Decomposition of quotients of bounded operators with respect to closability and Lebesgue-type decomposition of positive operators

Saichi IZUMINO (Received March 14, 1988, Revised August 3, 1988)

1. Introduction

Let A and B be bounded linear operators on an infinite dimensional Hilbert space H with the kernel condition

(1.1) ker $A \subseteq \ker B$.

Then we define a quotient [B/A] as the linear operator : $Ax \mapsto Bx$, $x \in H$. In [5] we showed that both the adjoint and the closure of [B/A] are also represented as reasonable quotients if they exist. Let $P = P_{A^{\bullet},B^{\bullet}}$ be the orthogonal projection onto the closure of the set $B^{*(-1)}(A^*H) := \{x; B^*x \in A^*H\}$, and let $P^{\perp}=1-P$. Then, applying Jorgensen decomposition [6] $(\hat{O}ta \ [10])$ to [B/A], we obtain the sum decomposition [5] [B/A] = $[PB/A] + [P^{\perp}B/A]$ of [B/A] into the closable part [PB/A] and the singular part $[P^{\perp}B/A]$. Extending this notion, we call the decomposition

 $[B/A] = [QB/A] + [Q^{\perp}B/A]$

J-decomposition of [B/A] by Q, if Q is an orthogonal projection such that [QB/A] is closable and $[Q^{\perp}B/A]$ is singular.

Another decomposition is Lebesgue-type (or shortly L-) decomposition of (bounded) positive operators, which was introduced by Ando [2]; if S is a positive operator then every positive operator T is decomposed into the sum T = U + V of two positive operators U and V such that U is Sabsolutely continuous and V is S-singular. It was proved in [2] that a positive operator T is S-absolutely continuous if and only if $T^{1/2(-1)}(S^{1/2}H)$ is dense in H. The latter condition is, as a matter of fact, just what guarantees closability of $[T^{1/2}/S^{1/2}]$ when ker $S \subset \ker T$ [5], [9]. This suggests close connections between J-decomposition and L-decomposition.

In this paper we first consider J-decomposition of quotients and give some equivalent conditions for uniqueness of this decomposition. Next we show that every J-decomposition of a quotient [B/A] induces an Ldecomposition of B^*B with respect to A^*A , and conversely that every L-decomposition of T with respect to S, under the condition ker $S \subseteq \ker T$, is induced from a J-decomposition of [B/A] such that $A^*A = S$ and $B^*B = T$.

To avoid triviality we assume that the Hilbert space H has infinite dimension. An operator is assumed to be bounded linear, defined on H, unless specially stated otherwise.

2. J-decomposition of quotients

For given operators A and B, put

 $(2.1) \qquad R = R_{A,B} = (A^*A + B^*B)^{1/2}.$

Then as a basic fact we have $RH = A^*H + B^*H$ [4, Theorem 2.2]. If we consider the equations

 $(2.2) \qquad XR = A \text{ and } YR = B,$

then, since $A^*H \subset RH$ and $B^*H \subset RH$ we can fined operators X and Y satisfying (2.2) [4, Theorem 2.1]. Furthermore, with the restrictions ker $X \supset \ker R$ and ker $Y \supset \ker R$ each of the equations has a unique solution, so that we then denote by $X = A_l (=A_{B,l})$ and $Y = B_l (=B_{A,l})$ [5]. Following [4] we now define

$$(2.3) \qquad A^*A : B^*B = A^*A_{l}B_{l}^*B,$$

and call it the parallel sum of A^*A and B^*B . (If $A^*A=C^*C$ for an operator C, then we can see $A^*A_l=C^*C_l$, so that $A^*A : B^*B$ is really well-defined by (2.3).) In [5] we proved the following facts which are useful for our discussions.

LEMMA 2.1 (cf. [5, Lemma 2.3]). Let A, B be operators on H, and let R, A_i and B_i are operators defined as before. Then

(1) $A_{l}^{*}A_{l} + B_{l}^{*}B_{l} = P_{R}$, the orthogonal projection onto the closure $(RH)^{-}$ of RH.

(2) $A^*A : B^*B = B^*B : A^*A = A^*(1 - A_lA_l^*)A = B^*(1 - B_lB_l^*)B.$

(3) $A^*H \cap B^*H = (A^*A : B^*B)^{1/2}H.$

(4) $B^{*(-1)}(A^*H) = (1 - B_l B_l^*)^{1/2} H.$

Denote by $P_{A^{\bullet},B^{\bullet}}$ (or $P(A^{*},B^{*})$) the orthogonal projection onto $\{B^{*(-1)}(A^{*}H)\}^{-}$. Then we have

LEMMA 2.2 Let V_i be the partial isometry obtained from the polar decomposition $A_i = V_i (A_i^*A_i)^{1/2}$ of A_i . Then

(1) $P_{A^*,B^*} = 1 - B_l B_l^* + B_l V_l^* V_l B_l^*.$

(2) $P_{A^{\bullet},B^{\bullet}}B = B_l V_l^* V_l R.$

PROOF. From Lemma 2.1 (1) we see that $A_i^*A_i$ and $B_i^*B_i$ commute. Hence we have easily

$$(2.4) V_{l}^{*}V_{l}B_{l}^{*}B_{l} = B_{l}^{*}B_{l}V_{l}^{*}V_{l}.$$

To prove (1), let $P = P_{A^*,B^*}$ and denote by Q the right hand side of (1). Then, using Lemma 2.1 (1) again and (2.4), we can see that $Q^2 = Q$, that is, Q is an orthogonal projection. Hence, since $1 - B_l B_l^* \leq Q$ (or $Q - (1 - B_l B_l^*)$) is positive), we have $PH \subset QH$. For the converse inclusion, first note that $B_l^*(1 - B_l B_l^*) = (P_R - B_l^* B_l) B_l^* = A_l^* A_l B_l^*$, and that ker $A_l^* A_l B_l^* =$ ker $V_l B_l^*$. Hence we have

(2.5) ker
$$(1-B_lB_l^*) \subset \ker V_lB_l^*$$
.

Hence ker $(1-B_lB_l^*) \subset \text{ker } Q$, which implies $PH \supset QH$. Now the identity (2) can be obtained from (1), (2.4) and Lemma 2.1 (1).

Let [B/A] be a quotient of operators (with the kernel condition (1.1)). If AH is dense in H, then the adjoint $[B/A]^*$ of [B/A] exists, and it is represented [5, Theorem 4.1] as

(2.6)
$$[B/A]^* = [V_l B_l^* / (1 - B_l B_l^*)^{1/2}].$$

In [5], assuming that AH is dense in H, we defined [B/A] to be closable if the domain $(1-B_lB_l^*)^{1/2}H$ of $[B/A]^*$ is dense in H. Here we, however, want to define [B/A] to be closable (cf. [7, p. 165]) if

(2.7) $Ax_n \rightarrow 0$ and $Bx_n \rightarrow y$ for a sequence $\{x_n\}$ in H imply y=0.

Consequently, we do not assume the denseness of AH in H for closability of [B/A]. Denote by $[B/A]^-$ the closure of [B/A] when it exists. Then we have

LEMMA 2.3 (cf. [5, Theorem 4.2], [8, Lemma 3]). Let [B/A] be a quotient. Then the following conditions are equivalent;

(1) [B/A] is closable, (i.e., (2.7) is assumed.)

(2) ker $A_l \subset \ker B_l$.

(3) $(1-B_lB_l^*)^{1/2}H \ (=B^{*(-1)}(A^*H))$ is dense in H.

If one of (1)-(3) holds, then $[B/A]^{-}=[B_{l}/A_{l}]$.

PROOF. (1) \Rightarrow (2); Let $A_{\iota}u=0$, $u\in H$. Then, since A_{ι} is defined as a natural extension of the mapping $Rx\mapsto Ax$, $x\in H$, we can find a sequence $\{x_n\}$

such that $Rx_n \rightarrow u$ and $Ax_n \rightarrow A_l u = 0$. Hence $Bx_n = B_l Rx_n \rightarrow B_l u$, which implies $B_l u = 0$.

 $(2) \Rightarrow (3)$; Let $(1-B_lB_l^*)u=0$. Then we have to show that u=0. By (2.5) we see that $B_l^*u \in \ker V_l = \ker A_l$. Hence $B_lB_l^*=0$, so that $u=(1-B_lB_l^*)u+B_lB_l^*u=0$.

 $(3) \Rightarrow (1) ; \text{ Let } Ax_n \rightarrow 0 \text{ and } Bx_n \rightarrow y. \text{ Then } \{Rx_n\} \text{ is convergent. Put } z = \lim_{n \rightarrow \infty} Rx_n. \text{ Then } A_l z = \lim_{n \rightarrow \infty} A_l Rx_n = \lim_{n \rightarrow \infty} An_n = 0. \text{ Hence } (1 - B_l B_l^*) B_l z = B_l (P_R - B_l^* B_l) z = B_l A_l^* A_l z = 0. \text{ Since ker } (1 - B_l B_l^*) = \{0\}, \text{ we have } B_l z = 0. \text{ Hence } y = \lim_{n \rightarrow \infty} Bx_n = \lim_{n \rightarrow \infty} B_l Rx_n = B_l z = 0.$

For the closure $[B/A]^-$, we first note that $[B_l/A_l]$ is an extension of [B/A], because $A = A_l R$ and $B = B_l R$. Since $A_l^* A_l + B_l^* B_l = P_R$ (Lemma 2.1 (1)), we see that $A_l^* H + B_l^* H$ is closed in *H*. Hence from [8, Theorem 1] (or by a direct computation) we can show that $[B_l/A_l]$ is closed. Now, since *AH* is dense in $A_l H$ we can conclude that $[B/A]^- = [B_l/A_l]$.

Among general (possibly unbounded) operators a singular operator L is defined ([6] and [10]) as one which has dense domain D(L) in H and satisfies the condition $L(D(L)) \subset D(L^*)^{\perp}$, that is, the range of L is orthogonal to the domain of L^* . Since the domain of the adjoint of a quotient [B/A] is $(1-B_iB_i^*)^{1/2}H$, we naturally assume that a singular quotient [B/A] satisfies the condition $BH \subset \{(1-B_iB_i^*)H\}^{\perp}$, or equivalently

 $(2.8) \qquad BH \subset \ker P_{A^{\bullet},B^{\bullet}}.$

We here adopt (2.8) as the definition of [B/A] to be singular, and we do not request the denseness of AH in H (cf. [5]). Now on singularity of quotients we can show the next equivalences, the proof of which is almost similar to that in [5].

LEMMA 2.4 [5, Theorem 5.5]. Let [B/A] be a quotient. Then the following conditions are equivalent;

- (1) [B/A] is singular, (i. e., (2.8) is assumed.)
- $(2) A_l B_l^* = 0.$
- (3) $A^*A : B^*B = 0.$
- (4) $A^*H \cap B^*H = \{0\}.$

Recall that for a quotient [B/A] and an orthogonal projection Q the decomposition

(2.9)
$$[B/A] = [QB/A] + [Q^{\perp}B/A]$$

is a J-decomposition by Q if [QB/A] is closable and $[Q^{\perp}B/A]$ is singular. Easily we see that $(QB)^{*(-1)}(A^*B) = Q^{(-1)}(B^{*(-1)}(A^*H))$, and that the relation $(Q^{\perp}B)^*H \cap A^*H = \{0\}$ is equivalent to $Q^{\perp}H \cap B^{*(-1)}(A^*H) \subset \ker B^*$. Hence from Lemmas 2.3 and 2.4 we have

THEOREM 2.5. Let [B/A] be a quotient, and let Q be an orthogonal projection. Then $[B/A] = [QB/A] + [Q^{\perp}B/A]$ is a J-decomposition if and only if the following two conditions hold.

- (1) $Q^{(-1)}(B^{*(-1)}(A^*H))$ is dense in H.
- (2) $Q^{\perp}H \cap B^{*(-1)}(A^*H) \subset \ker B^*.$

It is easy to see that the orthogonal projection $P = P_{A,B}$ satisfies the above conditions (1) and (2). Hence

$$(2.10) \quad [B/A] = [PB/A] + [P^{\perp}B/A]$$

is really a J-decomposition of [B/A] [5, Theorem 5.4].

COROLLARY 2.6. Let Q be an orthogonal projection such that $[B/A] = [QB/A] + [Q^{\perp}B/A]$ is a J-decomposition. Then $Q \leq P_{A^{\bullet},B^{\bullet}}$.

PROOF. Note that $Q^{(-1)}(B^{*(-1)}(A^*H)) \subset Q^{(-1)}(PH)$ $(P = P_{A^{\bullet},B^{\bullet}})$, and that $Q^{(-1)}(PH)$ is closed. Hence, by the theorem, $Q^{(-1)}(PH) = H$, so that $QH \subset PH$ or $Q \leq P$.

On the closure $[PB/A]^-$ of the closable part [PB/A] of [B/A] in the decomposition (2.10), we have

PROPOSITION 2.7. $[PB/A]^{-} = [B_l V_l^* V_l / A_l].$

PROOF. From Lemma 2.2 (2) we see that $[B_l V_l^* V_l / A_l]$ is an extension of $[PB/A] = [B_l V_l^* V_l R / A_l R]$. Since $A_l^* A_l + (B_l V_l^* V_l)^* (B_l V_l^* V_l) = V_l^* V_l$ is an orthogonal projection, we can see that $[B_l V_l^* V_l / A_l]$ is closed (as in the proof of Lemma 2.3). Now since AH is dense in $A_l H$, we have the desired identity.

A quotient [B/A] is bounded as an operator on AH if and only if there exists some $\alpha > 0$ such that $||Bx|| \le \alpha ||Ax||$, $x \in H$. An equivalent condition for the boundedness of [B/A] is the relation $B^*H \subset A^*H$ (e.g. by [4, Theorem 2.1]). The following theorem characterizes a quotient whose closable part of the decomposition (2.10) is bounded.

THEOREM 2.8. The following conditions are equivalent;

- (1) $[P_{A^{\bullet},B^{\bullet}}B/A]$ is bounded on AH.
- (2) A_l has closed range.
- (3) $B^{*(-1)}(A^*H)$ is closed in H.

PROOF. (1) \Rightarrow (2); Write $P = P_{A^*,B^*}$ briefly. Since (1) is equivalent to $B^*PH \subset A^*H$, we have $B^*P = A^*X$ for some operator X. Hence by Lemma 2.2 (2) we have $RV_l^*V_lB_l^* = RA_l^*X$, or $V_l^*V_lB_l^* = A_l^*X$. Hence $V_l^*V_l = V_l^*V_l(A_l^*A_l + B_l^*B_l)V_l^*V_l = A_l^*A_l + A_l^*XX^*A_l \leq (1+||x||^2)A_l^*A_l$. This implies that $V_l^*H \subset A_l^*H$, so that A_l^* and hence also A_l has closed range.

 $(2) \Rightarrow (3)$; Note that $B^{*(-1)}(A^*H) = B_l^{*(-1)}(A_l^*H)$, and that the inverse image $B_l^{*(-1)}(A_l^*H)$ of the closed set A_l^*H is closed.

 $(3) \Rightarrow (1)$; If $B^{*(-1)}(A^*H)$ is closed, then $PH = B^{*(-1)}(A^*H)$, so that $B^*PH \subset A^*H$. This implies boundedness of [PB/A].

On uniqueness of the J-decomposition, we have

THEOREM 2.9. A quotient [B/A] has the unique J-decomposition (2.10) if and only if one of the conditions (1)-(3) in Theorem 2.8 holds.

PROOF. Suppose that (1) of Theorem 2.8 holds, or equivalently, that $B^*PH \subset A^*H$ $(P = P_{A^*,B^*})$. Let Q be an orthogonal projection which yields a J-decomposition (2.8). Then, by Corollary 2.6 P and Q commute, so that $B^*Q^{\perp}PH = B^*PQ^{\perp}H \subset A^*H$. Since $[Q^{\perp}B/A]$ is singular, we have $A^*H \cap B^*Q^{\perp}H = \{0\}$ from Lemma 2.4. Hence $B^*Q^{\perp}PH = \{0\}$ or $B^*Q^{\perp}P = 0$, which implies QB = PB, uniqueness of J-decomposition of [B/A].

To see the converse assertion, suppose that $B^*PH \not\subset A^*H$. Then there is a vector $u \in H$ such that $B^*Pu \notin A^*H$. We can assume that $u \in PH$ and ||u||=1. Put $Q=P(1-u \otimes u)$ $(=(1-u \otimes u)P)$, where $u \otimes u$ is an operator defined by $(u \otimes u)x = \langle x, u \rangle u$, $x \in H$. $(\langle \cdot, \cdot \rangle$ is the inner product of H.) Then clearly Q is an orthogonal projection. Now we want to show that this Q yields a J-decomposition of [B/A] which is deferent from (2.10). It suffices to prove that

 $(i) \quad OB \neq PB$, and

(ii) [QB/A] is closable and $[Q^{\perp}B/A]$ is singular.

For (i), since $B^*u \notin A^*H$, we see that $B^*u \neq 0$, so that $PB - QB = (u \otimes u)B = u \otimes B^*u \neq 0$. For (ii), first note that [QB/A] = [QPB/A] has an extension $[QB_lV_l^*V_l/A_l]$ $(PB_l = B_lV_l^*V_l)$. By a simple computation we can see that $A_l^*A_l + (QB_lV_l^*V_l)^*(QB_lV_l^*V_l) = V_l^*V_l - B_l^*u \otimes B_l^*u$ is an operator with closed range. Hence $[QB_lV_l^*V_l/A_l]$ is a closed extension of [QB/A]. Next in order to see that $[Q^\perp B/A]$ is singular, we want to show that $A^*H \cap B^*Q^\perp H = \{0\}$. Let $v \in A^*H \cap B^*Q^\perp H$. Then $v = A^*x = B^*Q^\perp y$ for some $x, y \in H$. Hence $R(A_l^*x - B_l^*Q^\perp y) = 0$, or equivalently, $A_l^*x = B_l^*Q^\perp y$. Since $B_l^*Q^\perp = B_l^*(P^\perp + u \otimes u) = (1 - V_l^*V_l)B_l^* + B_l^*u \otimes u$, we have $A_{l}^{*}x = (1 - V_{l}^{*}V_{l})B_{l}^{*}y + \langle y, u \rangle B_{l}^{*}u.$

Multiplying this identity by $RV_{l}^{*}V_{l}$ from the left, we have $RA_{l}^{*}x = \langle y, u \rangle$ $RV_{l}^{*} \times V_{l}B_{l}^{*}u$, that is, $A^{*}x = \langle y, u \rangle B^{*}Pu$. Hence, from the assumption $B^{*}Pu \notin A^{*}H$ we conclude that $A^{*}x = 0$, or v = 0.

3. Relations between J-decompositions and L-decompositions

We begin with the definition of L-decomposition of positive operators. Let S be a positive operator. Then a positive operator U is said to be S-absolutely continuous if there exists a sequence $\{U_n\}$ of positive operators such that $U_n \leq U_{n+1}$, $U_n \leq \alpha_n S_n$ for some $\alpha_n > 0$ (n=1, 2, ...) and $\lim_{n\to\infty} U_n = U$ (strong limit). A positive operator V is S-singular if any operator W satisfying $0 \leq W \leq V$, $W \leq S$ is identical to 0. Let T be a positive operator, and let

$$(3.1) T = U + V$$

for two positive operators U and V with the conditions defined as above. Then we call (3.1) an L-decomposition of T with respect to S [2].

Recall that the parallel sum S : T of two positive operators S and T is defined (see(2,3)) by $S : T = S^{1/2}(S^{1/2})_{\iota}(T^{1/2})_{\iota}^*T^{1/2}$. Easily we see that S:T is bounded by S and T (e.g. by Lemma 2.1 (2)). Furthermore, it is monotone [4, Theorem 4.4], that is, $S : T_1 \leq S : T_2$ if $0 \leq T_1 \leq T_2$. Using the parallel sum, Ando [2] introduced an S-absolutely continuous operator

$$[S]T = \lim_{n \to \infty} (nS) : T,$$

and proved that

(3.2) T = [S]T + (T - [S]T)

is an L-decomposition of T with respect to S. (In defining the operator [S]T, Ando, however, adopted a different but equivalent definition [1, Theorem 9] of the parallel sum; $\langle (S:T)x, x \rangle = \inf\{\langle Sy, y \rangle + \langle Tz, z \rangle; y + z = x\}$.)

Now, as a relation combining the J-decomposition (2.10) and the L-decomposition (3.2), we have the following result which was essentially obtained by Kosaki [9]. For completeness we shall prove it.

THEOREM 3.1 (cf. [9, Theorem 6]). Let A, B be operators, and let $S=A^*A$ and $T=B^*B$. Then $[S]T=B^*P_{A^*,B^*}B$.

PROOF. Let $R_n = R_{nA,B}$ (cf. (2.1)), and let $X = A_n = (nA)_{B,l}$, $Y = B_n = B_{nA,l}$ be the unique solutions of the equations $XR_n = nA$, ker $X \supset \ker R_n$ and

S. Izumino

 $YR_n = B$, ker $Y \supset \ker R_n$, respectively (cf. (2.2)). Then we easily have the following facts.

(1) $||A_n|| \le 1, ||B_n|| \le 1.$

(2) $(n^2S): T = B^*(1 - B_n B_n^*)B.$ (By Lemma 2.1 (2).)

(3) $(1-B_nB_n^*)^{1/2}H = B^{*(-1)}(nA^*H) = B^{*(-1)}(A^*H).$ (By Lemma 4.1 (4).)

(4) $1 - B_n B_n^* \leq P_{nA^*,B^*} = P_{A^*,B^*}.$ (By Lemma 2.2 (1).)

We want to add more two facts.

(5) $\{1-B_nB_n^*\}$ is an increasing squence.

(6) $(1-B_lB_l^*)B_nB_n^* = (1/n)B_lA_l^*A_nB_n^*.$

For (5), since $R_m^2 \leq R_n^2$ for $m \leq n$, we have the unique operator $Z = Z_{mn}$ such that $R_m = R_n Z = Z^* R_n$, ker $Z^* \supset \ker R_n$. Since $B_n R_n = B = B_m R_m = B_m Z^* R_n$, we can see that $B_n = B_m Z^*$. Hence, since $||Z|| \leq 1$, we have $B_n B_n^* = B_m Z^* \times ZB_m^* \leq B_m B_m^*$, which implies (5).

For (6), we can first obtain $A_1Z_{1n}^* = (1/n)A_n$ and $B_1Z_{1n}^* = B_n$ by a similar argument to that used above (to get $B_n = B_mZ^*$). Note that $A_1 = A_l$ and $B_1 = B_l$. Hence, from Lemma 2.1 (2), we have

$$(1 - B_l B_l^*) B_n = (1 - B_l B_l^*) B_l Z_{1n}^* = B_l (P_R - B_l^* B_l) Z_{1n}^*$$

= $B_l A_l^* A_l Z_{1n}^* = (1/n) B_l A_l^* A_n.$

We now get (6) immediately.

To show the desired identity $[S]T = B^*PB$, where $P = P_{A^*,B^*}$, let $Q = \lim_{n \to \infty} (1 - B_n B_n^*)$. Then, by (2), what we have to do is to show Q = P. Letting $n \to \infty$ in (6), we obtain $(1 - B_l B_l^*)(1 - Q) = 0$. Hence we have easily P(1-Q) = 0, or P = PQ. From (4) we can also have PQ = Q, which completes the proof.

From the fact ker $B^* \subset PH$, we can see that P=1 is equivalent to PB = B. Between closability of quotients and absolute continuity of positive operators, we have

COROLLARY 3.2 (cf. [2, Theorem 5], [9, Lemma 3]). Let [B/A] be a quotient. Then the following conditions are equivalent;

- (1) [B/A] is closable.
- $(2) \qquad P_{A^{\bullet},B^{\bullet}}=1.$
- (3) B^*B is A^*A -absolutely continuous.

PROOF. $(1) \iff (2)$; Clear by Lemma 2.3.

 $(2) \Rightarrow (3)$; From (2) we have $[A^*A](B^*B) = B^*B$, which implies (3). (3) \Rightarrow (1); If (3) is assumed, then there is a sequence $\{T_n\}$ of positive operators such that $T_n^2 \leq T_{n+1}^2$, $T_n^2 \leq \alpha_n A^*A$ for some $\alpha_n > 0$ and $\lim_{n \to \infty} T_n^2 = B^*B$. Then, since $T_n H \subset A^*H$, we see that $T_n^{(-1)}(A^*H) = H$. Hence $P_{A^*, T_n} = 1$, so that $[A^*A]T_n^2 = T_n^2$. Hence $[A^*A](B^*B) \geq [A^*A]T_n^2 = T_n$. Taking the limit, we have $[A^*A](B^*B) \geq B^*B$, or equivalently, $[A^*A](B^*B) = B^*B$. From this identity, we can easily obtain $P_{A^*,B^*}B = B$, which implies (2).

For the singularity of quotients and positive operators, we have

COROLLARY 3.3 (cf. [2, Corollary 3]). Let [B/A] be a quotient. Then the following conditions are equivalent;

- (1) [B/A] is singular.
- $(2) \qquad P_{A^*,B^*}B=0.$
- (3) B^*B is A^*A -singular.

PROOF. The equivalence $(1) \iff (2)$ is clear by the definition (2.8). By Theorem 3.1 the condition (2) is equivalent to the identity

(2') $[A^*A](B^*B)=0.$

From the definitions of $[A^*A](B^*B)$ and A^*A -singularity, we can see the equivalences $(2') \iff (n^2A^*A) : B^*B = 0 \ (n=1, 2, ...) \iff (3)$.

Let $[B/A] = [QB/A] + [Q^{\perp}B/A]$ be a J-decomposition of [B/A] by an orthogonal projection Q. Then by Corollaries 3.2 and 3.3 we see that $B^*B = B^*QB + B^*Q^{\perp}B$ is an L-decomposition of B^*B with respect to A^*A . Hence every J-decomposition of [B/A] induces an L-decomposition of B^*B with respect to A^*A . As the converse to this fact we have

THEOREM 3.4. Let S and T be positive operators with ker $S \subset \ker T$, and let T = U + V be an L-decomposition of T such that U and V are S-absolutely continuous and S-singular positive opeators, respectively. Then there exist an operator B and an orthogonal projection Q such that $U = B^*QB$ and $V = B^*Q^+B$. Hence, if A is an operator with $A^*A = S$, then [B/A] = $[QB/A] + [Q^+B/A]$ is a J-decomposition of [B/A] by Q, which induces the given L-decomposition of T.

PROOF. Since the dimension of H is infinite, we can find mutually orthogonal closed linear subspaces M and N in H such that dim $M = \dim (UH)^-$ and dim $N = \dim (VH)^-$. Then there exist partial isometries X and Y such that

$$(3.3) \qquad XX^* = P_{U}, \ YY^* = P_{V}, \ XY^* = 0.$$

Here P_U and P_V are the orthogonal projections onto $(UH)^-$ and $(VH)^-$, respectively. Put $B = X^* U^{1/2} + Y^* V^{1/2}$ and $Q = X^* X$. Then we can obtain all that we desire.

THEOREM 3.5. If we add the assumption $U^{1/2}H \cap V^{1/2}H = \{0\}$ to Theorem 3.4, then we have a J-decomposition of $[T^{1/2}/S^{1/2}]$ by some orthogonal projection Q which induces the given L-decomposition T = U + V.

PROOF. Let X and Y be, respectively, the unique solutions of the equations $XT^{1/2} = U^{1/2}$ and $YT^{1/2} = V^{1/2}$ such that ker $X \subset \text{ker } T$ and ker $Y \subset \text{ker } T$. Then we can see that $X^*X + Y^*Y = P_T$, and that $T^{1/2} = X^*U^{1/2} + Y^*V^{1/2}$ or $U^{1/2} = XT^{1/2} = XX^*U^{1/2} + XY^*V^{1/2}$. Hence $(P_U - XX^*)U^{1/2} = XY^*V^{1/2}$. Taking the adjoints, we have $U^{1/2}(P_U - XX^*) = V^{1/2}YX^*$. Hence by the assumption $U^{1/2}H \cap V^{1/2}H = \{0\}$, we have $P_U - XX^* = YX^* = 0$. Similarly we can obtain $P_V - YY^* = 0$. Hence we have (3.3) for those X and Y. Now, letting $B = T^{1/2}(A = S^{1/2} \text{ and } Q = X^*X)$, we obtain the desired J-decomposition of $[T^{1/2}/S^{1/2}]$.

On uniqueness of L- and J-decompositions we have

THEOREM 3.6. Let S and T be positive operators with ker S \subset ker T. Then T has a unique L-decomposition with respect to S if and only if $[T^{1/2}/S^{1/2}]$ has a unique J-decomposition.

Proof. Suppose that T has a unique L-decomposition with respect to S, and let $[T^{1/2}/S^{1/2}] = [QT^{1/2}/S^{1/2}] + [Q^{\perp}T^{1/2}/S^{1/2}]$ be a J-decomposition of $[T^{1/2}/S^{1/2}]$. Then $T^{1/2}QT^{1/2} = T^{1/2}PT^{1/2}$, where $P = P(S^{1/2}, T^{1/2})$. Hence by Corollary 2.6, $QT^{1/2} = PT^{1/2}$, which implies that $T^{1/2}$ has a unique Jdecomposition. Conversely, suppose that $[T^{1/2}/S^{1/2}]$ has a unique Jdecomposition, and let T = U + V be an L-decomposition of T such that U is S-absolutely continuous and V is S-singular. Then by the monotone property of the operation [S], we have $U = [S]U \leq [S]T = T^{1/2}PT^{1/2}$, so that $U^{1/2}H \subset T^{1/2}PH$. By Theorem 2.8 (1) and Theorem 2.9, we see that $T^{1/2}PH \subseteq S^{1/2}H$. Hence we have $U^{1/2}H \subseteq S^{1/2}H$. On the other hand, since $[V^{1/2}/S^{1/2}]$ is singular we have $V^{1/2}H \cap S^{1/2}H = \{0\}$. Hence $U^{1/2}H \cap$ $V^{1/2}H = \{0\}$. Now by Theorem 3.5 we can find an orthogonal projection Q such that $[T^{1/2}/S^{1/2}] = [QT^{1/2}/S^{1/2}] + [Q^{\perp}T^{1/2}/S^{1/2}]$ is a J-decomposition which induces the L-decomposition T = U + V. Hence, from uniqueness of the J-decomposition we obtain $QT^{1/2} = PT^{1/2}$, so that $U = T^{1/2}QT^{1/2} =$ $T^{1/2}PT^{1/2}$ and $V = T^{1/2}P \perp T^{1/2}$. This implies uniqueness of the Ldecomposition of T.

COROLLARY 3.7 (cf. [2, Theorem 6]). Let S and T be positive operators with ker $S \subset \ker T$. Then T has a unique L-decomposition with respect to S if and only if $[S]T \leq \alpha S$ for some $\alpha > 0$.

PROOF. By Theorems 2.7, 2.8 and 3.6 we see that T has a unique L-decomposition with respect to S if and only if $[PT^{1/2}/S^{1/2}]$ is bounded on $S^{1/2}H$. The latter condition is equivalent to $T^{1/2}PH \subset S^{1/2}H$. Since $[S]T = T^{1/2}PT^{1/2}$, we now obtain $[S]T \leq \alpha S$ for some $\alpha > 0$ as an equivalent condition for uniqueness of the L-decomposition of T.

References

- [1] W. N. ANDERSON, JR. and G. E. TRAPP, Shorted operators. II, SIAM J. Appl. Math. 28 (1975), 60-71.
- [2] T. ANDO, Lebesgue-type decomposition of positive operators, Acta Sci Math. 38 (1976), 253-260.
- [3] Sirkka-Liisa ERIKSSON and H. LEUTWILER, A potential-theoretic approach to parallel addition, Math. Ann. 274 (1986), 301-317.
- [4] P. A. FILLMORE and J. P. WILLIAMS, On operator ranges, Advances in Math. 7 (1971), 254-281.
- [5] S. IZUMINO, Quotients of bounded operators, to appear in Proc. Amer. Math. Soc.
- [6] P. E. T. JORGENSEN, Unbounded operators: Perturbations and commutativity problems, J. Functional Anal. 39 (1980), 281-307.
- [7] T. KATO, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin and New York, 1966.
- [8] W. E. KAUFMAN, Representing a closed operator as a quotient of continuous operators, Proc. Amer. Math. Soc. 72 (1978), 531-534.
- [9] H. KOSAKI, Remarks on Lebesgue-type decomposition of positive operators, J. Operator Theory 11 (1984), 137-143.
- [10] S. ÔTA, On a singular part of an unbounded operator, Z. Anal. Anwendungen 7 (1) (1987), 15-18.

Faculty of Education Toyama University