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Abstract

Let \mathscr{M} be a semifinite von Neumann algebra on a separable Hilbert space
with a faithful normal semifinite trace \tau on \mathscr{M} . Between \tau-measurable
operators, the condition of unitary mixing and other similar ones are char-
acterized in terms of the spectral relations such as the (sub)majorization.
Among other things, it is proved that, for positive x and y in L^{1}(\mathscr{M}:\tau) , x is
in the ||\cdot||_{1} -closed convex hull of the unitary orbit of y if and only if the
majorization ex\prec ey holds for every central projection e .

Introduction

As a noncommutative measure space, let (\mathscr{M}, \tau) be a pair of a
semifinite von Neumann algebra \mathscr{M} and a faithful normal semifinite trace \tau

on \mathscr{M} . The noncommutative integration theory (in the semifinite case) was
initiated by Segal [27] and Dixmier [10] (also [24]), and the noncom-
mutative probability theory was developed by Umegaki [32]. The concept
of \tau-measurable operators was introduced by Nelson [22]. The space \tilde{\mathscr{M}} of
\tau-measurable operators affiliated with \mathscr{M} gives a nice foundation for the
noncommutative L^{p} space L^{p}(\mathscr{M}:\tau) . The notion of generalized s-numbers
of \tau-measurable operators extends the usual s-numbers of compact operators
and the decreasing rearrangements of measurable functions. This notion
has been studied in some contexts by several authors (see [12, 14, 25, 28, 33]
for instance). Recently Fack and Kosaki [13] established an extensive and
unified exposition on generalized s-numbers of \tau-measurable operators.

Between positive selfadjoint x and y in \tilde{\mathscr{M}} , the spectral relations of
majorization x\prec y , submajorization x\prec. y , spectral dominance x\leq y and spec-
tral equivalence x\approx y are defined by means of the generalized s-numbers of x
and y . The precise definitions of these will be given in \S 1 of this paper.
The notions of majorization and submajorization have been extensively
studied in theory of matrices (see Marshall and Olkin [21] and Ando [3]).
We discussed in [15] those spectral relations in connection with doubly
(sub)stochasic maps on \mathscr{M} . Furthermore, when \mathscr{M} is a factor, we char-
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acterized them by the conditions of unitary (or contraction) mixing. For
instance, we showed there that, for positive x and y in L^{1}(\mathscr{M}:\tau) , the
majorization x\prec y (resp. the submajorization x\prec. y ) is equivalent to the
condition of x being in the ||\cdot||_{1} -closed convex hull of { uyu^{*}: u\in \mathscr{M} unitary}
(resp. \{aya^{*}: a\in \mathscr{M}, ||a||\leqq 1\}). This condition of unitary mixing was inves-
tigated by Alberti and Uhlmann [2] in more general setup. In particular if
\mathscr{M} is commutative, then the above condition is nothing but x=y (resp. x\leqq

y) . When \mathscr{M} is not a factor, it would be quite naturally expected that the
above condition of unitary (contraction) mixing follows from the (sub)
majorization restricted on each central projection in \mathscr{M} , namely ex\prec ey(ex\prec

ey) for all central projection e . The aim of this paper is to establish such
results. Our main tool is the reduction of general (\mathscr{M}, \tau) to factor cases by
theory of direct integral decompositions (cf. [11, 30]).

In this paper, let (\mathscr{M}, \tau) be as above. \S 1 contains definitions and
notations on generalized s-numbers of \tau-measurable operators and the spec-
tral relations raised above. Also, for the convenience of the reader, we
summarize the results in [15] concerning characterizations of those spectral
relations in case of \mathscr{M} being a factor. Although the central decomposition of

\mathscr{M} into factors is enough for our main purpose, we assume in \S \S 2, 3 that \mathscr{M}

is expressed as the direct integral \mathscr{M}=\int_{\Gamma}^{\oplus}\mathscr{M}(\gamma)d\nu(\gamma) of a measurable field
\gammaarrow \mathscr{M}(\gamma) of von Neumann algebras on a standard \sigma-finite measure space

(\Gamma, \nu) . Then \tau is expressed as the direct integral \tau=\int_{\Gamma}^{\oplus}\tau_{\gamma}d\nu(\gamma) of a unique

(a. e.) measurable field \gammaarrow\tau_{\gamma} of faithful normal semifinite traces \tau_{\gamma} on
\mathscr{M}(\gamma) . Moreover each x\in\tilde{\mathscr{M}} is decomposed by the direct integral x=

\int_{\Gamma}^{\oplus}x(\gamma)d\nu(\gamma) of a unique (a. e.) measurable field \gammaarrow x(\gamma) of x(\gamma)\in

\tilde{\mathscr{M}}(\gamma) . We refer to [7, 20, 23] for direct integral decompositions of un-
bounded operators. In \S 2, for \tau-measurable operators x and y , the
componentwise spectral relations such as x(\gamma)\prec y(\gamma)a . e . are characterized
by the corresponding spectral relations restricted on each projection in the
diagonal algebra (\cong L^{\infty}(\Gamma ; \nu)) . In \S 3, the conditions such as the unitary
mixing are shown to be equivalent to their componentwise conditions.
Finally in \S 4, we assume that the representing Hilbert space for \mathscr{M} is
separable. Then we establish the main results by decomposing \mathscr{M} into
factors and by combining the theorems obtained in \S \S 2, 3 with the results in
the factor case.

1. Preliminaries

Let \mathscr{M} be a semifinite von Neumann algebra on a Hilbert space \mathscr{H} with
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a faithful normal semifinite trace \tau . A densely-defined closed operator x
affiliated with \mathscr{M} is said to be \tau-measurable if there is, for each \delta>0 , a
projection e in \mathscr{M} such that e\mathscr{H}\subseteq \mathscr{D}(x) and \tau(1-e)<\delta. We denote by \tilde{\mathscr{M}}

the set of all \tau-measurable operators affiliated with \mathscr{M} . Then \tilde{\mathscr{M}} becomes a
complete Hausdorff topological * -algebra in the measure topology with
respect to strong sum \overline{x+y} and strong product \overline{xy} (denoted simply by x+y
and xy in this paper). Here the measure topology on \tilde{\mathscr{M}} is the linear topol-
ogy given by the fundamental system \{\mathscr{O}(\epsilon, \delta):\epsilon, \delta>0\} of neighborhoods
of 0 where

\mathscr{O}(\epsilon, \delta)=\{x\in\tilde{\mathscr{M}}:||xe||\leqq\epsilon and \tau(1-e)\leqq\delta

for some projection e in \mathscr{M}}.

For details on \tau-measurable operators, see [22, 31] . For each subspace \mathscr{L}

of \tilde{\mathscr{M}} , the set of all selfadjoint (resp. positive selfadjoint) elements in \mathscr{L} is
denoted by \mathscr{L}_{-sa} (resp. \mathscr{L}_{+} ). For 1\leqq p<\infty , L^{p}(\mathscr{M})=L^{p}(\mathscr{M};\tau) is the non-
commutative L^{p} space on (\mathscr{M}, \tau) , that is, the Banach space consisting of all
x\in\tilde{\mathscr{M}} such that the norm ||x||_{p}=\tau(|x|^{p})^{1/p} is finite (see [10, 22, 27]). More-
over let \tilde{\mathfrak{S}} be the closure of L^{1}(\mathscr{M}) in \tilde{\mathscr{M}} in the measure topology. Then \tilde{\mathfrak{S}}

includes all L^{p}(\mathscr{M}) , 1\leqq p<\infty . If \tau is finite (i. e. \tau(1)<\infty) , then \tilde{\mathfrak{S}}=\tilde{\mathscr{M}} is
the set of all densely-defined closed operators affiliated with \mathscr{M} .

For each x\in\tilde{\mathscr{M}}_{sa} and each interval I in R, let e_{I}(x) denote the spectral
projection of x corresponding to Ir For x\in\tilde{\mathscr{M}} and t>0 , the generalized
s-number \mu_{t}(x) is defined by

\mu_{t}(x)=\inf\{s\geqq 0:\tau(e_{(S,\infty)}(|x|))\leqq t\} .

A complete exposition on generalized s-numbers is found in [13]. Further-
more, when \tau(1)<\infty , we define the spectral scale \lambda_{t}(x) of x\in\tilde{\mathscr{M}}_{sa} by

\lambda_{t}(x)=\inf\{s\in R:\tau(e_{(S,\infty)}(x))\leqq t\} , 0<t<\tau(1) .

Obviously, if x\in\tilde{\mathscr{M}}_{+} , then \lambda_{t}(x)=\mu_{t}(x) for t\in(0, \tau(1)) . The properties of
spectral scales are analogous to those of generalized s-numbers (cf. [26],
[15, \S 6] ) .

In particular, let \mathscr{M} be a factor of type I , namely, \mathscr{M}=B(\mathscr{H}) the algebra
of all bounded operators on \mathscr{H}. Then \tilde{\mathscr{M}} is B(\mathscr{H}) itself with the usual norm
topology and \tilde{\mathfrak{S}} is the algebra of all compact operators on \mathscr{H}. In this case,
the generalized s-numbers \mu_{t}(x) of a compact operator x mean the usual
singular values of x arranged in decreasing order. When \mathscr{M} is the n\cross n

matrix algebra, the spectral scale \lambda_{t}(x) of a Hermitian matrix x means the
eigenvalues of x in decreasing order.

Next, let \mathscr{M} be commutative, namely, \mathscr{M}=L^{\infty}(\Omega;m) and \tau(f)=
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\int_{\Omega}fdm on a localizable measure space (\Omega, m) . Then \tilde{\mathscr{M}} consists of all

measurable functions on \Omega bounded except on m-finite sets. For a real
measurable function f on \Omega , the decreasing rearrangement f^{*} of f (cf.

[6, 29]) is given by

f^{*}(t)= \inf\{s\in R:m(\{\omega\in\Omega:f(\omega)>s\})\leqq t\} , 0<t<m(\Omega) .

If f\in\tilde{\mathscr{M}} , then \mu_{t}(f)=\psi|^{*}(t) for all t\in(0, m(\Omega)) . If m(\Omega)<\infty and f is
real measurable on \Omega , then \lambda_{t}(f)=f^{*}(t) for all t\in(0, m(\Omega)) .

Here we note that an x\in\tilde{\mathscr{M}} belongs to \tilde{\mathfrak{S}} if and only if \tau(e_{ts,\infty)}(|x|))<\infty

for all s>0 , or equivalently \lim_{tarrow\infty}\mu_{t}(x)=0 (see [13, Proposition 3. 2] and

[15, Proposition 1. 3] ) . Also x belongs to the algebraic sum L^{1}(\mathscr{M})+\mathscr{M} if

and only if \int_{0}^{s}\mu_{t}(x)dt<\infty for some (hence all) s>0 (see [15,\cdot Proposition

1. 2]).
Several spectral relations between \tau-measurable operators will be con-

sidered in this paper. For x, y\in\tilde{\mathscr{M}}_{+} , x is said to be submajorized by y , in

notation x\prec y , if \int_{0}^{s}\mu_{t}(x)dt\leqq\int_{0}^{s}\mu_{t}(y)dt for all s>0 . Furthermore x is said

to be majorized by y, in notation x\prec y , if x\prec y and \int_{0}^{\infty}\mu_{t}(x)dt=\int_{0}^{\infty}\mu_{t}(y)dt

( i . e . \tau(x)=\tau(y) permitting the value \infty). When \tau(1)<\infty , these are

extended to x, y\in\tilde{\mathscr{M}}_{sa} as follows: x\prec. y if \int_{0}^{s}\lambda_{t}(x)dt\leqq\int_{0}^{s}\lambda_{t}(y)dt for all s\in

(0, \tau(!)) , and x\prec y if x\prec y and \int_{0}^{\tau(1)}\lambda_{t}(x)dt=\int_{0}^{\tau(1)}\lambda_{t}(y)dt(i. e. \tau(x)=\tau(y)

permitting \pm\infty).

Two further spectral relations will be considered. For x, y\in\tilde{\mathscr{M}}_{+} , we
say that x is spectrally dominated by y , in notation x\leq y , if \mu_{t}(x)\leqq\mu_{t}(y) for
all t>0 , or equivalently if \tau(e_{ts.\infty))}(x))\leqq\tau(e_{(S,\infty)}(y)) for all s\geqq 0 . We say
that x is spectrally equivalent to y , in notation x\approx y , if x\leq y and y\leq x , namely
\mu_{t}(x)=\mu_{t}(y) for all t>0 . When \tau(1)<\infty , x\leq y and x\approx y are defined for x,
y\in\tilde{\mathscr{M}}_{sa} with the use of \lambda_{t}(\cdot) in place of \mu_{t}(\cdot) .

For each y\in\tilde{\mathscr{M}}, we define the subsets U(y) and C(y) of \tilde{\mathscr{M}} by

U(y)=\{uyu^{*} : u\in U(\mathscr{M})\} ,
C(y)=\{aya^{*} : a\in \mathscr{M}_{1}\} ,

where U(\mathscr{M}) is the set of all unitaries in \mathscr{M} and \mathscr{M}_{1}=\{a\in \mathscr{M}: ||a||\leqq 1\} . The
convex hull of U(y) (resp. C(y) ) is denoted by conv U(y) (resp.

conv C(y)) . For x, y\in\tilde{\mathscr{M}} , the condition x\in U(y) means that x is unitarily
equivalent to y in the exact sense. But it is suitable for our study to consider
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by [13, Lemma 4. 1]. The same consideration works as well for x, y\in

L^{1}(\mathscr{M})_{sa} when \tau(1)<\infty . Hence the assertion (1) is obtained.

REMARK 1. 4. In particular when \mathscr{M}=B(\mathscr{H}) , it is known (cf. [4, 9])
that, for each normal operators x and y on \mathscr{H} , x is in the norm-closure of
U(y) if and only if they have the same crude multiplicity function. Here the
crude multiplicity function of x is the function on C which assigns the
cardinal number \inf_{r>0} [rank e_{D(\zeta,\gamma)}(x) ] to each \zeta\in C , where e_{D(\zeta,r)}(x) is the

spectral projection of x corresponding to the disk D(\zeta, r) of center \zeta and
radius r . The generalized s-numbers of a compact x\in B(\mathscr{H})_{+} have as much
information as its crude multiplicity function. So Theorem 1. 1 (4) in case of
\mathscr{M}=B(\mathscr{H}) is regarded as a special case of the above result. However, as
immediately seen, Theorem 1. 1 (4) fails to hold for general x, y\in B(\mathscr{H})_{+} .

2. Spectral relations for direct integrals

Throughout this and next sections, let \mathscr{M} be a semifinite von Neumann
algebra on \mathscr{H} expressed as the direct integral \{\mathscr{M}, \mathscr{H}\}=

\int_{\Gamma}^{\oplus}\{\mathscr{M}(\gamma),\mathscr{H}(\gamma)\}d\nu(\gamma) of a measurable field \gammaarrow\{\mathscr{M}(\gamma), \mathscr{H}(\gamma)\} of von
Neumann algebras on a standard \sigma-finite measure space (\Gamma. \mathscr{B}, \nu) . We
assume without loss of generality that \mathscr{M}(\gamma) is semifinite for every \gamma\in\Gamma .
Given a faithful normal semifinite trace \tau on \mathscr{M}, there exists a unique (in the
a . e . sense) measurable field \gamma

–
\tau_{\gamma} of faithful normal semifinite traces \tau_{\gamma}

on \mathscr{M}(\gamma) such that \tau=\int_{\Gamma}^{\oplus}\tau_{\gamma}d\nu(\gamma) (see [11, \S II . 5]). For each \gamma\in\Gamma . 1_{\gamma}

denotes the identity operator on \mathscr{H}(\gamma) . Let \mathscr{A} be the diagonal algebra, that

is, \mathscr{A}=\int_{\Gamma}^{\oplus}C1_{\gamma}d\nu(\gamma)\cong L^{\infty}(\Gamma;\nu) . The spaces \tilde{\mathscr{M}}(\gamma),\tilde{\mathfrak{S}}(\gamma) and L^{p}(\mathscr{M}(\gamma))

with respect to (\mathscr{M}(\gamma), \tau_{\gamma}) are defined as well as \tilde{\mathscr{M}}.\tilde{\mathfrak{S}} and L^{p}(\mathscr{M}) with
respect to (\mathscr{M}, \tau) .

If x is a densely-defined closed operator on \mathscr{H} affiliated with \mathscr{M} , then
there exists a unique (a. e.) measurable field \gammaarrow x(\gamma) of closed operators

such that x= \int_{\Gamma}^{\oplus}x(\gamma)d\nu(\gamma) (cf. [7, 20, 23]). For convenience, we give in

the next lemma some elementary facts on direct integral decompositions of
\tau-measurable operators.

LEMMA 2. 1. Let x, y\in\tilde{\mathscr{M}} , x= \int_{\Gamma}^{\oplus}x(\gamma)d\nu(\gamma) and y= \int_{\Gamma}^{\oplus}y(\gamma)d\nu(\gamma) .

Then:

(1) \tau(e_{(s,\infty)}(|x|))=\int_{\Gamma}\tau_{\gamma}(e_{ts,\infty)}(|x(\gamma)|))d\nu(\gamma) , s\geqq 0 .
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that x is in the closure of U(y) in the measure topology (or in the norm
||\cdot||_{p} when y\in L^{p}(\mathscr{M})) . Also the condition of x being in the closure of
conv U(y) means that x is more unitarily mixed than y . The similar condi-
tions are considered with C(y) in place of U(y) . Our main purpose is to
characterize those conditions in terms of the spectral relations. This will be
done in \S 4. Such characterizations were obtained in [15] (also [18, 19])
when \mathscr{M} is a factor. For convenience, we summarize them in the following:

THEOREM 1. 1. Assume that \mathscr{M} is a semifinite factor. Then:
(1) If x\in\tilde{\mathscr{M}}_{+} and y\in L^{1}(\mathscr{M})_{+} (or x\in\tilde{\mathscr{M}}_{sa} and y\in L^{1}(\mathscr{M})_{sa} when

\tau(1)<\infty) , then x\prec y if and only if x is in the ||\cdot||_{1} closure of conv U(y) .
(2) If x\in\tilde{\mathscr{M}}_{+} and y\in(L^{1}(\mathscr{M})+\mathscr{M})_{+}\cap\tilde{\mathfrak{S}} , them x\prec. y if and only if x is

in the closure of conv C(y) in the measure topology. If x\in\tilde{\mathscr{M}}_{+} and y\in

L^{p}(\mathscr{M})_{+} with 1\leqq p<\infty , them x\prec. y if and only if x is in the ||\cdot||_{p} closure of
conv C(y) .

(3) If x\in\tilde{\mathscr{M}}_{+} and y\in(L^{1}(\mathscr{M})+\mathscr{M})_{+}\cap\tilde{\mathfrak{S}}, then x\leq y if and only if x is
in the closure of C(y) in the measure topology.

(4) If x\in\tilde{\mathscr{M}}_{+} and y\in\tilde{\mathfrak{S}}_{+} (or x, y\in\tilde{\mathscr{M}}_{sa} when \tau(1)<\infty), them x\approx y if
and only if x is in the closure of U(y) in the measure topology.

REMARK 1. 2. As to the above assertions (2) (the first part) and (3),

we showed them in [15] in case of x\in\tilde{\mathfrak{S}}_{+} and y\in(L^{1}(\mathscr{M})+\mathscr{M})_{+} . But they
hold in the above case too. In fact, let x\in\tilde{\mathscr{M}}_{+} and y\in(L^{1}(\mathscr{M})+\mathscr{M})_{+}\cap\tilde{\mathfrak{S}} .
Then C(y) is included in \tilde{\mathfrak{S}} (cf. [13, Lemma 2. 5]) and hence so is the
closure of conv C(y) in the measure topology. Also, if x\prec. y , then we get x
\in\tilde{\mathfrak{S}} (see [15, Proposition 2. 1]). Hence each condition relevant to (2) or
(3) implies x\in\tilde{\mathfrak{S}} .

REMARK 1. 3. It is worth noting that Theorem 1. 1(1) can be shown
through Ky Fan functional instead of the direct proof in [15]. In our case,
Ky Fan functional K(\chi_{ \cdot)}, of x\in L^{1}(\mathscr{M})(=\mathscr{M}_{*}) is given by

K(x, a)= \sup_{u\in U’ J)}{\rm Re}\tau(xu^{*}au) , a\in \mathscr{M} .

According to [2, Theorem 3-8], if x, y\in L^{1}(\mathscr{M})_{+} and \tau(x)=\tau(y) , then x is
in the ||\cdot||_{1} closure of conv U(y) if and only if K(x, e) K(x, e) for every
projection e in \mathscr{M} . This is a consequence of the “

\sum -property ” of Ky Fan
functional (see [1, 2]). When \mathscr{M} is a factor, if x\in L^{1}(\mathscr{M})_{+} and e is a projec-
tion in \mathscr{M} with \tau(e)<\infty , then we have

K(x, e)= \sup { \tau(xe’):e’ is a projection in \mathscr{M} with \tau(e’)=\tau(e) }
= \int_{0}^{r(e)}\mu_{t}(x)dt
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(2) x(\gamma)\in\tilde{\mathscr{M}}(\gamma)a . e.
(3) The direct integral decompositions of x+y and xy are x+y=

\int_{\Gamma}^{\oplus}\{x(\gamma)+y(\gamma)\}d\nu(\gamma) and xy= \int_{\Gamma}^{\oplus}x(\gamma)y(\gamma)d\nu(\gamma) .
(4) If x\in\tilde{\mathfrak{S}} , then x(\gamma)\in\tilde{\mathfrak{S}}(\gamma)a . e.
(5) If x\in L^{p}(\mathscr{M}) where 1\leqq p<\infty , then x(\gamma)\in L^{p}(\mathscr{M}(\gamma))a . e . and

||x||_{p}=[ \int_{\Gamma}||x(\gamma)||_{p}^{p}d\nu(\gamma)]^{1/p}

PROOF. (1) and (5) are readily seen from [20, \S 1]. It follows
from (1) that \lim_{sarrow\infty}\tau_{\gamma}(e_{(s,\infty)}(|x(\gamma)|))=0a . e. , showing (2). Let e_{n}=e_{[0,n]}(|x|)

\wedge e_{[0,n]}(|y|)\wedge e_{[0,n]}(|x+y|) and e_{n}= \int_{\Gamma}^{\oplus}e_{n}(\gamma)d\nu(\gamma) for n\geqq 1 . Then \lim_{narrow\infty}\tau(1-e_{n})

=0 and hence \lim_{narrow\infty}\tau_{\gamma}(1-e_{n}(\gamma))=0a . e . Since

(x+y)e_{n}= \int_{\Gamma}^{\oplus}(x+y)(\gamma)e_{n}(\gamma)d\nu(\gamma)

and

xe_{n}+ye_{n}= \int_{\Gamma}^{\oplus}\{x(\gamma)e_{n}(\gamma)+y(\gamma)e_{n}(\gamma)\}d\nu(\gamma)

from the boundedness of xe_{n} and ye_{n} , we have

(x+y)(\gamma)e_{n}(\gamma)=x(\gamma)e_{n}(\gamma)+y(\gamma)e_{n}(\gamma)a . e .

By taking the limits of this both sides in the measure topology, we obtain the
first part of (3). We can show the second part similarly by considering
e_{n}(xy)e_{n}=(e_{n}x)(ye_{n}) where e_{n}=e_{[0,n]}(|x^{*}|)\wedge e_{[0,n]}(|y|)\wedge e_{[0,n]}(|xy|) . If x\in\tilde{\mathfrak{S}} ,

then it follows from (1) that \tau_{\gamma}(e_{(s,\infty)}(|x(\gamma)|))<\infty a . e . for all s>0 . Hence
(4) is obtained. \square

Let \tilde{\Gamma}=\Gamma\cross(0, \infty) and \tilde{\nu} be the product measure of \nu and the Lebesgue
measure on (0, \infty) . The Lebesgue measure of a Borel subset S of (0, \infty) is
denoted by |S| . A function on \tilde{\Gamma} is considered to be defined except on some

\tilde{\nu}-null set. For each x\in\tilde{\mathscr{M}} with x= \int_{\Gamma}^{\oplus}x(\gamma)d\nu(\gamma) , in view of Lemma 2. 1 (2),

we define a function \Psi(x) : \tilde{\Gamma}arrow[0, \infty) by

\Psi(x)(\gamma, t)=\mu_{t}(x(\gamma)) , (\gamma, t)\in\tilde{\Gamma} .

When \tau(1)<\infty and hence \tau_{\gamma}(1_{\gamma})<\infty a . e. , for each x\in\tilde{\mathscr{M}}_{sa} we define a
function \Phi:\tilde{\Gamma}_{1}arrow R by

\Phi(x)(\gamma, t)=\lambda_{t}(x(\gamma)) , (\gamma, t)\in\tilde{\Gamma}_{1} ,

where \tilde{\Gamma}_{1}=\{(\gamma, t)\in\tilde{r} : 0<t<\tau_{\gamma}(1_{\gamma}), \gamma\in\Gamma\} , a measurable subset of \tilde{\Gamma} with
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\tilde{\nu}(\tilde{\Gamma}_{1})=\tau(1) . The next lemma will be very important in later discussions.

LEMMA 2. 2. (1) If x\in\tilde{\mathscr{M}},\ulcorner then \Psi(x) is \tilde{\nu}-measurable and \mu_{t}(x)=

\Psi(x)^{*}(t) , the decreasing rearrangement of \Psi(x) , for all t>0 .
(2) If \tau(1)<\infty and x\in\tilde{\mathscr{M}}_{sa}, then \Phi(x) is \tilde{\nu}-measurable and \lambda_{t}(x)=

\Phi(x)^{*}(t) for all t\in(0, \tau(1)) .

PROOF. (1) Let f(\gamma, s)=\tau_{\gamma}(e_{(s,\infty)}(|x(\gamma)|)) for (\gamma, s)\in\Gamma\cross[0, \infty) .
For each integers n\geqq 1 and 1\leqq k\leqq n2^{n} , let \{E_{j}^{(n},2:0\leqq j\leqq n2^{n}\} be a measur-
able partition of \Gamma given by

E_{j}^{(n},2=\{\gamma\in\Gamma : j/2^{n}\leqq f(\gamma, k/2^{n})<(j+1)/2^{n}\} , 0\leqq j\leqq n2^{n}-1 ,
E_{n2^{n},k}^{(n)}=\{\gamma\in\Gamma : f(\gamma, k/2^{n})\geqq n\} .

Define f_{n} : \Gamma\cross[0, \infty)arrow[0, \infty) by

f_{n}(\gamma, s)=\{
j/2^{n} on E_{j}^{(n},2\cross[(k-1)/2^{n}, k/2^{n}) , 0\leqq j\leqq n2^{n} , 1\leqq k\leqq n2^{n} ,
0 on \Gamma\cross[n, \infty) ,

and g_{n} : [o, \infty)– [0, \infty] by g_{n}(s)= \int_{\Gamma}f_{n}(\gamma, s)d\nu(\gamma) . Let \{E_{i}^{(n)}\}_{i} be the
refinement of partitions \{E_{j}^{(n},2\}_{j} , 1\leqq k\leqq n2^{n} . Then f_{n} and g_{n} are written as
follows:

f_{n}( \gamma, s)=\sum_{k=1}^{n2^{n}}\sum_{i}\alpha_{i}^{(n},2_{\mathcal{X}}E_{l}^{(n)}\cross l(k-1)/2^{n},k/2^{n})(\gamma, s) ,

g_{n}(s)= \sum_{k=1}^{n2^{n}}\beta t^{n)}\chi l(k-1)/2^{n},k/2^{n})(s) ,

where \alpha_{i}^{tn},j\geqq\ldots\geqq\alpha_{i,n2^{n}}^{(n)}\geqq 0 , \beta t^{n)}=\sum_{i}\alpha_{i}^{(n},2\nu(E_{i}^{(n)}) , and Xs denotes the charac-
teristic function of a set S. Now let F_{n} : \tilde{\Gamma}arrow[0, \infty) and G_{n} : (0, \infty)arrow

[0, \infty) be given by

F_{n}( \gamma, r)=\inf\{s\geqq 0:f_{n}(\gamma, s)\leqq r\}

=\{
(k-1)/2^{n} on E_{i}^{(n)}\cross[\alpha_{i}^{(n},2, \alpha_{i}^{(n},2_{-1}) , 1\leqq k\leqq n2^{n} ,
n on E_{i}^{(n)}\cross(0_{ \alpha_{i,n2^{n}}}^{(n)},) ,

G_{n}(t)= \inf\{s\geqq 0:g_{n}(s)\leqq t\}

= \sum_{k=1}^{n2^{n}}(k-1)/2^{n}\chi l\beta 1^{n)},\beta t_{-1}^{n)})(t)+n\chi_{(0},\beta_{n2^{n}}^{tn)}\rangle(t) ,

with conventions \alpha_{i}^{(n},l=\beta@^{n)}=\infty . Since

\tilde{\nu}(\{(\gamma^{ r)\in\tilde{\Gamma}}, ^{:} ^{F_{n}(\gamma, r)\geqq k/2^{n}\})=\tilde{\nu}(\bigcup_{i}[E_{i}^{(n)}\cross(0, \alpha_{i}^{(n}2)])},

=\beta t^{n)}=|\{t>0:G_{n}(t)\geqq k/2^{n}\}| ,

it follows that F_{n}^{*}(t)=G_{n}(t) for all t>0 . Since f_{n}(\gamma, s)\nearrow f(\gamma, s) for all (\gamma, s)
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\in\Gamma\cross[0, \infty) , we get F_{n}(\gamma, r)\nearrow\Psi(x)(\gamma, r) for all (\gamma, r)\in\tilde{\Gamma} , so that \Psi(x)

is \tilde{\nu}-measurable and F_{n}^{*}(t)\nearrow\Psi(x)^{*}(t) , t>0 . Furthermore we get g_{n}(s)\nearrow

\tau(e_{(s,\infty)}(|x|)) for all s\geqq 0 by Lemma 2. 1(1) and the monotone convergence
theorem, so that G_{n}(t)\nearrow\mu_{t}(x) , t>0 . Therefore \mu_{t}(x)=\Psi(x)^{*}(t) .

(2) It may be assumed that \tau_{\gamma}(1_{\gamma})<\infty and x(\gamma)\in\tilde{\mathscr{M}}(\gamma)_{sa} for every \gamma\in

\Gamma . Letting f(\gamma, s)=\tau_{\gamma}(e_{(s,\infty)}(x(\gamma))) for (\gamma, s)\in\Gamma\cross R , we define for each
n\geqq 1

E_{j}^{(n},2=\{\gamma\in\Gamma:j/2^{n}\leqq f(\gamma, k/2^{n})<(j+1)/2^{n}\} , j\geqq 0 , - n2^{n}\leqq k\leqq n2^{n} ,

f_{n}(\gamma, s)=\{

j/2^{n} on E_{j,-n2^{n}}^{(n)}\cross(-\infty, -n) , j\geqq 0 ,
j/2^{n} on E_{j}^{(n},2\cross[(k-1)/2^{n}, k/2^{n}) , j\geqq 0 , - n2^{n}+1\leqq k\leqq n2^{n} ,

0 on \Gamma\cross[n, \infty) ,

and g_{n}(s)= \int_{\Gamma}f_{n}(\gamma, s)d\nu(\gamma) , s\in R . Then f_{n}(\gamma, s)\nearrow f(\gamma, s) for all (\gamma, s)\in

\Gamma\cross R and g_{n}(s)\nearrow\tau(e_{(S,\infty)}(x)) for all s\in R . Now we can proceed as in the
proof of (1). So the details may be omitted. \square

In the sequel of this section, we shall discuss the spectral relations
described in \S 1 between x, y\in\tilde{\mathscr{M}}_{+} (or x, y\in\tilde{\mathscr{M}}_{sa}) under the direct integral

decompositions x= \int_{\Gamma}^{\oplus}x(\gamma)d\nu(\gamma) and y= \int_{\Gamma}^{\oplus}y(\gamma)d\nu(\gamma) .

THEOREM 2. 3. For every x, y\in\tilde{\mathscr{M}}_{+} , the following conditions are equiv-
alent:

(i) ex\prec ey for every projection e in \mathscr{A} ;
(ii) ax\prec ay for eve\eta a\in \mathscr{A}+ ;
(iii) x(\gamma)\prec y(\gamma)a . e .

PROOF. (iii)\Rightarrow(ii) . For a= \int_{\Gamma}^{\oplus}\alpha(\gamma)1_{\gamma}d\nu(\gamma) with \alpha\in L^{\infty}(\Gamma j\nu)_{+} ,

(iii) implies that (ax) (\gamma)=\alpha(\gamma)x(\gamma)\prec\alpha(\gamma)y(\gamma)=(ay)(\gamma)a . e . So it is
enough to show the case a=1 . By Lemma 2. 2(1) , we observe (cf. [29, p .
202]) that

\int_{0}^{r}\mu_{s}(x)dt=\sup\{\int_{H}\Psi(x)(\gamma, t)d\tilde{\nu}(\gamma, t) :
H\subseteq\tilde{\Gamma} measurable, \tilde{\nu}(H)=r\}

for every r>0 . For a measurable subset H of \tilde{\Gamma} with \tilde{\nu}(H)=r , let H’=
\{(\gamma, t)\in\tilde{\Gamma} : 0<t<|H_{\gamma}|, \gamma\in\Gamma\} where H_{\gamma} is the \gamma-section of H . Then

\int_{H}\Psi(x)(\gamma, t)d\tilde{\nu}(\gamma, t)=\int_{\Gamma}\int_{H\gamma}\mu_{t}(x(\gamma))dtd\nu(\gamma)

\leqq\int_{\Gamma}\int_{0}^{|H\gamma|}\mu_{t}(y(\gamma)) dtdv (\gamma) (by (iii))
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= \int_{H}\Psi(y)(\gamma, t)d\tilde{\nu}(\gamma, t)

\leqq\int_{0}^{r}\mu_{s}(y)ds

by \tilde{\nu}(H’)=r and Lemma 2. 2(1) Since \int_{0}^{r}\mu_{s}(x)ds\leqq\int_{0}^{r}\mu_{s}(y)ds for every
r>0 , so that x\prec y because \tau(x)=\tau(y) follows from (iii).

(ii)\Rightarrow(i) is trivial.
(i)\Rightarrow(iii) . For every E\in \mathscr{B}, letting e= \int_{\Gamma}^{\oplus}\chi_{E}(\gamma)1_{\gamma}d\nu(\gamma) , we have

\int_{E}\tau_{\gamma}(x(\gamma))d\nu(\gamma)=\tau(ex)=\tau(ey)=\int_{E}\tau_{\gamma}(y(\gamma))d\nu(\gamma) ,

so that \tau_{\gamma}(x(\gamma))=\tau_{\gamma}(y(\gamma))a . e . For n\geqq 1 , define F_{n} : \tilde{\Gamma}arrow[0, \infty) by

F_{n}(\gamma, t)=\{
1/2^{n} if 0\leqq\Psi(y)(\gamma, t)\leqq 1/2^{n} ,
j/2^{n} if (j-1)/2^{n}<\Psi(y)(\gamma, t)\leqq j/2^{n} , j\geqq 2 .

Since \int_{0}^{r}F_{n}(\gamma, t)dt\searrow\int_{0}^{r}\Psi(y)(\gamma, t)dt for each 0<r<\infty , it suffices to show

that \int_{0}^{r}\Psi(x)(\gamma, t)dt\leqq\int_{0}^{r}F_{n}(\gamma, t)dta . e . for every n\geqq 1 and every rational
number r>0 . If this does not hold, then

\nu(\{\gamma\in\Gamma:\int_{0}^{r}\Psi(x)(\gamma, t)dt>\int_{0}^{r}F_{n}(\gamma, t)dt\})>0

for some n\geqq 1 and some r>0 . From the countability of values of F_{n} , we can
choose an E\in \mathscr{B} with 0<\nu(E)<\infty such that F_{n}(\cdot, r) is constant on E and
\int_{0}^{r}\Psi(x)(\gamma, t)dt>\int_{0}^{r}F_{n}(\gamma, t)dt for all \gamma\in E . Letting e= \int_{\Gamma}^{\oplus}\chi_{E}(\gamma)1_{\gamma}d\nu(\gamma) ,

we have by Lemma 2. 2 (1)

\int_{0}^{\nu(E)r}\mu_{s}(ex)ds\geqq\int_{E\cross(0,r)}\Psi(ex)(\gamma, t)d\tilde{\nu}(\gamma, t)

= \int_{E}\int_{0}^{r}\Psi(x)(\gamma, t)dtd\nu(\gamma)

> \int_{E}\int_{0}^{r}F_{n}(\gamma, t)dtd\nu(\gamma)

= \int_{0}^{\nu(E)r}(\chi_{E}F_{n})^{*}(s)ds,

because F_{n}(\gamma, t) is non-increasing in t and F_{n}(\cdot, r) is constant on E . Since
\chi_{E}F_{n}\geqq\chi_{E}\Psi(y)=\Psi(ey) , we get \int_{0}^{\nu(E)r}\mu_{s}(ex)ds>\int_{0}^{\nu(E)r}\mu_{s}(ey)ds , contradict-
ing (i ) . \square
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THEOREM 2. 4. Let x, y\in\tilde{\mathscr{M}}’+\cdot Then the following conditions ( i)

-(iii) are equivalent:
(i) ex\prec ey for every projection e in \mathscr{A} :
(ii) ax\prec. ay for every a\in \mathscr{A}_{+}:

(iii) x(\gamma)\prec y(\gamma)a . e .
Furthermore if y\in L^{1}(\mathscr{M})+\mathscr{M}, then the above conditions are equivalent

to the following :
(iv) \tau((x-a)_{+})\leqq\tau((y-a)_{+}) for every a\in \mathscr{A}_{+} .

PROOF. The equivalence of ( i)-(iii) can be seen in the proof of
Theorem 2. 3.

(iii)\Rightarrow(iv) . For a= \int_{\Gamma}^{\oplus}\alpha(\gamma)1_{\gamma}d\nu(\gamma) with \alpha\in L^{\infty}(\Gamma;\nu)_{+} ,

\tau((x-a)_{+})=\int_{\Gamma}\tau_{\gamma}((x(\gamma)-\alpha(\gamma))_{+})d\nu(\gamma)

\leqq\int_{\Gamma}\tau_{\gamma}((y(\gamma)-\alpha(\gamma))_{+})d\nu(\gamma)=\tau((y-a)_{+})

by (iii) and [15, Proposition 2. 3].
(iv)\Rightarrow(i ) . Assume y\in L^{1}(\mathscr{M})+\mathscr{M} and hence \lim_{narrow\infty}\tau((y-n)_{+})=0 .

Let e be a projection in \mathscr{A} and r>0 . For each n\geqq 1 , letting a=re+n(1-e) ,

we have

\tau((ex-r)_{+})\leqq\tau((x-a)_{+})\leqq\tau((y-a)_{+})

\leqq\tau((ey-r)_{+})+\tau((y-n)_{+})

from (x-a)_{+}=(ex-r)_{+}+((1-e)x-n)_{+} and the same for (y-a)_{+} . Hence
\tau((ex-r)_{+})\leqq\tau((ey-r)_{+}) for all r>0 , so that ex\prec ey by [15, Proposition
2. 3]. \square

THEOREM 2. 5. Assume \tau(1)<\infty and let x, y\in\tilde{\mathscr{M}}_{sa} . If y_{+}\in L^{1}(\mathscr{M}) ,

then the following conditions ( i)-(iii) are equivalent:
(i) ex\prec ey for every projection e in \mathscr{A} :
(ii) ax\prec ay for every a\in \mathscr{A}_{+},\cdot

(iii) x(\gamma)\prec y(\gamma)a . e .
Furthermore if y\in L^{1}(\mathscr{M}) , then the above conditions are equivalent to the

following :
(iv) \tau(|x-a|)\leqq\tau(|y-a|) for every a\in \mathscr{A}_{sa} .

PROOF. The equivalence of ( i)-(iii) can be shown in a manner
analogous to the proof of Theorem 2. 3 with the use of \Phi(x) , \Phi(y) (Lemma

2. 2 (2) ) in place of \Psi(x) , \Psi(y) . Here we note only that either of ( i) and
(iii) implies x_{+}\in L^{1}(\mathscr{M}) as well as y_{+}\in L^{1}(\mathscr{M}) and hence \Phi(x)_{+} , \Phi(y)_{+}\in
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L^{1}(\tilde{\Gamma}_{1}j\tilde{\nu}) by Lemma 2. 2(2). This guarantees the use of Fubini,s theorem
to \Phi(x) , \Phi(y) .

We now assume y\in L^{1}(\mathscr{M}) and show the equivalence of (iii) and (iv).
First note that either of (iii) and (iv) implies x\in L^{1}(\mathscr{M}) .

(iii)\Rightarrow(iv) . For a= \int_{\Gamma}^{\oplus}\alpha(\gamma)1_{\gamma}d\nu(\gamma) with \alpha\in L^{\infty}(\Gamma;\nu)_{sa} ,

\tau(|x-a|)=\int_{\Gamma}\tau_{\gamma}(|x(\gamma)-\alpha(\gamma)|)d\nu(\gamma)

\leqq\int_{\Gamma}\tau_{\gamma}(|y(\gamma)-\alpha(\gamma)|)d\nu(\gamma)=\tau(|y-a|)

by (iii) and [16, Proposition 1. 3].
(iv)\Rightarrow(iii) . Let R=\{\gamma\in\Gamma:\tau_{\gamma}(x(\gamma))>\tau_{\gamma}(y(\gamma))\} . Suppose \nu(E)>

0 . Let e_{0}= \int_{\Gamma}^{\oplus}\chi_{Eo}(\gamma)1_{\gamma}d\nu(\gamma) and a_{n}=-ne_{0}+n(1-a_{)}) . Because we have

\lim_{narrow\infty}\tau(|x-a_{n}|-|a_{n}|)=\int_{E_{0}}\tau_{\gamma}(x(\gamma))d\nu(\gamma)-\int_{r\backslash E_{0}}\tau_{\gamma}(x(\gamma))d\nu(\gamma)

and

\lim_{narrow\infty}\tau(|y-a_{n}|-|a_{n}|)=\int_{E_{0}}\tau_{\gamma}(y(\gamma))d\nu(\gamma)-\int_{\Gamma\backslash E_{0}}\tau_{\gamma}(y(\gamma))d\nu(\gamma)

by Lebesgue’s dominated convergence theorem, there is an n such that
\tau(|x-a_{n}|-|a_{n}|)>\tau(|y-a_{n}|-|a_{n}|) and hence \tau(|x-a_{n}|)>\tau(|y-a_{n}|) ,
contradicting (iv). Therefore \tau_{\gamma}(x(\gamma))\leqq\tau_{\gamma}(y(\gamma))a . e . To show (iii), it
suffices by [16, Proposition 1. 3] to obtain \tau_{\gamma}(|x(\gamma)-r|)\leqq\tau_{\gamma}(|y(\gamma)-r|)

a . e . for every rational number r. If this does not hold, then there are an r
\in R and an E\in \mathscr{B} with \nu(E)>0 such that \tau_{\gamma}(|x(\gamma)-r|)>\tau_{\gamma}(|y(\gamma)-r|) for
all \gamma\in E . Letting a=re+n(1-e) where e= \int_{\Gamma}^{\oplus}\chi_{E}(\gamma)1_{\gamma}d\nu(\gamma) , we have

0< \int_{E}\tau_{\gamma}(|x(\gamma)-r|)d\nu(\gamma)-\int_{E}\tau_{\gamma}(|y(\gamma)-r|)d\nu(\gamma)

= \tau(|x-a|)-\int_{\Gamma\backslash E}\tau_{\gamma}(|x(\gamma)-n|)d\nu(\gamma)

- \tau(|y-a|)+\int_{\Gamma\backslash E}\tau_{\gamma}(|y(\gamma)-n|)d\nu(\gamma)

\leqq\int_{\Gamma\backslash E}\tau_{\gamma}(n-|x(\gamma)-n|)d\nu(\gamma)-\int_{\Gamma\backslash E}\tau_{\gamma}(n-|y(\gamma)-n|)d\nu(\gamma)

by (iv). This last expression converges as narrow\infty to

\int_{\Gamma\backslash E}\tau_{\gamma}(x(\gamma))d\nu(\gamma)-\int_{r\backslash E}\tau_{\gamma}(y(\gamma))d\nu(\gamma)\leqq 0 ,
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a contradiction. \square

THEOREM 2. 6. For every x, y\in\tilde{\mathscr{M}}_{+} (or x, y\in\tilde{\mathscr{M}}_{sa} when \tau(1)<\infty),
the following conditions are equivalent:

(i) ex\leq ey (resp. ex\approx ey ) for every projection e in \mathscr{A} ;
(ii) ax\leq ay (resp. ax\approx ay ) for every a\in \mathscr{A}_{+}^{\cdot};

(iii) x(\gamma)\leq y(\gamma) (resp. x(\gamma)\approx y(\gamma) ) a. e.

PROOF. We shall establish the equivalence for the relation \leq . This
obviously shows the equivalence for \approx . Let x, y\in\tilde{\mathscr{M}}_{+} in the following
proof. The proof for x, y\in\tilde{\mathscr{M}}_{sa} when \tau(1)<\infty is analogous.

(iii)\Rightarrow(ii) . The case a=1 is enough. Since (iii) implies \Psi(x)(\gamma, t)

\leqq\Psi(y)(\gamma, t)\tilde{\nu}- a . e. , we have by Lemma 2. 2 (1)

\mu_{s}(x)=\Psi(x)^{*}(s)\leqq\Psi(y)^{*}(s)=\mu_{s}(y) , s>0 ,

namely x\leq y .
(i)\Rightarrow(iii) . For n\geqq 1 , let F_{n} be defined just as in the proof ( i)\Rightarrow

(iii) of Theorem 2. 3. We need to show that \Psi(x)(\gamma, r)\leqq F_{n}(\gamma, r)a . e . for
every n\geqq 1 and every rational number r>0 . Suppose on the contrary that

\nu(\{\gamma\in\Gamma:\Psi(x)(\gamma, r)>F_{n}(\gamma, r)\})>0

for some n\geqq 1 and some r>0 . Then we can choose an E\in \mathscr{B} with 0<
\nu(E)<\infty such that F_{n}(\cdot, r) is constant (=c) on E and \Psi(x)(\gamma, r)>c for

all \gamma\in E . Now let e= \int_{\Gamma}^{\oplus}\chi_{E}(\gamma)1_{\gamma}d\nu(\gamma) and s=\nu(E)r . Since

\tilde{\nu}(\{(\gamma, t)\in\tilde{\Gamma} : \chi_{E}(\gamma)\Psi(x)(\gamma, t)>c\})>\tilde{\nu}(E\cross(0, r))=s,

we get \mu_{s}(ex)=(\chi_{E}\Psi(x))^{*}(s)>c . On the other hand, since
\tilde{\nu}(\{(\gamma, t)\in\tilde{\Gamma} : \chi_{E}(\gamma)F_{n}(\gamma, t)>c\})\leqq s,

we get \mu_{s}(ey)=(\chi_{E}\Psi(y))^{*}(s)\leqq(\chi_{E}F_{n})^{*}(s)\leqq c . Hence \mu_{s}(ex)>\mu_{s}(ey) ,
contradicting ( i ) . \square

3. Unitary mixing for direct integrals

In this section, we shall discuss the conditions such as the unitary mixing
for \tau-measurable operators under direct integral decompositions. Let
(\mathscr{M}, \tau) be decomposed by the direct integrals \{\mathscr{M}, \mathscr{H}\}=

\int_{\Gamma}^{\oplus}\{\mathscr{M}(\gamma), \mathscr{H}(\gamma)\}d\nu(\gamma) and \tau=\int_{\Gamma}^{\oplus}\tau_{\gamma}d\nu(\gamma) as in the previous section. We
begin with some technical lemmas.

Lemma 3. 1. (1) There exists a sequence \{a_{n}\} in \mathscr{M}_{1} such that { a_{n}(\gamma) :
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n\geqq 1\} is strongly*dense in \mathscr{M}(\gamma)_{1} for a. e . \gamma\in\Gamma-

(2) There exists a sequence \{u_{n}\} in U(\mathscr{M}) such that \{u_{n}(\gamma) : n\geqq 1\} is
strongly*dense in U(\mathscr{M}(\gamma)) for a. e. \gamma\in\Gamma .

Before proving the lemma, we recall the notion of measurable multifunc-
tions (i . e . set-valued functions). Let \mathfrak{X} be a complete separable metric
space and \mathscr{B}(\mathfrak{X}) the Borel \sigma field on \mathfrak{X} . The family of all nonempty closed
subsets of \mathfrak{X} is denoted by \mathscr{K}(\mathfrak{X}) . A multifunction H from \Gamma into \mathscr{K}(\mathfrak{X}) is
said to be measurable (or \mathscr{B}-measurable) if \{\gamma\in\Gamma : H(\gamma)\cap O\neq\emptyset\} belongs

to \mathscr{B} for each open subset O of \mathfrak{X} , or equivalently if there is a sequence \{h_{n}\}

of measurable functions h_{n} : \Gamma– \mathfrak{X} such that H(\gamma) is the closure of \{h_{n}(\gamma)\}

for every \gamma\in\Gamma . If H:\Gammaarrow \mathscr{K}(\mathfrak{X}) is measurable, then the graph Gr(i/) =

\{(\gamma, x)\in\Gamma\cross \mathfrak{X}:x\in H(\gamma)\} of H belongs to \mathscr{B}\otimes \mathscr{B}(\mathfrak{X}) . Also the converse
holds when (\Gamma, \mathscr{B}, \nu) is complete. The proofs of these facts are found in
[5, 17] .

PROOF OF LEMMA 3. 1. The assertion (1) is readily seen from the
definition of measurable field of von Neumann algebras and Kaplansky
density theorem. To show (2), we may assume (cf. [30, Theorem IV. 8.
13]) that \gammaarrow \mathscr{H}(\gamma) is a constant field \mathscr{H}_{0} (a fixed separable Hilbert
space). Then B(\mathscr{H}_{0})_{1} becomes a complete separable metric space in the
strong* topology, and a function a:\Gammaarrow B(\mathscr{H}_{0})_{1} is measurable if and only

if \gammaarrow a(\gamma) is a measurable field of operators. Hence (1) shows that the
multifunction \mathscr{M}(\cdot)_{1} : \Gammaarrow \mathscr{K}(B(\mathscr{H}_{0},)_{1}) is \overline{\mathscr{B}} measurable where \overline{\mathscr{B}} is the
\nu -completion of \mathscr{B} . Because the graph of the multifunction U(\mathscr{M}(\cdot)) : \Gamma

arrow \mathscr{K}(B(\mathscr{H}_{0})_{1}) is

Gr (U(\mathscr{M}(\cdot))=Gr(\mathscr{M}(\cdot)_{1})\cap[\Gamma\cross U(B(\mathscr{H}_{0}))]

\in\overline{\mathscr{B}}\otimes \mathscr{B}(B(\mathscr{H}_{0})_{1}) ,

there is a sequence \{\overline{u}_{n}\} of \overline{\mathscr{B}} measurable functions \overline{u}_{n} : \Gammaarrow B(\mathscr{H}_{0})_{1} such
that U(\mathscr{M}(\gamma)) is the strong* closure of \{\overline{u}_{n}(\gamma)\} for every \gamma\in\Gamma . Taking
\mathscr{B} measurable functions u_{n} : \Gammaarrow B(\mathscr{H}_{0})_{1} such that u_{n}(\gamma)=\overline{u}_{n}(\gamma)a . e . and

denoting \int_{\Gamma}^{\oplus}u_{n}(\gamma)d\nu(\gamma)\in U(\mathscr{M}) by the same u_{n} , we obtain (2). \square

LEMMA 3. 2. Let \{a_{n}\} be a sequence in \mathscr{M}_{1} such that a_{n}arrow a strongly.
Then:

(1) a\theta a_{n}^{*}-arrow aya^{*} in the measure topology for all y\in\tilde{\mathfrak{S}} .
(2) ||a\theta a_{n}^{*}-aya^{*}||_{p}arrow 0 for all y\in L^{p}(\mathscr{M}) where 1\leqq p<\infty .

PROOF Let y\in\tilde{\mathfrak{S}} . Since L^{2}(\mathscr{M}) is dense in \tilde{\mathfrak{S}} in the measure topology,
for each \epsilon , \delta>0 there exists a z\in L^{2}(\mathscr{M}) such that \mu_{8}(y-z)<\epsilon (cf. [13,

Lemma 3. 1]). By [13, Lemma 2. 5],
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\mu_{48}(a\theta a_{n}^{*}-aya^{*})\leqq\mu_{8}(a_{n}(y-z)a_{n}^{*})+\mu_{8}((a_{n}-a)za_{n}^{*})

+\mu_{8}(az(a_{n}-a)^{*})+\mu_{8}(a(z-y)a^{*})

<2\epsilon+\mu_{8}((a_{n}-a)z)+\mu_{8}((a_{n}-a)z^{*}) .

Noting that L^{2}(\mathscr{M}) is the standard Hilbert space for \mathscr{M}, we get ||(a_{n}-a)z||_{2}

arrow 0 and ||(a_{n}-a)z^{*}||_{2}arrow 0 . Hence

\lim_{narrow}\sup_{\infty}\mu_{48}(a\theta a_{n}^{*}-aya^{*})\leqq 2\epsilon ,

which shows (1). (2) follows from (1) and [13, Theorem 3. 6]. \square

We note that Lemma 3. 2 (1) fails to hold for general y\in\tilde{\mathscr{M}} (consider
y=1 in case of \mathscr{M}=B(\mathscr{H})) .

We are now ready to obtain the next theorem.

THEOREM 3. 3. Let x, y\in\tilde{\mathfrak{S}} . Then the following conditions are
equivalent :

(i) x is in the closure of conv U(y) (resp. conv C(y) ) in the mea-
sure topology :

(ii) for a. e. \gamma\in\Gamma , x(\gamma) is in the closure of conv U(y(\gamma)) (resp.
conv C(y(\gamma))) in the measure topology.

PROOF. We shall establish the equivalence of ( i) and ( ii) concern-
ing conv U(\cdot) . The proof of the equivalence concerning conv C(\cdot) is the
same in view of Lemma 3. 1.

(i)\Rightarrow(ii) . This implication holds for x, y\in\tilde{\mathscr{M}}r Let \{x_{n}\} be a
sequence in conv U(y) such that x_{n}arrow x in the measure topology. Since
x_{n}(\gamma)\in convU(y(\gamma))a . e. , we need to show that, for a . e . \gamma\in\Gamma . x(\gamma) is in
the closure of \{x_{n}(\gamma)\} in the measure topology. Suppose the contrary.
Then, by [13, Lemma 3. 1], there are an r>0 , an \epsilon>0 and an E\in \mathscr{B} with
\nu(E)>0 such that

\inf_{n\geqq 1}\mu_{r}(x_{n}(\gamma)-x(\gamma))\geqq\epsilon, \gamma\in E ,

which shows by Lemma 2. 1 (3) that

\Psi(x_{n}-x)(\gamma, t)=\mu_{t}(x_{n}(\gamma)-x(\gamma))\geqq\epsilon

for all (\gamma, t)\in E\cross(0, r) and n\geqq 1 . This leads us to a contradiction,
because we have by Lemma 2. 2 (1)

\lim_{narrow\infty}\Psi(x_{n}-x)^{*}(s)=\lim_{narrow\infty}\mu_{s}(x_{n}-x)=0 , s>0 .

(ii)\Rightarrow(i ) . Let \{u_{n}\} be a sequence in U(\mathscr{M}) as in Lemma 3. (1).
Let (\alpha|^{j)}, \alpha\zeta^{j)}, \ldots) , j=1,2 , \ldots , be an enumeration of all sequences (\alpha_{1}, \alpha_{2}, \ldots)



132 F. Hiai

of rational numbers \alpha_{n}\geqq 0 with \alpha_{n}=0 except tor a finite number of n and
\sum_{n}\alpha_{n}=1 . For j\geqq 1 , define x_{j}\in convU(y) by x_{j}= \sum_{n}\alpha_{n}^{(j)}u\theta u_{n}^{*} . Then ( ii)
implies by Lemmas 2. 1 (4) and 3. 2 (1) that, for a . e . \gamma\in\Gamma , x(\gamma) is in the
closure of \{x_{j}(\gamma) : j\geqq 1\} in the measure topology, namely

\inf_{j\geqq 1}\Psi(x_{j}-x)(\gamma, t)=\inf_{j\geqq 1}\mu_{t}(x_{j}(\gamma)-x(\gamma))=0 , t>0 .

For each \epsilon , \delta>0 , taking a measurable function \xi:\Gammaarrow(0, \infty) with
\int_{\Gamma}\xi d\nu<\delta in view of the \sigma-finiteness of (F. \nu), we obtain a measurable

partition \{E_{j} : j\geqq 1\} of \Gamma such that \Psi(x_{j}-x)(\gamma, \xi(\gamma))<\epsilon for a . e . \gamma\in E_{j},
j\geqq 1 . For k\geqq 1 , define z_{k}\in\tilde{\mathscr{M}} by z_{k}(\gamma)=\Sigma_{j=1}^{k}\chi_{E_{j}}(\gamma)x_{j}(\gamma) where E_{1}’=E_{1}\cup

[ \bigcup_{j>k}E_{j}] and E_{j}’=E_{j}, 2\leqq j\leqq k . Since

z_{k}( \gamma)=_{n_{1},\cdots,n_{k}}\Sigma(\alpha_{n_{1}}^{(1)} . \tau\alpha_{n_{k}}^{(k)})\sum_{j=1}^{k}\chi_{E_{\acute{j}}}(\gamma)u_{n_{j}}(\gamma)y(\gamma)u_{n_{j}}(\gamma)^{*} ,

we get z_{k}\in convU(y) . Furthermore it follows that
\tilde{\nu}(\{(\gamma, t)\in\tilde{\Gamma} : \Psi(z_{k}-x)(\gamma, t)>\epsilon\})

\leqq\tilde{\nu}(\bigcup_{j=1}^{k}\{(\gamma, t)\in\tilde{\Gamma} : 0<t<\xi(\gamma), \gamma\in E_{j}\}

\cup\{(\gamma^{ t)\in\tilde{\Gamma}}, ^{:} ^{\Psi(x_{1}-x)(\gamma, t)>\epsilon}

\leqq\int_{\Gamma}\xi d\nu+\tilde{\nu}(\{(\gamma, t)\in\tilde{\Gamma}:^{\Psi(x_{1}-x)(\gamma, t)>\epsilon}

The second term of this last expression converges to 0 as karrow\infty , because
we have

\tilde{\nu}(\{(\gamma, t)\in\tilde{\Gamma} : \Psi(x_{1}-x)(\gamma, t)>\epsilon\})<\infty

by x_{1}-x\in\tilde{\mathfrak{S}} and Lemma 2. 2(1). Hence \mu_{8}(z_{k}-x)=\Psi(z_{k}-x)^{*}(\delta)\leqq\epsilon for
sufficiently large k . Therefore ( i) is obtained. \square

THEOREM 3. 4. Let x\in\tilde{\mathscr{M}} and y\in L^{p}(\mathscr{M}) where 1\leqq p<\infty . Then the
following conditions are equivalent:

(i) x is in the ||\cdot||_{p} -closure of conv U(y) (resp. conv C(y) ) ;
(ii) for a. e. \gamma\in\Gamma . x(\gamma) is in the ||\cdot||_{p}-closure of conv U(y(\gamma)) (resp.

conv C(y(\gamma))) .

PROOF. We shall show the equivalence concerning conv U(\cdot) . ( i)
\supset(ii) is readily seen from Lemma 2. 1 (5) and the argument of extracting
an a . e . convergent subsequence. Conversely assume ( ii) . Let \{u_{n}\} be as
in Lemma 3. 1 (2) and z\in L^{q}(\mathscr{M}) where 1/p+1/q=1 . Given a measurable
function \xi:\Gammaarrow(0, \infty) , by Lemmas 2. 1(5) and 3. 2(2) , there exists a
measurable partition \{E_{n}\} of \Gamma such that
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Re \tau_{\gamma}(x(\gamma)z(\gamma))\leqq{\rm Re}\tau_{\gamma}(u_{n}(\gamma)y(\gamma)u_{n}(\gamma)^{*}z(\gamma))+\xi(\gamma)

for a . e . \gamma\in E_{n}, n\geqq 1 . Hence

Re \tau(xz)\leqq{\rm Re}\tau(uyu^{*}z)+\int_{\Gamma}\xi d\nu

where u\in U(\mathscr{M}) is defined by u(\gamma)=\Sigma_{n=1}^{\infty}\chi_{En}(\gamma)u_{n}(\gamma) . Since \int_{\Gamma}\xi d\nu can be

arbitrarily small, we have

Re \tau(xz)\leqq\sup_{u\in U(l)}{\rm Re}\tau(uyu^{*}z) ,

which shows ( i ) . \square

THEOREM 3. 5. Lelx\in\tilde{\mathscr{M}} and y\in\tilde{\mathfrak{S}} . Then the following conditions
are equivalent :

(i) x is in the closure of U(y) (resp. C(y) ) in the measure topology:
(ii) for a. e . \gamma\in\Gamma x(\gamma) is in the closure of U(y(\gamma)) (resp. C(y(\gamma)) )

in the measure topology.
Furthermore if y\in L^{p}(\mathscr{M}) where 1\leqq p<\infty , then the above conditions are

equivalent to those where the closure in the measure topology is replaced by the
||\cdot||_{p} closure

PROOF. First note that ( ii) , as well as ( i ) , implies x\in\tilde{\mathfrak{S}} by Lemma
2. 2 (1). So the proof of the first part can be done in a manner similar to that
of Theorem 3. 3. Next let y\in L^{p}(\mathscr{M}) , 1\leqq p<\infty . Since \mu_{t}(z)\leqq\mu_{t}(y) for
every z\in C(y) , it follows from [13, Theorem 3. 6] that the ||\cdot||_{p} closure of
each subset of C(y) coincides with its closure in the measure topology.
Hence the second part is verified. \square

REMARK 3. 6. In connection with Theorems 3. 4 and 3. 5, we see also
that if y\in L^{p}(\mathscr{M}) and 1<p<\infty , then the ||\cdot||_{p} -closure of each convex subset
of conv C(y) coincides with its closure in the measure topology (cf. the
proof of [15, Theorem 2. 5(3)] ) . However this is not the case when p=1 .
In fact, let \{e_{n}\} be a sequence of mutually orthogonal one dimensional
projections in \mathscr{M}=B(\mathscr{H}) . Then k^{-1}\Sigma_{n=1}^{k}e_{n}\in convU(e_{1}) and ||k^{-1}\Sigma_{n=1}^{k}e_{n}||=

k^{-1}arrow 0 , but 0 is not in the ||\cdot||_{1} -closure of conv U(e_{1}) .

4. Main results

In this section, we shall establish the main results by connecting the
spectral relations discussed in \S 2 with the corresponding conditions discus-
sed in \S 3.

In the theorems below, we assume that \mathscr{M} is a semifinite von Neumann
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algebra on a “ separable ” Hilbert space \mathscr{H} with a faithful normal semifinite
trace \tau . So there exists a measurable field \gammaarrow\{\mathscr{M}(\gamma), \mathscr{H}(\gamma)\} of factors on
a standard \sigma-finite measure space (\Gamma. \mathscr{B}, \nu) such that \{\mathscr{M}, \mathscr{H}\}=

\int_{\Gamma}^{\oplus}\{\mathscr{M}(\gamma), \mathscr{H}(\gamma)\}d\nu(\gamma) (see [30, Theorem IV. 8. 21]). In this case, the
diagonal algebra is the center \mathcal{Z}=\mathscr{M}\cap \mathscr{M}^{r}

The next Theorem 4. 1 is now immediate from Theorems 2. 3, 2. 5 and
3. 4 together with Theorem 1. 1 (1), and Theorem 4. 2 is so from Theorems
2. 4, 3. 3 and 3. 4 together with Theorem 1. 1 (2) (see also Remark 1. 2 and
Lemma 2. 1).

THEOREM 4. 1. If x\in\tilde{\mathscr{M}}_{+} and y\in L^{1}(\mathscr{M})_{+} , then the following condi-
tions ( i) and ( ii) are equivalent :

(i) x is in the ||\cdot||_{1} -closure of conv U(y) :
(ii) ex\prec ey for every projection e in \mathcal{Z} .
Assume \tau(1)<\infty . If x\in\tilde{\mathscr{M}}_{sa} and y\in L^{1}(\mathscr{M})_{sa}, then the above ( _{i} ) ,

(ii) and the following (iii) are equivalent :
(iii) \tau(|x-a|)\leqq\tau(|y-a|) for every a\in \mathcal{Z}_{sa} .

THEOREM 4. 2. Let x\in\tilde{\mathscr{M}}_{+} and y\in(L^{1}(\mathscr{M})+\mathscr{M})_{+}\cap\tilde{\mathfrak{S}} , Then the fol-

lowing conditions ( i)-(iii) are equivalent :
(i) x is in the closure of conv C(y) in the measure topology:
(ii) ex\prec ey for eve\gamma y projection e\dot{\iota}n\mathcal{Z} ;
(iii) \tau((x-a)_{+})\leqq\tau((y-a)_{+}) for every a\in \mathcal{Z}_{+} .
Furthermore if y\in L^{p}(\mathscr{M}) where 1\leqq p<\infty , then the above conditions are

equivalent to the following .\cdot
(iv) x is in the ||\cdot||_{p} -closure of conv C(y) .

THEOREM 4. 3. Let x\in\tilde{\mathscr{M}}_{+} and y\in(L^{1}(\mathscr{M}|)+\mathscr{M})_{+}\cap\tilde{\mathfrak{S}} , Then the fol-

lowing conditions are equivalent:
(i) x is in the closure of C(y) in the measure topology:
(ii) ex\leq ey for every projection e in \mathcal{Z} :
(iii) e_{(s,\infty)}(x)\preceq e_{(s,\infty)}(y) in the Murray-von Neumann sense for every

s\geqq 0 .

PROOF. The equivalence of ( i) and ( ii) follows from Theorems 2. 6
and 3. 5 together with Theorem 1. 1 (3).

(iii)\Rightarrow(ii) . For every projection e in \mathcal{Z} , we have by (hi)

e_{ts,\infty)}(ex)=ee_{(s,\infty)}(x)\preceq ee_{(s,\infty)}(y)=e_{(S,\infty)}(ey) , s\geqq 0 .

Hence \tau(e_{(S,\infty)}(ex))\leqq\tau(e_{(S,\infty)}(ey)) for all s\geqq 0 , so that ex\leq ey .
(ii)\Rightarrow(iii) . For each s\geqq 0 , because ( ii) implies by Lemma 2. 1 (1)
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that

\int_{E}\tau_{\gamma}(e_{(s,\infty)}(x(\gamma)))d\nu(\gamma)\leqq\int_{E}\tau_{\gamma}(e_{(s,\infty)}(y(\gamma)))d\nu(\gamma) , E\in \mathscr{B},

there is a \Gamma_{0}\in \mathscr{B} with \nu(\Gamma\backslash \Gamma_{0})=0 such that \tau_{\gamma}(e_{(s.\infty)}(x(\gamma)))\leqq\tau_{\gamma}(e_{(s.\infty)}(y(\gamma)))

for all \gamma\in\Gamma_{0} . Since each \mathscr{M}(\gamma) is a factor, we have e_{ts,\infty)}(x(\gamma))\preceq

e_{ts,\infty)}(y(\gamma)) , \gamma\in\Gamma_{0} . For \gamma\in\Gamma_{0} , define

H(\gamma)=\{v\in \mathscr{M}(\gamma)_{1} : v^{*}v=e_{(s.\infty)}(x(\gamma)), vv^{*}\leqq e_{(s,\infty\rangle}(y(\gamma))\}

wh\overline{l}ch is a nonempty stronglycl*osed subset of \mathscr{M}(\gamma)_{1} . Also let H(\gamma)=\{0\}

for \gamma\in\Gamma\backslash \Gamma_{0} . To show the existence of a measurable field \gammaarrow w(\gamma) of
operators such that w(\gamma)\in H(\gamma)a . e. , we may assume that \gamma

– \mathscr{H}(\gamma) is a
constant field \mathscr{H}0 . Then \mathscr{M}(\cdot)_{1} : \Gammaarrow \mathscr{K}(B(\mathscr{H}_{0})_{1}) is \overline{\mathscr{B}} measurable by the
proof of Lemma 3. 1. In view of the strong* continuity of varrow v^{*}v and v

arrow vv^{*} on B(\mathscr{H}_{0})_{1} , it is readily seen that the graph of the multifunct\overline{l}onH :
\Gammaarrow \mathscr{K}(B(\mathscr{H}_{0})_{1}) belongs to \overline{\mathscr{B}}\otimes \mathscr{B}(B(\mathscr{H}_{0})_{1}) . Hence there is a measurable
function w:\Gammaarrow B(\mathscr{H}_{0})_{1} such that w(\gamma)\in H(\gamma)a . e . This w gives a

desired measurable field of operators. Denoting \int_{\Gamma}^{\oplus}w(\gamma)d\nu(\gamma)\in \mathscr{M} by the

same w , we get w^{*}w=e_{(S,\infty)}(x) and ww^{*}\leqq e_{(S,\infty)}(y) , implying e_{ts,\infty)}(x)\preceq

e_{ts,\infty\rangle}(y) . \square

The final theorem follows from Theorems 2. 6 and 3. 5 together with
Theorem 1. 1 (4) and from the argument as in the above proof.

THEOREM 4. 4. Let x\in\tilde{\mathscr{M}}_{+}and y\in\tilde{\mathfrak{S}}_{+} (or x, y\in\tilde{\mathscr{M}}_{sa} when \tau(1)<\infty).

Then the following conditions are equivalent:
(i) x is in the closure of U(y) in the measure topology j

(ii) ex\approx ey for every projection e in \mathcal{Z}_{-} ;
(iii) e_{(s,\infty)}(x)\sim e_{(s,\infty)}(y) in the Murray-von Neumann sense for every

s\geqq 0 .

In conclusion, Theorem 1. 1 (1)-(4) are reduced to the special cases of
Theorems 4. 1–4. 4 respectively, while the separability of \mathscr{H} is not assumed
in Theorem 1. 1.

We close this paper with the following remarks.

REMARK 4. 5. Even when the representing Hilbert space \mathscr{H} is not
separable, it is not difficult to show directly ( i)\Rightarrow(ii) of each of TheO-
rems 4. 1–4. 4. To consider the converse, let x, y\in\tilde{\mathfrak{S}}_{+} and a_{)}=e_{(0.\infty)}(x)\vee

e_{(0,\infty)}(y) which is a \sigma-finite projection. Let \mathcal{N} be the von Neumann subalge-
bra of a_{J}\mathscr{M}a_{1} generated by the spectral projections of x any y . Then \mathcal{N} is
faithfully represented on a separable Hilbert space and \tau restricted on \mathcal{N} is
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semifinite. Hence, also ( ii)\supset(i) of the above theorems can be shown if
it happens that the center of \mathcal{N} is included in a_{)}\mathcal{Z}_{-}| . However this does not
always happen. So we cannot, at present, remove the separability assump-
tion of \mathscr{H} in our main results.

REMARK 4. 6. When \mathscr{M} is a general (not necessarily semifinite) von
Neumann algebra, the spectral relations considered in this paper cannot be
defined from the lack of the notion of generalized s-numbers. However the
unitary mixing for elements in \mathscr{M}_{*} (moreover \mathscr{M}^{*} ) is meaningful. Now let
\varphi , \psi\in \mathscr{M}_{*}^{+} . In [2], \varphi is said to be more chaotic (or more unitarily mixed}
than \psi if \varphi is in the norm-closure of conv U(\psi) where U(\psi)=\{u\psi u^{*}:u\in

U(\mathscr{M})\} and u\psi u^{*}=\psi(u^{*}\cdot u) . But we observe (cf. [2, \S 4. 4]) that if \mathscr{M}\overline{1}S a
von Neumann algebra of type III on a separable Hilbert space, then \varphi is more
chaotic than \psi whenever \varphi|\mathcal{Z}=\psi|\mathcal{Z}_{-} . In particular \overline{1}f\mathscr{M} is a factor of type
III_{1} , then \varphi is in the norm-closure of U(\psi) for every \varphi , \psi\in \mathscr{M}_{*}^{+} with \varphi(1)=

\psi(1) (see [8]). Hence we may conclude that the concept of unitary mixing
is more or less simple on the type III part and rather crucial on the semifinite
part.
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