’'&
M’, choose an arbitrary point x&¢*(x"). For every solution s& %/ (%),
77(s) is a flat cross section of R”, and hence the restriction s|¢~*(y") of s to
each fiber ¢~ 1(y"), y'€M’ is a flat cross section of the vector bundle
E|¢~'(y"). Therefore there exists a unique cross section s’eFE, such that
s(y)=s|¢'(¥"), y’EM’. It can be easily verified that ¢*s’=s and the
assignment s€ %, (#)——S'EEy induces an injective linear map of R%
into J*(E"),. Now we define R% to be the imege of this linear map. It is
obvious that the definition of R% does not depend on the choice of the point
x=E¢1(x"). We easily verify that the pull back of #'=(M’, E’, R") canbe
identified with #=(M, E, R™). ’

With the preceeding propositions in mind, we say that an integrable
finite type linear differential equation #= (M, E, R") is reduced if go=FE and
g+=0.

§ 2. Model equations.

2.1. Differential equations of type S. Let #=(M, E, R") be a linear
differential equation and let g= pEZI—)ng be the symbol of #. Let V' (resp. W)
be a vector space over the field F withdim V =dim M (resp. withdim W =
rank E). Let S be a subspace of pC‘E,S PV YR W such that S= pGZ)OSP, where
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S,=SNS?(V*)®W. Then we say that the linear differential equation % is
of type S, if there exist linear isomorphisms zr: V =T, and zz: W =E, such
that the induced isomorphism (%z7)®zz: SP(V*)QW =S?(T3)QE, sends
S, onto (g,)x for every p and every x& M. In this case R?, g, and R} are all
vector bundles. We call S the typical symbol of .%.

Taking account of the arguments in 1.5 and 1. 7, we assume the follow-
ing conditions :

(2.1.1) S,=0,
(2.1.2) All inner multiplications i(v), vE V leave S invariant,
(2.1.3) S,=W and V acts on S faithfully, i.e, if {(¢)|S=0, vV, then
v=0.
In the following, we set S,=0 for p<0 or p># and regard S= G—DZSP as a
pe
graded subspace of S(V*) QW = @ZS"(V*)(VDW.
pe

The purpose of this section is to construct the model equation #Zs=

(G/G’, Es, R® of type S for each subspace S= péi_)oSp of p(—T_BOS (V¥R W satis-

fying the above conditions.

2.2.  The Lie algebras g, ¢, n and the Lie group G,. According to the
formula (1.4.4), we introduce the infinite dimensional graded Lie algebra
§:@§p modeled after the Lie algebra of infinitesimal bundle automorphisms

of the trivial bundle VQ W over V, by setting
Go=SPT(VHRQVDSH(V*)Rgl (W),
for each p&Z. The natural bracket operation on g is defined by :

[f®uv, f Qv ]=—f-G@)f Qv +f"+ (1 (v))HQv,

[fQA, f'Quv]=f"-((v))HRA,

[fRA, fQA1=f-f®[A, 4],
where f, f/€S(V*), v, vvEV and A, A’'egl(W). Itiseasy to see that the
Lie algebra @z@p—)@;, contains the ideal ﬁ:@ﬁp defined by

fi,=SP (V) Qgl(W).

The graded Lie algebra § acts naturally on the space S(V*)®@ W which
can be regarded as the space of cross sections of the trivial bundle V x W :

F'Qu)fQRQuw)=—f"((w)f)Qu,
QA fQuw)=f"fQAw,
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where f, f'eS(V*), Acgl(W), veV and we W. In particular vEgd,
(=V) actson S(V* QW by —i(v). It is clear that §,(S(V*)QW)C
SPra(V* QW for all p, q.

Let g be the subalgebra of § which consists of all vectors X &3 leaving

S :(—?Sp invariant and let n be the ideal of g defined by n=gN#. For each
integer p, we put g,=gN &, and np,=nNi,. Itis obvious that g:@g, nZGPnp,

g-1=§-1= V. We define a subalgebra g’ of g by ¢'= Dap-

Under the identification of p(—r_lDoS"(V*D@)W with J*(V x W), the sub-

space S defines a linear differential equation with constant coefficients. It
should be noted that each element X in g can be regarded as an infinitesimal
automorphism of this equation.

Now we consider the direct product GL(V )X GL(W) of the Lie groups
GL(V), GL(W), which can be regarded as a Lie group with Lie algebra §,.
The group GL(V)XGL(W) acts both on S(V*)Q W and 3§ on the left in
natural manners, and we have the identity (aX)s=(acXca™!)s, where a&<
GL(V)XGL(W), X&j and s&S(V*)®XW. We denote by ( the sub-
group of GL(V )X GL(W) which consists of all a€ GL(V)XGL(W) leav-
ing S invariant.

For every integer p, let g/(S), be the subspace of g/(S) consisting of all
Xegl(S) suchthat X (S,) CS,,q forall g=Z. Itiseasy to see that g/ (S)=
@ gl(S), becomes a graded Lie algebra. Let GL(S), be the subgroup of

GL (S) which consists of all elements a= GL(S) satisfying a(S,) =S, for all
qeZ.

For each X &g, we denote by 7;(X) the restriction of X to S, and for
each a€ G, we denote by 7s(a) the restriction of @ to S. It is clear that
rs(X)eEgl(S), for X &g, and 7s(a) e GL(S), for a< (.

PROPOSITION 2.2.1. (1) The asignment X——rs(X) gives an in-
jective homomorphism of the graded Lie algebra g:@gp into the graded Lie

algebra gl (S) = Gp—) gl (S),.

(2) gp=0 for p=n, hence g is finite dimensional.
(3)  The assignment a— vs(a) gives an injective homomorphism of the
Lie group Gy into the Lie group GL(S),.

PROOF. (1) It is clear that 7s: g—— gl{(S) is a homomorphism of
graded Lie algebras. It suffices to show that 7s: g,—— g/ (S), is injective for
all pZ. The assertion for p=—1 follows directly from (2.1.3), and
hence we may assume that p =0.
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For this purpose, we take a basis ¢, ..., e, of V and the dual basis
el, ...,e"eV* of e, ..., en. Then, each X &g, can be expressed in the
form:

1 .
<p+1>zz,oZ Tt - €706

2 ell ip®Ai1...ip >

X=

P'u

where ai,..,€F, A, ...,€9l(W), and a,..;, is symmetric with respect to the
induces 4%, ..., i, and A, ;, is symmetric with respect to the induces 7, ... 7.

m .
For every v= le’eng_l, x', ..., x™"F, we have
J=

(2.2.1) ad(@)*X=(—-1)? Z‘. azo Xt xPeeQe;

llo

+(—D? Z‘x“ e XPQ A i
(2.2.2) adPX =D F aj..x"... x*Qe.

Assume that 7;(X)=0. Since 7s is a homomorphism, we have

(2.2.3) 7s(ad(v)? X)=0,
(2.2.4) rs(ad(v)?* X)=0.

By (2.1.3) and (2.2.4), we have ad (v)?*' X =0 for all v&g_,, and hence by
(2.2.2), we have ai,. ,,=0 for all 7, %, ..., 7. By using (2.1.3), (2.2.1)
and (2.2.3), we also have A, .. ,=0 for all ¢, ..., 7. Therefore we have
X =0.

(2) follows from (1) and the fact that S,=0 for p=#x.

(3) Let ae G, Assume that »s(a@)=1d. We express a in the form:

a=(ay, aw),

where ay,€GL(V) and ay=GL(W). By (2.1.3), we have ay=1d. Since
(av)s=(acvoat)s=vs for all vEg_; and all s&S, we also have ay=1d.
Therefore we have a=1d. q.e. d.

In view of this proposition, we will regard g:@gp as a subalgebra of

gl (S):(—? gl(S), and (G as a subgroup of GL(S),. Let N (g) denote the
normalizer of g in GL(S).

PROPOSITION 2.2.2. (1) Gy=N (@ NGL(S),
=N (g-1) NGL(S),.
(2) gp:{XEgl <S>p‘ [9—1, X]Cgp—l},
np={X Egl(S)pllg-1, X]Cnp-1},
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for every p=0.

PROOF. (1) It is clear that GyCN (@) NGL(S),CN (g-,) NGL(S),.
Hence it suffices to show that G DN (g_-;) N GL(S),. For each a&N (g_) N
GL(S),, we define ayeGL(V) and awGL(W) respectively by

av=Ad(a)v, veV(=g_)),
aww=aw, we W (=S).

We put ad=(ay, aw)EGL(V)XGL(W). Then we have
vi(as)=a(Ad(aVH)v)is=ay(av'v)s=0v9(as).

for every s&S, and every v& V. This means that a=7,(2)<EG,.

(2) Let 3, be the subspace of g/(S), consisting of all X<gl/(S), such
that [g-;, X]Cgp-1. Cleary we have g,C§,. We must show that §,Cgp.
Let X<3,. Then we have

[7)0: [01, ser [UP: X] ]]EV(:Q~—1>’

for w, ..., v,& V (=g_1). Since g, is abelian, [v, [0y, ..., [vp, X]...]] is
symmetric with respect to u, ..., v,. Hence we can find a unique Xy
SPH(V*)®V such that

[vo, [U1, ..., [0 Xv] ... 1]1=[v0, [V, ..., [vp X]...]] for all
Vo, ..., p&E V. We also define X, &S?(V*)QRgl(W) by

Xyw=Xw for all weW (=%).
We set X =X, + Xy

We claim that Xs=Xs for all s&€S. For every vV and every sES,,
we have ad(v)*X =0 for k=p+2 and v?*9*s=( for k<p—1. Hence it
follows that

p+gq

vPriXs= 3 (pzq)(ad(v)kX)v“q‘ks

:(p;q)(ad(v)"X)vqs+(‘Z—|_|:i1)(ad(v)”“X) vils.

Similarly we obtain
v"*"XVs:<‘Zi‘f)(ad(v}"“Xv)v"”ls
v"*"XWs:<p;q)(ad(v)pXW)vqs.

Since vise S,, we have
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(ad (0)?X)vis=v*Xvis=0v2Xyv%s= (ad (v)*Xy) v%.
Therefore we obtain
v IXs =P ( Xy + X)) s = vP+eXs.

This means that X =»,(X JEgp. The proof of the second assertion is quite
similar. g.e. d.

2.3.  The Lie groups G, G". Let G° be the connected Lie subgroup of
GL(S) with Lie algebra g and let G, be the Lie subgroup of GL (S) defined
as in 2.2. Since GCN (g), we have GyG'=G’ G, We put G=G,-G.
Then it is easily checked that G is a Lie subgroup of GL(S) with Lie algebra
a.

PROPOSITION 2.3.1.  For every acG, Ad(a)g=q and Ad(a)n=n.

PROOF.  The first assertion is obvious. The second assertion follows
from the facts that [g,n]&n and Ad(a)n=n for every q,=G,. q.e.d.
Let {S®|p Z} be the filtration of S defined by S ® = @qu. Let

q=

GL(S)® be the Lie subgroup of GL(S) which consists of all a= GL(S)
preserving the filtration {S®|peZ}, that is, a(S®)=S® for all p=Z.
Clearly we have GL(S)@ D> GL(S),. It is easy to see that every a= GL(S)©
can be written uniquely in the form:

(2.3.D a=aexp(X)) ... exp(X,_),

where @& GL(S),, X,€g9((S), for p=1,..., n—1. Furthermore the assign-
ment a—a gives a homomorphism of GL(S)® onto GL(S),.

We set G'=GNGL(S),. Itis clear that G’ is a closed Lie subgroup of
G with Lie algebra ¢'= !@()gp and contains Gy as Lie subgroup of G'.

PROPOSITION 2.3.2.  For every a< GL(S)® in the form (2.3. D),
ac G if and only if 4G, Xp,Sgp, p=1,..., n—1.

PROOF.  Assume that a=G’. We first remark that Ad(@)veg for all
ve V(=g-1) and

Ad(a)v=Ad(a)v (mod. p@o gl(S)y).

By (1) of [Proposition 2.2.2, this means that a&N (g_)) NGL(S)=Gy.
Therefore, without loss of generalities, we may assume that a=1d. Then,
for every vV, we have

As(a)v=v+[X,, v] (mod. p(—l?lgl(S)p).
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and hence [X), v]€g,. From (2) of Proposition 2.2.2, we conclude that
X,€g:. By the same argument, we can prove that X,&g, for every p=2.
The converse is obvious q.e. d

2.4. Model equations. Now we will define the model of the
differential equation of type S. Let zw: S—> W (=S,) denote the natural
projection. Let py: G——GL(W) be the representation of G’ on W
defined by

pw(a) mw(s) =nmw(a's),
where ¢’ G’ and s&S. The Lie group G’ acts on G X W on the right by
(a, w)a'=(aa’, pw(a)'w),

where a= G, G’ and we W. Let Es be the vector bundle over G/G’
defined by Es=GX W /G'. Letnm: G—G/G and mp: GX W——E denote
the natural projections.

Let # (G, W)¢ denote the space of all W valued functions f on G
satisfying f (aa") =pw(a’)"'f (@) for all a= G and &’ G’. We assign to each
feF(G, W) the cross section o, (Es) defined by

2.4.D or(m(a))=ma f(a)).

As usual, we will identify (G, W) with T'(Es) through the assignment
f—) Oy.

The Lie group G acts on Es on the left by
am(a, w) =m(da, w),

where 4, acG and weW. Hence G acts both on I'(Es) and J*(Ey).
Under the identification ¥ (G, W) =T'(Es), G acts on. ¥ (G, W)¢ by

(@H(a)=f(a"'a),
where a, 4G and f€5(G, W)g.
For each s&S, we define a W valued function f; on G by
fs(@)=mw(a's),

where a= G. Itiseasy to verify that €. 5(G, W) and fs=afs for all ae G
and s&€S. We simply denote by o5 the cross section of Es corresponding to

fs.
For each point x&G/G’, let (R, be the subspace of J%(Es) defined by

(RDx={j%(o)|sES}.
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It is clear that a(R%) = (R%® . for every ac G and x&G/G’. Let R% be the
subbundle of J*(FEs) defined by R%= UM(R’S’)X.

PROPOSITION 2.4.1. #s=(G/G, Es, R?® 1is an integrable Ilinear
diffevential equation of type S and S (Fs)x={os|SES} for every point
xeG/G.

PROOF. Let » be the map of V into G/G’ defined by » (v) =m (exp (v)).
Then there exist a neighborhood V, of 0& V and an open subset U of G/G’
such that » is a diffeomorphism of V; onto U (In the complex analytic
category, x is further biholomorphic). Now we identify the direct product
Vox W with Es|U through the -correspondence (v, w)e Vox W —
m(exp(v), w). |

For every f€.9(G, W), we assign a W valued function 7 on V; by
f(v) =f(exp(v)), veV, From (2.4.1), we see that o, corresponds to f
under the trivialization E|S=V,x W. In particular, for every s&S, os
corresponds to the function

L) =nw(exp(—v)s), vEV,.

Now we choose a basis ¢, ..., ¢, of V. Then we have
Fx+0)=my(exp(—x)exp(—v)s)
_ q
= ( 1,> DV xt L x g (e; ... egexp(—0v)S)
q=0 q . I1yeeeyiq
n—1 1

D xt L xmy(i(e;y) ... (e exp(—v)s),

- g=0 ¢ ! T1y0eey i
m
where x = Z‘,lx"e,-. This shows that j2(%) corresponds to exp(—v)sES at the

point v& V,, under the canonical identification J”( VX W),,zﬁ—)osy’( V*QW.

Hence we see that % is of type S on U. Since G leaves R? invariant, %
is of type S on G/G".
By the definition of R% o, sES are solutions of #;. Hence #; is
integrable. The last assertion follows from the definition of RZ. q.e.d.
It should be remarked that the equation %5 is locally isomorphic to the
linear differential equation with constant coefficients defined by S under the

canonical identification J*(V x W)= g’ﬁ_)osp (VHRQW.

EXAMPLE 2.4.2. The model equation of a linear ordinary differential

equation % : (%)nqui‘,lap(t)(%) pu:O. For 1-dimensional vector
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n
spaces V and W, we construct the vector space S= p@—_)oSp by putting S,=

SP(VHRQW for0<p<n—1and S,=0. Itis easy to see that % is of type S.
It is also easily verified that g=s/(2, F)@F (cf. Example 1.4.1), and that
G/G’ is isomorphic to the projective space P'(F).

§ 3. Canonical G reductions.

3.1. The Lie subgroup G of GL(S). Throughout this section, we fix
a subspace S= é’-)osq of S(VHQW = é’-)osvw*)@W satisfying (2.1.1),
q= q=

(2.1.2) and (2.1.3).
Let {S®|p&Z} be the filtration of S defined as in 2. 3. We remark that
the associated graded vector space gr(S)= (—BZS<‘”/S("+ D can be identified
ge

with @ S,. As in 2.3, let GL(S)® denote the subgroup of GL(S) which

9=z
consists of all elements a= GL(S) preserving the filtration {S®|p=Z}. For
any element a& GL(S)®, we denote by g7 (@) € GL(S), the induced automor-

phism of the graded vecor space S=&@ S,. Clearly the assignment a &
qEZ

GL(S)O——gr(a)e GL(S), gives a homomorphism of GL(S)® onto
GL(S),. Let G be the subgroup of GL(S)® which consists of all elements
ac= GL(S) such that gr (a)=G,. We denote by g'” the Lie algebra of G'.
The following lemma is obvious.

LEMMA 3.1.1.  For every element ac GL(S)® in the form (2.3.1), a
e GO if and only if aa=G®. Hence g(o’:go@(j@igl(S)p), and both Gy and
G’ are subgroups of G©.

3.2. Canonical G reductions. Let #=(M, E, R™) be an integrable
linear differential equation of type S. Since dim S=rank R”", we may
regard S as a typical fiber of the vector bundle R*”. For any point x& M, let
F (R™), be the set of all linear isomorphisms of S onto R*. Weset £ (R")=
U % (RY,. It is obvious that % (R") is a principal GL(S) bundle over

xeM

M. We call £ (R" the frame bundle of R”.

Let & be the connection form on £ (R") corresponding to the flat
connection V in R” defined as in 1.5. We may regard & as a ¢/(S) valued
1-form on % (R™).

For xeM, let {(RY.p&Z} be the filtration of R% defined by (1.3.3).
As we have remarked in 1. 3, the associated graded vector space g» (R} =
Gp—)gr (R}, is isomorphic to the symbol gx:@<gp>x at x. Let P(#), be the

subset of % (R™), which consists of all z& % (R"), satisfying the following
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conditions :

(3.2.1) =z is an isomorphism of filtered vector spaces, namely, z(S®)=
(RPx for all pEZ ;

(3.2.2) There exist linear isomorphisms z,: V=7, and zy: W =E, such
that the following diagram commutes :

S—S(VHRQW
gr(z) 1 ‘ 2y @Dzw.

We set P(%#)= gMp(ﬁ)x.

PROPOSITION 3.2.1. P(%) is a principal GO budle over M.

PROOF. It suffices to show that P(%),+ ¢ for every point x& M.
Since R" is of type S, there exist linear isomorphisms z,: V—— T, and zy :
W —E, such that zy'®zy maps S onto g,. Then we can choose a linear
isomorphism z of S onto RZ so that z(S,) C(R%) . and the diagram

4 (RP)x

_

Sp
‘zv‘®2w\ / p

(gp>x

commutes for every p. q.e.d.

Let @ be the pullback of @ to P(#), and for every p, let w, be the
gl (S),-component of w.

PROPOSITION. 3.2.2. (1) R, *w=Ad(a)'w for every ac GO.
2) w(X*)=X for every X =g, where X* stands for the fundamental

vector field corvesponding to X.

@) dotgorw=0.

4) w-, is a g_; valued basic form, that is, for every point z€P (%),
Ker(w_),=V(P(#)). and (w_1). gives a linear isomorphism of the quo-
tient space T (P(%)),/V (P(#)), onto the vector space g_,, where
V(P(%)), stands for the vertical tangent space of P( %) at z.

(B)  wqe=0 for g=—2.

PrROOF. (1) and (2) follows from general properties of connection
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forms. (3) follows from the fact that V is flat. To show (4) and (5), we
take an arbitrary cross section o of P(%). For any point x& M, we take
linear isomorphisms ov(x): V—> T, and ow(x): W——E, satisfying
gr(c(x))s="toy(x)'QRaow(x)s for all s&S.

For any s&S, let o5 be the cross section of R” defined by os(x) =06(x)s,
x&M. Then we have

0 (X)) (Vxos) =(0*w) (X)s,

where x&M and X&7T,. From the definition of P(%), it follows that if
sES,, then o;(x)e(RY, and #,(0s(x)) =toy(x)'QRow(x)s for every point
x&M. We assert that

(3.2.3) (Vxos) () E(Ry-)x
3.2.4) #,((Vxos) (x))=—1(X) Cov(x)'Qow(x))s,

for every X&T,. In fact, by (1.2.3), we have
ng-2(Vx0s) = n3=3(Dx0s) = Dx (n§_15) =0,

which shows (3.2.3). By (1.2.3) and (1.2.5), we also have
2g(Vx0s) = Dx (7q05) = — 1 (X) Cov () "' ®ow (1)),

which shows (3.2.4).

Now (5) follows immediately from (3.2.3). On the other hand, by
(3.2.4), we have

(6*w_) (ov(x)v)=—1i(v) for all veV,

which means (4). q.e.d.
We call the pair (P(%), @) the canonical G© reduction of (% (R™),

~

®@).

3.3. Isomorphisms of canonical G reductions. Let #=(M, E, R™)
(resp. #'=(M’, E’, R™)) be a linear differential equation of type S. Let
Z (R™) (resp. % (R™)) be the frame bundle of R” (resp. of R”) and let &
(resp. @’) be the connection form on £ (R™ (resp. on % (R™)).corres-
ponding to the flat connection in R” (resp. in R*). Let (P(%), w) (resp.
(P(#"), @)) be the canonical G© reduction of (% (R"), &) (resp. of
(Z(R™), &@).

For every isomorphism ¢ of #onto . %’, let % (¢) be the bundle isomor-
phism of % (R") onto % (R™) defined by

(3.3.D #(¢)(2)=R"($)ez,
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where z& % (R™). Since the bundle isomorphism R”(¢) : R"—— R maps

2 onto R¥ and the diagram (1.4.5) commutes, % (¢) maps P(#) onto
P(#). We denote by P(¢) the restriction of £ ($) to P(%). Clearly
P(¢) is a bundle isomorphism of P(%#) onto P(#%’). Since R"(¢) is
connection preserving, we have P(¢)*o' = w.

PROPOSITION 3.3.1. For every isomorphism ¢ of # onto %', the
bundle isomorphism P(¢$): P(R)—>P(#") satisfiess P($)*w' =w. Con-
versely, for every bundle isomorphism P(¢) of P(#) onto P(%") such that
P($)*w' =w, there exists a unique isomorphism ¢ of # onto % which
induces the given P(¢).

PROOF. We must show the converse. Let P(¢$) be a bundle isomor-
phism of P(%#) onto P(%’) such that P(¢)*@'=w. Then P(¢) can be
extended to the unique bundle isomorphism % (¢) of % (R") onto % (R™).
Let R"(¢) be the bundle isomorphism of R” onto R™ defined by (3.3.1).
Since P(¢)*w' =w, R"(¢) is connection-preserving. On the other hand,
we have

R™"($) (R = (R"($)02)(S¥) =P ($))(2))(SP)=(R)x

where xeM, z2&P(%)x, ¥’ =¢u(x), ¢u being a diffeomorphism of M onto
M’ induced by R"(¢). Hence R"(¢) is filtration preserving. Therefore,
by [Proposition 1. 6. 1|, there exists an isomorphism ¢ of % onto %’ which
induces the given P(¢). g.e.d.

3.4. The canonical G’ reduction (Q(#s), xs). As in 2.4, let #s=
(G/&, Es, R?®) be the model equation of type S. We denote by % (R%) the
frame bundle of RZ and by & the connection form on % (R%) corresponding
to the flat connection in R%Z Let (P(%s), ws) be the canonical G reduc-
tion of (Z(RY), &). We will use the same notation as in 2. 4.

Let o denote the origin of G/G’, that is, o=m(e), e being the unit
element of G. Let z, be the linear isomorphism of S onto (R%), defined by
2,(s)=7%(0s). In the proof of [Proposition 2. 4.1, we show that

- 1 . . . :
F)=277 2 at x4y (i(en) ... 1(€ig)s),

where X = Y'«’e;& V and hence z,&P(%s). Since G acts on Es as automor-
i=1

phisms of . #s, G acts also on P(%s). Let Q(#s) be the G-orbit in P(%s)
through the point z,& P (#s). It is easy to see that Q(#s) is a principal G’
bundle over G/G’ and that Q(%s) is diffeomorphic to G (in the complex
analytic category, Q(#s) is further biholomorphic to G). Let xs be the
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pullback of ws to Q(%#s).

PROPOSITION 3.4.1. x5 is a g valued 1-form on Q(#s). Furthermore
the pair (Q(Rs), xs) is a flat Cartan connection of type G/G’, namely :

(1) R*xs=Ad(a)xs, aeG’;

(i) (X" =X, Xeg';

(iii)  For every point z&Q(Hs), (xs). gives a linear isomorphism of
T (Q(#s5)). onto g;

) 1
<1V> dXS+7Xs/\Xs:O.

PROOF. Let x be the diffeomorphism of the neighborhood V, of the
origin of Vonto the neighborhood U of the origin of G/G’ defined as in the
proof of Proposition 2. 4. 1. We identify V, with the open subset U of G/G’,
through the map x.

Let = be the cross section of the principal bundle P( %) defined by
(V) =P(exp(v))(2,), vEV,. We first show that 7*w is g_, valued at the
origin of V,. For this purpose, we take a cross section # of the frame bundle
F (R% defined by

2(v)s=73(0),
where vE V, and s&€S. Then we have
T(0)s=P(exp(v)) (z5)s=R"(exp(v)) (G5(05)) =73 Oexpivrs)
for every ve V, and s&S. Hence we have
3.4.1) Tw)=2W)exp(v).
Since 7(v)s, s&S are flat cross sections of R?, we have
(3.4.2) 7*&=0.

To calculate 7*w(v), ve V(=T (V,),), we take the line v(#) = fv passing
through the origin of V. Then, by (3.4.1) and (3.4.2), we have

T*w(W)=1*e(v)=*e(v)tv=vEg_,.

From (2) of Proposition 3.2.2 and the assertion just proved, we see
that @ is g valued at the point z2,£Q(%#s). Since P(a)*w=w for every
a= G, we obtain the first assertion. The second assertion follows from
Proposition 3. 2. 2 immediately. q.e.d.
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§4. Typical symbol of type ([, o).

As to § 4 and § 5, the reader may refer to Tanaka [4].

4.1. Semisimple graded Lie algebras of the first kind. A semisimple
graded Lie algebra of the first kind over the field F is, by definition, a graded
Lie algebra [:p@Z[p over F satisfying the following conditions :

(i) [is finite dimensional and semisimple ;
(4.1.1) (i) (%0 and {,=0 for p=—2;
Gii) If Xe, and [X,1.,]=0, then X =0.

Let B, denote the Killing form of the Lie algebra (. The following properties
of (= @, are well known.
peEZ
LEMMA 4.1.1. (1) There exists a unique element Z in (, such that
L={XeE[Z X]=pX} for all p.

(2) By 1g)=0 for p+q=+0, and the restriction of the Killing form B,
to (pX(_p s nondegenervate. In particular (, =0 for p=2.

(3) The case F=R. There is an involutive automorphism 6 of | satisfy-
ing the following properties -

(1) 0Up)=1p,

(ii) B(X, 8(x))<0 for X =+0.

(4) The cace F=C. There is a Cartan subalgebra ty of | such that Z<
HClo, and there is an involutive automorphism 6 of | as a Lie algebra over R
having the following properties :

(i) 9(Ip):{—g;

(ii) 8AX)=26(X) for A€ C and X<|. Hence the bilinear form
B(X, 6(Y)), X, Y&l is hermitian ;

(iii) B(X, (X))<0 for X =+0.

Now let us consider the case F=C. We fix a Cartan subalgebra § of [
such that Z€HCl,. Let ® denote the set of nonzero roots of [ with respect
to §. For each a=®, we denote by [“ the root space attached to the root «
and by b, the vector in § defined by B (%, W) =a(h), heh. For each peZ,
let ®, denote the set of nonzero roots a satisfying (*C{,. It is easy to see
that

®,={asd|a(Z)=p},
o, = —q)h ®,= —q)o;
d=d_,UP,UP, (disjoint union).
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The next lemma is also well known (cf. Matsushima-Murakami [2, Lemma
4.2]).

LEMMA 4.1.2. (1) There is an ordering in ® such that all roots
belonging to ®, are positive.

2) {hacs®} spannes ¥.

(3 Z=23 h,.

a<ED,
()  The involutive automorphism 6 in Lemma 4.1.1 can be taken so that
(hy) =—hg, for all a=®.

4.2. Associated gradation of { modules. Let I:@[p be a semisimple

graded Lie algebra of the first kind over F and p: ——gl/(S) a representa-
tion of { on a finite dimensional vector space S over F. ForeachucR, we
set

S ={s€S|p(Z)s=ps}.
It is easy to see that p({,) S CSpsm for all uR and p=Z.

PROPOSITION 4.2.1.  Assume that p is irreducible, then p(Z) s a
semisimple endomorphism of S with real eigenvalues. Furthermove let A be
the minimal eigenvalue of p(Z) and n the positive integer such that SiuiqF
0 for q=0, 1,...,n—1 and Su+n=0. Then,

n—1
SZ(JE'__‘)()S(Hq),
S(A):{SESI[) (I_OS :O}

PROOF. We first consider the case F=C. The first assertion follows
from (3) of Lemma 4.1.2 and the weight space decomposition of S. It is

n-—1
obvious @ S(;.4) is a submodule of S. Since p is irreducible, we have S=
q=0

n-1
EB S(A+q)-
q=0

Let S’ be the subspace of S consisting of all s&S such that p({_,)s=0.
We claim that S’ is p(z) invariant. Indeed, for every s&S’, X&(_,, we
have

p(X)p(Z)s=p(Z)p(X)s+p([X, Z])s=0,

which shows the assertion. Hence we have

, n-1
J— 4
S - @OS (A+4g)»



178 Y. Se-ashi

where S'Gigy=S"NSusre. Cleary we have S';y=Su. Suppose that there
exists ¢ =1 such that S’;44y#0. Then the submodule generated by S’+q0) 18

n—-1
contained in the subspace @ S(.+q), Which is a contradiction.
qa=qo

Next we consider the case F=R. Let (¢, S¢ and p¢ be the
complexifications of {, S and p respectively. If p¢ is irreducible, then we

n-—1
have the direct sum decomposition S¢= (—BOSC(Hq) as above. Since A+g¢gisa
q=

real number, we have

Scu+q) = Scu+q>-

n-1
This means S=® Sui+q)-
q=0

If o€ is not irreducible, then there exists a complex structure / of S such
that p(X)I=1Ip(X) for all X&[. Let S* (resp. S7) be the subspace of S¢

consisting of all vectors s&S¢ such that Is=y—1s (resp. Is=—y —1s).
Then both S* and S are irreducible (€ modules, and S*=S*®S~. Let S*=

nt—1 n-——1

@0 S*esq (resp. S™= @0 S~.+a) be the decomposition of S* (resp. of S7)
qg= g=

defined as above. Then we see that 1* =21~ and that S*1¢)=S"(1-+¢ for all

n—1
g. This means S= @OS‘“‘”’ where A=At=A1" and n=n*=n". g.e. d.
q:

COROLLARY 4.2.2.  Under the same assumption as in Proposition 4.2.1,
n-1

put Sq=Susqy, @EZ. Then we have a dirvect sum decomposition S :®OSq
qg=

satisfying the following conditions :
(i) pUp)SqCSprq for all p, q;
(ii) S={seS|pU.)s=0}.

4.3. Typical symbol of type (I, p). Let IZ@IP be a semisimple grad-

ed Lie algebra of the first kind and let p?: (——gl(S%), i=1, ..., [ be irreduc-
ible representations of [ on finite dimensional vector spaces S’ respectively.

l 14
We define a representation p: ——g/(S) by setting S:@l S* and p:@ o
For each i=1,...,1, let 17 be the minimal eigenvalue of the endomor-

phism p’(Z) of S* and let S":m@_:Sf, be the direct sum decomposition of S*
qg=

defined as in [Corollary 4.2.2. In the following we assume the condition:

(4.3.1) A'=..=21% and all p* are faithfull.

We denote by A the common value of 1%, ..., 1* and put z=Max(#', ..., n")
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and qug_i)l Si for each ¢q. Then, we have

S = ne__)lSQ)
q=0

P Up)SeCSpiq,
S={s€S|p((-1)s=0}.

Now we put V=(_,and W =S, Then, we define a linear map7: S—
S(VHRW by

(), ..., v) =D () ... p(vy)s,

where s€S, and v, ..., v,€ V.

PROPOSITION 4.3.1. (1) i(v)«i(s)=—1i(p(v)s) for every vEV and
seS

2) i: S—>S(VHRQW is injective.

PROOF. (1) is obvious. To prove (2), it suffices to show that 7: S,
—>SI(V*)Q® W is injective for each nonnegative integer g. We proceed by
induction on g. The case ¢g=0 is obvious. Assume that g=1 and the
assertion is valid for g—1. Let s be a vector in S, such that 7(s) =0. Then
we have 1(p(v)s)=—1i(v)+i(s)=0 for all v€ V. By induction assumption,
we have p(v)s=0 for all v& V. Hence we obtain s&S5NS,=0. qg.e.d.

With this proposition in mind, we will regard S as a subspace of S(V*)
& W through the map 7. The subspace S of S(V*)Q W thus obtained is
called the typical symbol of type ((, p). Let g be the Lie algebra defined as
in 2.2, which can be considered as a Lie subalgebra of g/(S). Since p:
[—gl(S) is faithful, we can also regard [ as a Lie subalgebra of g/(S).

PROPOSITION 4.3.2. (1) The typical symbol of type (1, p) satisfies
the conditions (2.1.1), (2.1.2) and (2.1.3).
(2) 1 1s a subalgebra of qg.

PROOF. (1) The condition (2.1.1.) is obvious, and the condition
(2.1.2) follows from (1) of Proposition 4.3.1. The condition (2.1.3) fol-
lows from the definition of W and the fact that p is faithful. (2) follows
from (2) of Proposition 2. 2. 2. q.e.d.

EXAMPLE 4.3.3. Typical symbol of type (s/(2, F),p). Let [ denote
the simple Lie algebra s/(2, F) and X, Y, Z be the basis of s/ (2, F) defined

by
/01 /00 _1/1 0
X"Q 0 Y”G O 2_2% —J'
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Let [_;, lo, ; be the 1-dimensional subspaces of [ spanned respectively by Y,
Z, X. It clear that [=(_,P,PI,becomes a simple graded Lie algebra of the
first kind.

For nonnegative integer #, we put S=S""'(F?). Letp: ——gl(S) be
the natural irreducible representation of [on S. By using the canonical basis
@, e of F? we introduce a basis &, s, ..., s,_; of S by setting s,= (&)?

(e)"?71. Then we see that p(Z)sp,=(— n2—1+p>3p, Sp=Fs, for p=0,

1,...,n—1and S,=0 otherwise. Therefore the typical symbol of type (s/(2,
F), p) is isomorphic to the typical symbol of the ordinary differential
equation considered in Example 2. 4. 2.

4.4.  Structure theory of the Lie algebras g and ¢g/(S). Let S be the
typical symbol of type (I, p). Let Z be the vector in [, given as in (1) of

n-1
Lemma 4.1. 1. From the definition of the direct sum decomposition S= E}—)O Se
q=
it follows that

9l(S),={Xegl(D]|[Z X]=pX}.

Let 3(1) be the centralizer of { in g/(S). Since [ is semisimple, we have
(N3 =0. We define a bilinear form 7% on ¢g/(S) by

Tr(Y, Y")=Trace of the endomorphism Y «Y" of S,

where Y, Y'€gl(S). One should remark that 77 is Ad(G) invariant and
nondegenerate. Let g* be the orthogonal complement of g in ¢/(S) with
respect to the bilinear form 77.

PROPOSITION 4.4.1. (1) g=1P®3() (direct sum of Lie algebras).
More precisely, g_.1=1_1, go=1B3(), ai=1 and g,=1,=0 for |p|=2.

(2) n=3) and hence g=1®Bn and (=g/n.

3) gl(S)=1PnPg* (orthogonal decomposition).

4) Ad(G) leaves g, \, n and g* invariant.

PROOF. The case F=R can be easily reduced to the case F=C, by
taking the complexifications of [, S and p. Hence it suffices to show the case
F=C. We fix a Cartan subalgebra § such that Z€§C[ and an ordering in
the set of nonzero roots asin (1) of Lemma 4.1.2. We denote by ®* the set
of all positive roots with respect to this ordering.

Since Z&1, we have 3(1)Cgl(S),. By (2) of Proposition 2.2.2, we
have ;(I)Cno. Considering g as an [ module with respect to the adjoint
action, we write
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a=1D3(DPXm, U7 (direct sum of [ modules),
7

where y ranges over all nonzero dominant integral forms on ) and U~ stands
for the irreducible module with lowest weight —y and m, is the multiplicity
of U~7 in g. Suppose that m,>0 for some y. Since ad(Z)U"C U7, we
have U"z@U;’, where Up”’=U""Ngp. Furthermore, since g,=1{, for all

p <0, wehave Up,”=0 for all p<0. Let v~7 be a weight vector of weight —y
in U77. Since ad(Z)v"'=—y(Z)v™", we have v""€UZ};. Therefore we
have y(Z)<0. By (3) of Lemma 4.1.2, we have

4.4.D 2 yh)=0

acsd,

Since ®,C®* and y is dominant, we have y(%,)=0. Thus (4.4.1) holds if
and only if y(%,) =0 for all a=®,. From (2) of Lemma 4.1.72, it follows
that y=0, which is a contradiction. Hence we have (1) and (2).

Since [ is semisimple, 77 is nondegenerate on {. We clain that [ is
orthogonal to n. Indeed, since n=3((), we have

Tr([ X, Xz], Y)=Tr(X,, [ Xz, Y])=0,

for every X;, X;€( and every Y&n. Since [, (]=1, we have Tr((,n)=0.

Next we will show that 7» is nondegenerate on n. Let n' be the
orthogonal complement of n in g/(S). We take a [ submodule n" of g/(S)
such that g/(S)=n'@n*. Then we have

Tr(Y, X1, YO=Tr(Y', [X, Y] =0,

for every Y’'en, Y&En and X<(. Since the restriction of 77 to n Xn is
nondegenerate, we obtain [Y’, X]=0. This means that wC3({)=n. Since
dim n’=dim n, we have n"=n, and hence 77 is nondegenerate on n. There-
fore we have (3).

Finally (4) follows from (3) and [Proposition 2. 3. 1. g.e.d.

COROLLARY 4.4.2.  Every element a of G’ can be written uniquely in
the form :

a=ay exp(X),
where ay= Gy, and X €1;.

4.5. The cochain complex (C=@C? 9). Here we will introduce the
q

cochain complex associated with the adjoint representation of [_; on g/(S).
Let (C=@C9 a) be the cochain complex defined by
q
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C?=Hom(A Yy, gl(S)) (=AN1*Rgl(S)),

where the coboundary operator o : C%——(C9*! is defined by

(@) (v, ..., V)= Z‘.( Di[v; ¢(vp, ..., , Ug) ],
for ceC?and wy, ..., v,€1_;.
For each a=G© and each ceC?, we define aceC? by
(ac)(vy, ..., v9)=Ad(a)c(Ad(azV vy, ..., Ad(az)v,),

where we write ¢ asin (2.3.1). We remark that the assignment e G9——
@< (3 is a homomorphism. Hence the group G acts on C on the left. In
particular, the group (3 acts on C. The following lemma is easily proved.

LEMMA 4.5.1.  The action of Gy on C=@C? is compatible with the
operation of o, that is, ‘
o(ac)=a(oc), ach, ceC.
For each integer p, let C?? be the subspace of C? defined by
C??=Hom(A Y, gl(S)p-1) (=AU1*Qgl(S)p-1).
Then we have C"—G—)C" 2 o(CPrycCCr et

For each integer ¢, let C?(g) and C%(g*) be the subspaces of CY respec-
tively defined by

Ci(@=Hom(A_y, g (=A1_1*R9),
Ci(gH)=Hom(A_, g) (=AY*Rgh),

Since g and g* are [ submodules of ¢/(S), both (C(g):GqDC"(g), 9) and
(C(gH=BC'(gY), 9) are subcomplex of (C=PC?, 3). We put C*(g)=
q q

Ci®NCPe CPri(gH)=Ci(gHNCP»?% Then we have a(C»(y))C
CP—I,q+1<g> and a(Cp,q<gL>>Ccp—l,q+1<gL).

4.6. The adjoint operator 8*. In the following, we fix an involutive
automorphism # of { having the properties in [Lemma 4.1.1. We define an
inner product (,),in [ by

(X, X)) =—B(X,, (X)), X, X;el.
It is easily checked that
([Xl, Xz], X3)1+(X2, [6<X1>, XsDr:O,
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where X,, X;, X;&(. It should be noted that if F=C, then the inner
product (, ), is hermitian.

Next we define an inner product (,) in g/(S) as follows. First we
recall that there is an inner product (,)s in S having the property

(Xs, $)s+ (s, 0(X)sHs=0, s s’ES, Xl
Then we set
(Yy, Yp)=Trace of Y,-Y3, Y, Yog4l(S),

where Y5 stands for the adjoint of Y, with respect to the inner product (, )s.
It is easy to see that

([X, 1], Yo+ (Y, [6(X), YD =0,

where X &, Y,, Y,€9/(S). We should remark that in the case F=0C,
(,)s can be chosen so that

(A'S, S,>5:(S, 18,)5’:1(8) SI>S;

where s, s’&S, A& (C, and hence (,) is hermitian.

The inner product (,) in ¢g/(S) together with the inner product (,),in
[ induces an inner product in C?in a natural manner. Namely, let e, ..., e,
be an orthonormal basis of (_,: (e, ¢;);=0;;, Then

, 1 ,
(¢, ¢ )=—(—1—!—i % (cCeu, s i), € (Cas -on s i),
where ¢, ¢c'e(C".
Now we define the operator 8*: C?*''——(C? in the following way. Let

e, ..., en be abasis of (L, and let ¢, ..., e™ be a basis of (; defined by B,
(e,', ej> = Cyij. Then,

m .
(@*c) (v, ..., vq):g}_l[e’, cle, v, ..., 0],

where ceC'and vy, ..., v,&(_;. It is easily verified that the definition of
o* does not depend on the choice of the basis ¢, ..., e, of [_; and that 2*
(Cp,q+1) C Crthe g*(C p’q“(g))C C p+1,q<g> and o9*(C P,Q+l<gL)>C Cr+la
(g4). Furthermore, if ¢, ..., e, is an orthonormal basis of [_,, then

(2*c)(w, ..., vq):——zm‘_,l[ﬁ(ei}, cle, vy, ..., 09)],

LEMMA 4.6.1.  The operator 8* defined above is the adjoint operator of
o with respect to the inmer product (,), 1. e.,
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(ac, ¢)=C(c, *¢"), ceC9, c'eCt,

PROOF. We will prove this lemma in the case ¢g=1. The general case
can be proved quite similarly. Let ¢, ..., ¢, be an orthonormal basis of [_;.
Then we have

1

(ac, ¢)= ;j((ac)(ei, e), ¢'(e; e))

[\le—‘ l\.’J’

%(([ei, c(en], c’Ce, €))
_%qup c(e)], c’(es €))
:—%—g(c(ej), [6Ce), c’Ces ) ])

+%§(c(ei>, [6CeD, ¢'(e;, e D
=—21(c(e), 20, ¢'(e; ) D
:(C,Ja*c’). Z q.e.d.
LEMMA 4.6.2. The action of G’ on C=@C? is compatible with the
operation of 9%, that is, ’
o*(ac)=a(d*c), ac G, ceC.

PROOF. Lete, ..., ¢, be a basis of {_; and let ¢!, ..., e¢™ be a basis of
[; such that B, (e, ¢/)=46;;, From (4) of Proposition 4. 4. 1|, it follows that
Ad(a){={and hence Ad(a);=1;. Inparticular, Ad(a)e’e(,. On the other
hand, since Ad(a) is an automorphism of {, Ad(a) keeps the Killing form
B, invariant. Therefore, we have

B(Ad(ay)e;, Ad(a)e’)=B,(Ad(a)e;, Ad(a)e)
=B (e, e’ = O

where we write &G’ as in [Corollary 4.4.2. Now the assertion follows
immediately. g.e.d.
For any X&gl(S),, let [0X ]* denote the C?!(g*) component of 2.X.

LEMMA 4.6.3. If p=0 and o*([20X]*+) =0, then X Eg,.

PROOF. Let X* be the g* component of X. Then we have 9*2X*+=0*
([6X]Y))=0. By (2) of Proposition 2. 2.2, we have X+=0. g.e.d.

4.7. The harmonic projection. As usual, the operator A=99*+9*9:
C——C is called the Laplacian, and a form c=C is called harmonic if Ac=
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0. Clearly, ¢ is harmonic if and only if oac=9*c=0. We denote by # the
space of all harmonic formsin C. Itisobviousthat #=@ #,, where # 7=
q

#NC. Let H: C— % be the projection of C onto # with respect to the
orthogonal decomposition C=#®Im A. We recall that the action of G’ on
C leaves both Ker 9* and Im 9* invariant.

LEMMA 4.7.1.  For every ccKer 9* and every ac (G,
H (ac)=a,(He),
where we write a= G’ as in Corollary 4. 4. 2.
PROOF. For each X &1, and each ce(C?, we define a g-form Xce C? by
(XH (v, ..., v0)=[X, c(vy, ..., vo)],
where vy, ..., v,€(_,. We also define a 1-form ax<(_,* by
ax(v)=B(X, v),
where v&1(_;,. We will show the following equality
(4.7.1) Xc=0*(axANc)+axNo*c.
In fact, we have
o*(axNc)(vy, ..., vg)
zﬁ[ei, (axNc)(e, v, ..., Ug)]

[l
||Ms

[e ax(e)c(vy, ..., vg)]
‘J!_zz JZ( ].)'7[8 ax<v>(€,, V1, vov s O;, ey Uq)]
[ax(ede’, c(u, ..o, Vg) ]

+Z‘.(—1)’ax(vj)ﬁ:_‘i[e", cley, Oy, ooy Oy ooy V)]
[BI(X eel, c(uy, ..., vg)]

Il
uMs

I
||Ms

+§<_1>1ax<vj><a*c>(vl, ceey ﬁj, cee s Uq)
=[X, c(v, ..., v) ] —(axNO*C)(n, ..., Vg),

which shows the assertion.
From (4.7.1), we see that if 8*c=0, then Xc=0*(axAc) and hence
H(Xc)=0. Therefore we have
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H(exp(X)c):gzl—!—H(Xkc):H(c).

On the other hand, it is clear that the action of Gy on C is compatible with
the projection H, i.e.,

H (ayc) =aoH (),
where @€ Gy, and ceC. Therefore we have

H(aexp(X)c)=ayH (exp(X)c)=aH (¢). qg.e.d.

§5. Normal G’ reductions.

5.1. Normal G’ reductions. Throughout this section, we fix a typical
symbol S of type ([, p). We say that a linear differential equation .#= (M,
E, R™) is of type (I, p) if it is of type S.

Let #=(M, E, R™) be an integrable linear differential equation of type
(,p). Let (P(#),w) be the canonical G reduction of (£ (R"), &)
defined asin § 3. Let Q(#) be a G’ reduction of the principal G bundle
P (%) and x be the pull back of the g/(S) valued 1-formw to Q(#). We
denote by x, (resp. by x,.) the g component (resp. the g* component) of x
with respect to the direct sum decomposition g/ (S)=gPg*. Furthermore,
for each p, we denote respectively by x» (x ), and (x.)» the gl(S),
component of x, x, and x,.

PROPOSITION 5.1.1. (1) The pair (Q(#), x,) is a Cartan connec-
tion of type G/G’, that is,

(i) Ri*x,=Ad(a My, acG;

(i) x, X" =X, X&¢',

(iii) For every point z&€ Q(#), (x )z gves a linar isomorphism of
T(Q(#)); onto g.

(2)  x. is a tensorial 1-form on Q(%), that is,

(iv) R*xp=Ad(@Dxy a€G,

(v) 1(X®=0, X<y

3 (xg)p=0 for p=—1.

PrROOF. (1) We first recall that Ad(G”) leaves both g and g* invariant.
The assertions (i) and (ii) follow from Proposition 3.2.2. Let Y&
T(Q(#)), 2€Q(#) be a tangent vector such that x ,(Y)=0. The we
have w_(Y)=(x,-1(Y)=0. From (4) of Proposition 3. 2.2, we see that
Y is vertical and hence there exists a vector X &g’ such that Y =X}. By
(ii), we have X =x,(Y)=0. Since dim g=dim Q(#), we have (iii). (2)



On differential invariants of integrable finite type linear differential equations 187

and (3) also follow from Proposition 3. 2. 2. qg.e. d.
For any X &g, let X* be the vector field on Q(#) defined by

X, (X3 =X for all zeQ(R).
We define a C'(g") (=Hom(I_;, ¢*)) valued function ¢, on Q(%#) by
ce(2) (0) = (g (03),

where z€Q(%) and v&E(.,. For each p, (c,)? denotes the C*!(g*) compo-
nent of ¢, that is,

(c)?(2) (V) = (x4 p-1(V3).

By (3) of Proposition 5.1.1, we have (c¢.)?=0 for p=<0.
A G’ reduction Q(#) of P(#) is said to be normal if 9*(cp) (2)=0 for
all zeQ(#). We are now in a position to state the main theorem.

THEOREM 5.1.2. (1) For every integrable linear differential equation
=M, E, R") of tye (1, p), there exists a wunique normal reduction
QIZ), x) of (P(#), @).

(2) Let =M, E, R*) (resp. #'=(M’, E’, R")) be an integrable lin-
ear differential equation of type ({, p) and let (Q(#), x) (resp.
(Q(Z), x") be the corresponding normal G’ reduction of (P(%), w) (resp.
of (P(#"), w)). For every isomorphism ¢ of # onto R’, the correspond-
ing bundle isomorphism P($) : P(R)—P(#") maps Q(#) onto Q(#),
and the restriction Q($) of P(¢p) to Q(R) is a bundle isomorphism of
Q (%) onto Q(%") satisfying Q(p)*x'=x. Conversely if Q($)is a bundle
isomorphism of Q(#) onto Q( ") such that Q($)*x =y, then there exists a
unique isomorphism ¢ of # onto # which induces the given Q(¢).

This theorem will be proved in 5. 4~5. 7.

5.2. Fundamental system of invariants. Let Q(%) be the normal G’
reduction. Let Hc, be the harmonic part of c,.. The next proposition
follows from [Lemma 4. 7. 1 and [Proposition 5. 1. 1.

PROPOSITION 5.2.1.  Hcp(zeapexp (X)) =ay'Hc (2) for all 2z&€Q(%),
<€ Gy and X €1,.

The main purpose of this paragraph is to show that the harmonic part
Hc,. of ¢, gives a fundamental system of invariants of the differential
equation .%.

For each integer p, we define a C*~"%(g*) valued function 4*~! on Q(.%)
by
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bP71(2) (vr, o) = — (1 *(c)? ™) (2) (v) + (0* () ? ™) (2) ()
~ 2D @@, € 1@,
where v, »n&(_; and [(c,)7(2) (v), ()P 9(2) (v,)],: denotes the g+ compo-
nent of [(c,0)%(2)(v), (c)?79(2)(v,)]. One should note that 5°=0.

Now we recall that A: Im 9*——Im 9* is a linear isomorphism and that
(ce)?P—H (c)?<Im o*.

THEOREM 5.2.2. (¢ )?=H (¢ )?+A'0*b?! for every p. In particu-
lar (c.)' is harmonic.
PrROOF. By (3) of Proposition 3. 2.2, we have dx +%x Ax=0. Tak-

ing the g component and the g* component of this equality, we have
1 1
dXQ—*—"?‘Xg/\Xg‘i—?[}CgL/\XQ*]g:Oa
1
dXQ‘+XgAXg*+7[Xg*/\Xg*]g*:O,

where [x, A xql, (resp. [xe«Axe)e) stands for the g component (resp. gt
component) of x A x,-
From these equalities, we have

(5.2.1D) = (u* w*D+[cp(v), cp(v2)],=0,

(5.2.2) (n*cy) () — (w*ce) () — (k) ([01*, »2*])
+ o1, ¢ ()] —[0s, cpu(v)]
+[c: (), cp(v2)]=0,

where v, »nEl(_; and [c,.(v1), cpo(m)], (resp. [cu(v), cp(va)],) stands for
the g component (rvesp. the g+ component) of [cu.(v1), cu(2)]. Taking the
g-1 component of (5.2.1), we have

(X -1([w*, »*])=0.

This means that [#,*, »,*] is vertical and hence
(e ([n*, v:.* D =0.

Therefore, (5.2.2) yields
o(c,)P=0"" for every p.

Hence we have

ACe)?—H (e,)?) =A(e,)? =99 (c,)? =" (b°7). a.ed
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5.3. Flat differential equations. An integrable linear differential
equation = (M, E, R™) of type (I, p) is said to be flat if Hc,=0. In this
paragraph, we will show the following

THEOREM 5.3.1.  The model equation # s=(G/G’, Es, R?) of type
(1, p) is flat. Conversely every flat integrable linear differential equation %=
(M, E, R™) of type (1, p) is locally isomorphic to the model equation of type
{1, p).

PROOF.  The first assertion follows from [Proposition 3.4.1. Let #=
(M, E, R™) be a flat linear differential equation of type (I, p). From Theo-
rem 5. 2. 2, it follows that (c,.)?=0 for all ¢. Hence we have x,,=0and x =
x. Therefore (Q(#), x) is a flat Cartan connection of type G/G’. Conse-
quently, there exists a local bundle isomorphism Q(¢) of Q(#s) onto
Q(%) such that Q(d)*x=xs. By (2) of [Theorem 5.1.2, there exists a
local isomorphism ¢ of . #s onto .# which induces Q(¢). g.e.d.

5.4. The Lie subgroups G? of G, For each integer ¢=1, we define
a subgroup G? of G inductively by

G = {aE G(q—1)|Ad(d> (g_1+g(q_1)> :g_1+g(q—l)},

where g7~V denotes the Lie algebra of GV, Since Ad(a)g'? V=gV for
all ae€ GV, we may write

GO={ae G| Ad (@)g-1Cg_1+g 9"},
It is easy to see that G‘?D G’ for every q.

LEMMA 5.4.1. (1) The group G'9 consists of all elements a= G in
the form :

a=amexp(Xy) ... exp (X exp(Xqy) ... exp(X,1),

where = Gy, XpEqp for p=<q and X,=gl(S), for p=q+1. In particular
GP=G for g=zn—1.

2) g(q):(Iéogp)@(p'@)llgl(S)p). In particular ¢'? =g’ for qzn—1.
= =q+
PROOF. We proceed by induction on g. The case ¢=0 has already

shown in [Lemma 3.1.1. Assume that ¢=1 and that every element e G4~V
can be written in the form:

a=aexp(Xy) ... exp(Xq_pDexp(Xy) ... exp(X,1),
where q,€ Gy, XpEqp for p<q—1 and X,&gl/(S), for p=q. We put
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a'=apexp(Xy) ... exp(Xq-1),
a"=exp(Xy) ... exp(X,_p),
Since G'C G, aeG? if and only if "€ G?.
On the other hand, for every v&g_,, we have

Ad(a)v=v+[X, v] (mod. p@z-)q ().

Hence " G'? if and only if [X,, g-1]Cgqe-1. By (2) of Proposition 2. 2.2,
this is equivalent to the condition X,&gq,. The assertion now follows imme-
diately. g.e.d.

5.5. The functions ¢y. Let H be a connection in the principal bundle
P(#), namely, a subbundle of the tangent bundle 7 (P (%)) such that

T(P(E)e=HA+V(P(E))2 2€P (),
H,=R,.(H;), 2&P(%), acG®.

Then it follows from (4) of Proposition 3. 2. 2 that w_, : H,——{_1(=g_,) is
a linear isomorphism. For each v&!(_,, we define a vector field vy* by

(vg*) € H, for all zeP (%),
(w-p) (vg*) =v.

Now we define a C* valued function ¢y on P(%#) by
cy(2) (V) =w(vg*)..
We denote by (cy)? the C*! component of cy.

LEMMA 5.5.1. (1) cyza)=a'cy(2) for all zeP (%), ac= G,
2) (ew)?=0 for p<—1.
(en)’(2)(w)=v for all zeP(®), vEg_,.

PROOF. These assertions follow from Proposition 3.2.2 and the
definition of cy. qg.e. d.

Let H’ be another connection in P(#). For each vE1_;, we also define
a vector field vy* as above. Since vy*—uvy* is a vertical vector field, there
exists a unique Hom(1-,, ¢'?) valued function &y 4 on P(%) such that

(0r™) e = (Wp™) 2= (bu, (2D 0)*
for all zeP(%) and ve(_,. Clearly we have
(5.5.1)  ¢u—Cur=bu,n.
5.6. Normal G'? reduction of P(#). Let P‘9(%) be a G'? reduction



On differential invaviants of integrable finite type linear diffevential equations 191

of P(#). We choose a connection H in P(#) in such a way that
(5.6.1) H,eT(P9(%)), for all zeP9(%).

Let ¢ denote the C'(gt) component of ¢y. It should be remarked that for
every point zeP@ (%) and for every p<q+1, (¢%)?(z) does not depend on
the choice of the connection H satisfying (5.6.1). Indeed, if H’ is another
connection in P(%#) satisfying (5.6.1), then we have

by, i(z)EHom([_}, '?) for all z&P9(%).
Therefore, by (5.5.1), we have

(ea)?(2) = (eu)?(2) = (by,n)* (2)ECH ()

for every ze P 9(#) and p=<q+1.
These being remarked, we say that a G'? reduction P?(#) is normal
if 9*(cH)?=0 for all zeP9(#) and all p=q.

PROPOSITION 5.6.1.  For every mnonnegatve integer q, theve exists a
unique normal G2 reduction of P(%).

PROOF. We proceed by induction on ¢q. The case ¢=0 is trivial.
Assume that there exists a unique normal G‘? reduction P9 (%) of P(%).

Let H be a connection in P9(%#) satisfying (5.6.1). Then we have
2*(ci)?=0 for all zeP9(®) and p<q. Let PUY*Y(#) be the subset of
P9 (%) defined by

PO () ={2€P(H)|0* (c1) "1 (2) =0},

Note that the definition of P“*V(%) does not depend on the choice of the
connection H.

We claim that, for every point x& M, the fiber PU*V (%), of PV (%)
over x is nonempty. For this purpose, we fix a point zeP?(%#),. By (1)
of Lemma 5.5.1, we have

() (zrexp(Y ) =(e)™' () =Y, (en)’(2)]
=(cey) " (2)+2Y,

where Y €gl(S)441. Since C'=Ker o*®Im o, we can take Y in such a way
that 9*(cy) ' (z+exp(Y))=0. This means that z.exp(Y)e Pt (%).

Let zePY*Y (%) and a=G?. We will show that za= P+ (#) if and
only if ac GY*V. To see this, we write aeG'? asinLemma5.4. 1. We put
a=aexp (X)) ... exp(X,) and a"=exp(Xys1) ... exp(X,_;). Note that o'
G’ and hence a"l(p §?+ZC Pl(gt)) =, Ze(%z C?(gt). Therefore we have
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(5.6.2) (ch)(za)=a'(cH) (2)
a’”(péZq‘.ﬂ(C#)”(Z)) (mod. ) gGq-)HC""(gl)).

From Lemma 4. 6. 2 and the fact that , Y (¢H)?(z)eKer 9% it follows that

=q+1

a"l(pE l(cﬁ)"(z))EKer o*. Therefore, by (5.6.2), we have (¢ (za")
=9+

eKer 8* and hence za’€ PV (#). Thus we may assume that a’'=¢, 1.e,,
aw=e, X;=...=X,=0. Then we have

()™ (za) = (e () +[0X ]t

where [9X ,4,]* stands for the C ?*'!(gt) component of 09X 4,;. Hence
(et (za)eKer 9* if and only if [0X,,;]*<Ker 0*. By Lemma 4.6.3
this is equivalent to the condition X,:1€gq+1.

Thus we have shown that P“*V( %) is a principal G“*? bundle over M.
By the construction of P+ (%), it is clear that P9*V(%#) is a normal GV
reduction.

Next we will show the uniqueness of the normal GY“*V reduction of
P(%#). Let PY*V( %) be a normal G*V reduction of P(%). We choose a
connection H’ in P(%) in such a way that

H ,eT (P9 (%)), for all zeP*( %)’

Let P9( %)’ be the G'? extension of PY*V(%)’. Since every point z'&
P9(%#)” can be written in the form:

2 =z"exp(X), 27PN ®), X&gl(S)qs,
we have
(ciN?(2"exp (X)) =(cH)?(z”")eKer o* for all p=gq.

This shows that P‘?( %)’ is a normal G'? reduction of P(%). By induction
assumption, we have P9(%#) =P?(#). From the definition of PV (%),
it follows that P“*V( %) C PV (%). Since both PU¥*Y( %) and PYtV (%)
are principal G“*? bundles, we have Pt (%) =P+ (%). q.e.d.

5.7. Proof of Theorem 5.1.2. We are now in a position to complete
the proof of [Theorem 5.1.2. We first remark that G'=G""V. The asser-
tion (1) of [Theorem 5. 1. 2 follows from the next lemma.

LEMMA 5.7.1. A G’ reduction Q(#) of P(#) is normal in the sense
in 5.1 if and only if it is normal in the sense in 5. 6.

PrROOF. We choose a connection H in P(%#) such that
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H.eT(Q(#)), for all zeQ(%).

For each v&1_;, let v* be the vector field on Q(#) defined by x,(v*)=v and
let vy* be the vector field on P(%#) defined by w_,(vy*)=v and (vy*).€H,,
zeP(#). Then we see that v*—vy* is a vertical vector field. Hence there
exists a C'(g) valued function b such that

(0*);— (vg®) = (by(2)v)* for all ze@Q(#) and vel_,.

This yields ¢c—cy=0by. Hence we have c.=c3.  The assertion now follows
immediately g.e.d.

Next we will show (2) of [Theorem 5.1.2. Let ¢ be an isomorphism of
% onto #’. From [Proposition 3. 3. 1, it follows that there corresponds the
bundle isomorphism P(¢) : P(#)—P(#’) such that P(¢)*w'=w. Itis
easy to see that P(¢)(Q(%)) is also a normal G reduction of P(#’). From
the uniqueness of the normal G’ reduction, we conclude that Q(#")=P(¢)
(Q(#)). It is then clear that the restriction Q(¢) of P(¢) to Q(#) is a
bundle isomorphism of Q(#) onto Q(%#’) such that Q($)*x'=x.

Conversely let Q(¢): Q(#)—Q(#’) be a bundle isomorphism such
that Q(¢)*x’=x. Let P(¢) denote the extension of Q(¢) as a bundle
isomorphism of P(%) onto P(%#’). Clearly we have Q(¢)*x'=x. By
IProposition 3. 3. 1, there exists a unique bundle isomorphism ¢ of # onto %’
which induces P(¢). Thus we have proved [Theorem 5. 1. 2.

5.8. Invariants of linear ordinary differential equations. Let {, p and

S be as in Example 4. 3. 3. It is well known that g/(S)= ;él—_)l U,, where U, is

an irreducible [ submodule with dim U,=2p—1. Itis obvious that g*= pél_—)s U,.

Put U,,,=U,Ngl(S),. Then we have dim U, ,=1 for gq=—p+1, —p+
2,...,p—1land U, ,=01for g=—por g=p. Itisclearthatker o*NC'(g-H) =

' NC(gH) :p@g V*QUp,p-1.
THEOREM 5.8.1. For a linear ovdinary differential equation %

() urad(2) " urad (&) ut @ Du=0, the V*@Uppr

valued functions (c.)?, p=3, ..., n form the fundamental system of invar-
iants of .

Here we remark that oc,.=0 and hence c,.=Hc,..

EXAMPLE 5.8.2. Relation between the invariants (c,.)? and the



194 Y. Se-ashi

Laguerre-Forsyth’s invariants 6,. For the sake of the simplicity, we con-
sider the case where n=6. Let Y * be the vector field on Q(#) defined by
2, (Y=Y, Yesi(2, F) being defined as in Example 4. 3.3. Choosing the
basis &, S ..., S of S as in Example 4. 3. 3, we have

0 1 0 0 0 07

0 0 2 0 0 0

- 10¢3(2) 0 0 3 0 0
XY= 106,(2) 6az) 0 0 4 0
56(2) 4¢(2) 3¢(z) 0 0 5

6(2)  (2) a2 @) 0 0

for every point z€ Q(%), because of the normal condition.

Let z(t) be an integral curve of Y*. Since the map t€EF——x ()=
z(z(H))EM is a local diffeomorphism, we may regard ¢ as a local coordi-
nate system of M. For an arbitrary solution ¢ of #, we define a S valued
function #(¢) by

u(t)=z()'G%() xe))-
We express #(t) as

u()= R u(Ds.

It should be remarked that #,(#) can be considered as the coordinate of
o(x(#)) in the fiber E... Since j®(o) is a flat cross section of RS, it follows
that

‘w) (0 1 0 0 0 0Y(#) [0
" 0 0 2 0 0 01w 0
dlw| |[0a®d o 0 3 0 oflw| |0
g | T 106 6ad) 0 0 4 0llw| |0
" 56(8) 4, () 3¢t 0 0 5| u 0
L) L 6 6 a® o) 0 0JLu) LO J,

where we simply write ¢;(#)=c¢;(z(#)). By eliminating the variables u,,
u, ..., us from the above equations, we have a linear ordinary differential
equation of order 6

ul® 4+ 11230, + (168¢5" —216¢,) uy” + (96 ¢, — 216 ¢4’ +240¢5) uy’
+ (20" —60¢,” +120¢’ —120¢5+400¢3) 4 =0.

By comparing the coefficients @, a,, a@s, @ of a Laguerre-Forsyth’s canonical
form of #, we have
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az=112¢;

ay=168¢’—216¢,
as=96c"—216¢,+240¢;
a=20¢"—60¢,"4+120¢5’ —120¢s+400¢3

From these equalities, we have

_ 1 . _5,
5=112 "’3‘56 3
B 5
G=— 216 (a— 2"“ 147 ¢
_ 14 i "N _—_+
Cs—‘24—0(05“04 +14ds )—80 6s
10 1 1 9 1 1

G 3= m(de——z—aﬁ'+©—fl4"*ﬁae"’):—mﬁs
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