Decomposition of quotients of bounded operators with respect to closability and Lebesgue-type decomposition of positive operators

Saichi Izumino

(Received March 14, 1988, Revised August 3, 1988)

1. Introduction

Let A and B be bounded linear operators on an infinite dimensional Hilbert space H with the kernel condition
(1.1) ker $A \subset$ ker B.

Then we define a quotient $[B / A]$ as the linear operator: $A x \mapsto B x, x \in H$. In [5] we showed that both the adjoint and the closure of $[B / A$] are also represented as reasonable quotients if they exist. Let $P=P_{A}{ }^{*}, B^{*}$ be the orthogonal projection onto the closure of the set $B^{*(-1)}\left(A^{*} H\right):=\left\{x ; B^{*} x \in\right.$ $\left.A^{*} H\right\}$, and let $P^{\perp}=1-P$. Then, applying Jorgensen decomposition [6] (Ôta [10]) to $[B / A]$, we obtain the sum decomposition [5] $[B / A]=$ $[P B / A]+\left[P^{\perp} B / A\right]$ of $[B / A]$ into the closable part $[P B / A]$ and the singular part $\left[P^{\perp} B / A\right]$. Extending this notion, we call the decomposition

$$
[B / A]=[Q B / A]+\left[Q^{\perp} B / A\right]
$$

J -decomposition of $[B / A]$ by Q, if Q is an orthogonal projection such that [$Q B / A$] is closable and [$Q^{\perp} B / A$] is singular.

Another decomposition is Lebesgue-type (or shortly L-) decomposition of (bounded) positive operators, which was introduced by Ando [2] ; if S is a positive operator then every positive operator T is decomposed into the sum $T=U+V$ of two positive operators U and V such that U is S absolutely continuous and V is S-singular. It was proved in [2] that a positive operator T is S-absolutely continuous if and only if $T^{1 / 2(-1)}\left(S^{1 / 2} H\right)$ is dense in H. The latter condition is, as a matter of fact, just what guarantees closability of [$T^{1 / 2} / S^{1 / 2}$] when ker $S \subset$ ker T [5], [9]. This suggests close connections between J-decomposition and L-decomposition.

In this paper we first consider J-decomposition of quotients and give some equivalent conditions for uniqueness of this decomposition. Next we show that every J -decomposition of a quotient $[B / A]$ induces an L decomposition of $B^{*} B$ with respect to $A^{*} A$, and conversely that every

L-decomposition of T with respect to S, under the condition $\operatorname{ker} S \subset$ ker T, is induced from a J -decomposition of $[B / A]$ such that $A^{*} A=S$ and $B^{*} B=$ T.

To avoid triviality we assume that the Hilbert space H has infinite dimension. An operator is assumed to be bounded linear, defined on H, unless specially stated otherwise.

2. J-decomposition of quotients

For given operators A and B, put

$$
\begin{equation*}
R=R_{A, B}=\left(A^{*} A+B^{*} B\right)^{1 / 2} . \tag{2.1}
\end{equation*}
$$

Then as a basic fact we have $R H=A^{*} H+B^{*} H$ [4, Theorem 2.2]. If we consider the equations

$$
\begin{equation*}
X R=A \text { and } Y R=B \tag{2.2}
\end{equation*}
$$

then, since $A^{*} H \subset R H$ and $B^{*} H \subset R H$ we can fined operators X and Y satisfying (2.2) [4, Theorem 2.1]. Furthermore, with the restrictions ker $X \supset \operatorname{ker} R$ and ker $Y \supset \operatorname{ker} R$ each of the equations has a unique solution, so that we then denote by $X=A_{l}\left(=A_{B, l}\right)$ and $Y=B_{l}\left(=B_{A, l}\right)$ [5]. Following [4] we now define

$$
\begin{equation*}
A^{*} A: B^{*} B=A^{*} A_{l} B_{l}^{*} B, \tag{2.3}
\end{equation*}
$$

and call it the parallel sum of $A^{*} A$ and $B^{*} B$. (If $\mathrm{A}^{*} \mathrm{~A}=\mathrm{C}^{*} \mathrm{C}$ for an operator C, then we can see $A^{*} A_{l}=C^{*} C_{l}$, so that $A^{*} A: B^{*} B$ is really well-defined by (2.3).) In [5] we proved the following facts which are useful for our discussions.

Lemma 2.1 (cf. [5, Lemma 2.3]). Let A, B be operators on H, and let R, A_{ι} and B_{l} are operators defined as before. Then
(1) $A_{l}^{*} A_{l}+B_{l}^{*} B_{l}=P_{R}$, the orthogonal projection onto the closure ($\left.R H\right)^{-}$ of $R H$.

$$
\begin{align*}
& A^{*} A: B^{*} B=B^{*} B: A^{*} A=A^{*}\left(1-A_{l} A_{l}^{*}\right) A=B^{*}\left(1-B_{l} B_{l}^{*}\right) B . \tag{2}\\
& A^{*} H \cap B^{*} H=\left(A^{*} A: B^{*} B\right)^{1 / 2} H . \tag{3}\\
& B^{*(-1)}\left(A^{*} H\right)=\left(1-B_{l} B_{l}^{*}\right)^{1 / 2} H . \tag{4}
\end{align*}
$$

Denote by $P_{A} \cdot B^{*}$ (or $P\left(A^{*}, B^{*}\right)$) the orthogonal projection onto $\left\{B^{*(-1)}\left(A^{*} H\right)\right\}^{-}$. Then we have

Lemma 2.2 Let V_{l} be the partial isometry obtained from the polar decomposition $A_{l}=V_{l}\left(A_{l}^{*} A_{l}\right)^{1 / 2}$ of A_{l}. Then

$$
\begin{equation*}
P_{A}{ }^{*}, B^{*}=1-B_{l} B_{l}^{*}+B_{l} V_{l}^{*} V_{l} B_{l}^{*} . \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
P_{A} \cdot, B \cdot B=B_{l} V_{l}^{*} V_{l} R . \tag{2}
\end{equation*}
$$

Proof. From Lemma 2.1 (1) we see that $A_{l}^{*} A_{l}$ and $B_{l}^{*} B_{l}$ commute. Hence we have easily

$$
\begin{equation*}
V_{l}^{*} V_{l} B_{l}^{*} B_{l}=B_{l}^{*} B_{l} V_{l}^{*} V_{l} . \tag{2.4}
\end{equation*}
$$

To prove (1), let $P=P_{A} \cdot, B^{*}$ and denote by Q the right hand side of (1). Then, using Lemma 2.1 (1) again and (2.4), we can see that $Q^{2}=Q$, that is, Q is an orthogonal projection. Hence, since $1-B_{l} B_{l}^{*} \leqq Q$ (or $Q-(1-$ $\left.B_{l} B_{l}^{*}\right)$ is positive), we have $P H \subset Q H$. For the converse inclusion, first note that $B_{l}^{*}\left(1-B_{l} B_{l}^{*}\right)=\left(P_{R}-B_{l}^{*} B_{l}\right) B_{l}^{*}=A_{l}^{*} A_{l} B_{l}^{*}$, and that ker $A_{l}^{*} A_{l} B_{l}^{*}=$ ker $V_{l} B_{i}^{*}$. Hence we have
(2.5) ker $\left(1-B_{l} B_{i}^{*}\right) \subset \operatorname{ker} V_{l} B_{i}^{*}$.

Hence ker $\left(1-B_{l} B_{l}^{*}\right) \subset$ ker Q, which implies $P H \supset Q H$. Now the identity (2) can be obtained from (1), (2.4) and Lemma 2.1 (1).

Let $[B / A]$ be a quotient of operators (with the kernel condition (1.1)). If $A H$ is dense in H, then the adjoint $[B / A]^{*}$ of $[B / A]$ exists, and it is represented [5, Theorem 4.1] as

$$
\begin{equation*}
[B / A]^{*}=\left[V_{l} B_{l}^{*} /\left(1-B_{l} B_{l}^{*}\right)^{1 / 2}\right] . \tag{2.6}
\end{equation*}
$$

In [5], assuming that $A H$ is dense in H, we defined [B / A] to be closable if the domain $\left(1-B_{l} B_{l}^{*}\right)^{1 / 2} H$ of $[B / A]^{*}$ is dense in H. Here we, however, want to define $[B / A]$ to be closable (cf. [7, p. 165]) if
(2.7) $\quad A x_{n} \rightarrow 0$ and $B x_{n} \rightarrow y$ for a sequence $\left\{x_{n}\right\}$ in H imply $y=0$.

Consequently, we do not assume the denseness of $A H$ in H for closability of $[B / A]$. Denote by $[B / A]^{-}$the closure of $[B / A]$ when it exists. Then we have

Lemma 2.3 (cf. [5, Theorem 4.2], [8, Lemma 3]). Let [B/A] be a quotient. Then the following conditions are equivalent;
(1) $[B / A]$ is closable, (i.e., (2.7) is assumed.)
(2) $\operatorname{ker} A_{l} \subset$ ker B_{l}.
(3) $\left(1-B_{l} B_{l}^{*}\right)^{1 / 2} H\left(=B^{*(-1)}\left(A^{*} H\right)\right)$ is dense in H.

If one of (1)-(3) holds, then $[B / A]^{-}=\left[B_{l} / A_{l}\right]$.
Proof. (1) $\Rightarrow(2)$; Let $A_{\iota} u=0, u \in H$. Then, since A_{ι} is defined as a natural extension of the mapping $R x \mapsto A x, x \in H$, we can find a sequence $\left\{x_{n}\right\}$
such that $R x_{n} \rightarrow u$ and $A x_{n} \rightarrow A_{l} u=0$. Hence $B x_{n}=B_{l} R x_{n} \rightarrow B_{l} u$, which implies $B_{l} u=0$.
(2) $\Rightarrow(3)$; Let $\left(1-B_{l} B_{l}^{*}\right) u=0$. Then we have to show that $u=0$. By (2.5) we see that $B_{i}^{*} u \in \operatorname{ker} V_{l}=\operatorname{ker} A_{l}$. Hence $B_{l} B_{l}^{*}=0$, so that $u=(1-$ $\left.B_{l} B_{l}^{*}\right) u+B_{l} B_{\stackrel{1}{*} u=0 \text {. }}$
(3) \Rightarrow (1) ; Let $A x_{n} \rightarrow 0$ and $B x_{n} \rightarrow y$. Then $\left\{R x_{n}\right\}$ is convergent. Put $z=$ $\lim _{n \rightarrow \infty} R x_{n}$. Then $A_{l} z=\lim _{n \rightarrow \infty} A_{l} R x_{n}=\lim _{n \rightarrow \infty} A n_{n}=0$. Hence $\left(1-B_{l} B_{l}^{*}\right) B_{l} z=B_{l}\left(P_{R}-\right.$ $\left.B_{l}^{*} B_{l}\right) z=B_{l} A_{l}^{*} A_{l} z=0$. Since ker $\left(1-B_{l} B_{l}^{*}\right)=\{0\}$, we have $B_{l} z=0$. Hence $y=\lim _{n \rightarrow \infty} B x_{n}=\lim _{n \rightarrow \infty} B_{l} R x_{n}=B_{l} z=0$.

For the closure $[B / A]^{-}$, we first note that $\left[B_{l} / A_{l}\right]$ is an extension of [B / A], because $A=A_{l} R$ and $B=B_{l} R$. Since $A_{l}^{*} A_{l}+B_{l}^{*} B_{l}=P_{R}$ (Lemma 2.1 (1)), we see that $A_{l}^{*} H+B_{i}^{*} H$ is closed in H. Hence from [8, Theorem 1] (or by a direct computation) we can show that $\left[B_{l} / A_{l}\right]$ is closed. Now, since $A H$ is dense in $A_{l} H$ we can conclude that $[B / A]^{-}=\left[B_{l} / A_{l}\right]$.

Among general (possibly unbounded) operators a singular operator L is defined ([6] and [10]) as one which has dense domain $D(L)$ in H and satisfies the condition $L(D(L)) \subset D\left(L^{*}\right)^{\perp}$, that is, the range of L is orthogonal to the domain of L^{*}. Since the domain of the adjoint of a quotient [B / A] is $\left(1-B_{l} B{ }_{l}^{*}\right)^{1 / 2} H$, we naturally assume that a singular quotient [B / A] satisfies the condition $B H \subset\left\{\left(1-B_{l} B_{l}^{*}\right) H\right\}^{\perp}$, or equivalently
(2.8) $B H \subset \operatorname{ker} P_{A}{ }^{*}, B^{\circ}$.

We here adopt (2.8) as the definition of $[B / A]$ to be singular, and we do not request the denseness of $A H$ in H (cf. [5]). Now on singularity of quotients we can show the next equivalences, the proof of which is almost similar to that in [5].

Lemma 2.4 [5, Theorem 5.5]. Let $[B / A]$ be a quotient. Then the following conditions are equivalent;
(1) $[B / A]$ is singular, (i.e., (2.8) is assumed.)
(2) $\quad A_{l} B_{i}^{*}=0$.
(3) $A^{*} A: B^{*} B=0$.
(4) $A^{*} H \cap B^{*} H=\{0\}$.

Recall that for a quotient $[B / A]$ and an orthogonal projection Q the decomposition

$$
\begin{equation*}
[B / A]=[Q B / A]+\left[Q^{\perp} B / A\right] \tag{2.9}
\end{equation*}
$$

is a J -decomposition by Q if $\left[Q B / A\right.$] is closable and $\left[Q^{\perp} B / A\right.$] is singular. Easily we see that $(Q B)^{*(-1)}\left(A^{*} B\right)=Q^{(-1)}\left(B^{*(-1)}\left(A^{*} H\right)\right.$), and that the rela-
tion $\left(Q^{\perp} B\right)^{*} H \cap A^{*} H=\{0\}$ is equivalent to $Q^{\perp} H \cap B^{*(-1)}\left(A^{*} H\right) \subset$ ker B^{*}. Hence from Lemmas 2.3 and 2.4 we have

Theorem 2.5. Let $[B / A]$ be a quotient, and let Q be an orthogonal projection. Then $[B / A]=[Q B / A]+\left[Q^{\perp} B / A\right]$ is a J-decomposition if and only if the following two conditions hold.

$$
\begin{equation*}
Q^{(-1)}\left(B^{*(-1)}\left(A^{*} H\right)\right) \text { is dense in } H \text {. } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
Q^{\perp} H \cap B^{*(-1)}\left(A^{*} H\right) \subset \operatorname{ker} B^{*} . \tag{2}
\end{equation*}
$$

It is easy to see that the orthogonal projection $P=P_{A}{ }^{*}, B^{*}$ satisfies the above conditions (1) and (2). Hence

$$
\begin{equation*}
[B / A]=[P B / A]+\left[P^{\perp} B / A\right] \tag{2.10}
\end{equation*}
$$

is really a J -decomposition of $[B / A][5$, Theorem 5.4].
Corollary 2.6. Let Q be an orthogonal projection such that $[B / A]=$ $[Q B / A]+\left[Q^{\perp} B / A\right]$ is a J-decomposition. Then $Q \leqq P_{A}, B^{*}$.

Proof. Note that $Q^{(-1)}\left(B^{*(-1)}\left(A^{*} H\right)\right) \subset Q^{(-1)}(P H)\left(P=P_{A^{\bullet}, B^{\cdot}}\right)$, and that $Q^{(-1)}(P H)$ is closed. Hence, by the theorem, $Q^{(-1)}(P H)=H$, so that $Q H \subset P H$ or $Q \leqq P$.

On the closure $[P B / A]^{-}$of the closable part $[P B / A]$ of $[B / A]$ in the decomposition (2.10), we have

Proposition 2.7. $[P B / A]^{-}=\left[B_{l} V_{l}^{*} V_{l} / A_{l}\right]$.
Proof. From Lemma 2.2 (2) we see that $\left[B_{l} V_{l}^{*} V_{l} / A_{l}\right]$ is an extension of $[P B / A]=\left[B_{l} V_{l}^{*} V_{l} R / A_{l} R\right]$. Since $A_{l}^{*} A_{l}+\left(B_{l} V_{l}^{*} V_{l}\right)^{*}\left(B_{l} V_{l}^{*} V_{l}\right)=$ $V_{l}^{*} V_{l}$ is an orthogonal projection, we can see that $\left[B_{l} V_{l}^{*} V_{l} / A_{l}\right]$ is closed (as in the proof of Lemma 2.3). Now since $A H$ is dense in $A_{l} H$, we have the desired identity.

A quotient $[B / A]$ is bounded as an operator on $A H$ if and only if there exists some $\alpha>0$ such that $\|B x\| \leqq \alpha\|A x\|, x \in H$. An equivalent condition for the boundedness of $[B / A]$ is the relation $B^{*} H \subset A^{*} H$ (e.g. by [4, Theorem 2.1]). The following theorem characterizes a quotient whose closable part of the decomposition (2.10) is bounded.

THEOREM 2.8. The following conditions are equivalent;
(1) $\left[P_{A}{ }^{\bullet}, B^{\cdot} \cdot B / A\right]$ is bounded on $A H$.
(2) A_{l} has closed range.
(3) $B^{*(-1)}\left(A^{*} H\right)$ is closed in H.

Proof. (1) $\Rightarrow(2)$; Write $P=P_{A^{*}, B^{*}}$ briefly. Since (1) is equivalent to $B^{*} P H \subset A^{*} H$, we have $B^{*} P=A^{*} X$ for some operator X. Hence by Lemma 2.2 (2) we have $R V_{l}^{*} V_{l} B_{l}^{*}=R A_{l}^{*} X$, or $V_{l}^{*} V_{l} B_{l}^{*}=A_{l}^{*} X$. Hence $V_{l}^{*} V_{l}=V_{l}^{*} V_{l}\left(A_{l}^{*} A_{l}+B_{l}^{*} B_{l}\right) V_{l}^{*} V_{l}=A_{l}^{*} A_{l}+A_{l}^{*} X X^{*} A_{l} \leqq\left(1+\|x\|^{2}\right) A_{l}^{*} A_{l}$. This implies that $V_{l}^{*} H \subset A_{l}^{*} H$, so that A_{l}^{*} and hence also A_{l} has closed range.
$(2) \Rightarrow(3)$; Note that $B^{*(-1)}\left(A^{*} H\right)=B_{l}^{*(-1)}\left(A_{l}^{*} H\right)$, and that the inverse image $B_{l}^{*(-1)}\left(A_{l}^{*} H\right)$ of the closed set $A_{l}^{*} H$ is closed.
$(3) \Rightarrow(1)$; If $B^{*(-1)}\left(A^{*} H\right)$ is closed, then $P H=B^{*(-1)}\left(A^{*} H\right)$, so that $B^{*} P H \subset A^{*} H$. This implies boundedness of $[P B / A]$.

On uniqueness of the J-decomposition, we have
THEOREM 2.9. A quotient $[B / A]$ has the unique J-decomposition (2.10) if and only if one of the conditions (1)-(3) in Theorem 2.8 holds.

Proof. Suppose that (1) of Theorem 2.8 holds, or equivalently, that $B^{*} P H \subset A^{*} H\left(P=P_{A^{*}, B^{*}}\right)$. Let Q be an orthogonal projection which yields a J-decomposition (2.8). Then, by Corollary 2.6 P and Q commute, so that $B^{*} Q^{\perp} P H=B^{*} P Q^{\perp} H \subset A^{*} H$. Since $\left[Q^{\perp} B / A\right]$ is singular, we have $A^{*} H \cap B^{*} Q^{\perp} H=\{0\}$ from Lemma 2.4. Hence $B^{*} Q^{\perp} P H=\{0\}$ or $B^{*} Q^{\perp} P=$ 0 , which implies $Q B=P B$, uniqueness of J -decomposition of $[B / A]$.

To see the converse assertion, suppose that $B^{*} P H \not \subset A^{*} H$. Then there is a vector $u \in H$ such that $B^{*} P u \notin A^{*} H$. We can assume that $u \in P H$ and $\|u\|=1$. Put $Q=P(1-u \otimes u)(=(1-u \otimes u) P)$, where $u \otimes u$ is an operator defined by $(u \otimes u) x=\langle x, u\rangle u, x \in H . \quad(\langle\cdot, \cdot\rangle$ is the inner product of H.) Then clearly Q is an orthogonal projection. Now we want to show that this Q yields a J-decomposition of $[B / A]$ which is deferent from (2.10). It suffices to prove that
(i) $\quad O B \neq P B$, and
(ii) $\quad[Q B / A]$ is closable and $\left[Q^{\perp} B / A\right]$ is singular.

For (i), since $B^{*} u \notin A^{*} H$, we see that $B^{*} u \neq 0$, so that $P B-Q B=$ $(u \otimes u) B=u \otimes B^{*} u \neq 0$. For (ii), first note that $[Q B / A]=[Q P B / A]$ has an extension $\left[Q B_{l} V_{l}^{*} V_{l} / A_{l}\right]\left(P B_{l}=B_{l} V_{l}^{*} V_{l}\right)$. By a simple computation we can see that $A_{l}^{*} A_{l}+\left(Q B_{l} V_{l}^{*} V_{l}\right)^{*}\left(Q B_{l} V_{l}^{*} V_{l}\right)=V_{l}^{*} V_{l}-B_{l}^{*} u \otimes B_{l}^{*} u$ is an operator with closed range. Hence $\left[Q B_{l} V_{l}^{*} V_{l} / A_{l}\right]$ is a closed extension of $[Q B / A]$. Next in order to see that $\left[Q^{\perp} B / A\right]$ is singular, we want to show that $A^{*} H \cap B^{*} Q^{\perp} H=\{0\}$. Let $v \in A^{*} H \cap B^{*} Q^{\perp} H$. Then $v=A^{*} x=B^{*} Q^{\perp} y$ for some $x, y \in H$. Hence $R\left(\dot{A}_{l}^{*} x-B_{l}^{*} Q^{\perp} y\right)=0$, or equivalently, $A_{l}^{*} x=$ $B_{l}^{*} Q^{\perp} y$. Since $B_{l}^{*} Q^{\perp}=B_{l}^{*}\left(P^{\perp}+u \otimes u\right)=\left(1-V_{l}^{*} V_{l}\right) B_{l}^{*}+B_{l}^{*} u \otimes u$, we have

$$
A_{\imath}^{*} x=\left(1-V_{\iota}^{*} V_{l}\right) B_{i}^{*} y+\langle y, u\rangle B_{i}^{*} u .
$$

Multiplying this identity by $R V_{l}^{*} V_{l}$ from the left, we have $R A_{i}^{*} x=\langle y, u\rangle$ $R V_{l}^{*} \times V_{l} B_{l}^{*} u$, that is, $A^{*} x=\langle y, u\rangle B^{*} P u$. Hence, from the assumption $B^{*} P u \notin A^{*} H$ we conclude that $A^{*} x=0$, or $v=0$.

3. Relations between J-decompositions and L-decompositions

We begin with the definition of L-decomposition of positive operators. Let S be a positive operator. Then a positive operator U is said to be S-absolutely continuous if there exists a sequence $\left\{U_{n}\right\}$ of positive operators such that $U_{n} \leqq U_{n+1}, U_{n} \leqq \alpha_{n} S_{n}$ for some $\alpha_{n}>0 \quad(n=1,2, \ldots)$ and $\lim _{n \rightarrow \infty} U_{n}=U$ (strong limit). A positive operator V is S-singular if any operator W satisfying $0 \leqq W \leqq V, W \leqq S$ is identical to 0 . Let T be a positive operator, and let

$$
\begin{equation*}
T=U+V \tag{3.1}
\end{equation*}
$$

for two positive operators U and V with the conditions defined as above. Then we call (3.1) an L-decomposition of T with respect to S [2].

Recall that the parallel sum $S: T$ of two positive operators S and T is defined (see(2.3)) by $S: T=S^{1 / 2}\left(S^{1 / 2}\right)_{l}\left(T^{1 / 2}\right)_{i}^{*} T^{1 / 2}$. Easily we see that $S: T$ is bounded by S and T (e.g. by Lemma 2.1 (2)). Furthermore, it is monotone [4, Theorem 4.4], that is, $S: T_{1} \leqq S: T_{2}$ if $0 \leqq T_{1} \leqq T_{2}$. Using the parallel sum, Ando [2] introduced an S-absolutely continuous operator

$$
[S] T=\lim _{n \rightarrow \infty}(n S): T,
$$

and proved that

$$
\begin{equation*}
T=[S] T+(T-[S] T) \tag{3.2}
\end{equation*}
$$

is an L -decomposition of T with respect to S. (In defining the operator [S] T, Ando, however, adopted a different but equivalent definition [1, Theorem 9] of the parallel sum ; $\langle(S: T) x, x\rangle=\inf \langle\langle S y, y\rangle+\langle T z, z\rangle ; y+$ $z=x\}$.)

Now, as a relation combining the J-decomposition (2.10) and the Ldecomposition (3.2), we have the following result which was essentially obtained by Kosaki [9]. For completeness we shall prove it.

Theorem 3.1 (cf. [9, Theorem 6]). Let A, B be operators, and let $S=A^{*} A$ and $T=B^{*} B$. Then $[S] T=B^{*} P_{A} \cdot B^{*} \cdot B$.

Proof. Let $R_{n}=R_{n A, B}$ (cf. (2.1)), and let $X=A_{n}=(n A)_{B, l}, \quad Y=B_{n}=$ $B_{n A, l}$ be the unique solutions of the equations $X R_{n}=n A$, ker $X \supset \operatorname{ker} R_{n}$ and
$Y R_{n}=B$, ker $Y \supset \operatorname{ker} R_{n}$, respectively (cf. (2.2)). Then we easily have the following facts.

$$
\begin{equation*}
\left\|A_{n}\right\| \leqq 1,\left\|B_{n}\right\| \leqq 1 \tag{1}
\end{equation*}
$$

(2) $\quad\left(n^{2} S\right): T=B^{*}\left(1-B_{n} B_{n}^{*}\right) B$. (By Lemma 2.1 (2).)
(3) $\quad\left(1-B_{n} B_{n}^{*}\right)^{1 / 2} H=B^{*(-1)}\left(n A^{*} H\right)=B^{*(-1)}\left(A^{*} H\right)$. (By Lemma 4.1 (4).)

$$
\begin{equation*}
1-B_{n} B_{n}^{*} \leqq P_{n A^{*}, B^{*}}=P_{A^{*}, B^{*} .} \quad \text { (By Lemma } 2.2 \text { (1).) } \tag{4}
\end{equation*}
$$

We want to add more two facts.
(5) $\quad\left\{1-B_{n} B_{n}^{*}\right\}$ is an increasing squence.
(6) $\quad\left(1-B_{l} B_{l}^{*}\right) B_{n} B_{n}^{*}=(1 / n) B_{l} A_{l}^{*} A_{n} B_{n}^{*}$.

For (5), since $R_{m}^{2} \leqq R_{n}^{2}$ for $m \leqq n$, we have the unique operator $Z=Z_{m n}$ such that $R_{m}=R_{n} Z=Z^{*} R_{n}$, ker $Z^{*} \supset \operatorname{ker} R_{n}$. Since $B_{n} R_{n}=B=B_{m} R_{m}=B_{m} Z^{*} R_{n}$, we can see that $B_{n}=B_{m} Z^{*}$. Hence, since $\|Z\| \leqq 1$, we have $B_{n} B_{n}^{*}=B_{m} Z^{*} \times$ $Z B_{m}^{*} \leqq B_{m} B_{m}^{*}$, which implies (5).

For (6), we can first obtain $A_{1} Z_{1 n}^{*}=(1 / n) A_{n}$ and $B_{1} Z_{1 n}^{*}=B_{n}$ by a similar argument to that used above (to get $B_{n}=B_{m} Z^{*}$). Note that $A_{1}=A_{l}$ and $B_{1}=$ B_{l}. Hence, from Lemma 2.1 (2), we have

$$
\begin{aligned}
\left(1-B_{l} B_{l}^{*}\right) B_{n} & =\left(1-B_{l} B_{l}^{*}\right) B_{l} Z_{1 n}^{*}=B_{l}\left(P_{R}-B_{l}^{*} B_{l}\right) Z_{1 n}^{*} \\
& =B_{l} A_{l}^{*} A_{l} Z_{1 n}^{*}=(1 / n) B_{l} A_{l}^{*} A_{n} .
\end{aligned}
$$

We now get (6) immediately.
To show the desired identity $[S] T=B^{*} P B$, where $P=P_{A} \cdot B^{*}$, let $Q=$ $\lim _{n \rightarrow \infty}\left(1-B_{n} B_{n}^{*}\right)$. Then, by (2), what we have to do is to show $Q=P$. Letting $n \rightarrow \infty$ in (6), we obtain $\left(1-B_{l} B_{l}^{*}\right)(1-Q)=0$. Hence we have easily $P(1-Q)=0$, or $P=P Q$. From (4) we can also have $P Q=Q$, which completes the proof.

From the fact ker $B^{*} \subset P H$, we can see that $P=1$ is equivalent to $P B=$ B. Between closability of quotients and absolute continuity of positive operators, we have

Corollary 3.2 (cf. [2, Theorem 5], [9, Lemma 3]). Let [B / A] be a quotient. Then the following conditions are equivalent;
(1) $[B / A]$ is closable.
(2) $\quad P_{A^{\bullet}, B^{\bullet}}=1$.
(3) $B^{*} B$ is $A^{*} A$-absolutely continuous.

Proof. $\quad(1) \Longleftrightarrow(2)$; Clear by Lemma 2.3.
$(2) \Rightarrow(3)$; From (2) we have $\left[A^{*} A\right]\left(B^{*} B\right)=B^{*} B$, which implies (3).
(3) $\Rightarrow(1)$; If (3) is assumed, then there is a sequence $\left\{T_{n}\right\}$ of positive operators such that $T_{n}^{2} \leqq T_{n+1}^{2}, T_{n}^{2} \leqq \alpha_{n} A^{*} A$ for some $\alpha_{n}>0$ and $\lim _{n \rightarrow \infty} T_{n}^{2}=B^{*} B$. Then, since $T_{n} H \subset A^{*} H$, we see that $T_{n}^{(-1)}\left(A^{*} H\right)=H$. Hence $P_{A} \cdot, T_{n}=1$, so that $\left[A^{*} A\right] T_{n}^{2}=T_{n}^{2}$. Hence $\left[A^{*} A\right]\left(B^{*} B\right) \geqq\left[A^{*} A\right] T_{n}^{2}=T_{n}$. Taking the limit, we have $\left[A^{*} A\right]\left(B^{*} B\right) \geqq B^{*} B$, or equivalently, $\left[A^{*} A\right]\left(B^{*} B\right)=B^{*} B$. From this identity, we can easily obtain $P_{A^{*}, B^{*}} B=B$, which implies (2).

For the singularity of quotients and positive operators, we have
Corollary 3.3 (cf. [2, Corollary 3]). Let $[B / A]$ be a quotient. Then the following conditions are equivalent;
(2) $P_{A^{\bullet}, B} \cdot B=0$.
(3) $B^{*} B$ is $A^{*} A$-singular.

Proof. The equivalence $(1) \Longleftrightarrow(2)$ is clear by the definition (2.8). By Theorem 3.1 the condition (2) is equivalent to the identity

$$
\left(2^{\prime}\right)\left[A^{*} A\right]\left(B^{*} B\right)=0 \text {. }
$$

From the definitions of $\left[A^{*} A\right]\left(B^{*} B\right)$ and $A^{*} A$-singularity, we can see the equivalences $\left(2^{\prime}\right) \Longleftrightarrow\left(n^{2} A^{*} A\right): B^{*} B=0(n=1,2, \ldots) \Longleftrightarrow(3)$.

Let $[B / A]=[Q B / A]+\left[Q^{\perp} B / A\right]$ be a J-decomposition of $[B / A]$ by an orthogonal projection Q. Then by Corollaries 3.2 and 3.3 we see that $B^{*} B=B^{*} Q B+B^{*} Q^{\perp} B$ is an L-decomposition of $B^{*} B$ with respect to $A^{*} A$. Hence every J-decomposition of $[B / A]$ induces an L -decomposition of $B^{*} B$ with respect to $A^{*} A$. As the converse to this fact we have

Theorem 3.4. Let S and T be positive operators with $\mathrm{ker} S \subset \mathrm{ker} T$, and let $T=U+V$ be an L-decomposition of T such that U and V are S-absolutely continuous and S-singular positive opeators, respectively. Then there exist an operator B and an orthogonal projection Q such that $U=B^{*} Q B$ and $V=B^{*} Q^{\perp} B$. Hence, if A is an operator with $A^{*} A=S$, then $[B / A]=$ $[Q B / A]+\left[Q^{\perp} B / A\right]$ is a J-decomposition of $[B / A]$ by Q, which induces the given L-decomposition of T.

Proof. Since the dimension of H is infinite, we can find mutually orthogonal closed linear subspaces M and N in H such that $\operatorname{dim} M=\operatorname{dim}$ $(U H)^{-}$and $\operatorname{dim} N=\operatorname{dim}(V H)^{-}$. Then there exist partial isometries X and Y such that

$$
\begin{equation*}
X X^{*}=P_{U}, \quad Y Y^{*}=P_{V}, \quad X Y^{*}=0 \tag{3.3}
\end{equation*}
$$

Here P_{U} and P_{V} are the orthogonal projections onto ($\left.U H\right)^{-}$and ($\left.V H\right)^{-}$, respectively. Put $B=X^{*} U^{1 / 2}+Y^{*} V^{1 / 2}$ and $Q=X^{*} X$. Then we can obtain all that we desire.

Theorem 3.5. If we add the assumption $U^{1 / 2} H \cap V^{1 / 2} H=\{0\}$ to Theorem 3.4, then we have a J-decomposition of $\left[T^{1 / 2} / S^{1 / 2}\right]$ by some orthogonal projection Q which induces the given L-decomposition $T=U+V$.

Proof. Let X and Y be, respectively, the unique solutions of the equations $X T^{1 / 2}=U^{1 / 2}$ and $Y T^{1 / 2}=V^{1 / 2}$ such that ker $X \subset \operatorname{ker} T$ and ker Y \subset ker T. Then we can see that $X^{*} X+Y^{*} Y=P_{T}$, and that $T^{1 / 2}=X^{*} U^{1 / 2}+$ $Y^{*} V^{1 / 2}$ or $U^{1 / 2}=X T^{1 / 2}=X X^{*} U^{1 / 2}+X Y^{*} V^{1 / 2}$. Hence $\left(P_{U}-X X^{*}\right) U^{1 / 2}=$ $X Y^{*} V^{1 / 2}$. Taking the adjoints, we have $U^{1 / 2}\left(P_{U}-X X^{*}\right)=V^{1 / 2} Y X^{*}$. Hence by the assumption $U^{1 / 2} H \cap V^{1 / 2} H=\{0\}$, we have $P_{U}-X X^{*}=Y X^{*}=0$. Similarly we can obtain $P_{v}-Y Y^{*}=0$. Hence we have (3.3) for those X and Y. Now, letting $B=T^{1 / 2}\left(A=S^{1 / 2}\right.$ and $\left.Q=X^{*} X\right)$, we obtain the desired J -decomposition of $\left[T^{1 / 2} / S^{1 / 2}\right]$.

On uniqueness of L - and J -decompositions we have
Theorem 3.6. Let S and T be positive operators with ker $S \subset$ ker T. Then T has a unique L-decomposition with respect to S if and only if [$\left.T^{1 / 2} / S^{1 / 2}\right]$ has a unique J-decomposition.

Proof. Suppose that T has a unique L-decomposition with respect to S, and let $\left[T^{1 / 2} / S^{1 / 2}\right]=\left[Q T^{1 / 2} / S^{1 / 2}\right]+\left[Q^{\perp} T^{1 / 2} / S^{1 / 2}\right]$ be a J-decomposition of [$\left.T^{1 / 2} / S^{1 / 2}\right]$. Then $T^{1 / 2} Q T^{1 / 2}=T^{1 / 2} P T^{1 / 2}$, where $P=P\left(S^{1 / 2}, T^{1 / 2}\right)$. Hence by Corollary 2.6, $Q T^{1 / 2}=P T^{1 / 2}$, which implies that $T^{1 / 2}$ has a unique Jdecomposition. Conversely, suppose that $\left[T^{1 / 2} / S^{1 / 2}\right]$ has a unique J decomposition, and let $T=U+V$ be an L-decomposition of T such that U is S-absolutely continuous and V is S-singular. Then by the monotone property of the operation [S], we have $U=[S] U \leqq[S] T=T^{1 / 2} P T^{1 / 2}$, so that $U^{1 / 2} H \subset T^{1 / 2} P H$. By Theorem 2.8 (1) and Theorem 2.9, we see that $T^{1 / 2} \mathrm{PH} \subset S^{1 / 2} \mathrm{H}$. Hence we have $U^{1 / 2} H \subset S^{1 / 2} \mathrm{H}$. On the other hand, since [$V^{1 / 2} / S^{1 / 2}$] is singular we have $V^{1 / 2} H \cap S^{1 / 2} H=\{0\}$. Hence $U^{1 / 2} H \cap$ $V^{1 / 2} H=\{0\}$. Now by Theorem 3.5 we can find an orthogonal projection Q such that $\left[T^{1 / 2} / S^{1 / 2}\right]=\left[Q T^{1 / 2} / S^{1 / 2}\right]+\left[Q^{\perp} T^{1 / 2} / S^{1 / 2}\right]$ is a J -decomposition which induces the L-decomposition $T=U+V$. Hence, from uniqueness of the J -decomposition we obtain $Q T^{1 / 2}=P T^{1 / 2}$, so that $U=T^{1 / 2} Q T^{1 / 2}=$ $T^{1 / 2} P T^{1 / 2}$ and $V=T^{1 / 2} P^{\perp} T^{1 / 2}$. This implies uniqueness of the L decomposition of T.

Corollary 3.7 (cf. [2, Theorem 6]). Let S and T be positive operators with ker $S \subset$ ker T. Then T has a unique L-decomposition with respect to S if and only if $[S] T \leqq \alpha S$ for some $\alpha>0$.

Proof. By Theorems 2.7, 2.8 and 3.6 we see that T has a unique L-decomposition with respect to S if and only if $\left[P T^{1 / 2} / S^{1 / 2}\right.$] is bounded on $S^{1 / 2} \mathrm{H}$. The latter condition is equivalent to $T^{1 / 2} \mathrm{PH} \subset S^{1 / 2} \mathrm{H}$. Since [S] $T=$ $T^{1 / 2} P T^{1 / 2}$, we now obtain [S] $T \leqq \alpha S$ for some $\alpha>0$ as an equivalent condition for uniqueness of the L-decomposition of T.

References

[1] W. N. Anderson, Jr. and G. E. Trapp, Shorted operators. II, SIAM J. Appl. Math. 28 (1975), 60-71.
[2] T. Ando, Lebesgue-type decomposition of positive operators, Acta Sci Math. 38 (1976), 253-260.
[3] Sirkka-Liisa Eriksson and H. Leutwiler, A potential-theoretic approach to parallel addition, Math. Ann. 274 (1986), 301-317.
[4] P. A. Fillmore and J. P. Williams, On operator ranges, Advances in Math. 7 (1971), 254-281.
[5] S. Izumino, Quotients of bounded operators, to appear in Proc. Amer. Math. Soc.
[6] P. E. T. Jorgensen, Unbounded operators: Perturbations and commutativity problems, J. Functional Anal. 39 (1980), 281-307.
[7] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin and New York, 1966.
[8] W. E. Kaufman, Representing a closed operator as a quotient of continuous operators, Proc. Amer. Math. Soc. 72 (1978), 531-534.
[9] H. Kosaki, Remarks on Lebesgue-type decomposition of positive operators, J. Operator Theory 11 (1984), 137-143.
[10] S. ÔTA, On a singular part of an unbounded operator, Z. Anal. Anwendungen 7 (1) (1987), 15-18.

