Combinatorial analysis of point obstructions to local factorizability in three-folds

Mary Schaps
(Received January 26, 1988, Revised April 17, 1989)

Abstract

The paper introduces formally the concept of local factorizability used in earlier factorizability work, identifies the basic form of obstructions to local factorizability of birational morphisms, and outlines a combinatorial technique for analyzing such obstructions. As an application and illustration, two open cases in the classification of birational morphisms with small canonical divisors are settled.

0. Introduction

If $f: X \rightarrow Y$ is a birational morphism of algebraic spaces we will say that
f is directly factorizable if it is a composition of blowings-up with nonsingular centers.
f is strongly factorizable if it is a composition of the form $g_{1} \circ g_{2}^{-1}$, for g_{1} and g_{2} directly factorizable morphisms.
f is weakly factorizable if it is an alternating composition $g_{1} \circ g_{2}^{-1} \circ g_{3} \circ g_{4}^{-1} \circ \ldots \circ g_{n}$ of directly factorizable morphisms and their inverses.

There is a conjecture that every birational morphism is strongly factorizable. It is true for surfaces, and no counterexample has yet been adduced in any higher dimension, but the combinatorial complexities, even in the case of three-folds, have discouraged work in that direction. Even very simple test cases have not yielded a general method.

The prospects of proving a weaker conjecture that every birational morphism is weakly factorizable look much brighter, particularly for threefolds, in light of the success of the "Mori program" for contracting birational morphisms (see Kollar's expository article [5] for an introduction to this theory). Since it is not directly relevant to this work we will give only a brief description.

Starting with a projective algebraic scheme, one can reach a simpler scheme called a "convenient model" by a finite sequence of two opera-
tions: divisorial contractions and "curve flips". The divisorial contractions are allowed to introduce certain mild singularities called terminal singularities. The "flips" are isomorphisms outside of one irreducible curve, which is exchanged for another curve. We will have occasion in this work to investigate a particularly simple kind of "flip" which is called a " flop". In a flop, a curve of self-intersection 0 is blown up and then contracted along a section to produce another curve of self intersection 0 .

To explain the connection between the contraction theorem and the weak factorization conjecture, we will first describe Danilov's proof of the weak factorization theorem for toroidal schemes of dimension 3, beginning from the definition of a toroidal scheme for A^{n}.

Fix a set of transversal parameters $x_{1} \ldots x_{n}$. An affine toroidal scheme of dimension n is a scheme $f: T \rightarrow A^{n}$ with a birational morphism to A^{n}, such that all components of the exceptional divisor are defined locally by the vanishing of monomials (with positive and negative exponents) in $x_{1} \ldots$ x_{n}. The simplest examples of toroidal schemes can be obtained by a sequence of blowings up whose centers are intersections of coordinate planes and exceptional divisors. The toroidal scheme can be described combinatorially by a dual graph of the coordinate planes and the exceptional divisors. A brief description of the construction of the dual graph can be found in [9]: Because they can be treated combinatorially via the dual graph, toroidal schemes have become the "white mice" of the geometry laboratory.

Shortly after Mori's first work on contractibility (which did not serve as a general induction step because the scheme being contracted was nonsingular), Danilov used Mori's methods to prove that every toroidal morphism of 3 -folds could be contracted to A^{3} by a finite sequence of divisorial contractions and flips. However, Danilov went further. Choosing a fixed resolution for each of the terminal singularities appearing in this sequence of contractions, he then showed that each flip was weakly factorizable. By Hironaka's resolution of singularities it is possible to find directly factorizable toroidal morphisms $g_{1}: \widetilde{X}_{1} \rightarrow X_{1}$ and $g_{2}: \widetilde{X}_{2} \rightarrow X_{2}$ such that \widetilde{X}_{1} and \widetilde{X}_{2} are projective. The Danilov theorem proves that the canonical morphisms $h_{1}: \widetilde{X}_{1} \rightarrow A^{3}$ and $h_{2}: \widetilde{X}_{2} \rightarrow A^{3}$ are weakly factorizable, and thus the total composition $g_{2} h_{2}^{-1} h_{1} g_{1}^{-1}: X_{1} \rightarrow X_{2}$ is weakly factorizable.

If the "convenient models" in the Mori program are not contractable to a lower dimensional variety, then they can be transformed into each other by a sequence of flops or their inverses. Thus in this case it is reasonable to hope that they could play the role of A^{3} in a general weak
factorization theorem for three-folds. In the successful completion of the Mori program for three-folds, it is thus reasonable to see the completion of the global framework for a weak factorization theorem for three-folds. The portion remaining would be to choose fixed resolutions of the terminal singularities and to show that the resulting "small steps", corresponding to a single divisorial contraction or flip, are weakly factorizable.

This article belongs to a different and more modest line of work on the factorization problem, but one which has produced methods well-suited to an attack on the remaining local steps in a weak factorization theorem.

Two decades ago, shortly after Hironaka's work on resolution of singularities had cleared away one great question mark in the theory of birational morphisms, Moishezon embarked on a program, later pursued by his students, to classify birational morphisms with small canonical divisors. He felt that the entire subject would benefit if there would be more information on which phenomena "occur in nature", and which do not. In the following summary of results to date, all spaces are nonsingular algebraic spaces (not necessarily schemes), and all exceptional divisors have normal crossings.

1) (1967) Moishezon proved that every birational morphism whose exceptional divisor contained a single irreducible component was a blowing up with nonsingular center.
2) (1976) Schaps [8] showed that every birational morphism of three-folds collapsing two irreducible components was directly factorizable.
3) (1981) Teicher [10] demonstrated that every birational morphism of four-folds collapsing two components was directly factorizable.
4) (1981) Crauder [1] proved that every birational morphism of three-folds collapsing three components to a point was "locally factorizable" and Schaps [9] obtained the same result for birational morphisms of three-folds collapsing three components to a nonsingular curve.

During this period of the work (2)-(4) described above, there was also work in various directions by Danilov, Kullikov, Pinkham, and Persson, summarized in Pinkham's expository article [7]. Of these efforts the one most directly relevant to this paper was Danilov's result in [2] that a birational morphism with one dimensional fibers is locally factorizable.

At each stage pushing the classification further was difficult and required the introduction of more sophisticated techniques, designed to show that the morphism under consideration was in some sense locally toroidal. These techniques have been carried further and put on a general footing in the current paper. As an illustration of how the general tech-
niques can be applied in practice to analyze a birational morphism, we then settle the next two cases in the classification of birational morphisms of three-folds with small canonical divisor: four components collapsing to a point and three components collapsing to a singular curve.

Although these techniques were developed for nonsingular algebraic spaces, the combinatorial analysis depends only on the generic point of each exceptional divisor and is thus indifferent to possible isolated singular points. Furthermore, the "quasi-blowings up" introduced to get around singularities in the fundamental locus could as well be applied to get around singularities in the space, so the main formulae, like the "additivity formula ", should hold just as well for spaces with terminal singularities.

In § 1 and § 2 we develop the new tools and notation required to efficiently use large quasi-factorization sequences. The application of these tools is then illustrated in $\S 3$ and $\S 4$, showing that with one exception a birational morphism of algebraic spaces which collapses four components to a point is locally factorizable. In order to aid the reader in fitting these methods into the context of previous work on the subject, we give a brief introduction to the various methods.
A. Local factorizability (1.1-1.4): This is a transposition into the category of algebraic spaces of a long standard analytic technique of creating nonprojective morphisms by blowing-up a smooth branch of a singular curve in a small neighborhood of the singularity. The operation of taking an etale neighborhood in which the branches of a curve are irreducible will substitute for the analytic operation of taking a small neighborhood.

Historically, the standard example of a locally factorizable morphism is obtained by blowing-up one branch of a double node before the other. Crauder [1] and the author [9] came upon examples of morphisms collapsing three normally crossing components without self-intersections, called the "wagon wheel" in [1] and the "bow-tie" in [9]. For the four component case there were so many different types of examples that it was simpler to define a general class of such examples than to enumerate them.
B. Point Obstructions (1.5-1.8): We make a slight extension of Danilov's theorem in [2] about the factorizability of morphisms with one dimensional fiber, requiring only the "generic" part of the fiber to be one dimensional. The change is made possible by the application of the " transversal test curve" lemmas in [9] to Danilov's basic lemma.

Together with a double induction on the number of curve and point components in the fiber over a point, this permits us to show that all
obstructions to local factorizability are of the type we call " point obstructions", in which the "generic" fiber over a bad point y is two dimensional but the morphism does not factor through the blowing-up of y. The set on which the morphism does not factor is called the pinch locus. In [1] and [9] it was necessary to show that the pinch locus was empty. Here the pinch locus is blown-up and a combinatorial analysis of the resulting components restricts the types of components of the canonical divisor in which the pinch locus can lie.
C. Quasi-factorization (1.11-1.13): In [1], [2], [8], [9], and [10], the work of factoring a morphism $f: X \rightarrow Y$ proceeds by proposing a quasifactorization $g: Y_{1} \rightarrow Y$, generally a blowing-up with non-singular center, and trying to analyse or eliminate the set on which the induced correspondence $f_{1}: X \rightarrow Y_{1}$ is not welldefined. As f becomes more complicated, it is necessary to use a sequence of blowings-up for the quasi-factorization, and to permit non-singular centers, creating problems which are solved here by the introduction of quasi-blowings-up and accessible components.
D. The weight vector: The multiplicities r_{i} of the components D_{i} of the relative canonical divisor K_{f} of a morphism f have played a crucial role in all attempts to factor f. Crauder, in extending a method pioneered by Kullikov, also introduces the multiplicities s_{i} of the D_{i} in $f^{*}(H)$ for a generic hyperplane H. In this work we must consider the multiplicities in $f^{*}(H)$ for special H as well, mimicking a "toroidal" analysis of the components. We also convert the "excess" defined in [9] into a measure of the extent to which a component of K_{f} fails to be toroidal.
E. The additivity formula (2.4-2.5): The central idea of Danilov's [2] is to decompose a morphism into composition of correspondences and to compare the multiplicities obtained on the two sides of the formula

$$
K_{f \circ p}=p^{*}\left(K_{f}\right)+K_{p}
$$

This procedure is formalized in the additivity formula and extended to include the other components of the weight vector. In 2.5 it is generalized to quasifactorization sequences with a number of factors.
F. Well-definedness (2.6-2.7, 2.12): Earlier lemmas on the well-definedness of a map f_{1} to a blowing-up are extended to a map f_{m} to a quasifactorization sequence of length m.
G. Analysis of point obstructions (2.8-2.11): The major working tools used in this paper for the analysis of point obstructions are the inequalities in lemmas 2.9 and 2.11, which restrict the possible values of r_{i} and s_{i} for components D_{i} of K_{f} containing the pinch locus. These lemmas represent a considerable strengthening of the lemmas in $\S 2$ of [9].

We will use K_{f} to denote the canonical divisor of a birational morphism $f: X \rightarrow Y$, and S_{f} for the fundamental locus in Y, the closed subalgebraic space on which f^{-1} is not an isomorphism. Points of K_{f} will be referred to as singleton points, double points and triple points according to the number of components of K_{f} containing the point. Since we are working with three-folds and will assume that the canonical divisor has normal crossings, no more than three divisors can come together at one point. The support of a divisor D will be denoted by $|D|$.

Let Y be an algebraic space, obtained by patching together schemes via an etale equivalence relation. Let y be a closed point of Y. Assume that the ground field k is algebraically closed. An etale neighborhood of y is an algebraic scheme together with an etale morphism $e: W \rightarrow Y$ such that the inverse image of y is a single point w. (If k were not algebraically closed, we would also have to require that the residue fields at y and w be the same.) Since e is etale, the completion of the structure sheaf at y is isomorphic to the completion of the structure sheaf at w. An etale cover $\left\{e_{i}: W_{i} \rightarrow Y\right\}$ is a set of etale morphisms into Y such that for any morphism $g: Z \rightarrow Y$, with Z an affine scheme, the images of $W_{i} \times_{Y} Z$ in Z form a Zariski cover of Z.

If $f: X \rightarrow->Y$ is a birational correspondence which is well-defined at the generic point of an irreducible subspace W of X, then we denote by $f[W]$ the closure of the image of the generic point of W, and call this the strict image of W. If in place of f we have an inverse correspondence $g^{-1}: X \rightarrow Y$, then we will call $g^{-1}[W]$ the strict preimage. A test curve $\Gamma \subset Y$ for $f: X \longrightarrow Y$ is an irreducible curve intersecting the set S_{f} on which f is not an isomorphism in a single point y and having a unique analytic branch at y. The point x at which the strict preimage $f^{-1}[\Gamma]$ in X intersects the set on which f is not an isomorphism is called the closure point of the test curve.

The following four lemmas from [9] will be used repeatedly in §3 and $\S 4$, so we quote them here for convenient reference:

Lemma 1.1 (of [9]). Let $f: X \rightarrow X^{\prime}$ be a birational morphism of nonsingular algebraic spaces of dimension n, and let W be a nonsingular subspace in the complement of the set on which f is an isomorphism. Let g : $X_{1}^{\prime} \rightarrow X^{\prime}$ be the blowing-up whose center is the ideal I_{W} of W. Let $x_{1} \in X_{1}^{\prime}$ be a point on the fiber $g^{-1}\left(x^{\prime}\right)$, and let Γ_{1} be a closed curve which intersects this fiber only at x_{1} and has a single analytic branch there. Let $\Gamma^{\prime}=$ $g\left(\Gamma_{1}\right)$, and $\Gamma=f^{-1}\left[\Gamma^{\prime}\right]$. Let H be a generic hyperplane containing W, and suppose
(a) that Γ contains a point x of $f^{-1}\left(x^{\prime}\right)$, which we will call the closure point of Γ_{1},
(b) x lies on components E_{1}, \ldots, E_{r}, each E_{i} having multiplicity m_{i} in $f^{-1}\left(I_{W}\right) O_{X, x}$, and
(c) $\quad m_{1}+, \cdots,+m_{r} \geq d g\left(T^{\prime} \cdot H\right)=d g\left(\Gamma_{1} g^{*}(H)\right)$.

Then Γ is nonsingular at x, transversal to each of E_{1}, \cdots, E_{r}, and $f^{-1}\left(I_{W}\right) O_{X, x}$ is invertible at x, being generated by $t_{1}^{m_{1}} \cdots t_{r}^{m_{r}}$, for t_{i} a local equation of E_{i}. Thus $f_{1}: X \rightarrow X_{1}^{\prime}$ is well defined in a neighborhood of x and $f_{1}(x)=x_{1}$.

Lemma 1.2 (of [9]). Let $f: X \rightarrow X^{\prime}$ be a proper birational morphism of n-folds. Let W be a nonsingular subspace of D^{\prime}, the set on which f^{-1} is not an isomorphism, and define the blowing up g and $W_{1}=g^{-1}(W)$ as in lemma 1.1 with $f_{1}=g^{-1}$ of the induced correspondence. Let D_{1}, \ldots, D_{m} be the components of the exceptional divisor of f, with D_{1}, \ldots, D_{r} contained in $f^{-1}(W)$.
(i) Suppose $f_{1}^{-1}\left[W_{1}\right]$ is a divisor D_{1}. Then f_{1}^{-1} is an isomorphism on the set

$$
W_{1}-\bigcup_{1<j \leq r} f_{1}\left[D_{j}\right]-\bigcup_{j>r} f_{1}\left(D_{j} \cap f^{-1}(W)\right)
$$

(ii) If $f^{-1}(W)$ is a union of divisors, and in particular if $W=D^{\prime}$, then $f_{1}^{-1}\left[W_{1}\right]$ is a divisor, and on $W_{1}-\bigcup_{j \neq 1} f_{1}\left[D_{j}\right], f_{1}^{-1}$ is an isomorphism.

Notation ([9]). Let $f: X \rightarrow X^{\prime}$ be a birational map of nonsingular n-folds, collapsing a divisor D with normal crossings to a subspace D^{\prime} of X^{\prime}, of codimension c^{\prime}, greater than 1 . Let $z_{1}^{\prime}, \ldots, z_{n}^{\prime}$ be local parameters centered at x^{\prime} in X^{\prime}. Let z_{1}, \ldots, z_{n} be the liftings to regular functions on X. We define the canonical divisor K_{f} of f by $K_{f}=\operatorname{div}\left(f^{*}\left(\omega_{X^{\prime}}\right) \otimes \omega_{X}^{-1}\right)$. Locally at a point of $f^{-1}\left(x^{\prime}\right)$ this is the divisor of the form $d z_{1} \wedge \ldots \wedge d z_{n}$.

Let x be a point on the intersection of components D_{1}, \ldots, D_{s} of D. Letting t_{i} be a local equation for D_{i}, we extend this to a set t_{1}, \ldots, t_{n} of local parameters of X at x. Suppose that the order of z_{i} on D_{j} is at least $a_{i j}$, so that we can write

$$
z_{i}=t_{1}^{a_{i 1} \cdots t_{s}^{a_{i s}} q_{i} .}
$$

The canonical divisor at x of the map f is given by

$$
\begin{equation*}
t_{1}^{\left(\Sigma a_{i 1}\right)-1} \cdots t_{s}^{\left(\Sigma a_{i s}\right)-1} \operatorname{det}\left(\mathrm{~J}^{\prime}\right) \tag{*}
\end{equation*}
$$

for some matrix J^{\prime}.
Let r_{j} be the multiplicity of D_{j} in the canonical divisor of the map f,
and set $e_{j}=r_{j}-\left(\sum a_{i j}\right)+1$, which by (*) is nonnegative. We will call it the excess of r_{j}. Let $e=e_{1}+\ldots+e_{s}$.

Lemma 2.2 [9] Let x be a point lying on a unique component D_{1} of D, and suppose that $f\left(D_{1}\right) \subset W$, the subspace defined by the vanishing of $z_{1}^{\prime}, \ldots, z_{c^{\prime}}^{\prime}$. Let I_{W} be the reduced ideal of W, and suppose that the multiplicity of D_{1} in $f^{-1}\left(I_{W}\right)$ is at least b. Let $f_{1}: X \longrightarrow X_{1}^{\prime}$ be the map to the blowing up of W. It is well defined at x if
(i) $r_{1}=b c^{\prime}-1$, so that $e=0$, or
(ii) $r_{1}=b c^{\prime}$, and f_{1}^{-1} doesn't collapse the exceptional divisor.

Lemma 2.3 [9] Let x be a point lying on only two components D_{1} and D_{2} of D. Suppose that $f\left(D_{i}\right)=W_{i}$ is defined by the vanishing of local coordinates $z_{1}^{\prime}, \ldots, z_{c}^{\prime}$, for $i=1,2$, and $c_{2} \geq c_{1}$. Suppose that D_{i} has multiplicity b_{i} in the lifting of the ideal of W_{i} to X. Let f_{i} be the map to the blowing-up of W_{i}.
(i) If $e_{1}=e_{2}=0$, then f_{1} and f_{2} are both well defined.
(ii) If $e=e_{1}+e_{2}=1$, then either f_{1} or f_{2} is well defined at x.
(iii) If $c_{2}=c_{1}+1$, and $e=1$, and f_{1}^{-1} does not collapse the exceptional divisor, then f_{1} is well defined at the generic point of $D_{1} \cap D_{2}$.

For ease of reference, before beginning the new definitions and lemmas, we append a list of the terms which will be defined in the body of the paper, and the number of the corresponding definition: root tree, 1.1; partial factorization tree, 1.2 ; local factorization tree, 1.3 ; locally factorizable morphism, 1.4 ; point obstruction, 1.5 ; strict preimage $f^{-1}[y]$ of a point, 1.7 ; pinch locus, $P_{y}(f), 1.9$; quasi-blowing-up, 1.11 ; quasifactorization sequence, 1.13 ; dominated by $f, 1.13 ; r_{f}(F), 2.1 ; w_{f}(F)$, $2.1 ; s_{f}(F, H), 2.1 ; u_{f}\left(F ; H_{1}, \ldots, H_{r}\right), 2.1 ;$ excess, $e x_{f}\left(F ; H_{1}, \ldots, H_{r}\right), 2.2$; total excess at $x, 2.10$.

§ 1. Local factorizability.

We wish to call a morphism of algebraic spaces locally factorizable if it " locally" factorizable by blowings-up with nonsingular centers. There are two factors complicating this basically simple idea. The first is that we must work in the etale topology so that the maps from our local neighborhoods are not injective ; the second is the process of localization proceeds in fibers over the original base.

Example: Local factorization: Suppose Y is a smooth 3-dimensional scheme. First we blow up a point y, giving a space Y_{1}^{\prime} with exceptional
divisor M_{1}. We now want to blow up a curve C in M_{1} with a unique nodal singularity at a point y_{1}. We choose an etale cover of Y_{1}^{\prime}, consisting of two Zariski open affine subsets Y_{11}, Y_{12} of Y_{1}^{\prime} not containing y_{1}, and an etale neighborhood Y_{13} of y_{1} in which the preimage of one branch of the node is irreducible. In Y_{11} and Y_{12} we just blow up the curve C getting Y_{11}^{\prime} and Y_{12}^{\prime}. In Y_{13} we first blow-up one branch of the node to get Y_{13}^{\prime}, then cover this with Zariski open affine neighborhoods $Y_{13 i}$ and blow up the remaining branches of C to get schemes $Y_{13 i}^{\prime}$. Then Y_{11}^{\prime}, Y_{12}^{\prime} and the $Y_{13 i}^{\prime}$ patch together to form an algebraic space X.

For our purposes we may assume the algebraic space X and the morphism $f: X \rightarrow Y$ to be given, so that we avoid arguments about etale patching. Showing that f is locally factorizable means constructing a tree of successively simpler morphisms $f_{\alpha}^{\prime}: X_{\alpha} \rightarrow Y_{\alpha}^{\prime}$, such that if f_{α}^{\prime} is not an isomorphism, then Y_{α}^{\prime} has an etale covering $\left\{e_{\beta}: Y_{\beta} \rightarrow Y_{\beta}^{\prime}\right\}$ by schemes Y_{β} with the following property: Let $X_{\beta}=X_{\alpha} \times_{Y_{\alpha}^{\prime}} Y_{\beta}$ be the pullback of the pair of morphisms ($f_{\alpha}^{\prime}, e_{\beta}$). Let $f_{\beta}: X_{\beta} \rightarrow Y_{\beta}$ be the projection onto the second factor. Then f_{B} can be factored as the composition of a blowing up $g_{\beta}: Y_{\beta^{\prime}} \rightarrow Y_{\beta}$ with nonsingular center and a morphism $f_{\beta}^{\prime}: X_{\beta} X_{Y_{\alpha}^{\prime}} Y_{\beta} \rightarrow Y_{\beta}^{\prime}$. An obstruction to locally factoring f is a morphism $f_{\alpha}^{\prime}: X_{\alpha} \rightarrow Y_{\alpha}^{\prime}$ for which no such covering exists. If there are no such obstructions, then we will show in lemma 1.6 below that after a finite number of steps all terminal morphisms $f_{\alpha}^{\prime}: X_{\alpha} \rightarrow Y_{\alpha}^{\prime}$ will be isomorphisms. These X_{α} will form an etale cover of X.

Definition 1.1.: A connected tree will be called a root tree if it has a distinguished initial vertex v_{θ}. The choice of v_{θ} implies a unique direction away from v_{0} on each edge t, and every other vertex v has a unique entering edge, the last step on the unique path connecting v_{0} to v. If the branches leaving each vertex are numbered by natural numbers, then each path of length m out from v_{θ} is uniquely determined by an m-tuple $\beta=$ $\left(\beta_{1}, \ldots, \beta_{m}\right)$ of numbers listing the branch chosen at each step. We index each vertex v_{β} and its entering edge t_{β} by the m-tuple of the unique path connecting it to v_{b}. We define the predecessor $\beta^{-}=\left(\boldsymbol{\beta}_{1}, \ldots, \boldsymbol{\beta}_{m-1}\right)$ of a non-empty multi-index β, and the length $l(\beta)=m$. A vertex with no edges leaving it will be called terminal.

Let us now suppose that we have a morphism $f: X \rightarrow Y$ of smooth algebraic spaces, and we wish to discover if it can be factored locally. Blowing-up commutes with etale base extension. If Y has an etale cover $\left\{e_{i}: Y_{i} \rightarrow Y\right\}$ in which the base extensions $f_{i}: X \times_{Y} Y_{i} \rightarrow Y_{i}$ of f all factor locally through blowings-up with smooth centers, then the base extension
$\tilde{f}: X \times{ }_{Y} \widetilde{Y} \rightarrow \tilde{Y}$ by the Henselization \tilde{Y} will also factor through a blowing-up with nonsingular center. Conversely, if f factors locally at each point, then since the number of possible centers is limited by the number of smooth points or branches in the fundamental locus S_{f}, it will be possible to find a finite etale cover $\left\{Y_{i}\right\}$ of Y such that each f_{i} factors. We could, therefore, give a recursive definition of local factorizability by requiring that the f factor locally at each point of Y, and that the factored morphism be locally factorizable. Instead we take the less canonical approach of choosing etale covers and constructing a factorization tree.

Definition 1.2: A partial factorization is a root tree with
a) Each vertex v_{β} labelled by a morphism $f_{\beta}^{\prime}: X_{\beta} \rightarrow Y_{\beta}^{\prime}$
b) Each edge t_{β} labelled by a pair of morphisms (g_{β}, e_{β}), where $g_{\beta}: Y_{\beta}^{\prime} \rightarrow$ Y_{β} is a blowing-up with nonsingular center B_{β}, and $e_{\beta}: Y_{\beta} \rightarrow Y_{\beta_{-}^{\prime}}^{\prime}$ is etale such that, for $\beta \neq \emptyset$, the space X_{β} is the fiber product $X_{\beta^{-}} X_{Y_{\beta}^{\prime}-} Y_{\beta}$ induced by the pair of morphisms $\left(f_{\beta}^{\prime}, e_{\beta}\right)$, and the composition $f_{\beta}=f_{\beta}^{\prime} g_{\beta}$ is the base extension of f_{β}^{\prime} - by e_{β}

Definition 1.3: A vertex v_{α} in a partial factorization tree will be called covered if $\left\{e_{\beta}: Y_{\beta} \rightarrow Y_{\beta}^{\prime}\right\}_{\beta=\alpha}$ is an etale cover of Y_{α}^{\prime}. The tree will be called a local factorization tree if every non-terminal vertex v_{a} is covered, and if for every terminal vertex $v_{\beta}, f_{\beta}^{\prime}$ is an isomorphism.

Remark: If v_{α} is a covered vertex, then $\left\{\pi_{\beta}: X_{\beta} \rightarrow X_{\beta}\right\}_{\beta=\alpha}$ is the pullback to X_{α} of an etale cover of Y_{α}, and is therefore an etale cover of X_{α}. By an induction on path length, a local factorization tree provides an etale cover $\left\{p_{\beta}: X_{\beta} \rightarrow X\right\}$, where the β are the indices of the terminal vertices, and the p_{β} are compositions of morphisms $\pi_{\gamma}: X_{\gamma} \rightarrow X_{\gamma^{-}}$for the various predecessors $\gamma=\beta^{-}, \beta^{--}, \ldots,\left\{\beta_{1}\right\}$ of β.

DEfinition 1.4: A birational morphism $f: X \rightarrow Y$ of algebraic spaces which can be associated to the initial vertex of a local factorization tree will be called locally factorizable.

Remark. This is a local property, and thus for all practical purposes we may assume that Y is a scheme.

Example. Let Y be affine three-space, A^{3}, with coordinates x, y, z.

Fig. 1
We construct a smooth non-projective morphism $f: X \rightarrow Y$ as follows. First blow up the origin, getting a space Y_{1}. It can be covered by three neighborhoods Y_{11}, Y_{12}, Y_{13} obtained by removing the strict preimages of the three coordinate planes, respectively. Each $Y_{1 i}$ is again isomorphic to A^{3}, with two of the coordinate axes contained in the exceptional divisor of the induced morphism from $Y_{1 i}$ to Y. Blow up the coordinate axes in cyclic order, getting first $Y_{1 i}^{\prime}=Y_{1 i 1}$ and then $Y_{1 i 1}^{\prime}$. Set $X_{1 i 1}=Y_{1 i 1}^{\prime}$, and patch together X_{111}, X_{121} and X_{131} to get X. (See figure 1.)

This morphism is strongly factorizable, so it can be obtained without recourse to local neighborhoods, but the local description has the advantage of being symmetrical, and not introducing extraneous components which must later be removed.

We are interested in determining the obstructions to constructing a local factorization tree for a morphism f_{1} in the case of three-folds.

Definition 1.5. Let $f: X \rightarrow Y$ be a proper birational morphism of algebraic spaces. A point $y \in Y$ will be called a point obstruction if, when \tilde{Y} is the Henselization at $y, \tilde{f}: X \times \widetilde{Y} \rightarrow \widetilde{Y}$ does not factor through the blowing up of any smooth subscheme of \widetilde{Y}.

Lemma 1.6. If $f: X \rightarrow Y$ is a proper birational morphism of threefolds which is not locally factorizable, then any partial factorization tree for f can be extended until it encounters a vertex morphism $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ containing a point obstruction at a point $y^{\prime} \in Y^{\prime}$.

Proof: We first show that any uncovered vertex v_{a} with morphism $\overline{f_{\alpha}^{\prime}}: X_{\alpha} \rightarrow Y_{\alpha}^{\prime}$ can be covered unless Y_{α}^{\prime} has a point obstruction. The funda-
mental locus $S_{f_{t}^{\prime}}^{\prime}$ in $Y_{a^{\prime}}$ has dimension ≤ 1. Over the generic point of each curve component of S_{f}^{\prime}, we have unique factorization, from the factorization theorem for surfaces. After removing a finite number of points $\left\{y_{1}, \ldots, y_{r}\right\}$, we can find an etale cover $\left\{e_{j}: W_{j} \rightarrow Y_{a}^{Y}\right\}_{j=r+1}$ of $Y-\left\{y_{1}, \ldots, y_{r}\right\}$ such that for each $j=r+1, \ldots, s, W_{j} \times{ }_{Y_{\alpha}} S_{f^{\prime}}$ is smooth and the base extension of $\bar{f}_{\alpha}^{\prime}$ by W_{j} is directly factorizable. Either $\bar{f}_{\alpha}^{\prime}$ has a point obstruction at one of the Y_{i}, or else for each y_{i} we can find an etale neighborhood e_{i} : $W_{i} \rightarrow Y_{\alpha}^{\prime}$, such that the image of W_{i} in Y_{α}^{\prime} contains none of the other points $y_{j}, j \neq i$, and such that $\bar{f}_{\alpha}^{\prime}$ factors locally through some blowing up.

It remains only to show that this process of covering uncovered vertices cannot continue indefinitely. Since $f: X \rightarrow Y$ is not locally factorizable, we then see that at some point we must encounter a point obstruction.

For each birational morphism $f: X \rightarrow Y$ of 3 -folds, and each point $y \in$ S_{f}, we define $N_{f, y}=\left(N_{0}, N_{1}\right)$, where N_{0} is the number of irreducible surfaces in $f^{-1}(y)$, and N_{1} is the number of irreducible curves. We order these pairs lexicographically, denoting the order relation by " \leq ", and let

$$
N_{f}=\max _{y \in S_{f}} N_{f, y}
$$

It suffices to show that as one proceeds outward along any branch in a partial factorization tree, N_{f} decreases. In fact, by applying induction, it suffices to show this for one step.

We proceed from a vertex labelled by $f_{\alpha}^{\prime}: X_{\alpha} \rightarrow Y_{\alpha}^{\prime}$ to the following vertex $f_{\beta}^{\prime}: X_{\beta} \rightarrow Y_{\beta}^{\prime}$, with $\beta^{-}=\alpha$, in two steps: first we take an etale mor-
 first step replaces the morphism $f_{\alpha}^{\prime}: X_{\alpha} \rightarrow Y_{\alpha}^{\prime}$ by a morphism $f_{\beta}: X_{\beta} \rightarrow Y_{\beta}$, with $X_{\beta}=X_{\alpha} \times{ }_{Y_{\alpha}^{\prime}} Y_{\beta}$. If $\hat{y} \in Y_{\beta}$ is such that $e_{\beta}(\hat{y})=y$, then $f_{\beta}^{-1}(\hat{y}) \leftrightarrows f_{\alpha}^{\prime-1}(y)$. This follows from the fact that the Henselization $\left(\widetilde{Y}_{\beta}\right)_{y}$ of Y_{β} at \hat{y} is isomorphic to the Henselization $\left(\widetilde{Y}_{\alpha}\right)_{y}$ of Y_{α}^{\prime} at y, and that $f_{\alpha}^{\prime-1}(y)$ and $f_{\beta}^{-1}(\hat{y})$ are the closed fibers, respectively, of $X_{a} \times_{Y_{\alpha}^{\prime}}\left(Y_{\alpha}^{\prime}\right)_{y}$ and of $X_{\beta} \times_{Y_{\beta}}\left(Y_{\beta}\right)_{\mathcal{g}}$. Thus $N_{f_{f}, \mathcal{y}}=N_{f^{\prime} y}$, , whenever $e_{\beta}(\hat{y})=y$, and we conclude that $N_{f_{\beta}}=N_{f a}$.

If remains to show that $N_{f^{\prime}}<N_{f_{\beta}}$. Let \hat{y} be a point of Y_{β} for which $N_{f_{\beta}}=N_{f_{m},}$, and let y^{\prime} be a point of the blown-up scheme Y_{β}^{\prime} at which $g_{\beta}\left(y^{\prime}\right)=\hat{\mathrm{y}}$. Then $f_{\beta^{\prime-1}}\left(y^{\prime}\right) \subset f_{\alpha}^{\prime-1}(y)$, so $N_{f,}, y^{\prime} \leq N_{f^{\prime}, y}=N_{f_{k}, \gamma}$. At least one component of $f_{\alpha}^{\prime-1}(y)$ must map onto $g_{\beta}^{-1}(\hat{y})$ under f_{β}^{\prime}. Thus $f_{\beta}^{\prime-1}\left(y^{\prime}\right)$ is a proper subset of $f_{\alpha^{\prime-1}}^{\prime-1}(y) . f_{\beta^{\prime-1}}\left(y^{\prime}\right)$ either has fewer surface components, or, if it has the same number of surface components, then it has fewer curve components.

Example: In Fig. 2 we give the dual graph of the minimal toroidal

Fig. 2
example of a point obstruction, given by Oda in [6].
In view of lemma 1.6, the only obstructions to local factorizability are point obstructions. We wish to give some restrictions on these obstructions.

Definition 1.7. Let $f: X \rightarrow Y$ be a birational morphism, and let y be a point of Y. Let Y_{1} be the blowing up of y, with exceptional divisor M_{1}, and induced correspondence $f_{1}: X \longrightarrow Y_{1}$. We define the strict preimage $f^{-1}[y]$ to be the strict preimage $f_{1}^{-1}\left[M_{1}\right]$ of M_{1}. We can similarly define $f^{-1}[W]$ for any subalgebraic space W, by blowing up at the generic point and taking the image.

REMARK. For three-folds, $f^{-1}[y]$ is in fact a component of $f^{-1}(y)$. $f^{-1}[y]$ is irreducible, being the strict preimage of an irreducible divisor, so if $\operatorname{dim} f^{-1}[y]=2$ it is clearly a component. The case $\operatorname{dim} f^{-1}[y] \leq 1$ will be treated below, where we will show that it is a curve contained in a unique exceptional divisor of f whose image is larger than y.

We now turn to the results of Danilov, which will give us additional information about the structure of point obstructions. Given a morphism $f: X \rightarrow Y$ of algebraic spaces, we let K_{f} be the relative canonical divisor of $f, K_{f}=K_{X}-f^{*}\left(K_{Y}\right)$, and we let ξ be the generic point of the strict preimage $f^{-1}[y]$ of a point y. Then Danilov proves, in Prop. 3.4 of [2], the following

Proposition :
Let $f: X \rightarrow Y$ be a proper birational morphism of nonsingular schemes of dimension r over an algebraically closed field K. Suppose Y is a local Henselian scheme obtained by Henselization of a smooth K-scheme at the closed point y and $\operatorname{dim} f^{-1}(y) \leq 1$. Then
a). The codimension of ξ in X is equal to $r-1$, i.e. ξ is the generic
point of a curve component of $f^{-1}(y)$.
b) K_{f} is non-singular at ξ.
c) The subscheme $f^{-1}(y)$ is non singular at ξ.

REMARK. We allow X to be an algebraic space, and replace the requirement $\operatorname{dim} f^{-1}(y) \leq 1$ by $\operatorname{dim} f^{-1}[y] \leq 1$. The entire proof carries over intact. We use this form of the lemma to prove the following variation of Danilov's Theorem 3.1:

Theorem 3.1:
Lemma 1.8. Let $f: X \rightarrow Y$ be a proper birational morphism of smooth algebraic spaces of dimension 3. Suppose $y \in Y$ is a point for which f^{-1} is not an isomorphism and $\operatorname{dim} f^{-1}[y] \leq 1$. Then there is an etale neighborhood W of y in which $f_{W}: X \times W \rightarrow W$ factors through the blowing up of a smooth curve $B \subset W$.

Proof: We follow the outline of the proof of Danilov's theorem. Letting \widetilde{Y} be the Henselization of Y at y, and $\begin{gathered}\tilde{f}: X \times \widetilde{Y} \rightarrow \widetilde{Y} \text { we conclude } \\ Y\end{gathered}$ from the proposition above that the generic point ξ of $f^{-1}[y]$ lies in a single component D_{1} of K_{f} and that $f^{-1}(y)$ is non-singular there. Let c be a general point of $f^{-1}[y]$, and let \widetilde{Z} be a curve in $\widetilde{X}=X \times \widetilde{Y}$ which is transversal to $f^{-1}[y]$ at c. It intersects $f^{-1}(y)$ at a finite number of points. The morphism from \widetilde{Z} to \widetilde{Y} is quasifinite, \widetilde{Y} is Henselian, and hence $\widetilde{Z}=\widetilde{Z}^{\prime} \cup \widetilde{Z}^{\prime \prime}$ is a disjoint union with $\widetilde{Z}^{\prime} \cap f^{-1}(y)=c$, a single point, (EGA [4] 18.5.11). We replace \widetilde{Z} by \widetilde{Z}^{\prime} and let $\widetilde{B} \subset \widetilde{Y}$ be the image of \widetilde{Z}. The induced morphism $\pi: \widetilde{Z} \rightarrow \widetilde{Y}$ is a finite morphism, and $\pi^{-1}(y)=c$ is an isomorphism, so by Nakayama's lemma we conclude that π is a closed embedding and thus $\widetilde{B}=\pi(\widetilde{Z}) \widetilde{ } \widetilde{ } \widetilde{Z}$ is non-singular. Since $\widetilde{Z} \subset D_{1}$, $\widetilde{B}=\tilde{f}(\widetilde{Z}) \subset \tilde{f}\left(\widetilde{D}_{1}\right)$, and since both \widetilde{B} and $\tilde{f}\left(\widetilde{D}_{1}\right)$ are irreducible curves, $\widetilde{B}=\tilde{f}\left(\widetilde{D}_{1}\right)$.

For any etale neighborhood $e: W \rightarrow Y \circ f y$, let $f_{W}: X_{W} \rightarrow W$ be the induced birational morphism. Let D_{1} be the unique component of $K_{f_{w}}$ containing $f_{W}{ }^{-1}[y], \bar{y} \in e^{-1}(y)$ and $B=f_{W}\left(D_{1}\right)$, an irreducible curve in W. Since \widetilde{Y} is the inverse limit of the W, and \widetilde{B} maps to B under the morphism $\widetilde{Y} \rightarrow W$, there must exist a neighborhood W in which \widetilde{B} is the unique preimage of B and thus B has a unique smooth branch at \bar{y}. We choose the neighborhood sufficiently small that f_{W} has a unique factorization over every other point of W. Let $g: W^{\prime} \rightarrow W$ be the blowing-up of B, with exceptional divisor M, and induced morphism $f_{1}^{\prime}: X_{W} \rightarrow W^{\prime}$ By lemma 1.1 of [9], the strict preimage $f_{1}^{\prime-1}[M]$ is a surface generically isomor-
phic to M. We wish to show that it is D_{1}. Let H be a generic hyperplane in W containing B. Over the general point w of B, since $g^{-1}[H]$ intersects M at a point where it is isomorphic to $f_{1}^{\prime-1}[M], f_{\bar{W}}[H]$ must intersect $f_{\bar{w}}^{\vec{W}}[W]$ at a point of $f_{1}^{\prime-1}[M]$. On the other hand, it must intersect $f^{-1}(y)$ at a generic point, i. e., at a point of $f^{-1}[y]$.

Let Γ be a curve through y transversal to $H . f^{-1}[y] \subset\left|f_{w}^{*}(\Gamma)\right|$. By the projection formula $\operatorname{deg} f_{w}^{*}(\Gamma) \cdot f_{\bar{w}}{ }^{2}[H]=\operatorname{deg} \Gamma \cdot H=1$, so $f_{\bar{w}}{ }^{2}[H]$ is transversal to $f^{-1}[y]$ at c. It intersects D_{1} in a curve in a neighborhood of the intersection point, so the remaining points of that curve must belong to fibers of other points y^{\prime} of B. Thus $D_{1}=f_{\bar{w}}{ }^{\prime}[M]$ as desired.

By Lemma 1.2 of [9], f_{1}^{\prime} is an isomorphism at every singleton point of D_{1}. Since f_{1} is well defined over every point of B except y, and on $g^{-1}(y)$ $f_{1}^{\prime-1}$ is an isomorphism except at isolated points, we conclude by lemma 1.4 of [9] that f_{1}^{\prime} is well-defined, and thus we have the desired factorization.

Definition 1.9. Let $f: X \rightarrow Y$ be a morphism of 3 -folds, and let y be an element of Y. We let Y_{1} be the blowing-up of y, with $f_{1}: X \longrightarrow Y_{1}$, the induced correspondence. The locus in X on which f_{1} is not welldefined will be designated by $P_{y}(f)$, and will be called the pinch locus.

Lemma 1.10. In a 3 -fold, we have the following alternative characterizations of the pinch locus:
(a): If H_{1} and H_{2} are two generic hyperplanes through y, then $P_{y}(f) \cup$ $f^{-1}\left[H_{1} \cap H_{2}\right]=f^{-1}\left[H_{1}\right] \cap f^{-1}\left[H_{2}\right]$.
(b): Suppose y is a point obstruction. Let G_{f} be the graph of f_{1}, with projection π_{1} on X and π_{2} the projection on Y_{1}. Then $P_{y}(f)=\cup \pi_{1}(S)$, where S ranges over all the irreducible surfaces in G_{f}, such that dim $\pi_{1}(S)=\operatorname{dim} \pi_{2}(S)=1$.

Proof: Teicher proved in [10] that $P_{y}(f)=f^{-1}\left[H_{1}\right] \cap f^{-1}\left[H_{2}\right] \cap$ $f^{-1}\left[H_{3}\right]$ for generic H_{1}, H_{2}, H_{3}. In (a) we strengthen that result by eliminating the third hypersurface $f^{-1}\left[H_{3}\right]$.
(a): If H_{1} and H_{2} are not tangent at y, then if $g: Y_{1} \rightarrow Y$ is the blowing. up of $y, g^{-1}\left[H_{1}\right]$ and $g^{-1}\left[H_{2}\right]$ do not intersect on the exceptional divisor except at $g^{-1}\left[H_{1} \cap H_{2}\right]$. Thus if $f_{1}: X \longrightarrow Y_{1}$ is well-defined at $x \in\left|K_{f}\right|, f^{-1}$ $\left[H_{1}\right]$ and $f^{-1}\left[H_{2}\right]$ do not intersect there unless $x \in f_{1}^{-1}\left(g^{-1}\left[H_{1} \cap H_{2}\right]\right)$. For generic choice of H_{1} and H_{2}, f_{1}^{-1} will be well-defined on $g^{-1}\left[H_{1} \cap H_{2}\right]$ so $f_{1}^{-1}\left(g^{-1}\left[H_{1} \cap H_{2}\right]\right)$ will just be $f^{-1}\left[H_{1} \cap H_{2}\right]$. We conclude that $f_{1}^{-1}\left[H_{1}\right] \cap$ $f_{1}^{-1}\left[H_{2}\right]=P_{y}(f) \cup f^{-1}\left[H_{1} \cap H_{2}\right]$.
(b) : Suppose y is a point obstruction, whence, by lemma 1.3, there is a
component D_{1} of K_{f} generically isomorphic to the exceptional divisor M_{1} of $g: Y_{1} \rightarrow Y$, the blowing up of y. The set $P_{y}(f)$, on which $f_{1}: X \rightarrow->Y_{1}$ is not well-defined, is the fundamental locus $S_{\pi_{1}}$ of the first projection π_{1} from the graph $G_{f_{1}}$. By Zariski's main theorem each component of $P_{y}(f)$ is the image of a surface S in $G_{f_{1}}$. The image of S in Y_{1} is also of dimension less than 2 , since S is not the unique surface D_{1} in $G_{f_{1}}$ which is generically isomorphic to D_{1} in X and to M_{1} in Y. Since $S \subset \pi_{1}(S) \times \pi_{2}(S)$, both projections must be of dimension 1 .
Q. E. D.

Our basic approach to analyzing the pinch locus will be to blow-up bad curves on the Y_{1} side of the " valley"

For this purpose regular blowings-up will not always suffice, and we will occasionally need a slightly more general technique.

Definition 1.11: A quasi-blowing up with center B and accessible component M is a locally factorizable morphism $\overline{h: V \rightarrow Y} Y$ such that $M \subset$ Supp K_{n} is an irreducible divisor without self intersections, $B=S_{h}$ is irreducible, and h is generically the blowing up of B with exceptional divisor M. Furthermore, for every singleton point v of M, i.e. every point contained in no other component of K_{n}, we presume that after base extension by the Henselization \widetilde{Y} of Y at $f(v), h$ factors through the blowing up of a smooth branch \widetilde{B} of B, and is isomorphic to this blowing up at v. The singleton points v of M are called accessible points.

Lemma 1.12: Let $h: V \rightarrow Y$ be a quasi-blowing up, let $f: X \rightarrow Y$ be a birational morphism and let \widetilde{B} be the local center in the henselization \widetilde{Y} of a point y. Let v be an accessible point of $h^{-1}(y)$. Let Γ be a nonsingular curve intersecting $h^{-1}(\widetilde{B})$ transversally at v, which we will call a test curve. The closure point of Γ is $x=f^{-1}(B) \cap \overline{\left(f^{-1}(h(\Gamma-\{v\}))\right)}$. The correspondence $\left.f_{1}: X \rightarrow-\right\rangle$ is well-defined at x if and only if after base extension $\tilde{f}: \widetilde{X} \rightarrow \tilde{Y}$ we have $\tilde{f}^{-1}\left(I_{\tilde{B}}\right) O_{\tilde{X}, x}$ invertible.

Proof: For any accessible point, $V \times \tilde{Y}$ is isomorphic to the blowing up \bar{V} of \widetilde{B} at $y . \bar{f}_{1}: \widetilde{X} \rightarrow \bar{V}$ is well defined if and only if $\bar{f}^{-1}\left(I_{\tilde{B}}\right) O_{\tilde{x}, x}$ is invertible. If $\overline{f_{1}}$ is welldefined at x, then $\bar{f}_{1}(x)$ is determined by the test curve of which x is the closure point. Thus the image of x must be the point of \bar{V} isomorphic to v, so by composition $\tilde{f}_{1}: \widetilde{X} \rightarrow V \times \widetilde{Y}$ is welldefined. Similarly if \bar{f}_{1} is well-defined, so is \bar{f}_{1}. Finally, since the prop-
erty of being well-defined is local, f_{1} is well-defined at x if and only if \tilde{f}_{1} is well-defined there.

Definition 1.13: Let Y_{0}, \ldots, Y_{m} be a sequence of algebraic spaces such that $b_{j}: Y_{j} \rightarrow Y_{j-1}$ is a quasi-blowing up with accessible component M_{j}. The liftings $M_{j}^{(k)}$ of these components to Y_{k} for $k \geq j$ will also be called accessible components. A point of Y_{k} which lies only in accessible components will be called accessible. The sequence will be called a quasifactorization sequence if the generic point of the fundamental locus $\overline{S_{p_{i}}}$ is accessible for each i. Letting $h_{k j}=b_{j+1} \cdots \circ b_{k}$, and $h_{k}=h_{k 0}$, we will say that h_{k} is dominated by $f: X \rightarrow Y$ if each accessible component of Y_{k} is generically isomorphic to a component of K_{f}.

To conclude this section, we outline an approach to checking the local factorizability of a morphism $f: X \rightarrow Y$ of smooth algebraic spaces of dimension 3. This approach will be applied in §3 to analyze point obstructions with four components collapsing to a point, and in $\S 4$ to analyze morphisms collapsing 3 components to a curve with a singular point.

By lemma 1.6 if $f: X \rightarrow Y$ is not locally factorizable, then every possible local factorization tree for f can be extended until it encounters a point obstruction. By lemma 1.8 , this is a point at which the strict preimage of the point is a surface, but the morphism does not factor through the blowing up of the point. We replace the original morphism by the morphism with the point obstruction, and replace the original hypotheses about the morphism by hypothesis stable under progress out the branches of a local factorization tree.

We then proceed to deduce the possible structures for the exceptional divisor K_{f} of our new morphism $f: X \rightarrow Y$. We blow up the bad point y, obtaining a space y_{1} and a correspondence $f_{1}: X \rightarrow Y_{1}$ which is not well defined at the pinch locus $P_{y}(f) . P_{y}(f)$ is a union of curves, each the image of a surface S in the graph of f_{1} which collapses to a "bad" curve in Y_{1}. By successively blowing-up such bad curves, first on the Y side and then on the X side, we produce a diagram as in figure 3, in which the generically isomorphic components N_{l} and M_{k} " bridge " the gap between the two towers.

In the diagram in Fig. 3, both X_{0}, \ldots, X_{l} and Y_{0}, \ldots, Y_{k} will be quasifactorization sequences. The centers of the quasi-blowings up will be the images N_{l} and M_{k} respectively. In § 2 we will assign " weights" to different components of the exceptional locus of the morphisms. By following the changes in these numbers as we go up the right tower to Y_{k}, across the bridge to X_{l} and down the left tower to X, we will obtain

Fig. 3
information about those components of K_{f} containing components of the pinch locus of f.

In order to carry out this program, we must be able to construct a factorization sequence which blows up the successive images of a divisor F under the correspondences induced by a morphism $q: W \rightarrow Y$. When the image is a point or a non-singular curve there is no problem. Thus the only problem comes when the image B is a singular curve. To this end we prove the following lemma:

Lemma 1.14: Let Y be an algebraic space which has a finite etale cover, and let $B \subset Y$ be an irreducible curve. Then there exists a quasi blowing- $u p$ with center B, and we may specify that the quasi-blowing up factors locally through designated smooth branches.

Proof: Let $\left\{y_{1}, \ldots, y_{m}\right\}$ be the set of singular points of B. Since each member of the finite cover of Y is quasi-compact, we can find a finite etale cover $\left\{e_{j}: W_{j} \rightarrow Y-\left\{y_{1}, \ldots, y_{m}\right\}\right\}_{j=m+1}^{m}$ or $Y-\left\{y_{1}, \ldots, y_{m}\right\}$. For each $j=1, \ldots, m$, choose an etale neighborhood $e_{j}: W_{j} \rightarrow Y$ such that there is a unique point w_{j} in $e_{j}^{-1}\left(y_{i}\right)$, and the image of W_{j} in Y does not contain any of the other singular points of B. At those singular points y_{i} at which we have designated a particular smooth branch of B , we choose W_{j} sufficiently fine that W_{j} contains a subscheme which is smooth at W_{j} and whose preimage in the Henselization \widetilde{Y} of Y at Y_{i} is the desired branch. It is possible to find such a W_{j} since (\widetilde{Y}, y_{i}) is the direct limit of the etale neighborhoods of y_{i}.

For each $j=1, \ldots, m^{\prime}$ we construct a blowing-up $g_{j}: W_{j}^{\prime} \rightarrow W_{j}$. For $j>$ m, $e_{j}^{-1}(B)$ is nonsingular, and we let g_{j} be the canonical blowing up of $e_{j}^{-1}(B)$. For $j \leq m, e_{j}^{-1}(B)$ has a unique singular point at w_{1}. If there is no designated branch at W_{j}, we blow up points until the strict preimage of $e_{j}^{-1}(B)$ is nonsingular, then blow up this nonsingular curve. If there is a designated branch, we first blow it up, then blow up points until the remaining branches of $e_{j}^{-1}(B)$ are nonsingular and separated from the exceptional divisor over the designated branch. We then blow up the remaining branches of the curve.

We now wish to construct the quasi-blowing-up \bar{Y} as a quotient of the disjoint union $\prod_{j=1}^{m^{\prime}} W_{j}^{\prime}$. We want to construct an appropriate etale equivalence relation R which will " patch" the pieces together. Letting $Y_{j}=$ $e_{j}\left(W_{j}\right)$, and $Y_{i j}=Y_{i} \times Y_{j} \Im Y_{i} \cap Y_{j}$, we claim that $W_{i}^{\prime} \times Y_{i j} \underset{\rightarrow}{\leftrightarrows} W_{i} \times Y_{i j}^{\prime}$. The existence of morphisms in each direction are insured by the following two commutative diagrams:

where the dotted arrows are induced by the universal mapping property of the blowing up. R must be a closed immersion with etale projections, satisfying reflexivity, symmetry and transitivity.

Now for $i \neq j$, we define

$$
\begin{aligned}
& \begin{array}{ccc}
R_{i j}=\left(W_{i} \times Y_{i j}^{\prime}\right) & \times\left(Y_{i j}^{\prime} \times W_{j}\right) \hookrightarrow\left(W_{i} \times Y_{i j}^{\prime}\right) & \underset{Y_{i j}}{Y_{i j}^{\prime}} \\
Y_{i} & Y_{i j} & Y_{i} \\
\left.Y_{i j}^{\prime} \times W_{j}\right) \\
Y_{j}
\end{array} \\
& \underset{\underset{i}{\leftrightarrows}\left(W_{i j}^{\prime} \times Y_{i j}\right)}{\underset{Y_{i j}}{\times}\left(Y_{i j} \times W_{j}^{\prime}\right)} \\
& \stackrel{\sim}{\rightrightarrows} W_{i}^{\prime} \times Y_{i j} \times W_{j^{\prime}} \\
& \stackrel{\Im}{\rightarrow} W_{i}^{\prime} \times W_{j}^{\prime}
\end{aligned}
$$

The local properties of being a closed immersion, having etale projections and symmetry are induced from the fact that it is the equivalence relation on two etale neighborhoods, $W_{i} \times Y_{i j}^{\prime}$ and $Y_{i j}^{\prime} \times W_{j}$ of $Y_{i j}^{\prime}$.

Before defining $R_{i i}$, we first note that in $W_{i} \times W_{i}$ we have a closed Y_{i}
subscheme $W_{i} \times W_{i}$, since W_{i} is a scheme and thus separated. The closed W_{i}
immersion $\triangle: W_{i} \times W_{i} W_{i} \hookrightarrow W_{i} \times W_{i}$ gives a section of the etale projection $W_{i} \times W_{i} \xrightarrow{\pi_{1}} W_{i} . \quad$ Because π_{1} is a local isomorphism in the etale topology, Y_{i}
the section \triangle is also an open immersion. Since the diagonal is both open and closed, and W_{i} is connected, we conclude that the diagonal is a connected component, whence $W_{i} \times W_{i} \leftrightarrows W_{i} \times W_{i}$ П D. Let $\bar{W}_{i}=\mathrm{W}_{i}-\left\{\mathrm{w}_{i}\right\}$, and $\bar{Y}_{i}=Y_{i}-\left\{y_{i}\right\}$. Then $D \subset \bar{W}_{i} \times \bar{W}_{i}$, since w_{i} is the only point of W_{i} Y_{i} lying over y_{i}, and $\left(w_{i}, w_{i}\right) \in W_{i} \times W_{i}$.

$$
\begin{aligned}
& \text { We now let } \bar{W}_{i}^{\prime}=W_{i}^{\prime}-g_{i}^{-1}\left(w_{i}\right), \text { and set } \\
& R_{i i}=W_{i}^{\prime} \times W_{i} \rightarrow\left(W_{i}^{\prime} \times W_{i}\right) \cup\left(\bar{W}_{i}^{\prime} \times W_{i}\right) \\
& Y_{i}
\end{aligned} W_{i} \quad Y_{i} .
$$

$W_{i}^{\prime} \times W_{i}$ is actually a component, and there is a complement $D^{\prime} \subset \bar{W}_{i}^{\prime} \times W_{i}$ W_{i}
whose image in $W_{i} \times W_{i}$ is D. The immersion $W_{i}^{\prime} \underset{W_{i}}{\times} W_{i} \underset{\rightarrow}{\sim} W_{i}^{\prime} \underset{W_{i}^{\prime}}{\times} W_{i}^{\prime} \hookrightarrow W_{i}^{\prime}$ $\times W_{i}^{\prime}$
Y_{i} and the immersion $\bar{W}_{i}^{\prime} \times W_{i} \xrightarrow{\hookrightarrow} W_{i}^{\prime} \times \bar{Y}_{i}$

$$
\begin{aligned}
& \xrightarrow[\rightarrow]{\sim} \bar{W}_{i}^{\prime} \underset{\bar{Y}_{i}^{\prime}}{\times} \bar{Y}_{i}^{\prime} \stackrel{\times}{\bar{Y}_{i}} W_{i} \\
& \stackrel{\sim}{\rightarrow} \bar{W}_{i}^{\prime} \underset{\bar{Y}_{i}^{\prime}}{\times} \bar{W}_{i}^{\prime} \hookrightarrow \bar{W}_{i}^{\prime} \underset{\bar{Y}_{i}}{\times} \bar{W}_{i}^{\prime}
\end{aligned}
$$

induce an immersion $R_{i i} \hookrightarrow W_{i}^{\prime} \times W_{i}^{\prime}$, since the images of $W_{i}^{\prime} \times W_{i}$ and D^{\prime} Y_{i} Y_{i}
are disjoint. Since the composition with the proper morphism $W_{i}^{\prime} \times{ }_{i} W_{i}^{\prime} \rightarrow$ $W_{i}^{\prime} \times W_{i}$ is an isomorphism, we conclude that $R_{i i} \hookrightarrow W_{i}^{\prime} \times W_{i}^{\prime}$ is proper and Y_{i}
thus must be a closed immersion.
The image of $R_{i i}$ in $W_{i}^{\prime} \times W_{i}^{\prime}$ is symmetric. The first projection $R_{i i} \rightarrow$ Y_{i}
W_{i}^{\prime} is the base extension of an etale morphism and is thus etale. By symmetry the other projection is also etale. We have already shown that the diagonal map factors through $R_{i i}$, giving reflexivity.

It remains to check the global property of transitivity. We need to show that $R_{i j} \times R_{j k}$ factors through $R_{i k}$. We begin with the case $i \neq j \neq k$ $W_{j^{\prime}}$ $\neq i$, and let $Y_{i j k}=Y_{i j} \times Y_{j k}$.

We will make frequent use of various versions of the isomorphism $W_{i}^{\prime} \times Y_{j} \leftrightarrows W_{i} \times Y_{j}^{\prime}$ and of standard fiber product isomorphisms like $W \times Y$ $Y \quad Y$
$\xrightarrow{\Im} W$.

$$
\begin{aligned}
& \left.R_{i j} \times R_{W^{\prime}} \underset{i k}{\sim}\left[\left(W_{i} \times{ }_{Y_{i}}^{Y_{i j}^{\prime}}\right) \underset{Y_{i j}^{\prime}}{\times} \stackrel{\left(Y_{i j} \times{ }_{j}\right.}{W_{j}^{\prime}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \underset{i}{\leftrightarrows} W_{i} \times\left[Y_{i j} \times W_{j}^{\prime} \times Y_{j k}\right] \times{ }_{Y_{k}} \\
& \underset{Y_{i}}{\sim} W_{i} \times\left[W_{j} \times Y_{i j k}^{\prime}\right] \times{ }_{Y_{k}}
\end{aligned}
$$

The etale morphism $e_{j}: W_{j} \rightarrow Y_{j}$ and the open immersion $Y_{i j k}^{\prime} \rightarrow Y_{i k}^{\prime}$ then induce an etale morphism

$$
\begin{aligned}
& R_{i j} \times R_{j k} \rightarrow W_{i} \times Y_{i k}^{\prime} \times W_{k} \\
& W_{j}^{\prime} Y_{i} \quad Y_{k} \\
& \xrightarrow{\rightarrow}\left(W_{i} \times Y_{i k}^{\prime}\right) \times\left(Y_{i k}^{\prime} \times W_{k}\right) \leftrightarrows R_{i k}
\end{aligned}
$$

This gives the desired factorization.
The various degenerate cases follow the same general procedure, but require more care because of the more complicated definition of $R_{i i}$. As an example, in the case $i=k$, we have an isomorphism as before

$$
\begin{gathered}
R_{i j} \times R_{i j} \sim W_{i} \times\left(W_{j} \times{ }_{W_{j^{\prime}}}^{\times} \stackrel{Y_{i}^{\prime}}{Y_{i j k}}\right) \underset{Y_{i}}{\times} W_{i}
\end{gathered}
$$

Applying the etale morphism $e_{j}: W_{j} \rightarrow Y_{j}$ and the isomorphism $Y_{i j i}^{\prime} \sim Y_{i j}^{\prime}$ we get a morphism

$$
\begin{gathered}
R_{i j} \times R_{j i} \rightarrow W_{i} \times\left(Y_{i j}^{\prime}\right) \times{ }_{W_{i}} \\
Y_{i} \\
Y_{i} \rightarrow\left(W_{i}^{\prime} \times W_{i}\right) \\
Y_{i}
\end{gathered}
$$

The latter space is an open subset of $R_{i i}$.
We have a diagram

At every stage in the transformation of $R_{i j} \times R_{j k}$, the first and fourth projections can be defined via canonical isomorphisms of the type $W_{i}^{\prime} \times Y_{i j}$ Y_{i} $\xrightarrow{\sim} W_{i} \times Y_{i}^{\prime}{ }_{i j}$. The diagram thus commutes, and the equivalence relation R is transitive. We define X to be the quotient of $S=\prod W_{j}^{\prime}$ by R, and the induced morphism $f: X \rightarrow Y$ to the base Y gives the desired quasi-blowing-up.

§ 2 Combinatorial analysis of \boldsymbol{K}_{f}.

We begin the quantitative analysis of the components of the exceptional divisor with definitions of a few of the basic functions we will be using.

DEFINITION 2.1: Let $f: X \rightarrow Y$ be a birational morphism, let F be an irreducible component of K_{f}, and let H_{1}, \ldots, H_{r} be divisors in Y, i.e., integral combinations of irreducible divisors. We denote by

$$
\begin{aligned}
& r_{f}(F) \text {, the multiplicity of } F \text { in } K_{f} \\
& w_{f}(F) \text {, the number } r_{f}(F)+1 \text {, called the weight of } F \text {. } \\
& s_{f}\left(F, H_{i}\right) \text {, the multiplicity of } F \text { in } f^{*}\left(H_{i}\right) \text {. } \\
& u_{f}\left(F ; H_{1}, \ldots H_{r}\right)=\left(w_{f}(F) ; s_{f}\left(F, H_{1}\right), \ldots, s_{f}\left(F, H_{r}\right)\right),
\end{aligned}
$$

called a weight vector.
For B a smooth irreducible subscheme of Y, we can define the canonical B-pair $u_{f}(F, B)=\left(w_{f}(F), s_{f}(F, H)\right)$ for H a generic hyperplane containing B. When S_{f}, the fundamental locus of f, consists of a single point y, we will abbreviate $u_{f}(F, y)$ by $u_{f}(F)$, and will simply call it the canonical pair.

Remark: Note that $s_{f}(F, H)$ is an additive function of H.
REMARK: If $\hat{f}: \hat{X} \rightarrow Y$ is a birational correspondence, and F is a component of K_{X}, let $f: X \rightarrow Y$ be a morphism obtained by resolving the fundamental points of \hat{f}. Since \hat{f} is well-defined at the generic point of F, we have X generically isomorphic to \hat{X} at the generic point of F. Thus the multiplicities given in $u_{f}\left(F_{1} ; H_{1}, \ldots, H_{r}\right)$ will be independent of the choice of f, We can define

$$
v_{f}\left(F ; H_{1}, \ldots, H_{r}\right)=u_{f}\left(F ; H_{1}, \ldots, H_{r}\right)
$$

and this will be independent of the choice of f.

EXAMPLE: If $f: X \rightarrow Y$ is a toroidal morphism, with $Y \leftrightarrows A^{n}$, then each component F of K_{f} is uniquely determined by an integral vector $\left(a_{1}, \ldots, a_{n}\right)$, where a_{i} is the order of $f^{*}\left(x_{i}\right)$ on F. Choose a general point x of F, and a set of local toroidal coordinates t_{1}, \ldots, t_{n} in a neighborhood $U \subset X$, such that t_{1} is a local coordinate for F, and

$$
x_{i}=t_{1}^{a_{i 1} \cdots t_{n}^{a_{i n}}, \text { with } \operatorname{det}\left[a_{i j}\right]= \pm 1.10 .}
$$

By 1.1 of [9], if $r_{j}=\left(\sum_{i} a_{i j}\right)-1$

$$
\begin{aligned}
f^{*}\left(d x_{1} \wedge \ldots \wedge d x_{n}\right) & =t_{1}^{r_{1}} \ldots t_{n}^{r_{n}} \operatorname{det}\left[a_{i j}\right] d t_{1} \wedge \ldots \wedge d t_{n} \\
& = \pm t_{1}^{r_{1}} \ldots t_{n}^{r_{n}} d t_{1} \wedge \ldots \wedge d t_{n}
\end{aligned}
$$

Thus $r_{f}(F)=r_{1}=\left(\sum a_{i j}\right)-1$

$$
w_{f}(F)=\sum a_{i j}
$$

Letting H_{i} be the hyperplane determined by $x_{i}=0$, we have

$$
u_{f}\left(F ; H_{1}, \ldots, H_{n}\right)=\left(\sum_{i=1}^{n} a_{i 1} ; a_{11}, \ldots, a_{n 1}\right)
$$

Let $p: W \rightarrow X$ be the blowing up of an intersection $E_{1} \cap \ldots \cap E_{r}$ of components of K_{f}. The integral vector of the resulting exceptional divisor F is just the vector sum of the integral vectors of the components E_{j}. We thus have

$$
u_{f \circ p}\left(F ; H_{1}, \ldots, H_{n}\right)=\sum_{j=1}^{n} u_{f}\left(E_{j} ; H_{1}, \ldots, H_{n}\right)
$$

Let us now consider the behavior of the weight vector under composition. We let $p: W \rightarrow X$ be a toroidal morphism, and let F be a component of the exceptional divisor. Let E_{1}, \ldots, E_{r} be the components of K_{f} containing $p(F)$ with local toroidal coordinates t_{1}, \ldots, t_{r} and let q_{i} be a local toroidal coordinate for $f^{-1}\left[H_{i}\right]$. Let t_{1}, \ldots, t_{n} be the complete set of toroidal coordinates in a neighborhood of the general point of $p(F)$. If $f^{-1}\left[H_{i}\right]$ intersects this neighborhood, then its local parameter is a toroidal coordinate. Thus each q_{i} either equals some t_{j} for $j>r$ or else is 1 .

For each $j=1, \ldots, n$ let s_{j} be the order of $p^{*}\left(t_{j}\right)$ on F, so that if t is a local toroidal parameter for F,

$$
\begin{aligned}
& p^{*}\left(t_{j}\right)=t^{s_{j}} p_{j}, \quad j=1, \ldots, n \\
& f^{*}\left(x_{i}\right)=t_{1}^{a_{i 1}} \ldots t_{r}^{a_{i r}} q_{i}
\end{aligned}
$$

Therefore, $(f \circ p)^{*}\left(x_{i}\right)=p^{*}\left(f^{*}\left(x_{i}\right)\right)$

$$
=\prod_{j=1}^{r}\left(t^{s_{j}} p_{j}\right)^{a_{i j}} p^{*}\left(q_{i}\right)
$$

By definition, $s_{f \circ p}\left(F, H_{i}\right)$ is the multiplicity $\nu\left(F,(f \circ p)^{*}\left(H_{i}\right)\right)$ of F in the divisor $(f \circ p)^{*}\left(H_{i}\right)$, defined locally by $(f \circ p)^{*}\left(x_{i}\right)=0$.
Thus

$$
\begin{aligned}
s_{f \circ p}\left(F, H_{i}\right) & =\sum_{j=1}^{r} s_{j} \bullet a_{i j}+s_{p}\left(F, f^{-1}\left[H_{i}\right]\right) \\
& =\sum_{j=1}^{r} s_{p}\left(F, E_{j}\right) s_{f}\left(E_{j}, H_{i}\right)+s_{p}\left(F, f^{-1}\left[H_{i}\right]\right)
\end{aligned}
$$

Taking the sum over all $i=1, \ldots, n$ we get

$$
w_{f \circ p}(F)=\sum_{j=1}^{r} s_{p}\left(F, E_{j}\right) w_{f}\left(E_{j}\right)+\sum_{i=1}^{n} s_{p}\left(F, f^{-1}\left[H_{i}\right]\right)
$$

Combining these equations, we have

$$
\begin{aligned}
u_{f \circ p}\left(F ; H_{1}, \ldots, H_{n}\right)= & \sum_{j=1}^{k} s_{p}\left(F, E_{j}\right) u_{f}\left(E_{j} ; H_{1}, \ldots, H_{n}\right) \\
& +\left(\sum_{i=1}^{n} s_{p}\left(F, f^{-1}\left[H_{i}\right]\right) ; s_{p}\left(F, f^{-1}\left[H_{1}\right]\right), \ldots,\right. \\
& s_{p}\left(F ; f^{-1}\left[H_{n}\right]\right)
\end{aligned}
$$

We wish to use the best approximation possible to this formula in the nontoroidal case. To this end we need a function which will measure the extent to which a component fails to mimic the toroidal case, that is, to be determined by the blowings-up of normally crossing hyperplanes.

Definition 2.2: Let $f: X \rightarrow Y$ be a birational morphism, and let H_{1}, \ldots, H_{c} be divisors in Y. Let $H=H_{1}+\ldots+H_{c}$. Then the excess of a component F with respect to H_{1}, \ldots, H_{c} will be

$$
e x_{f}\left(F ; H_{1}, \ldots, H_{c}\right)=w_{f}(F)-s_{f}(F, H)=w_{f}(F)-\sum_{i=1}^{c} s_{f}\left(F, H_{i}\right)
$$

REmARK: In a toroidal scheme, if $c=\mathrm{n}$ and H_{1}, \ldots, H_{n} correspond to the coordinates of the torus, $\operatorname{ex}\left(F ; H_{1}, \ldots, H_{n}\right)=0$. For any morphism, if H_{1}, \ldots, H_{n} are irreducible and normally crossing, we have, by 2.1 of [9], that, for $c=n$

$$
e x_{f}\left(F ; H_{1}, \ldots, H_{c}\right) \geq 0,
$$

and the inequality will surely still hold if we take $c \leq n$ under the same conditions.

Lemma 2.3 (the additivity formula): Let $p: W \rightarrow X$ and $f: X \rightarrow Y$ be birational morphisms, with Y a scheme and let H be an irreducible hypersurface. Then if F is an irreducible component of $K_{f \circ p}$, and E_{1}, \ldots,
E_{r} are the components of K_{f}, all crossing normally, we have

$$
\begin{aligned}
& u_{f \circ p}(F ; H)=\sum_{j=1}^{r} s_{p}\left(F, E_{j}\right) u_{f}\left(E_{j} ; H\right)+\left(e x_{p}\left(F ; E_{1}, \ldots, E_{r}\right)\right. \\
&\left.s_{p}\left(F, f^{-1}[H]\right)\right) .
\end{aligned}
$$

Proof: We calculate the components of $u_{f}(F, H)$, for H an irreducible hypersurface. We calculate $w_{f}(F)$ and $s_{f}(F, H)$. Let $\nu(F, D)$ denote the multiplicity of a component F in a divisor D, and let $r_{i}=$ $w_{f}\left(E_{i}\right)-1=r_{f}\left(E_{i}\right)=\boldsymbol{\nu}\left(E_{i}, K_{f}\right)$

$$
\begin{aligned}
& w_{f}(F)=r_{f}(F)+1 \\
&=\boldsymbol{\nu}\left(F, K_{f \circ p}\right)+1 \\
&=\boldsymbol{\nu}\left(F, p^{*}\left(K_{f}\right)+K_{p}\right)+1 \\
&=\boldsymbol{\nu}\left(F, p^{*}\left(\sum_{i=1}^{r} r_{i} E_{i}\right)\right)+\boldsymbol{\nu}\left(F, K_{p}\right)+1 \\
&=\sum_{i=1}^{r} r_{i} \boldsymbol{\nu}\left(F, p^{*}\left(E_{i}\right)\right)+r_{p}(F)+1 \\
&=\sum_{i=1}^{r} r_{i} s_{p}\left(F, E_{i}\right)+w_{p}(F) \\
&=\sum_{i=1}^{r} w_{f}\left(E_{i}\right) s_{p}\left(F, E_{i}\right)+\left(w_{p}(F)-\sum_{i=1}^{r} s_{p}\left(F, E_{i}\right)\right) \\
&=\sum_{i=1}^{r} s_{p}\left(F, E_{i}\right) w_{f}\left(E_{i}\right)+e x_{p}\left(F ; E_{1}, \ldots, E_{r}\right) \\
& s_{f \circ p}(F ; H)=\boldsymbol{\nu}\left(F,(f \circ p)^{*}(H)\right) \\
& \quad=\boldsymbol{\nu}\left(F, p^{*}\left(\sum_{i=1}^{r} s_{f}\left(E_{i}, H\right) E_{i}+f^{-1}[H]\right)\right) \\
&=\left(\sum_{i=1}^{r} s_{p}\left(F, E_{i}\right) s_{f}\left(E_{i}, H\right)\right)+s_{p}\left(F, f^{-1}[H]\right)
\end{aligned}
$$

REMARK: We may note from the formula given in the toroidal example, that in the toroidal case $e x_{p}\left(F ; E_{1}, \ldots, E_{r}\right)$ measures the contribution to F of the liftings $f^{-1}\left[H_{i}\right]$ of coordinate hyperplanes. We will analyze this excess more carefully in lemmas 2.4 and 2.8 .

Lemma 2.4: If $p: W \rightarrow X, f: X \rightarrow Y$ are birational morphisms, such that K_{f} has normal crossings, k^{\prime} is the codimension of $p(F), k$ is the number of components of K_{f} containing $p(F)$, and H is an irreducible hyper. surface, then

$$
e x_{p}\left(F ; E_{1}, \ldots, E_{r}\right) \geq k^{\prime}-k
$$

If p is a blowing up with center $p(F)$, equality holds and the additivity formula becomes

$$
u_{f \circ p}(F ; H)=\sum_{p(F) \subset E_{i}} u_{f}\left(E_{i}, H\right)+\left(k^{\prime}-k, s_{p}\left(F, f^{-1}[H]\right)\right)
$$

Proof: Let the E_{i} be so numbered that E_{1}, \ldots, E_{k} are the components of K_{f} containing $p(F)$. Localizing we can assume that $p(F)$ is smooth, without affecting the quantities we are calculating. We can thus add hypersurfaces $E_{1}^{\prime}, \ldots, E_{k^{\prime}-k}^{\prime}$ crossing normally with E_{1}, \ldots, E_{k} such that the intersection of all k^{\prime} hypersurfaces is $p(F)$.

$$
\begin{aligned}
0 & \leq e x_{p}\left(F ; E_{1}, \ldots, E_{k}, E_{1}^{\prime}, \ldots, E_{k^{\prime}-k}^{\prime}\right) \\
& =w_{p}(F)-\sum_{i=1}^{k} s_{p}\left(F, E_{i}\right)-\sum_{i=1}^{k^{\prime}-k} s_{p}\left(F, E_{i}^{\prime}\right) \\
& =e x_{p}\left(F ; E_{1}, \ldots, E_{k}\right)-\sum_{i=1}^{k^{\prime}-k} s_{p}\left(F, E_{i}^{\prime}\right)
\end{aligned}
$$

We have $s_{p}\left(F, E_{i}^{\prime}\right) \geq 1$ for each i, and furthermore, we have equalities when p is a blowing up. Since $s_{p}\left(F, E_{i}\right)=0$ for $i>k, e x_{p}\left(F ; E_{1}, \ldots, E_{r}\right)=$ $e x_{p}\left(F ; E_{1}, \ldots, E_{k}\right) \geq k^{\prime}-k$.

We now generalize a case of lemma 1.1 of [9] for quasiblowings-up, in preparation for an investigation of the properties of quasi-factorization sequences.

Lemma 2.5: Let $f: X \rightarrow Y$ be a proper birational morphism, and let $h: Y_{1} \rightarrow Y$ be a quasi-blowing-up dominated by f, i.e. such that every accessible component is generically isomorphic to a component of K_{f}. Let y_{1} be an accessible point of M_{1}, and let Γ_{1} be a test curve transversal to M_{1} at y_{1}. Let x be the closure point in X. It there is a hypersurface H containing the center B of h, such that

$$
\sum_{x \in D_{i}} s_{f}\left(D_{i}, H\right) \geq \operatorname{deg}\left(h\left(\Gamma_{1}\right) \cdot H\right)=1,
$$

then x belongs to a unique component D_{i} of $f^{-1}(H), s_{f}\left(D_{i}, H\right)=1$, and f_{1} : $X \rightarrow Y_{1}$ is well-defined at x if and only if after base extension by the Henselization of Y at $f(x), f\left(\widetilde{D}_{i}\right)$ is contained in the local center \bar{B} of h.

Proof: Since $H \supset B, I_{H} \subset I_{B}$, so $f^{-1}\left(I_{H}\right) O_{X, x}$. Let $\Gamma=f^{-1}\left[h\left(\Gamma_{1}\right)\right]$. Letting $s_{i}=s_{f}\left(D_{i}, H\right)$, and letting t_{i} be a local equation for D_{i} at x, we have

$$
f^{-1}\left(I_{H}\right) O_{X, x}=\left(\Pi_{t i}^{\left.s_{i}^{s}\right)}\right)_{X, x},
$$

for some ideal $J_{X, x}$. Since $\operatorname{deg}\left(\Gamma \cdot D_{i}\right) \geq 1$ for each i, we have

$$
\Gamma \cdot f^{*}(H)=\sum_{x \in D_{i}} s_{i}\left(\Gamma \cdot D_{i}\right) \geq\left(\sum_{x \in D_{i}} s_{i}\right) x
$$

By the projection formula, since f is proper, $\operatorname{deg} \Gamma \cdot f^{*}(H)=\operatorname{deg} f_{*}(\Gamma \cdot$ $H=\operatorname{deg} h_{*}\left(\Gamma_{1}\right) \cdot H=1$. Thus $1 \leq \Sigma s_{i} \leq 1$, whence all the s_{i} are 0 except for
one $s_{i}=1$. Thus

$$
f^{-1}\left(I_{H}\right) O_{X, x}=t_{i} J_{X, x} .
$$

Since $1=\operatorname{deg} \Gamma \cdot f^{*}(H)$ is the order of the ideal induced by $f^{-1}\left(I_{H}\right) O_{X, x}$ in O_{Γ}, we conclude that Γ intersects B_{i} transversally at x and that $J_{X, x}$ is trivial.

We will indicate by " \sim " base extension by the Henselization of Y at $f(x)$. It $\tilde{f}\left(\widetilde{D}_{i}\right) \subset \bar{B}$, where \bar{B} is the local center of the quasiblowing-up h, then we have

$$
\left(\tilde{t}_{i}\right) O_{\tilde{X}, \tilde{x}}=\tilde{f}^{-1}\left(I_{\tilde{H}}\right) O_{\tilde{X}, \tilde{x}} \subset f^{-1}\left(I_{\tilde{B}}\right) O_{\tilde{X}, \tilde{x}} \subset\left(\tilde{t}_{i}\right) O_{\tilde{X}, \tilde{x}}
$$

All the inclusions are then equalities, and since \tilde{x} is a closure point for \tilde{y}_{1}, we conclude from Lemma 1.12 that $\tilde{f}_{1}: \widetilde{X} \rightarrow->\widetilde{Y}_{1}$ is well-defined at \tilde{x}.

Suppose, on the other hand, that $\tilde{f}\left(\widetilde{D}_{1}\right) \nsubseteq \bar{B}$. Since \widetilde{D}_{i} is the only component of K_{f} contained in $\tilde{f}^{-1}(H)$ which passes through \tilde{x}, we conclude that $\tilde{f}^{-1}(B)$ is of codimension greater than one at \tilde{X}. Since $x \in$ $\tilde{f}^{-1}(\bar{B})$, it is non-empty. Thus $\tilde{f}^{-1}\left(I_{\bar{B}}\right) O_{\tilde{X}, \tilde{x}}$ cannot be invertible, and we conclude that $\tilde{f}_{1}: \widetilde{X} \rightarrow \widetilde{\mathrm{Y}}_{1}$ is not well-defined at x, by applying lemma 1.12 again.

Lemma 2.6: Let Y_{0}, \ldots, Y_{k} be a quasi-factorization sequence of three-folds suppose $y_{k} \in Y_{k}$ is an accessible point. Suppose there is a hypersurface H in Y_{0} such that $\sum_{\left.y_{k} \in M_{\psi}\right)^{\prime}} s_{h_{k}}\left(M_{j}^{(k)}, H\right)=1$. Then for any transversal test curve Γ_{k}, with closure point x on a curve Γ in X, either $f_{k}: X \rightarrow Y_{k}$ is well defined at x, or, if $j<k$ is the largest index for which f_{1} is well defined at x, we have (*) After base extension by the Henselization \widetilde{Y}_{j} of Y_{j} at y_{j}, \tilde{x} is contained in a component \widetilde{D}_{i} such that $\tilde{f}_{j}\left(\widetilde{D}_{i}\right)$ is not contained in the local center of \tilde{b}_{j} at \tilde{y}_{j}, but \tilde{y}_{j} is contained in the local center.

Proof: We proceed by induction, showing that if (*) does not hold, then f_{j} is welldefined at x implies that f_{j+1} is well defined at x. We let $\Gamma_{j}=h_{k j}\left(\Gamma_{k}\right)$. Each $h_{k j}$ is proper, and thus by the projection formula

$$
\begin{aligned}
\operatorname{deg} \Gamma_{0} \cdot H=\operatorname{deg} \Gamma_{j} \cdot h_{j}^{*}\left(H_{0}\right) & =\operatorname{deg} \Gamma_{k} \cdot h_{k}^{*}\left(H_{0}\right) \\
& =\operatorname{deg} \sum_{S_{k}}\left(M_{j}^{(k)}, H_{0}\right) \cdot\left(\Gamma \cdot M_{j}^{(k)}\right) \\
& =\sum_{y_{k} \in M^{(k)}} s_{h_{k}}\left(M_{j}^{(k)}, H_{0}\right) \\
& =1
\end{aligned}
$$

We conclude that each y_{j} is contained in a unique $M_{i}^{(i)}$ for which $S_{h_{j}}\left(M_{i}^{(i)}, C\right)=1$. If (*) does not hold, either y_{j} is not contained in the cen-
ter of b_{j}, in which case $f_{j+1}=b_{j}^{-1} \circ f_{j}$ at x, or else y_{j+1} is contained in M_{j+1}, and we can apply lemma 2.5 with $H_{j}=M_{i}^{()}$as the hypersurface satisfying $\operatorname{deg} \Gamma_{j} \cdot H_{j}=1$. Since $\operatorname{deg} \Gamma \cdot f_{j}^{*}\left(H_{j}\right)=1$, we see that x is contained in some component D_{i} with $s_{f_{j}}\left(D_{i}, H_{j}\right) \geq 1$. We conclude that f_{j+1} is well-defined at x, by lemma 2.5 .

We wish to use this lemma in the specific case in which we are analyzing the pinch locus of a morphism $f: X \rightarrow Y$.

Lemma 2.7: Let $Y_{0}, Y_{1}, \ldots, Y_{k}$ be a quasifactorization sequence dominated by a proper birational morphism $f: X \rightarrow Y$, such that Y_{1} is the blowing-up of a point $y_{0} \in Y_{0}$, and each center B_{j} of b_{j+1} satisfies dim $h_{j 1}$ $\left(B_{j}\right)=1$. For each $j<k$, let \hat{C}_{k} be the finite set of singular points of the locus on which f_{j}^{-1} is not well-defined. Let $\hat{C}=\hat{C}_{1} \cup h_{21}\left(\hat{C}_{2}\right) \ldots \cup h_{k-11}\left(\hat{C}_{k-1}\right)$. Let y_{k} be any singleton accessible point of Y_{k} such that its unique accessible component $M_{j^{(k)}}^{(k)}$ has order 1 in $h_{k}^{*}(H)$, for a generic H through y_{0}. Then, for $f_{k}: X \longrightarrow Y_{k}$, one of the following holds:
(1) f_{k}^{-1} is an isomorphism at y_{k} or
(2) there is a component D_{i} of K_{f} such that $D_{i} \supset f_{k}^{-1}\left[y_{k}\right]$ and D_{i} is generically isomorphic to the blowing up of $f_{k}\left[D_{i}\right]$, or
(3) for some $j<k, f_{j}^{-1}\left[y_{j}\right]$ lies in a D_{i} which does not map locally to the local center of $b_{j+1} . \quad\left(h_{k 1}\left(y_{k}\right) \in \hat{C}\right.$, in this case.)

Proof. Let Γ_{k} be a generic transversal test curve through y_{k}. Then $\Gamma_{k} \cdot h_{k}^{*}(H)=S_{h_{k}}\left(M_{j^{*}}^{(k)}, H\right) \Gamma \cdot M_{j^{j}}^{(k)}=1$. Let $x \in f^{-1}\left[y_{k}\right]$ be the closure point of Γ_{k} in X, with corresponding curve $\Gamma=f_{k}^{-1}\left[\Gamma_{k}\right]$. We first suppose that f_{k} is not well defined at x, and prove (3). By lemma 2.6, for some j, f_{j} is well defined at x, and $y_{j} \in B_{j}$, but after base extension \tilde{x} is contained in a unique component \widetilde{D}_{i}, and $\widetilde{f}_{i}\left(\widetilde{D}_{i}\right)$ is not contained in the local center. Since we thus have two different branches of the fundamental locus of f_{j} passing through y_{j}, we see that y_{j} is a singular point of the fundamental locus of f_{j}, and thus $y_{j} \in C_{j}$, proving that (3) holds.

Let us now assume that (3) does not hold, and show that either (1) or (2) then holds. From the previous paragraph, we can conclude that f_{k} is well-defined at x. Since Γ_{k} was generic, x must lie on $f^{-1}[y]$. Consider the possible dimensions of $f^{-1}[y]$. If it is zero dimensional, f_{k}^{-1} is an isomorphism at x, so (1) holds. If $f^{-1}[y]$ is a surface, then that surface is the desired D_{i} in (2), being generically isomorphic to the blowing up of y_{k}. If $f^{-1}[y]$ is a curve, then by the modified Danilov result, lemma $1.8, D_{i}$ is generically isomorphic to the quasi-blowing up of its image in Y_{k}, which contains y_{k}.

We now consider the case of p a quasifactorization, and try to ana-
lyze the terms $e x_{p}\left(F ; E_{1}, \ldots, E_{r}\right)$ and $s_{f}\left(F, f^{-1}[H]\right)$ appearing in the additivity formula. We assume that $p=a_{l} \circ \ldots \circ a_{1}$, with $a_{i}: X_{i} \rightarrow X_{i-1}$ a quasi-blowing-up, $S_{b_{i}}=A_{i}$. Over the generic point of A_{i} we assume that a_{i} is a blowing up with exceptional divisor N_{i} and we assume that the generic point of A_{i} is contained only in the liftings $N_{i^{\prime}}^{(i)}$ of earlier $N_{i^{\prime}}$.

Lemma 2.8: Let $p: W \rightarrow X$ be a quasifactorizable morphism with factors $a_{i}, i=1, \ldots, l$, let F be an accessible component of K_{p}, and let $f: X \rightarrow$ Y be a birational morphism. Let k_{i}^{\prime} be the codimension of A_{i-1}, let k_{i} be the number of exceptional components of $f_{(i-1) 0}=f \circ a_{1} \ldots \circ a_{i-1}$ containing the generic point of A_{i-1} and let d_{i} be the multiplicity of $f_{(i-1) 0}^{-1}[H]$ along A_{i-1}, which equals $s_{a_{i}}\left(N_{i}, f_{(i-1) 0}^{1}[H]\right)$. Then

$$
u_{f \circ p}(F, H)=\sum_{i=1}^{k_{0}} s_{p}\left(F, E_{i}\right) u_{f}\left(E_{i}, H\right)+\sum_{i=1}^{l} s_{g_{i i}}\left(F, N_{i}\right)\left(k_{i}^{\prime}-k_{i}, d_{i}\right)
$$

Proof: Since we may replace f by $f_{i 0}$, we can prove the theorem by induction on l, assuming it is true for $l-1$. We therefore assume that the theorem is known to be true for $g_{l 1}: W \rightarrow X_{1}$, and $f_{10}: X_{1} \rightarrow Y$. We want to show it for $p: W \rightarrow X, f: X \rightarrow Y$. By lemma 2.4 the additivity formula for blowing up, we know that if the components are numbered so that E_{1}, \ldots, $E_{k_{1}}$ are the components of K_{f} containing A_{0}

$$
u_{f_{10}}\left(N_{1}, H\right)=\sum_{i=1}^{k_{1}} u_{f}\left(E_{i}, H\right)+\left(k_{1}^{\prime}-k_{1}, d_{1}\right)
$$

Letting $E_{i}^{(1)}$ be the lifting of E_{i} to X_{1},

$$
s_{g_{l_{0}}}\left(F, E_{i}\right)=s_{g_{11}}\left(F, E_{i}^{(1)}\right)+s_{g_{11}}\left(F, N_{1}\right),
$$

since $E_{i}^{(1)}$ and N_{1} are the only components of $K_{b_{1}}$, whose image is in E_{i}. Finally $u_{f{ }_{10}}\left(E_{i}^{(1)}, H\right)=u_{f}\left(E_{i}, H\right)$, since b_{1} is an isomorphism at the generic point of E_{i} for each i.

$$
\begin{aligned}
u_{p \circ f}(F, H) & =g_{g_{10} \circ f_{10}}(F, H) \\
& =\left\{\sum_{j=1}^{k_{1}} s_{g_{l 1}}\left(F, E_{j}^{(1)}\right) u_{f_{10}}\left(E_{j}^{(1)}, H\right)\right. \\
& \left.+s_{g_{1}}\left(F, N_{1}\right) u_{f_{10}}\left(N_{1}, H\right)\right\}+\sum_{i=2}^{l} s_{g_{i i}}\left(F, N_{i}\right)\left(k_{i}^{\prime}-k_{i}, d_{i}\right) \\
& =\sum_{j=1}^{k_{1}} s_{g_{l 1}}\left(F, E_{j}^{(1)}\right) u_{f_{10}}\left(E_{j}^{(1)}, H\right)+\left\{s _ { g _ { 1 } } (F , N _ { 1 }) \left(\sum_{j=1}^{k_{1}} u_{f}\left(E_{j}, H\right)\right.\right. \\
& \left.+s_{g_{l 1}}\left(F, N_{1}\right)\left(k_{1}^{\prime}-k_{1}, d_{1}\right)\right\}+\sum_{i=2}^{l} s_{g_{l i}}\left(F, N_{i}\right)\left(k_{i}^{\prime}-k_{i}, d_{i}\right) \\
& =\sum_{i=1}^{l} s_{g_{l 0}}\left(F, E_{i}\right) u_{f}\left(E_{i}, H\right)+\sum_{i=1}^{l} s_{g_{l i}}\left(F, N_{i}\right)\left(k_{i}^{\prime}-k_{i}, d_{i}\right)
\end{aligned}
$$

This combined additivity formula and the resulting " linear programming problem" which will be defined in the following lemma from the technical heart of the combinatorial analysis of the exceptional divisor. We therefore pause to give an illustrative example which should provide some orientation to both Lemmas 2.8 and 2.9 .

Example: Let $Y=A^{3}$, and let H_{1}, H_{2} and H_{3} be three transversally intersecting coordinate planes. Let $f: X \rightarrow Y$ be the composite of the five blowings-up p_{1}, \ldots, p_{5} with the following centers and compositions $p_{i j}=p_{j}{ }^{\circ}$... ${ }^{\circ} p_{i}$
(1) The line $H_{2} \cap H_{3}$, giving E_{1} in $X ; u_{f}\left(E_{1} ; H_{1} H_{2} H_{3}\right)=(2 ; 0,1,1)$
(2) The line $p_{52}\left(E_{1}\right) \cap p_{1}^{-1}\left[H_{3}\right]$, giving E_{2} in $X ; u_{f}\left(E_{2} ; H_{1} H_{2} H_{3}\right)=(3 ; 0,1,2)$
(3) The line $p_{53}\left(E_{1}\right) \cap p_{53}\left(E_{2}\right)$, giving E_{3} in $X ; u_{f}\left(E_{3} ; H_{1} H_{2} H_{3}\right)=(5 ; 0,2,3)$
(4) The line $p_{54}\left(E_{1}\right) \cap p_{31}^{-1}\left[H_{1}\right]$, giving E_{4} in $X ; u_{f}\left(E_{4} ; H_{1} H_{2} H_{3}\right)=(3 ; 1,1,1)$
(5) The line $p_{5}\left(E_{2}\right) \cap p_{41}^{-1}\left[H_{1}\right]$, giving E_{5} in $X ; u_{f}\left(E_{5} ; H_{1} H_{2} H_{3}\right)=(4 ; 1,1,2)$

Let $y \in Y$ be the origin and let $h_{1}: Y_{1} \rightarrow Y$ be the blowing-up of y. (See Fig. 4) where antipodal points of each tube are identified.)

Now suppose that we were given $f: X \rightarrow Y$ without being given its factorization. Let $h_{1}: Y_{1} \rightarrow X$ be the blowing-up of the origin, with exceptional divisor M_{1}. Let $h_{1}: X \rightarrow Y_{1}$ be the induced correspondence. This map is well-defined at every point of X except the irreducible curve $A_{0}=$ $E_{3} \cap H_{1}$, which is thus, by definition, the pinch locus $P_{y}(f)$. The question then is, how much information can we obtain about the irreducible component of K_{f} containing A_{0} by constructing quasi-factorization sequences on X and Y which form a bridge between A_{0} and its image ?

The image of each point of A_{0} is the irreducible curve $B_{1}=M_{1} \cap h_{1}^{-1}$ [H_{3}]. We construct a quasi-factorization sequence on the Y_{1}-side by blowing up B_{1} to get Y_{2} with exceptional divisor which is the sum of $M_{1}^{(2)}$ and M_{2}. Under the correspondence $f_{2}: X \longrightarrow Y_{2}$ the general points of A_{0} all correspond to the same curve $B_{2}=M_{1}^{(2)} \cap M_{2}$. The final blowing-up b_{3} with center B_{2} will produce an exceptional component M_{3} which is the image of A_{0} under $f_{3}: X \rightarrow->Y_{3}$.

Fig. 4

Now we build the quasi-factorization sequence over X by blowing up A_{0} to get a space X_{1} with exceptional divisor $N_{1} . u_{f_{10}}\left(N_{1} ; H_{1}, H_{2}, H_{3}\right)=$ ($6 ; 1,2,3$)

The image of M_{3} under the induced correspondence $f_{13}^{-1}: Y_{3} \longrightarrow->X_{1}$ is the curve $A_{1}=N_{1} \cap f_{10}^{-1}\left[H_{1}\right]$, where $f_{10}: X_{1} \rightarrow Y$. Finally, by blowing up A_{1}, we get a space X_{2} with exceptional divisor N_{2} generically isomorphic to M_{3}.

Having constructed the two quasi-factorization "towers" and the bridge between them, we now consider a generic hyperplane through y, and calculate the canonical pair $(w, s)=u_{f_{20}}\left(N_{2} ; H\right)$ from the two different quasi-factorization sequences, using the additivity formula in Lemma 2.8.

From the quasi-factorization sequence $Y=Y_{0}, Y_{1}, Y_{2}, Y_{3}$ we calculate the canonical pairs for the exceptional divisors M_{1}, M_{2}, M_{3} using the additivity formula. For the first blowing up b_{1}, the codimension k_{1}^{\prime} of the center $B_{0}=\{y\}$ is 3 ; there are no exceptional components, so $k_{1}=0$, and H is smooth at y, so $d_{1}=1$. Therefore

$$
u_{h_{1}}\left(M_{1}, H\right)=\left(k_{1}^{\prime}-k_{1}, d_{1}\right)=(3,1)
$$

For the second blowing up b_{2}, the codimension k_{2}^{\prime} of $B_{1}=M_{1} \cap b_{1}^{-1}[H]$ is 2, B_{1} is contained in M_{1}, so $k_{1}=1$, and $h_{1}^{-1}[H]$ does not contain B_{1}, so $d_{1}=0$. Therefore

$$
\begin{aligned}
u_{h_{2}}\left(M_{2}, H\right) & =u_{h_{1}}\left(M_{1}, H\right)+\left(k_{2}^{\prime}-k_{2}, d_{2}\right) \\
& =(3,1)+(1,0) \\
& =(4,1)
\end{aligned}
$$

For the third blowing-up, the center B_{2} is again a curve so $k_{3}^{\prime}=2$, the center is contained in two components, so $k_{3}=2$, and again $h_{2}^{-1}[H]$ does not contain B_{2}, so $d_{3}=0$. We conclude that

$$
\begin{aligned}
u_{n_{3}}\left(M_{3}, H\right) & =u_{h_{2}}\left(M_{2}, H\right)+u_{h_{2}}\left(M_{1}^{(2)}, H\right)+(0,0) \\
& =(4,1)+(3,1) \\
& =(7,2)
\end{aligned}
$$

We now give a preview for this numerical example of the results of the next lemma, 2.9. Suppose that we know only that some quasifactorization sequence $X_{0} \ldots X_{l}$ leads to a component N_{l} generically isomorphic to M_{3}, and therefore having canonical pair $(w, s)=(7,2)$. We are interested in determining as much information as possible about the canonical pairs $\left(w_{i}, s_{i}\right)$ of the components E_{1}, \ldots, E_{r} of k_{f} containing centers of the quasi-factorization sequence. Let us denote $S_{p}\left(M_{l}, E_{j}\right)$ by e_{j} and
$S_{p}\left(M_{l}, N_{i}\right)$ by c_{i}. Then the additivity formula in Lemma 2.8 becomes

$$
(w, s)=\sum_{i=1}^{k_{0}} e_{i}\left(w_{i}, s_{i}\right)+\sum_{i=1}^{l} c_{i}\left(k_{i}^{\prime}-k_{i}, d_{i}\right)
$$

Now we note that in dimension 3 , every center A_{i} had codimension k_{i}^{\prime} no greater than 2, and is contained in at least one exceptional divisor, so that $k_{i}^{\prime}-k_{i} \leq 1$. Furthermore, the pinch locus is chosen to lie in the strict preimage of H so $d_{i} \geq 1$.

Therefore, as will be deduced in the proof of lemma 2.9 below, we conclude that

$$
w-s \leq \sum_{i=1}^{k_{0}} e_{i}\left(w_{i}-s_{i}\right)
$$

On the other hand, since $d_{i} \geq 1$ for all i, we have

$$
s \geq \sum e_{i} s_{i}+l
$$

We now show how these inequalities can be used to analyse the image of M_{3} under f_{3}^{-1}. We have $(w, s)=(7,2)$, and since the image of M_{3} is in the pinch locus, at least one blowing-up is required to resolve it, so $l \geq 1$. We substitute in the second inequality to get

$$
2 \geq \sum e_{i} s_{i}+1,
$$

and conclude that $1 \geq \sum e_{i} s_{i}$. If $\sum e_{i} s_{i}=0$, then by the first inequality some $e_{i} \neq 0$, so some $s_{i}=0$. If $\sum e_{i} s_{i}=1$, and no $s_{i}=0$, then $k_{0}=1$, and we must have $5=w-s \leq w_{i}-s_{i}$, whence we conclude that $w_{i} \geq 6$. Since in fact $\sum e_{i} s_{i}=1$ would require $l=1$, and $d_{1}=1$, we can in fact conclude that the image of M_{3} either lies in a component E_{i} with $s_{i}=0$, or else lies in a single component with canonical pair $(6,1)$. For the particular map we gave at the beginning of this example the pinch locus lay in a component with canonical pair (5,0) ; as will be illustrated in the final section of this paper, assembling a little more information about the map will allow one to choose between alternative solutions to the equations.

We will now prove lemma 2.9 .
Lemma 2.9: Let $f: X \rightarrow Y_{0}$ be a proper birational morphism of n. dimensional spaces with normally crossing exceptional divisor and let X_{0}, \ldots, X_{l} with accessible components $N_{i} \subset X_{i}, i=1, \ldots, l$, be a quasifactorization sequence with $p=g_{l 0}: X_{l} \rightarrow X$. Let $(w, s)=u_{f \circ p}\left(N_{l}, H\right)$ for generic H through a point $y \in Y_{0}$, let E_{1}, \ldots, E_{r} be the components of K_{f}, and let (w_{i}, s_{i}) be the canonical y-pair $u_{f}\left(E_{i}, H\right)$. Let A_{i} be the center of the quasi-blowing-up a_{i+1}, and define

$$
\begin{aligned}
& k_{i}^{\prime}=\text { codim } A_{i-1} \\
& k_{i}=\text { number of components of } K_{\text {fog }} \\
& d_{i}=\text { multitiplicity of }\left(f \circ g_{(i-1) 0}\right)^{-1}[H] \text { alontaining } A_{i-1}
\end{aligned}
$$

Then there exist non-negative integers e_{1}, \ldots, e_{r} and c_{1}, \ldots, c_{l} such that

$$
\begin{align*}
& \text { (i) } w=\sum_{j=1}^{r} e_{j} w_{j}+\sum_{i=1}^{t} c_{i}\left(k_{i}^{\prime}-k_{i}\right) \tag{i}\\
& \text { (ii) } s=\sum_{j=1}^{r} e_{j} s_{j}+\sum_{i=1}^{l} c_{i} d_{i}
\end{align*}
$$

Suppose that each $A_{i}, i=0, \ldots, l-1$, is in the pinch locus $P_{y}\left(f_{i 0}\right)$ for $f_{i 0}=$ $f \circ g_{i 0}: X_{i} \rightarrow Y_{0}$. Then for any number c with $n \geq c \geq \max _{i}\left(k_{i}^{\prime}-k_{i}\right)$, and in particular for $c=n-1$,
(iii) $w-c s \leq \sum e_{j}\left(w_{j}-c s_{j}\right)$

Letting H_{1}, \ldots, H_{c} be a normally crossing generic set of hyperplanes containing y, this may be restated as

$$
\begin{aligned}
& \text { (iv) } \quad \text { exfop }\left(N_{l} ; H_{1}, \ldots, H_{c}\right) \leq \sum_{j=1}^{r} e_{j} e x_{f}\left(E_{i} ; H_{1}, \ldots, H_{c}\right) \\
& \\
& \text { If } d=\min _{i} d_{i}, \text { and } A_{i}=g_{l i}\left(N_{i}\right) \text { for } i=0, \ldots, l-1, \\
& \text { (v) } \\
& s \geq\left(\sum_{n=1}^{r} e_{j} s_{j}\right)+d l
\end{aligned}
$$

Proof: (i) and (ii) are simply restatements of lemma 2.8, with $e_{j}=s_{p}\left(N_{l}, E_{j}\right)$ and $c_{i}=s_{p}\left(N_{l}, N_{i}\right)$. For all $i, c \geq k_{i}^{\prime}-k_{i}$ and $d_{i} \geq 1$, we have

$$
\begin{aligned}
& w \leq \sum e_{i} w_{j}+c \sum c_{i} \\
& s \geq \sum e_{j} s_{j}+\sum c_{i} .
\end{aligned}
$$

Thus multiplying s by c and subtracting gives the desired inequality (iii). Since each of the H_{i} in (iv) is generic, $s_{f}\left(E_{j}, H_{i}\right)=s_{j}$, and thus $e x_{f}\left(E_{j}\right.$; $\left.H_{1}, \ldots, H_{c}\right)=w_{f}\left(E_{j}\right)-\sum s_{f}\left(E_{j} ; H_{i}\right)=w_{j}-c s_{j}$. Similarly $e x_{f \circ p}\left(N_{l} ; H_{1}, \ldots\right.$, $\left.H_{c}\right)=w-c s$. Finally, for (v) if each $A_{i-1}=g_{l i-1}\left(N_{l}\right)$, then $g_{l i}\left[N_{l}\right] \subset N_{i}$, so $c_{i}=s_{g l i_{i l}}\left(N_{l}, N_{i}\right) \geq 1$ for each i. Thus

$$
\sum_{i=1}^{l} c_{i} d_{i} \geq \sum_{i=1}^{l} d_{i} \geq \sum_{i=1}^{l} d=l \cdot d .
$$

Remark: These last two equations provide a linear programming problem for the values of the e_{j}, and thus provide restrictions on the components which can contain $p(F)$ if (w, s) is known.

Definition 2.10: Let the total excess of a point x of X be the sum of excesses of each of the components of K_{f} with respect to a generic coordinate system at $f(x)$.

$$
e x_{f}(x)=\sum_{x \in D_{i}} e x_{f}\left(D_{i}: H_{1}, \ldots, H_{n}\right)
$$

LEMMA 2.11: If x is a generic point of a curve component of the pinch locus of a morphism of 3-folds over a point obstruction y, then
(a) if x is a singleton point, $e x_{f}(x) \geq 3$
(b) if x is a double point $e x_{f}(x) \geq 4$.

Proof: Let A be the component of $P_{y}(f)$ of which x is a general point, and let $p: X_{1} \rightarrow X$ be a quasi-blowing-up of A, with exceptional divisor F_{1}. Then, if k components of K_{f} contain A,

$$
\begin{aligned}
& u_{f \circ p}\left(F_{1}\right)=\sum_{i=1}^{k} u_{f}\left(D_{i}\right)+(2-k, d), d \geq 1 \\
& (w, s)=\sum_{i=1}^{k}\left(w_{i}, s_{i}\right)+(2-k, d) \\
& 1 \leq w-3 s=\sum_{i=1}^{k} w_{i}-3 s_{i}+(2-3 d-k) \\
& \sum_{i=1}^{k} w_{1}-3 s_{i} \geq 3 d+k-1 \\
& \quad \geq 2+k
\end{aligned}
$$

Substituting $k=1,2$ gives the desired result.
REMARK: This lemma is an improvement on lemmas 2.2 and 2.3 of [9].

We conclude with a generalization of 1.3 of [9] to quasi-factorization sequences

Lemma 2.12: Let Y_{0}, \ldots, Y_{k} be a quasi-factorization sequence, let f : $X \rightarrow Y_{0}$ be a birational morphism and let y_{k} be an accessible point of Y_{k}. Let x be the closure point of a transversal test curve Γ_{k} through y_{k}. If for every accessible component M_{j}^{k} of Y_{k} containing y_{k} there is a generically isomorphic component D_{j} of K_{f} containing x, then $f_{k}: X \rightarrow Y_{k}$ is well defined at x. If these are the only components of K_{f} containing x, then f_{k} is an isomorphism at x.

Proof: As in lemma 1.3 of [9], if f_{k} can be shown to be welldefined, and we can show that these are the only components of K_{f} containing x, then because there are no components available which can collapse, we can conclude from Zariski's Main Theorem, that f_{k} is an isomorphism. We proceed inductively on $f_{0}, f_{1}, f_{2}, \ldots, f_{k}$ assuming f_{j} has been shown to be well defined at x. We localize at y_{j} so that the local center \bar{B}_{j} of the blowing up b_{j+1} is smooth. We let H_{j}, for $j=0, \ldots, k-1$, be a generic hypersurface containing \bar{B}_{j}, and we let y_{j} and Γ_{j} be the
images of y_{k}, Γ_{k} in Y_{j}. By the generic isomorphism $M_{i}^{(k)} \sim D_{i}$, we have $s_{f j}\left(D_{i}, H_{j}\right)=s_{h k j}\left(M_{i}^{(k)}, H_{j}\right)$. We will denote this number by $s_{i j}$. Let IC $\{1, \ldots, k\}$ be the subset of indices of accessible components containing y_{k}. Let Γ be $f_{k}^{-1}\left[\Gamma_{k}\right]$. We assume f_{j} well-defined for $j<k$, and prove that f_{j+1} is well-defined. f_{j} is proper, and thus by the projection formula

$$
\begin{aligned}
\operatorname{deg} \Gamma \cdot f_{j}^{*}\left(H_{j}\right)=\operatorname{deg} \Gamma_{j} \cdot H_{j} & =\operatorname{deg} \Gamma_{k} \bullet h_{k j}^{*}\left(H_{j}\right) \\
& =\sum_{i \in 1} \Gamma_{k} \cdot S_{h_{k j}}\left(M_{i}^{(k)}, H_{j}\right) M_{i}^{(k)}+\Gamma_{k} \cdot h_{k j}^{-1}\left[H_{j}\right]
\end{aligned}
$$

Since our H_{j} was generic, and $h_{j k}$ is a composition of blowings up, we may assume that $h_{k j}^{-1}\left[H_{j}\right]$ does not contain y_{k}. Furthermore deg Γ_{k}. $M_{i}^{(k)}=1$. Thus deg $\Gamma \cdot f^{*}\left(H_{j}\right)=\sum_{i \in 1} s_{i j}$. Since $\Gamma \cdot f^{*}\left(H_{j}\right)=\Gamma \cdot \sum_{x \in D_{i}} s_{f_{j}}\left(D_{i}, H_{j}\right)$ $D_{i}+f_{j}^{-1}\left[H_{j}\right]$, and $\operatorname{deg} \Gamma \cdot s_{i j} D_{i} \geq s_{i j}$, for $i \in \mathrm{I}$, we conclude that $\Delta \cdot f_{j}^{-1}\left[H_{j}\right]=$ $0, \Gamma \cdot D_{i}=1$ for $i \in \mathrm{I}$, and $s_{f_{j}}\left(D_{i}, H_{j}\right)=0$ if $x \in D_{i}$ but $i \notin \mathrm{I}$. Since $x \notin f_{j}^{-1}\left[H_{j}\right]$ for a generic hypersurface H_{j} containing the local center, we see that f_{j+1} is well defined at x.

§ 3 Four components collapsing to a point.

Let $f: X \rightarrow Y$ be a proper birational morphism collapsing four normally crossing surfaces to a point. We will show, in this section and the next, that with one exception such a morphism is locally factorizable. In order for f to be locally factorizable, it would have to factor through the blowing up of the point. The problem thus splits immediately into two parts. In this section we will show that if it does not factor through the blowing up of the point, then it is Oda's [6] example of a point obstruction, given in $\S 1$ after lemma 1.6. In §4, we will show that if it does factor through the blowing up, then the resulting morphism, collapsing three surfaces, is locally factorizable.

Proposition 1: If $f: X \rightarrow Y$ is a proper birational morphism of smooth algebraic spaces of dimension 3 collapsing four surfaces to a point y_{0}, and f does not factor through the blowing up of y_{0}, then the surfaces have canonical pairs $(3,1),(4,1),(5,1)$ and $(6,1)$, and after blowing up one smooth curve A_{0} in the $(6,1)$ component, the resulting morphism is directly factorizable.

Proof: In order to analyze K_{f}, we first build a bridge between X and Y_{1}, the blowing up of the point y_{0}. We may assume that Y is a scheme.

Lemma 3.1: Let $f: X \rightarrow Y$ be a proper birational morphism of 3. folds. Suppose Y_{1} is obtained by blowing-up a point $y \in S_{f}$ for which
$f^{-1}[y]$ is a surface. If f_{1} is not well-defined, then there is a curve $B_{1} \subset M_{1}$, and factorization sequences Y, Y_{1}, \ldots, Y_{k}, and X, X_{1}, \ldots, X_{l}, with accessible components M_{j} and N_{i} as in Fig. 3, such that for generic H through y,
(i) M_{k} is generically isomorphic to $N_{l}, B_{j} \subset M_{j}$, and $h_{j 1}\left[B_{j}\right]=B_{1}$.
(ii) $f_{j}^{-1}\left[M_{j}\right]$ is a surface for $j<k$.
(iii) $g_{i i^{\prime}}\left(N_{i}\right) \subset f_{i 0}^{-1}[H]$ for $i^{\prime}<l$.

Proof: (i) Let G_{01} be a desingularization of the graph of the correspondence $f_{1}: X \rightarrow Y_{1}$. Let $F \subset G_{01}$ be a surface of minimal weight collapsing to a curve B_{1} in M_{1}, such that its image in X is contained in $f^{-1}[H]$. Such a surface exists by lemma 1.10 above.

Let $q_{1}: G_{01} \rightarrow Y_{1}$ be the projection from the graph, with $B_{1}=q_{1}(F)$. By Lemma 1.14, we can construct a quasi-blowing up $b_{2}: Y_{2} \rightarrow Y_{1}$ with center B_{1} and accessible component M_{2} generically isomorphic to the blowing-up of B_{1}. Let $q_{2}: G_{01} \longrightarrow-Y_{2}$ be the induced birational correspondence, and let $B_{2}=q_{2}[F]$. Since q_{2}, being birational, is well-defined on points of codimension 1 , we have $b_{2} \circ q_{2}[F]=q_{1}(F)=B_{1}$, whence $b_{2}\left(B_{2}\right)=B_{1} . B_{2}$, being the strict image of an irreducible divisor, is irreducible. Since, over the generic point of $B_{1}, b_{2}^{-1}\left(B_{1}\right)$ is contained in M_{2}, we conclude that $B_{2} \subset$ M_{2}.

Let us now suppose that we have constructed steps $Y_{0}, Y_{1}, \ldots, Y_{j}$ in a factorization sequence, such that $q_{j^{\prime}}: G_{01} \longrightarrow Y_{j^{\prime}}$ is the induced birational correspondence, and when $j^{\prime}<j, q_{j^{\prime}}[F]=B_{j^{\prime}}$ is the center of the following quasi-blowing-up $b_{j^{\prime}+1}$. As in the diagram in Fig. 3, we let $h_{i j}: Y_{i} \rightarrow Y_{j}$ denote the composition of quasi-blowing-up and let $h_{j}=h_{j 0}$. If $q_{j}[F]$ is not a surface, we define $B_{j}=q_{j}[F]$, and apply lemma 1.14 to construct a quasi-blowing-up $b_{j+1}: Y_{j+1} \rightarrow Y_{j}$ with center B_{j}. As in the case $j=2$ above, we find that $b_{j} \circ q_{j}[F]=q_{j-1}[F]=B_{j-1}$ implies that $B_{j} \subset M_{j}$, since M_{j} is generically isomorphic to the blowing-up of B_{j-1}. Similarly, since $h_{j 1}{ }^{\circ} q_{j}[F]=q_{1}[F]=B_{1}$, we find that $h_{j 1}\left(B_{j}\right)=B_{1}$. If d is the degree of B_{1}, then for any generic hyperplane $H, h_{j+1}^{-1}[H]$ intersects M_{j+1} transversally along $m d$ contractible curves, where m is the degree of B_{j} over B_{1}. We need to show that after a finite number of such steps $q_{k}[F]$ is the surface M_{k}, and thus M_{k} is generically isomorphic to F. We surely have the weight $w_{h_{j}}\left(M_{j}\right)$ bounded above by the weight $w_{q_{0}}(F)$, by lemma 2.3, since q_{0} is equivalent to $h_{j} \circ q_{j}$, and $q_{j}(F) \subset M_{k}$. However, by lemma 2.4, since $B_{j^{\prime}} \subset M_{j^{\prime}}$ for each $i^{\prime}<k$, we find that the sequence $w_{h_{j}}\left(M_{j}\right)$ is strictly increasing. We conclude that for some $k, w_{h_{k}}\left(M_{k}\right)=w_{q_{0}}(F)$. From lemma 2.3 we see that M_{k} is the only component of $K_{h_{j}}$ containing $q_{k}(F)$,
with excess 0 , and from lemma 2.4 we then conclude that the codimension of $q_{k}(F)=1$, i.e. that F is generically isomorphic to M_{k}.

To complete the proof of (i) we construct a quasi-factorization sequence $X=X_{0}, X_{1}, X_{2}, \ldots, X_{l}$, with accessible components N_{i}, and centers $A_{i} \subset N_{i}$ which are the projections of F to X_{i}. The details and the proof of finiteness proceed as in the construction of the Y_{j} sequence, the only difference being that A_{0}, A_{1}, \ldots can be points. This can occur only when the image of F in the non-desingularized graph of f_{1} is a singular curve, projecting to A_{0} in X and to B_{1} in Y_{1}. However, once one of the A_{i} is a curve, all subsequent $A_{i^{\prime}}$ will also be curves.

We continue the sequence X_{0}, \ldots, X_{l} until N_{l} is generically isomorphic to F, and thus to M_{k}. This completes the proof of (i).
(ii): Let j be the lowest number for which $f_{j+1}^{-1}\left[M_{j+1}\right]$ is not a surface. We want to use the minimality of the weight of F to show that $j=k-1$. Since $q_{i}[F] \subsetneq M_{i}$, for $i<k$ and thus the weight $w_{q_{0}}(F)>w_{h_{i}}\left(M_{i}\right)$, it will suffice to find a surface F^{\prime} in the desingularized graph G_{01} such that F^{\prime} is generically isomorphic to M_{j+1} and the image of F^{\prime} in X is contained in $f^{-1}[H]$.

Let \bar{Y}_{1} be the localization of the scheme Y_{1} along B_{1} in the Zariski topology on Y_{1}. Using base extension by \bar{Y}_{1}, we get a morphism of surfaces $\bar{q}_{1}: G_{01} \times \bar{Y}_{1} \rightarrow \bar{Y}_{1}$. Let $\bar{W}=G_{01} \times \bar{Y}_{1}$ and let \bar{F} be the curve induced by F in \bar{W}.

By the Zariski factorization theorem for surfaces, \bar{q}_{1} must factor into a sequence of blowings up of points, and at each step we may choose an arbitrary point of the fundamental locus as the center of the blowing up. If we consistently choose the image of \bar{F} as our center, then we construct a sequence of spaces \bar{Y}_{j} with $\begin{array}{r}\bar{Y}_{j} \leadsto Y_{j} \times \bar{Y}_{1} \text {. These will actually all be } \\ Y_{1}\end{array}$ schemes, since the special points at which etale neighborhoods were needed will drop out in the process of localizing along B_{1}. The centers of the blowings-up will be $\bar{B}_{j} \leftrightarrows B_{j} \times \bar{Y}_{1} \bar{Y}_{1}$, and each $\bar{M}_{j} \xrightarrow{\leftrightarrows} M_{j} \times \bar{Y}_{1}$ will be generically isomorphic to a curve F_{j} in the exceptional divisor of \bar{q}_{1}. Thus if F^{\prime} is the surface in G_{01} which induces $\bar{F}_{j+1}, F^{\prime}$ is generically isomorphic to M_{j+1}. Let $p: G_{01} \rightarrow X$ be the projection of the graph onto X. If we can show that $p\left(F^{\prime}\right) \subset f^{-1}[H]$, then we can conclude that $F=F^{\prime}$ and $j+1=k$.

Let $C=p\left(F^{\prime}\right)$, and suppose $C \llbracket f^{-1}[H]$ for a generic hyperplane H. If so, $f_{1}: X \rightarrow->Y_{1}$ is well defined at the generic point of C, and thus X is isomorphic to G_{01} almost everywhere along C. This would imply that C is a surface generically isomorphic to F^{\prime} and thus to M_{j+1}, contradicting
the assumption that $f_{j+1}^{-1}\left[M_{j+1}\right]$ is not a surface. We conclude, as desired, that $j+1=k$, and thus that for each $j<k, M_{j}$ is generically isomorphic to a surface D_{j} in K_{f}, completing the proof of (ii).
(iii) : We want to show that if $g_{i i^{\prime}}: X_{i} \rightarrow X_{i}^{\prime}$, with $i>i^{\prime}$ is a composition of blowings-up from the factorization sequence, then $g_{i i^{\prime}}\left(N_{i}\right)$ lies in the pinch locus $f{ }_{i=1}^{-1}[H]$ of $f_{i 0}$. We first reduce to the case $i=l$ by noting that $g_{i(i-1)}\left(N_{i}\right)=A_{i-1}=g_{l i-1)}\left(N_{l}\right)$, since N_{l} is generically isomorphic to F, and A_{i-1} is the image of F.

We now reduce further to the case $i^{\prime}=l-1$, by noting that $f_{i^{\prime} 0}^{-1}[H]=$ $g_{(l-1) i^{i}}\left(f_{(l-1) 0}^{-1}[H]\right)$. It thus suffices to prove that $g_{u l-1)}(N) \subset f_{(l-1) 0}^{1}[H]$. Assuming this is not the case, we will show that N_{l-1} is generically isomorphic to M_{k-1} and derive a contradiction.

By our assumption, the surfaces $f_{(l-1) 0}^{1}[H]$ do not entirely contain $A_{l-1}=g_{l-1}\left[N_{l}\right]$, However, they must intersect A_{l-1} at some point, since $f_{i 0}{ }^{1}$ [H] intersects N_{l} at a general point. We conclude that A_{l-1} is a curve, and intersects $f_{(\bar{l}-1) 0}[H]$ in isolated points. Furthermore, $\mathrm{f}_{\mathrm{to}^{1}}[H]$ is obtained from $f_{(l-1) 0}^{1}[H]$ by blowing up these points, with exceptional curves $C_{i} . f_{l k}$ gives an isomorphism at the generic point of each C_{i}, mapping it to some component C_{i}^{\prime} of $M_{k} \cap h_{k}^{-1}[H]$. As described in the definition of the factorization sequence in (i) above, $h_{k}^{-1}[H]$ is smooth and transversal to M_{k} along C_{i}^{\prime}. We conclude that $f_{i 0}^{-1}[H]$ is smooth and transversal to N_{l} along C_{i}, whence $f_{(l-1) 0}^{1}[H]$ is smooth and transversal to A_{l-1} at each intersection point $p_{i} . \quad C_{i}$ is thus a contractable curve with self intersection -1 , isomorphic to C_{i}^{\prime}, another contractable curve with self intersection -1 . The complete image of p_{i} under the induced correspondence $f_{(l-1)(k-1)}$ is thus $p_{i}^{\prime}=h_{k(k-1)}\left(C_{i}^{\prime}\right)$, a single point, so $f_{(l-1)(k-1)}$ is well-defined at p_{i}. This induces, locally, a morphism from $f_{(l-1) 0}^{1-1}[H]$ to $h_{k-1}^{-1}[H]$ which is a birational morphism of surfaces.
p_{i} lies in $f_{(l-1) 0}^{1}[H] \cap N_{l-1}$ and at most one other component of $f_{(l-1) 0}^{1}[H] \cap \operatorname{supp}\left(K_{f}\right)$. If either of these components collapses to a point under the morphism of surfaces then the total multiplicity (in the surface canonical class) of components containing p_{i} will be higher than the total multiplicity of components containing p_{i}^{\prime}, whence C_{i} would not generically be isomorphic to C_{i}^{\prime}. Thus we must have a local isomorphism of surfaces. We conclude that N_{l-1} cannot collapse under $f_{(l-1)(k-1)}$. Since it is the highest weight component of $K_{f(l-1) 0}$ containing p_{i}, it must be isomorphic to the highest weight component of $K_{h_{k}}$ containing p_{i}^{\prime}, which is M_{k-1}. However, M_{k-1} is generically isomorphic to a component of D_{k-1} of K_{f}, while $g_{(l-1) 0}\left(N_{l-1}\right) \subset A_{0}$, of codimension at least 2. Contradiction.

REMARK: $\quad M_{1}$ is isomorphic to a projective plane, so B_{1} is a projec-
tive curve and therefore has a degree. If B_{1} is a curve of degree d^{\prime}, then $h_{1}^{-1}[H]$ intersects B_{1} in d^{\prime} points, and thus $h_{k}^{-1}[H]$ will intersect M_{k} in d^{\prime} fibers, each of which maps onto A_{0} in X. We conclude that $f^{-1}[H]$ has at least d^{\prime} branches along A_{0}. The degree of B_{1} is thus bounded by the multiplicity of $f^{-1}[H]$ along A_{0}. In fact, it is bounded by all the multiplicities d_{i} of $f_{i 0}^{-1}[H]$ along A_{i}.

To continue the proof of Prop. 1, we now divide into cases.
Let $(w, s)=u_{h_{k}}\left(M_{k}, H\right)$ and let $\left(w_{i}, s_{i}\right)=u_{f}\left(D_{i}, H\right)$ for all components D_{1}, \ldots, D_{4} of K_{f}. Note that $k \leq 5$, since K_{f} has at most four components. If $B_{j} \subset M_{j} \cap M_{j^{j}}^{(j)}$, then by lemma 2.4,

$$
u_{h_{j+1}}\left(M_{j+1}, H\right)=\left(w_{j}, s_{j}\right)+\left(w_{j^{\prime}}, s_{j^{\prime}}\right)
$$

If B_{j} is not contained in an intersection, then by the same lemma

$$
u_{h_{j+1}}\left(M_{j+1}, H\right)=\left(w_{j}, s_{j}\right)+(1,0) .
$$

We note in particular that these conditions limit the possible increments in the sequence $\bar{s}=\left(s_{1}, \ldots s_{k-1}, s\right)$. For any j, if $s_{j+1} \neq s_{j}$, then $s_{j+1}=s_{j}+s_{j^{\prime}}$ where $s_{j}=s_{j-1}+s_{j^{\prime}}$ or $j^{\prime}=j-1$. We now divide into cases according to the various sequences s which can be built up this way, starting with $s_{1}=s_{2}=1$. Since s_{f} is a point, each $s_{i} \geq 1$, and thus since $s_{g_{l}}\left(N_{l}, f^{-1}[H]\right) \geq 1$, we have, from Lemma 2.3 applied to $f \circ g_{l}$, that $\mathrm{s} \geq 2$.

We consider four vectors :

$$
\begin{aligned}
& \bar{s}=\left(s_{1}, \ldots, s_{k-1}, s\right) \\
& \bar{w}=\left(w_{1}, \ldots, w_{k-1}, s\right) \\
& \overline{e_{2}}=\bar{w}-2 \bar{s} \\
& \overline{e_{3}}=\bar{w}-3 \bar{s}
\end{aligned}
$$

Lemmas 2.9 and 2.11 give a number of restrictions on these vectors. We now divide the problem into cases. We will discover that the smaller k is, the fewer cases there are and the harder they are to deal with.
$k=5$: We want to eliminate all cases with $k=5$. Our main tool will be lemma 2.11, saying that a component of the pinch locus must be in a single surface of excess ≥ 3, or an intersection of excess ≥ 4. We generate the vector \bar{e}_{3} of excesses.

$$
\begin{aligned}
& 1 \bar{s}=(1,1,1,1,2), \bar{w}=(3,4,5,6,11), \quad \overline{e_{3}}=(0,1,2,3,5) \\
& 2 \quad \bar{s}=(1,1,1,2,2), \bar{w}=(3,4,5,9,10), \quad \bar{e}_{3}=(0,1,2,3,4) \\
& 3 \bar{s}=(1,1,1,2,3), \bar{w}=(3,4,5,9,13), \quad \bar{e}_{3}=(0,1,2,3,4) \\
& 4 \quad \bar{w}=(3,4,5,9,14), \quad \bar{e}_{3}=(0,1,2,3,5) \\
& 5 \quad \bar{s}=(1,1,2,2,2), \bar{w}=(3,4,7,8,9), \quad \bar{e}_{3}=(0,1,1,2,3) \\
& 6 \quad \bar{s}=(1,1,2,2,4), \bar{w}=(3,4,7,8,15), \quad \bar{e}_{3}=(0,1,1,2,3) \\
& 7 \quad \bar{s}=(1,1,2,3,3), \bar{w}=(3,4,7,10,11), \bar{e}_{3}=(0,1,1,1,2)
\end{aligned}
$$

8	$\bar{s}=(1,1,2,3,3), \bar{w}=(3,4,7,11,12)$,	$\overline{e_{3}}=(0,1,1,2,3)$
9	$\bar{s}=(1,1,2,3,4), \bar{w}=(3,4,7,10,13)$,	$\overline{e_{3}}=(0,1,1,1,1)$
10	$\bar{s}=(1,1,2,3,4), \bar{w}=(3,4,7,11,15)$,	$\overline{e_{3}}=(0,1,1,2,3)$
11	$\bar{s}=(1,1,2,3,5), \bar{w}=(3,4,7,10,17)$,	$\overline{e_{3}}=(0,1,1,1,2)$
12	$\bar{s}=(1,1,2,3,5), \bar{w}=(3,4,7,11,18)$,	$\bar{e}_{3}=(0,1,1,2,3)$

Except in (1)-(5) we do not have, in D_{1}, \ldots, D_{4}, a component or pair of components is K_{f} satisfying lemma 2.11. We now apply lemma 2.9(v) to (1)-(5), getting $s<\sum_{A_{0} \subset D_{j}} e_{i} s_{i}$. In cases 1,2 , and 5 where $s=2$, we would have to have a single component D_{i} of excess ≥ 3, which doesn't exist. In cases 3 and 4, we don't have an intersection $D_{i} \cap D_{j}$ with $s_{i}=s_{j}=1$ and total excess at least 4 . Thus we would have $A_{0} \subset D_{4}$ with excess 3 , and $e_{4}=1$. However, by 2.9 (iii), the excess of $M_{k}, 4$ or 5 , would have to be smaller than the excess of D_{4}, which is 3 . Contradiction.
$\underline{k<5}$: Here we have other components in K_{f} whose canonical pairs are not known from the factorization sequence. We will divide into four cases according to \bar{s}.

$$
\begin{aligned}
& \text { A. } \bar{s}=(1,1,1,2), \bar{w}=(3,4,5,9), \bar{e}_{3}=(0,1,2,3) \\
& \text { B. } \bar{s}=(1,1,2,2), \bar{w}=(3,4,7,8), \quad \bar{e}_{3}=(0,1,1,2) \\
& \text { C. } \bar{s}=(1,1,2,3), \bar{w}=(3,4,7,10), \quad \bar{e}_{3}=(0,1,1,1) \\
& \bar{w}=(3,4,7,11), \quad \overline{e_{3}}=(0,1,1,2) \\
& \text { D. } \bar{s}=(1,1,2), \quad \bar{w}=(3,4,7), \quad \bar{e}_{3}=(0,1,1)
\end{aligned}
$$

Case A: $\bar{s}=(1,1,1,2) . \quad M_{k}$ has canonical pair (9,2) with excess 3 , and $k=4$. Applying lemma 2.9 (iii) with $c=2$, we see that A_{0} is contained in a single component D_{4} with $s_{4}=1$, and $5=9-2 \cdot 2 \leq w_{4}-2 \cdot s_{4}$. Thus $w_{4} \geq 7$. Furthermore, $2=s=e_{4} s_{4}+d_{1}$, so $e_{4}=s_{4}=d_{1}=1$. Thus, by the Remark after Lemma 3.1, B_{1} is nonsingular, since $d_{1}=1$. We now apply lemma 2.7 to conclude that f_{3}^{-1} is an isomorphism at every accessible non-intersection point of $M_{1}^{(3)}, M_{2}^{(3)}$ and M_{3} except on $f_{3}\left[D_{4}\right]$. By this same lemma, we conclude that D_{4} is the blowing up of $f_{3}\left[D_{4}\right]$. By lemma 2.4,

$$
w_{4}=w_{i}+k^{\prime}-1 .
$$

Since $w_{i} \leq 5$, and $w_{4} \geq 7$, we conclude that k^{\prime}, the codimension $f_{3}\left[D_{4}\right]$, is 3 , indicating that $f_{3}\left[D_{4}\right]$ is an isolated point. However this contradicts the connectedness of $f_{3}\left(D_{4}\right)$ which contains $M_{2}^{(3)} \cap M_{3}$.
Case B: Since $s=2$, the component $f_{k}^{-1}\left[M_{k}\right]$ of the pinch locus must lie in D_{4}, with

$$
2=s \geq e_{4} s_{4}+d l .
$$

We conclude that $e_{4}=l=d=s_{4}=1$, whence $B_{1}=f_{1}\left[D_{2}\right]$ must have degree 1 ,
and be isomorphic to P^{1}. Since B_{1} is nonsingular, and $f_{2}\left[D_{3}\right] \subset M_{2} \cap M_{1}^{(2)}$, we find that by lemma 2.7, f_{2}^{-1} is an isomorphism except on $f_{2}\left[D_{4}\right]$ and M_{2} $\cap M_{1}^{(2)}$. Since $f_{2}\left(D_{4}\right) \supset M_{2} \cap M_{1}^{(2)}$ and is connected, but must have generic point in a single component of $K_{h_{2}}$ so that $s_{4}=1$ will hold, we conclude that $f_{2}\left[D_{4}\right]$ is a curve. By lemma 2.7, D_{4} is generically isomorphic to the blowing up of that curve, and thus has canonical pair $(5,1)$. In that case, however, the excess of D_{4} is 2 , in contradiction to lemma 2.11.
Case C: This case is more difficult.
$\bar{s}=(1,1,2,3)$. Applying lemma 2.11 again, since the excesses of D_{1}, D_{2} and D_{3} are 0,1 , and 2 respectively, we see that A_{0} must lie in D_{4}. Thus from lemma 2.9, $\left.s>\sum_{A_{0} \subset D_{i}} s_{i}\right)+1$, so we have $s_{4} \leq 2$ and $A_{0} \nsubseteq D_{3} \cap D_{4}$. Since the total excess along a "bad" curve lying in a single component must be at least 3 , and along an intersecting curve must be at least $4, D_{4}$ must have an excess of at least 3. Since S_{f} is a point, $s_{4} \geq 1$, so $w_{4}-3 s_{4} \geq 3$ implies that $w_{4} \geq 6$.
C. 1: $s_{4}=1$. Consider lemma 2.7 applied to the simple factorization sequence Y_{0}, Y_{1} dominated by the morphism $f: X \rightarrow Y$. Every point y_{1} of M_{1} is a singleton accessible point, and M_{1} has generic order 1. Thus, except possibly at a finite number of points, either f_{1}^{-1} is an isomorphism at y, with $f_{1}^{-1}\left(y_{1}\right) \in D_{1}$, or else there is a component D_{i} of K_{f} such that y_{1} $\in f_{1}\left[D_{i}\right]$ and D_{i} is generically isomorphic to the blowing up of $f_{1}\left[D_{i}\right]$. Since only one component, D_{2}, has the canonical pair $(4,1)$ appropriate to the blowing up of a curve, we see that $B_{1}=f_{1}\left[D_{2}\right]$ is the only curve in M_{1} on which f_{1}^{-1} is not an isomorphism. Since $f_{1}\left(D_{4}\right) \supset f_{1}\left(A_{0}\right)=B_{1}$, then by the Zariski connectedness theorem, the strict image $f_{1}\left[D_{4}\right]$ is connected to B_{1}. Since it cannot be connected by a curve intersecting B_{1}, and B_{1} is irreducible, the only two possibilities for $f_{1}\left[D_{4}\right]$ are a point of B_{1} or all of B_{1}. We thus divide into subcases
C. 1. a : $f_{1}\left[D_{4}\right]$ is point P_{1}. Consider $f_{1}^{-1}\left[P_{1}\right]$. It cannot be surface, for then it would have canonical pair $(5,1)$, with excess 2 , which is not possible for D_{4}. Thus $f_{1}^{-1}\left[P_{1}\right]$ has dimension no greater than 1 . We now apply the Danilov lemma [3], modified as in lemma 1.8, to conclude that P_{1} has an etale neighborhood in which B_{1} has a smooth branch, such that along the fiber over P^{1} in the blowing-up of this branch we have an isomorphism of the exceptional divisor M_{2} with D_{2}. Let us assume that the locally factorizable morphism b_{2} was chosen so that it factored through such a blowing-up. Then $f_{2}\left[D_{4}\right]$ would be a point on that fiber. It could not be in the intersection, since $s_{4}=1$. Thus it would be an isolated point on the fiber. Over the general point of B_{1}, f_{2}^{-1} must be an isomorphism on $M_{2}-M_{1}^{(2)}$, by lemma 2.7, since there are no components
other than D_{1} and D_{2} with canonical pair $\left(w^{\prime}, s^{\prime}\right) \leq(5,1)$. Thus $f_{2}\left[D_{4}\right]$ is an isolated point. Since $M_{1}^{(2)} \cap M_{1} \subset f_{2}\left(A_{0}\right) \subset f_{2}\left(D_{4}\right)$, this contradicts the connectedness of the image under a birational correspondence.
C. 1. b: Suppose $f_{1}\left[D_{4}\right]=B_{1}$. The same argument from lemma 2.7 used above shows that f_{2}^{-1} is an isomorphism on the generic fiber of $M_{2}-M_{1}^{(2)}$. Thus $f_{2}\left[D_{4}\right]$ could lie only in $M_{2} \cap M_{1}^{(2)}$. However, if so, by lemma $2.3 s_{4}$ $\geq s_{1}+s_{2}=2$, in contradiction to our assumption that $s_{4}=1$.
C. 2: $s_{4}=2$. From lemma 2.9(v), $s \geq s_{4}+d l$, whence, since $s=3$ and $s_{4}=2$, we get $l=1$ and $d=d_{1}=1$. As remarked after lemma 3.1, the degree of B_{1} as a curve in $M_{1} \cong P^{2}$ is bounded by d_{1}. We conclude that $\operatorname{deg} B_{1}=1$, i.e. that $B_{1} \cong P^{1}$ and is thus non-singular. Since every component of K_{f} has its image at least connected to B_{1}, and there is only one component D_{2} with the canonical pair $(4,1)$ appropriate to the blowing up of a curve, we conclude, by applying 2.7 to Y_{0}, Y_{1}, that f_{1} is an isomorphism outside of B_{1}. We now go one step further and apply 2.7 to Y_{0}, Y_{1}, Y_{2}, where we can assume that $b_{2}: Y_{2} \rightarrow Y_{1}$ is simply the blowing up of B_{1}. Since B_{1} is nonsingular, the set of bad points in lemma 2.7 is empty, and every point of $M_{2}-M_{1}^{(2)}$ is accessible of order one. Since (2) cannot hold because there are no components in K_{f} with the canonical pairs $(5,1)$ or $(6,1)$ appropriate to the blowing-up of a curve or point we conclude that at every point y_{2} of $M_{2}-M_{1}^{(2)}, f_{2}^{-1}$ is an isomorphism. Thus $f_{2}\left[D_{4}\right] \subset M_{2} \cap$ $M_{1}^{(2)}=B_{2}$.
Y_{3} is obtained by blowing-up B_{2}. Let us show that f_{3}^{-1} is an isomorphism at every point of $M_{3}-M_{1}^{(3)}-M_{2}^{(3)}$. Let y_{3} be any such point, and let Γ_{3} be a transversal test curve through y_{3}. Let H be a generic hyperplane through $y_{0} \in Y$. Then $S_{h_{3}}\left(M_{3}, H\right)=2$, so $\Gamma_{3} \cdot h_{3}^{*}(H)=2$. Letting y_{1}, Γ_{1} be the images of y_{3}, Γ_{3} respectively in Y_{1}, we get $\Gamma_{1} \bullet h_{1}^{*}(H)=2$. Let $\Gamma=$ $f_{1}^{-1}\left[\Gamma_{1}\right] \subset X$, and let x be the closure point.

We first show that the singleton points of $D_{i^{i}}$ are isomorphic to the singleton points of $M_{i}^{(2)}$, for $i=1,2$. Suppose \bar{x} is a singleton point of D_{1} or D_{2}. Let $\bar{\Gamma}$ be a transversal test curve through \bar{x}. Since $s_{f}\left(D_{i}, H\right)=1$, for $i=1,2$, and f_{1} is well defined at \bar{x}, so that $\bar{x} \in f^{-1}[H]$, we have $\bar{\Gamma}$. $f^{*}(H)=1$, whence by the projection formula $1=f(\bar{\Gamma}) \cdot H=h_{1}^{-1}[f(\bar{\Gamma}] \cdot$ $h_{1}^{*}(H)=h_{2}^{-1}[f(\bar{\Gamma})] \cdot h_{2}^{*}(H)$. We conclude that $h_{2}^{-1}[f(\bar{\Gamma})]$ intersects $K_{h_{2}}$ at a point of first order, i.e., at a point of $M_{1}^{(2)} \cup M_{2}-B_{2}$. Since f_{2}^{-1} is an isomorphism at these points, we find that $D_{1}-\left(D_{2} \cup D_{3} \cup D_{4}\right) \leadsto M_{1}^{(2)}-M_{2} \simeq$ $M_{1}^{(3)}-M_{3}$ and $D_{2}-\left(D_{1} \cup D_{3} \cup D_{4}\right) \xrightarrow{\leftrightarrows} M_{2}-M_{1}^{(2)} \leftrightarrows M_{2}^{(3)}-M_{3}$.

Returning to our original point x, since $y_{3} \notin M_{1}^{(3)} \cup M_{2}^{(3)}$, we find that x $\in D_{3} \cup D_{4}$. We can thus apply lemma 1.1 of [9], which says that since $\sum_{x \in D_{t}} s_{f}\left(D_{i}, H\right) \geq \Gamma \cdot f^{*}(H)=2$, we actually have equality, f_{1} is well-defined at
x, and x is a singleton point of D_{3} or D_{4}.
Now let H_{1} be a generic hypersurface in Y_{1} containing B_{1}. Since Γ_{3} is transversal to M_{3} at a generic point, its image Γ_{2} is transversal to $M_{1}^{(2)}$ and M_{2}, and Γ_{1} is tangent to M_{1}, and transversal to B_{1}. We thus have $\Gamma_{1} \cdot H_{1}=1$. Since $f_{1}\left[D_{i}\right] \subset B_{1}$ for $i=1,2$, we have $s_{f_{1}}\left(D_{i}, H_{1}\right) \geq 1$. Thus we can again apply lemma 1.1 of [9], to conclude that f_{2} is well-defined at x. Since we again have $f_{2}\left[D_{i}\right] \subset B_{2}$ for $i=1,2$, we can repeat this with a generic hypersurface H_{2} through B_{2}, and conclude that f_{3} is well-defined at x. If x is a singleton point of D_{3}, then since D_{3}, being generically isomorphic to M_{3}, does not collapse, we have an isomorphism. If $x \in D_{4}, y_{3} \in$ $f_{3}\left[D_{4}\right]$.

We have thus shown that f_{3}^{-1} is an isomorphism except on $f_{3}\left[D_{4}\right]$ and possibly on $M_{i}^{(3} \cap M_{3}$, for $i=1,2$. According to our original hypotheses, f_{3} $\left(A_{0}\right)=M_{i}^{(3)} \cap M_{3}$ for either $i=1$ or $i=2$. Since $f_{3}\left(D_{4}\right)$ must be connected, and the generic point $f_{3}\left[D_{4}\right]$ cannot have order greater than $s_{4}=2$, we see that $f_{3}\left[D_{4}\right]$ must be a curve intersecting $M_{i}^{(3)} \cap M_{3}$ properly. Blowing it up, and applying lemma 1.1 one last time, for the same curve Γ_{3}, we conclude that D_{4} is generically ismorphic to the blowing-up of $f_{3}\left[D_{4}\right]$. It must, therefore, have canonical pair

$$
\begin{aligned}
\left(w_{4}, s_{4}\right) & =\left(w_{3}, s_{3}\right)+\left(k^{\prime}-k, d\right) \\
& =(7,2)+(2-1,0) \\
& =(8,2)
\end{aligned}
$$

by lemma 2.4. However, if so, the excess $w_{4}-3 s_{4}=8-6=2$, which is too small.

We have thus eliminated all but the last case :
Case D: This case is considerably more difficult than the previous ones, for here, instead of reaching a contradiction, we must show that the morphism $f: X \rightarrow Y$ is one particular morphism. We therefore preface the proof with an outline which we hope will serve for most readers as a satisfactory substitute for the actual detailed proof.
(a) We show that in case D the pinch locus contains an irreducible curve A_{0} whose general point is a singleton point of a component D_{4} with canonical pair (6,1).
(b) We determine the nature of the various components of $K_{f}: D_{1}$ is generically isomorphic to the blowing-up M_{1} of the point $y \in Y, D_{2}$ is generically isomorphic to the blowing-up M_{2} of a curve $B_{1} \leftrightharpoons P^{1}$ in M_{1}, and D_{3} with canonical pair $(5,1)$ is generically isomorphic to the blowing-up M_{3} of a curve B_{2} in M_{2}. (See Fig. 5 for the two alternative possibilities

Fig. 5
for M_{3}.)
(c) We build a quasi-factorization sequence $Y_{0}, Y_{1}, Y_{2}, Y_{3}^{\prime}, Y_{4}^{\prime}$, show that $D_{1} \cap D_{2}=\emptyset$, and determine where the induced correspondence f_{4}^{\prime} is an isomorphism, thereby confining the accessible points is the image of the pinch locus to intersections of accessible components.
(d) We prove that the only singleton points of the pinch locus $P_{y}(f)$ are contained in the irreducible curve A_{0}.
(e) The strict image of D_{3} in Y_{2} is fiber, so that the strict image of D_{3} in Y_{1} is a point y_{1}.
(f) We then conclude that $D_{2} \cap D_{3}=\emptyset$.
(g) By blowing-up a singleton point x of A_{0} and considering its multiplicity in the strict preimage of two transversal generic hyperplanes, we show that x is a smooth point of A_{0}.
(h) In a similar manner, we demonstrate that A_{0} intersects D_{1} and D_{2} transversally.
(i) We construct a strong factorization sequence for f by blowing up A_{0} to get a component $N_{1} \leftrightarrows P^{1} \times P^{1}$, then contracting N_{1} along its second fibration to get a directly factorizable toroidal morphism.

We now carry out (a)-(i).
(a) A_{0} lies in D_{1} with canonical pair $(6,1)$:
$\bar{s}=(1,1,2)$. We have $u_{n_{3}}\left(M_{3}, H\right)=(7,2)$, and it is generically isomorphic to the result of a single blowing-up in X, of a locus A_{0} lying in a single component D_{4} of K_{1}. We must have $w_{4}<7, s_{4}<2$, by lemma 2.9 (i, v) on the one hand, and on the other hand, by lemma 2.11, D_{4} must have excess at least 3 . Thus $\left(w_{4}, s_{4}\right)=(6,1)$. Also, applying lemma 2.9, $d_{1}=1$, so B_{1} is a P^{1} of degree one, and we may take b_{2} to be the blowing up of B_{1}. Similarly, b_{3} may be taken as the blowing-up of the smooth intersection.
(b) D_{3} has canonical pair $(5,1)$:

We first establish the canonical pair of the remaining component D_{3}. Consider a general point $y_{1} \in f_{1}\left[D_{4}\right] . f_{1}^{-1}$ is not an isomorphism at y_{1}. Since the set \hat{C} of possible bad points given in lemma 2.7 is empty for the case of a single blowing-up of B_{1}, we conclude from lemma 2.7 that the closure point x of a generic test curve through y_{1}, i.e., $x \in f_{1}^{-1}\left[y_{1}\right]$, must lie in a component D_{i} which is generically isomorphic to the blowing-up of $f_{1}\left[D_{i}\right]$. Based on this fact, we wish to prove that $\left(w_{3}, s_{3}\right)=(5,1)$ and $f_{1}\left[D_{3}\right] \subset B_{1}$.

We have two possibilities : $f_{1}\left[D_{i}\right]$ is a point or a curve. In the first case $d_{i}=D_{3}$ and ($\left.w_{3}, s_{3}\right)=(5,1)$. In this case f_{1}^{-1} is an isomorphism except on $B_{1}=f_{1}\left[D_{2}\right]$ and $y_{1}=f_{1}\left[D_{3}\right]=f_{1}\left[D_{4}\right]$, by lemma 1.2 of [9] or by another application of 2.7 to a general point of M_{1}. Since $B_{1}=f_{1}\left(A_{0}\right) \subset$ $f_{1}\left(D_{4}\right)$ and $f_{1}\left(D_{4}\right)$ is connected, we conclude that $y_{1} \in B_{1}$, as desired.

Now consider the case that $f_{1}\left[D_{i}\right]$ is a curve, so that $\left(w_{i}, s_{i}\right)=(4,1)$. Since $\operatorname{dim} f_{1}^{-1}\left[y_{1}\right] \leq 1$, we can apply lemma 1.8 to find a local center \widetilde{B} at the Henselization $\tilde{y}_{1} \in \widetilde{Y}_{1}$, such that after base extension, \tilde{f}_{1} factors through the blowing up of \widetilde{b}_{2} of \widetilde{B}. Let b_{2} be a quasi-blowing up with \widetilde{B} as local center at y_{1}. Let y_{2} be a general point of $f_{2}\left[D_{4}\right]$ such that $h_{21}\left(y_{2}\right)=y_{1}$. Since $s_{4}=1$, the generic point of $f_{2}\left[D_{4}\right]$ must lie in a single first order component of $K_{h_{2}}$. Thus $y_{2} \in f_{1}^{-1}\left[y_{1}\right]$, and y_{2} is accessible. We apply lemma 2.7 to the accessible first order points of M_{2}. Case (3) occurs neither at y_{1}, where the component containing $f_{1}^{-1}\left[y_{1}\right]$ maps to the center of the local blowing-up, nor at y_{2}, since the set of bad points is finite and y_{2} is general. Thus in a neighborhood of the fiber at y_{2}, f_{2}^{-1} is an isomorphism except on the strict images of components other than D_{1} and D_{i}. If $f_{2}\left[D_{4}\right]$ were an isolated point, this would contradict the connectedness of $f_{2}\left(D_{4}\right)$, since $f_{2}\left(A_{0}\right) \subset M_{2} \cap M_{1}^{(2)}$. Thus y_{2} must lie on some curve in M_{2} on which f_{2}^{-1} is not well-defined. We conclude from lemma 2.7 that there exists a component of K_{f} generically isomorphic to the blowing up of this curve, hence of canonical pair $(5,1)$. The only possibility is D_{3}. We conclude that $D_{i}=D_{2}, f_{1}\left[D_{2}\right]=B_{1}$, and thus that $f_{1}\left[D_{3}\right] \subset$ $h_{21}\left(f_{2}\left[D_{3}\right]\right) \subset h_{21}\left(M_{2}\right)=B_{1}$, as desired. Note that we have also shown that $f_{2}\left[D_{4}\right] \subset f_{2}\left[D_{3}\right]$.

We are now close to our goal. We have four components, D_{1}, D_{2}, D_{3}, D_{4}, with canonical pairs $(3,1),(4,1),(5,1)$ and $(6,1)$ respectively. D_{1} is generically isomorphic to the blowing up of $y . D_{2}$ is generically isomorphic to the exceptional divisor M_{2} which results from blowing up a curve $B_{1} \leftrightharpoons P^{1}$ in $M_{1} . \quad D_{3}$ is generically isomorphic to the blowing up of a curve in M_{2}. We have seen two possibilities for this curve. It can either
be the fiber of M_{2} over a point y_{1}, in which case D_{3} is generically isomorphic to the blowing up of y_{1}, or else it can be a section of B_{1} in M_{2}. See Fig. 5.

Let H_{1} be a smooth hypersurface through y such that $h_{1}^{-1}\left[H_{1}\right]$ contains the linear subspace B_{1} of M_{1} in Y_{1}. Assume H_{1} is a generic hypersurface with this property. In particular we may assume that if $h_{2}\left[D_{4}\right]$ is a point on M_{2}, it is not contained in $h_{1}^{-1}\left[H_{1}\right]$. We now blow up $M_{2} \cap M_{1}^{(2)}$ to obtain M_{3}. Since $s_{h_{2}}\left(M_{1}^{(2)}, H_{1}\right)=s_{h_{1}}\left(M_{1}, H_{1}\right)=1, s_{h_{2}}\left(M_{2}, H_{1}\right)=$ $s_{b}{ }^{1}\left(M_{1}, H_{1}\right)+s_{b_{2}}\left(M_{2}, h_{1}^{-1}\left[H_{1}\right]=2\right.$, and $M_{2} \cap M_{1}^{(2)}$ is not contained in $h_{2}^{-1}\left[H_{1}\right]$, we get $s_{h_{3}}\left(M_{3}, H_{1}\right)=s_{h_{2}}\left(M_{2}, H_{1}\right)+s_{h_{2}}\left(M_{1}^{(2)}, H_{1}\right)=2+1=3$. On the other hand, D_{3} is generically isomorphic to the blowing up of a curve $f_{2}\left[D_{3}\right]$ in M_{2} which is not contained in $h_{2}^{-1}\left[H_{1}\right]$. Thus $s_{f}\left(D_{3}, H_{1}\right)=2$. Similarly, if we blow up $f_{2}\left[D_{3}\right]$ in M_{2} to get a space Y_{3}^{\prime}, D_{4} is generically isomorphic to the blowing up of a curve in the exceptional divisor M_{3}^{\prime}, whence $s_{f}\left(D_{4}\right.$, $\left.H_{1}\right)=2$. We have shown that M_{3}, the blowing up of $M_{2} \cap M_{1}^{(2)}$, is generically isomorphic to the blowing up of the curve A_{0} in D_{4}. Thus

$$
3=s_{h_{3}}\left(M_{3}, H_{1}\right)=s_{f}\left(D_{4}, H_{1}\right)+s_{f_{3}^{1}}\left(M_{3}, f^{-1}\left[H_{1}\right]\right) .
$$

We conclude that $f_{3}^{-1}\left[M_{3}\right]=A_{0}$ must be contained in $f^{-1}\left[H_{1}\right]$, since we must have $s_{f_{3}}\left(M_{3}, f^{-1}\left[H_{1}\right]\right)=1$. f_{1} is not well-defined on $A_{0} \subset f^{-1}\left[H_{1}\right]$. We wish to use this fact to show that only the first of the two cases in Fig. 5 is possible, and that $D_{1} \cap D_{2}=\emptyset$ and $D_{2} \cap D_{3}=\emptyset$.
(c) Construction of the quasi-factorization sequence:

We build up a factorization sequence $Y_{0}, Y_{1}, Y_{2}, Y_{3}^{\prime}, Y_{4}^{\prime}$, and determine step by step where the corresponding induced morphisms from X are isomorphisms.
Step 1: $\quad b_{1}: Y_{1} \rightarrow Y_{0}$ is the blowing-up of the point $y_{0} . f_{1}^{-1}$ is an isomorphism except on the strict images of other components, all of which are contained in B_{1}. Furthermore, for every singleton point of D_{1}, f_{1} is welldefined by lemma 2.11. Since no component through the point collapses, f_{1} is an isomorphism there. Thus

$$
\begin{aligned}
D_{1}-\left(D_{2} \cup D_{3} \cup D_{4}\right) & \stackrel{f_{1}}{\rightrightarrows} M_{1}-B_{1} \\
& \underset{\rightarrow}{\rightrightarrows} M_{1}^{(2)}-M_{2}
\end{aligned}
$$

Step 2: $b_{2}: Y_{2} \rightarrow Y_{1}$ is the blowing up of B_{1}, M_{2} is generically isomorphic to D_{2}. At every point of $M_{2}-M_{1}^{(2)}$ we can apply lemma 2.7. Since the strict images of D_{2}, D_{3} and D_{4} are all contained in B_{1}, the set on which f_{1}^{-1} is not an isomorphism is nonsingular, and thus the set \hat{C} of possible bad points is empty. We conclude that f_{2}^{-1} is an isomorphism at every
point of $M_{2}-M_{1}^{(2)}$ except on $f_{2}\left[D_{3}\right]$ (which contains $f_{2}\left[D_{4}\right]$). For any singleton point x in D_{2}, we consider a transversal test curve Γ. Since $S_{f}\left(D_{2}, H\right)=1$ for a general hypersurface $H \subset Y$, we have $\Gamma \cdot f^{*}(H)=1$. Letting $y_{2}=f_{2}[\Gamma] \cap h_{2}^{-1}(y)$, we have $1=\operatorname{deg}\left(\Gamma \cdot f^{*}(H)\right)=\operatorname{deg}\left(f_{*}(\Gamma) \cdot H\right)=$ $\operatorname{deg} f_{2}[\Gamma] \cdot h_{2}^{*}(H)$. y_{2} must be a point of $M_{2}-M_{1}^{(2)}$ since $h_{2}^{*}(H)$ has order 1 there. We now apply lemma 2.6 to conclude that f_{2} is well-defined at x. Since there is no collapsing component, it is thus an isomorphism. Thus

$$
D_{2}-\left(D_{1} \cap D_{3} \cup D_{4}\right) \stackrel{f_{2}}{\rightarrow} M_{2}-\left(M_{1}^{(2)} \cap M_{2}\right)-f_{2}\left[D_{3}\right] .
$$

We note, furthermore, that $D_{1} \cap D_{2}$ must be empty. On $D_{1} \cap D_{2}-$ $\left(D_{3} \cup D_{4}\right), f_{1}$ is well-defined, by lemma 2.11(ii). On $D_{2}-\left(D_{3} \cup D_{4}\right), f_{2}$ is well-defined, again by lemma 2.11(ii), and is actually an isomorphism, since there are no collapsing components. If $D_{1} \cap D_{2} \neq \phi$, its image must be in $f_{2}\left[D_{1}\right] \cap f_{2}\left[D_{2}\right]=M_{1}^{(2)} \cap M_{2}$. However f_{2}^{-1} is not an isomorphism on $M_{1}^{(2)} \cap M_{2}=f_{2}\left(A_{0}\right)$. Thus $D_{1} \cap D_{2}$ must be empty.
Step 3: $b_{3}^{\prime}: Y_{3}^{\prime} \rightarrow Y_{2}$ is the quasi-blowing up of $f_{2}\left[D_{3}\right]$. If y_{2} is a first order point of $f_{3}\left[D_{3}\right]$, then by lemma 2.7, $f_{2}^{-1}\left[y_{2}\right] \subset D_{3} \cap D_{4}$. If in D_{4}, then $f_{2}^{-1}\left[y_{2}\right]=D_{4}$ and $y_{2}=f_{2}\left[D_{4}\right]$. If in D_{3}, then by lemma 1.8, f_{2} factors through the blowing up of a smooth branch of $B_{3}^{\prime}=f_{2}\left[D_{3}\right]$ at y_{3}, and we can assume that b_{2} factors through this blowing up too. We conclude from lemma 2.7 that f_{3}^{-1} is an isomorphism at every accessible point of $M_{3}^{\prime}-M_{2}^{(3)^{\prime}}-f_{3}\left[D_{4}\right]$. Let x be a point of $D_{3}-\left(D_{1} \cup D_{2} \cup D_{4}\right)$, and let Γ-be a transversal curve at x. Since f_{1} is well-defined at x, we can take H to be a generic hyperplane through $y \in Y$, and we will get deg $\Gamma \cdot f^{*}(H)=$ $s_{f}\left(D_{3}, H\right)=1$. Lift to Y_{3} getting a point y_{3}^{\prime} and a curve $\Gamma_{3} . b_{3}^{\prime}$ is so constructed that the only first order components in Y_{3} are the accessible components $M_{1}^{(3)}, M_{2}^{(3)}$ and M_{3}. Let Q_{3}^{\prime} be the union of the non-accessible components. Since $\Gamma \cdot h_{3}^{*}(H)=1, y_{3}$ must lie in a first order component, necessarily D_{3}, since f_{3} gives isomorphisms

$$
\begin{aligned}
& D_{1}-\left(D_{2} \cup D_{3} \cup D_{4}\right) \stackrel{f_{3}}{\rightarrow} M_{1}^{(3)^{\prime}}-M_{2}^{(3)^{\prime}}-M_{3}^{\prime}-Q_{3}^{\prime} \\
& D_{2}-\left(D_{1} \cup D_{2} \cup D_{4}\right) \stackrel{f_{3}}{\rightarrow} M_{2}^{(3)^{\prime}}-M_{1}^{(3)^{\prime}}-M_{3}^{\prime}-Q_{3}^{\prime}
\end{aligned}
$$

We conclude from lemma 2.6 that f_{3} is well-defined at x. Since there are no collapsing components

$$
D_{3}-\left(D_{1} \cup D_{2} \cup D_{4}\right) \rightarrow M_{3}^{\prime}-M_{2}^{(3)^{\prime}}-M^{(3)_{1}^{\prime}}-f_{3}\left[D_{4}\right]-Q_{3}^{\prime}
$$

The key point will be to prove that $D_{2} \cap D_{3}$ is empty. Let x be a
general point of $D_{2} \cap D_{3}-\left(D_{1} \cup D_{4}\right)$. f_{1} is well-defined there by lemma 2.11 (ii). f_{2} is then well-defined there by lemma 2.3(ii), (iii) of [9] applied to D_{2}, generically isomorphic to the blowing up of B_{1} and thus having excess 0 , and D_{3}, which has excess 1 with respect to a coordinate system in Y_{1} for which B_{1} is one of the coordinate axes. Finally, f_{3} is well-defined at x, by lemma 2.2 of [9], and it is an isomorphism since no components at x collapse. Thus $D_{2} \cap D_{3}$ must be isomorphic to $M_{3} M_{2}^{(3)}$. We will return to this point after Step 4.
Step 4: $b_{4}^{\prime}: Y_{4}^{\prime} \rightarrow Y_{3}^{\prime}$ is the quasi-blowing up of $B_{3}^{\prime}=f_{3}\left[D_{4}\right]$. Applying lemma 2.7 to the sequence $Y_{0}, Y_{1}, Y_{2}, Y_{3}^{\prime}$ and to any first order point Y_{3}^{\prime} of $f_{3}\left[D_{4}\right]$, we see as in step 3 that $f_{3}^{\prime-1}\left[y_{3}^{\prime}\right]$ must be a curve in D_{4}, and thus we can choose our quasi-blowing-up to factor through a smooth branch of B_{3}^{\prime} at each first order point y_{3}^{\prime}. We thus obtain, as in step 3, that the only first order components of $K_{h_{4}^{4}}$ are the accessible components $M_{1}^{(4)^{\prime}}$, $M_{2}^{(4)^{\prime}}, M_{3}^{(4)^{\prime}}$ and M_{4}^{\prime}. Let Q_{4}^{\prime} be the union of the non-accessible components.

Let x be any singleton point of D_{4} at which f_{1} is well defined. If H_{1} is a generic hypersurface in Y such that $h_{1}^{-1}\left[H_{1}\right]$ contains B_{1}, then we have already shown that $s_{f_{1}}\left(D_{4}, h_{1}^{-1}\left[H_{1}\right]\right)=1$. If $x \in f^{-1}\left[H_{1}\right] \cap f^{-1}\left[H_{1}^{\prime}\right]$ for generic H_{1}, H_{1}^{\prime} with $h_{1}^{-1}\left[H_{1}\right], h_{1}^{-1}\left[H_{1}^{\prime}\right] \supset B_{1}$, then f_{2} will also be well defined at x. We apply lemma 2.2(ii) of [9] to f_{2}. If $f_{2}(x)$ is a singular point of B_{2}^{\prime}, we make an etale base extension to separate branches. The multiplicity of D_{4} in the canonical divisor of f_{2} is $r=w_{f_{2}}\left(D_{4}\right)-1=3-1=2$, the multiplicity b of D_{1} in the lifting of a generic hypersurface is 1 , and the codimension c^{\prime} of the blowing-up h_{23} is 2 . Thus $r=b c^{\prime}$, so f_{3}^{\prime} is welldefined. A further application of lemma 2.2(i) of [9] to f_{3} shows that f_{4}^{\prime} is well-defined, and must in fact be an isomorphism, since the unique component D_{4} through x does not collapse. We thus have

$$
\begin{aligned}
D_{4}-\left(D_{1} \cup D_{2} \cup D_{3}\right) & -P_{y}(f)-f^{-1}\left[H_{1}\right] \cap f^{-1}\left[H_{1}^{\prime}\right] \\
& \rightarrow M_{4}^{\prime}-M_{1}^{(4)^{\prime}}-M_{2}^{\left.()^{\prime}\right)}-M_{3}^{(4)^{\prime}}-Q_{4}^{\prime} .
\end{aligned}
$$

Let x^{\prime} be a point of $D_{4} \cap f^{-1}\left[H_{1}\right] \cap f^{-1}\left[H_{1}^{\prime}\right]$. Since x^{\prime} has order at least 2 with respect to the lifting of the generic hyperplane $h_{1}^{-1}\left[H_{1}\right]$ through B_{1}, the image $f_{1}\left[\Gamma^{\prime}\right]$ of a transversal test curve at x^{\prime} must intersect B_{1} with multiplicity at ieast 2. Thus

$$
f_{1}\left[\Gamma^{\prime}\right] \cdot M_{1} \geq 2
$$

Thus for a generic hyperplane H through $y \in Y$, we have $\Gamma^{\prime} \cdot f^{*}(H)=$ $f_{1}\left[\Gamma^{\prime}\right] \cdot M_{1} \geq 2$. Thus either $x^{\prime} \in P_{y}(f)$, so that $x^{\prime} \in f^{-1}[H]$, or else x^{\prime} is not a singleton point of D_{4}. We thus have

$$
D_{4}-\left(D_{1} \cup D_{2} \cup D_{3}\right)-P_{y}(f) \rightrightarrows M_{4}^{\prime}-M_{1}^{(4)^{\prime}}-M_{2}^{(4)^{\prime}}-M_{3}^{(4)^{\prime}}-Q_{4}^{\prime}
$$

(d) All singleton points of $P_{y}(f)$ lie in A_{0} :

We wish to show that the only singleton points of the pinch locus are in A_{0}. We already showed, by considerations of excess from lemma 2.11, that the pinch locus is contained in D_{4}, and that it cannot have a component in $D_{1} \cap D_{4}$. Suppose A_{0}^{\prime} was a component contained solely in D_{4}. The quasi blowing-up N_{1}^{\prime} of A_{0}^{\prime} has canonical pair $(6,1)+(1, d)$, and since the excess must be positive, we must have $d=1$, giving $(7,2)$. Blowing up the images of N_{1}^{\prime} we could construct a factorization sequence $Y_{0}, Y_{1}, \ldots, Y_{k}$ with M_{k} generically isomorphic to N_{1}^{\prime}. Apply lemma 2.9 with $f=h_{1}$ and $p=h_{k 1}$. Choosing a generic hyperplane H through $y \in Y$ such that $h_{1}^{-1}[H]$ does not contain the strict image of N_{1}^{\prime} in M_{1}, we find that all the d_{i} in lemma 2.9 (i , ii) will be zero, since B_{i-1} will not be contained in $h_{(i-1) 0}^{-1}[H]$. The only exceptional divisor of h_{1} is M_{1} with $\left(w_{1}, s_{1}\right)=(3,1)$. Applying lemma 2.9 (i , ii) to f_{1}, we have

$$
(7,2)=e_{1}(3,1)+\sum_{i=1}^{l} c_{i}\left(k_{i}^{\prime}-k_{i}, 0\right) .
$$

Thus $e_{1}=2, k_{1}=1, k_{1}^{\prime}=2$, and M_{2}^{\prime} is the blowing-up of the curve B_{1} : (It cannot be another curve since f_{1}^{-1} is an isomorphism except on B_{1}). The image of N_{1}^{\prime} must be in M_{2}^{\prime}, so applying 2.9 with $f=h_{2}, p=h_{32}$, we have only the possibility

$$
(7,2)=(4,1)+(3,1)+\left(k_{2}^{\prime}-2,0\right) .
$$

We conclude that $k_{2}^{\prime}=2$, i.e., that $f_{2}\left[N_{1}^{\prime}\right]=M_{2} \cap M_{1}^{(2)}$. Since N_{1}^{\prime} then maps into M_{3}^{\prime}, which has the same canonical pair $(7,2)$ we conclude that it is generically isomorphic to M_{3}^{\prime}. Since the blowing-up of A_{0} is generically isomorphic to this same divisor, we conclude that $A_{0}=A_{0}^{\prime}$.
(e) The strict image of D_{3} in Y_{1} is a point y_{1} :

We now wish to use this information about f_{4}^{\prime} to eliminate the possibility that in the quasi-factorization sequence defined in (c), $f_{2}\left[D_{3}\right]=B_{2}^{\prime}$ is a section of B_{1} of degree ≥ 1. Suppose it were. Then $M_{3}^{\prime} \cap M_{2}^{(3)}$ would be a section of B_{1}. Consider $G=f_{4}^{\prime-1}\left[M_{3}^{\prime(4)} \cap M_{2}^{(4)}\right] . \quad G$ must be an irreducible curve. If the $f^{-1}[H]$ were separated along G, they would have to intersect the components of K_{f} containing G in curves along which f_{1} would be well-defined, which would move as H moves. The canonical pairs of these curves in the surface $f^{-1}[H]$ would have to be the same as in $h_{4}^{-1}[H]$, since, as we have already shown, f_{4}^{\prime} is an isomorphism at the generic point of each component. Since in Y_{4}^{\prime} they sweep out $M_{2}^{(4)}$ and
$M_{3}^{(4)}$, in X they sweep out D_{2} and D_{3}. We conclude that if G were not contained in the pinch locus, then $G \subset D_{2} \cap D_{3}$, which would therefore be non-empty, and f_{4}^{\prime} would be an isomorphism there.

If G were contained in the pinch locus, then since the blowing-up of $M_{3}^{(4)} \cap M_{2}^{(4)}$ has canonical pair (9,2), and $f^{-1}[H] \supset G$ for generic H in Y containing Y, we would conclude that G is not contained in an intersection, but rather $G \subset A_{0}$. However, since the multiplicity of $f^{-1}[H]$ along A_{0} is one, we could not have $h_{4}^{\prime-1}[H]$ intersecting $f_{4}^{\prime}\left(A_{0}\right)$ at two different points, one in $M_{1}^{\prime_{4}(4)} \cup M_{2}^{\prime(4)}$ and one in $M_{2}^{\prime(4)} \cap M_{3}^{(4)}$. We conclude that G would not be contained in the pinch locus, and thus that $D_{2} \cap D_{3}$ would be non-empty, and f_{4}^{\prime} would be an isomorphism at the generic point of $D_{2} \cap D_{3}$. Composing with h_{43}, we would also have that f_{3}^{\prime} is an isomorphism at the generic point of $D_{2} \cap D_{4}$. We would then have $D_{2} \cap D_{3}-\left(D_{1} \cap\right.$ $\left.D_{4}\right) \xlongequal{\rightarrow} M_{2}^{\prime(4)} \cap M_{3}^{\prime(4)}-M_{1}^{(4)}-M_{4}^{\prime}-Q_{4}$.

Since $f_{3}^{\prime}\left(D_{4}\right)$ would have to be connected, since we have shown that $f_{3}^{\prime-1}$ is an isomorphism except on $f_{3}^{\prime}\left[D_{4}\right]$ and $M_{1}^{\prime(3)} \cap M_{2}^{\prime(3)}$, and since $M_{1}^{\prime(3)} \cap M_{2}^{(3)} \subset f_{3}^{\prime}\left(A_{0}\right)$, we would conclude that $B_{3}^{\prime}=f_{3}\left[D_{4}\right]$ must intersect $M_{1}^{\prime(3)} \cap M_{2}^{\prime(3)}$. Since the multiplicity of D_{4} is one, $f_{3}^{\prime}\left(D_{4}\right)$ could not be contained in an intersection. In order for a fiber of M_{3}^{\prime} to intersect $M_{1}^{(3)}$, it would have to be the blowing-up of a point of $f_{2}\left[D_{3}\right] \cap M_{1}^{(2)}$. In this case the fiber would lie entirely in $M_{3}^{\prime} \cap M_{1}^{\prime(3)}$. We conclude that $f_{3}^{\prime}\left[D_{4}\right]$ could not be a fiber, and would therefore have to be a section of $f_{2}\left[D_{3}\right]$. (see Fig. 5, II). We can therefore repeat the argument made above, replacing G by $G^{\prime}=f_{4}^{\prime-1}\left[M_{4}^{\prime} \cap M_{3}^{(4)}\right]$ and replacing $(9,2)$ by (11,2). We would conclude as there that $f_{4}^{\prime-1}$ would be an isomorphism on $M_{3}^{(4)} \cap M_{4}^{\prime}$. We would thus have $f_{4}^{\prime-1}$ an isomorphism except on $M_{1}^{\prime(4)} \cap M_{2}^{\prime(4)}$ and possibly on $M_{4}^{\prime} \cap\left(M_{1}^{\prime(4)} \cup M_{2}^{\prime(4)}\right)$.

Taking H_{1} to be a generic hyperplane with the property that $B_{1} \subset$ $h_{1}^{-1}\left[H_{1}\right]$, we now have the contradiction we desired. $h_{4}^{\prime-1}\left[H_{1}\right]$, if it intersects M_{4}^{\prime} at all, would cut M_{4}^{\prime} at a generic fiber, at which it does not intersect $M_{1}^{\prime(4)}$ or $M_{2}^{\prime(4)}$, and at which there are no non-accessible components. Thus $f_{4}^{\prime-1}$ would be an isomorphism everywhere along $h_{4}^{-1}[H]$. It would have to be isomorphic to $f^{-1}\left[H_{1}\right]$, whence f_{4}^{\prime} would be well-defined everywhere along $f^{-1}\left[H_{1}\right]$. Composing with h_{41}^{\prime}, we find that f_{1} would be welldefined everywhere on $f^{-1}\left[H_{1}\right]$. However, this contradicts the fact we proved in (b), that $f^{-1}\left[H_{1}\right]$ contains A_{0}, along which f_{1} is not welldefined. This was the desired contradiction, so we may finally conclude that $f_{2}\left[D_{3}\right]$ was not a section of B_{1}, but rather $f_{2}\left[D_{3}\right]$ is the fiber in M_{2} over a point y_{1} in M_{1}.
(f) $\quad D_{2} \cap D_{3}=\emptyset:$
$f_{2}\left[D_{4}\right]$ is either a point or all of $f_{2}\left[D_{3}\right]$. In the first case $f_{3}\left[D_{4}\right]$ is a fiber of M_{3}^{\prime}, and since it must be connected to $f_{3}\left(A_{0}\right)$ we find that $f_{3}^{\prime-1}$ is not an isomorphism on $M_{3}^{\prime} \cap M_{2}^{(3)}$, whence $D_{2} \cap D_{3}=\emptyset$.

We need to show that $D_{2} \cap D_{3}=\emptyset$ would be empty even if we had $f_{2}\left[D_{4}\right]=f_{2}\left[D_{3}\right]$. If $D_{2} \cap D_{3} \neq \emptyset$ then as we showed in Step 3 , of (b), it is isomorphic to $M_{2}^{(3)} \cap M_{3}^{\prime}$. Let H_{1} be a generic hyperplane in Y containing y such that $B_{1} \subset h_{1}^{-1}\left[H_{1}\right]$. We have shown that $f_{4}^{\prime-1}$ cannot be an isomorphism on all of $h_{4}^{\prime-1}\left[H_{1}\right]$. We conclude that it is not well-defined at the generic point of $B_{4}^{\prime}=M_{4}^{\prime} \cap M_{3}^{\prime(4)}$, which is the only curve intersected by $h_{4}^{-1}\left[H_{1}\right]$ on which it is not known or assumed to be an isomorphism. Blowing up this intersection, B_{4}^{\prime} gives canonical pair (11, 2).

Let $G^{\prime}=f_{4}^{\prime-1}\left[B_{4}^{\prime}\right]$. We are presuming that $G^{\prime} \subset f^{-1}\left[H_{1}\right] \cap f^{-1}\left[H_{1}^{\prime}\right]$ for generic H_{1}, H_{1}^{\prime} such that $h_{1}^{-1}\left[H_{1}\right], h_{1}^{-1}\left[H_{1}^{\prime}\right] \supset B_{1}$. Thus f_{2} would not be well-defined along G^{\prime}. Calculating canonical B_{1}-pairs with respect to h_{41}^{\prime} : $Y_{4}^{\prime} \rightarrow Y_{1}$, we find that

$$
\begin{aligned}
& u_{f_{1}}\left(D_{2} \cdot H_{1}\right)=(2,1) \\
& u_{f_{1}}\left(D_{3} \cdot H_{1}\right)=(3,1) \\
& u_{f_{1}}\left(D_{4} \cdot H_{1}\right)=(4,1)
\end{aligned}
$$

The canonical B_{1}-pair of the blowing-up of B_{5}^{\prime} is $(3,1)+(4,1)=(7,2)$. Since f_{2} is well-defined except on D_{4}, G^{\prime} would have to be contained in D_{4}. By Step 4 of (c), since f_{4} would not be an isomorphism on G^{\prime}, we would have $G^{1} \subset D_{4} \cap\left(D_{1} \cup D_{2} \cup D_{3}\right) \cup P_{y}(f)$.

We have already shown in (d) that all singleton points of $P_{y}(f)$ lie in A_{0}. On purely combinatorial grounds, we see that G^{\prime} cannot be contained in $D_{4} \cap D_{3}$ or $D_{4} \cap D_{2}$, for if we let b_{5}^{\prime} be the blowing-up of B_{5}^{\prime}, we have

$$
S_{h_{51}}\left(N_{5}^{\prime}, h_{1}^{-1}\left[H_{1}\right]\right)=2 .
$$

On the other hand, $G^{\prime} \subset f_{1}^{-1}\left[h_{1}^{-1}\left[H_{1}\right]\right]=f^{-1}\left[H_{1}\right]$, and if $G^{\prime} \subset D_{4} \cap D_{i}, i=2,3$, then since N_{5}^{\prime} maps into G^{\prime}, the additivity formula would require

$$
\begin{aligned}
s_{h_{11}}\left(N_{5}^{\prime}, h_{1}^{-1}\left[H_{1}\right]\right) & \geq s_{f_{1}^{-1}}\left(D_{4}, h_{1}^{-1}\left[H_{1}\right]\right)+s_{f_{1}^{-1}}\left(D_{i}, h_{1}^{-1}\left[H_{1}\right]\right)+d \\
& \geq 1+1+1=3
\end{aligned}
$$

Thus we must have $G^{\prime} \subset A_{0} \cup\left(D_{4} \cap D_{1}\right) . \quad G^{\prime} \subseteq D_{4} \cap D_{1}$ would be combinatorially possible since $s_{f_{1}^{-1}}\left(D_{1}, h_{1}^{-1}\left[H_{1}\right]\right)=0$.

We first show that G^{\prime} does not lie in A_{0}.
If G^{\prime} is in A_{0}, then f_{5}^{-1} factors through the blowing-up of A_{0}, and its generic point would be a singleton point of the exceptional divisor N_{1}. However, it must also be in the fiber over $y_{1}=f_{2}\left[D_{4}\right]$, which is the intersec-
tion of N_{1} and the lifting $D_{4}^{(1)}$ of D_{4}. This gives a contradiction.
The other possibility is $G^{\prime} \subset D_{4} \cap D_{1}$. Since $f^{-1}\left[H_{1}\right]$ would not intersect D_{1} at any singleton point, $f^{-1}\left[H_{1}\right]$ and $f^{-1}\left[H_{1}^{\prime}\right]$ could not separate at this point, so $f^{-1}\left[H_{1}\right] \cap f^{-1}\left[H_{1}^{\prime}\right]$ would have a curve component in this intersection. Furthermore a single blowing-up would suffice to separate these surfaces. Let $a_{1}^{\prime}: X_{1}^{\prime} \rightarrow X$ be the blowing-up of this component of D_{1} $\cap D_{4} . f_{12}^{\prime}: X_{1}^{\prime} \rightarrow Y_{2}$ would map the exceptional divisor N_{1}^{\prime} to the fiber over y_{1} in M_{2}. Applying lemma 2.9 (i , iii) to $f_{13}^{\prime}: X_{1}^{\prime} \rightarrow Y_{3}^{\prime}$, we would get

$$
u_{f_{10}^{\prime}}\left(N_{1}^{\prime}, H\right)=(9,2)=e_{2}(4,1)+e_{3}(5,1)+c_{i}\left(k_{i}^{\prime}-k_{i}, 0\right), e_{3} \geq 1 .
$$

We obtain $e_{2}=e_{3}=1$.
If we now compare $f^{-1}\left[H_{1}\right]$ with $h_{3}^{\prime}\left[H_{1}\right]$, we find that $h_{3}^{\prime-1}\left[H_{1}\right] \cap$ $f_{3}^{\prime}\left[D_{4}\right]$ maps to $G^{\prime} \cap f^{-1}\left[H_{1}\right] \subset D_{1} \cap D_{4}$, whereas the calculation just made of the blowing-up of this component of $D_{1} \cap D_{4}$ shows that $f_{3}^{\prime}\left(G^{\prime} \cap f^{-1}\left[H_{1}\right]\right)$ $\subset h_{3}^{\prime-1}\left[H_{1}\right] \cap M_{2}^{\prime(3)} \cap M_{3}^{\prime}$. This would be a contradiction, since these two points are distinct on the connected tree $h_{3}^{\prime-1}\left[H_{1}\right] k_{h_{3}}$. We conclude that $f_{4}^{\prime-1}$ could not fail to be an isomorphism on $M_{4}^{\prime} \cap M_{3}^{\prime(4)}$, and thus that the only place where it could fail to be an isomorphism on $h_{4}^{\prime-1}\left[H_{1}\right]$ would be in $M_{2}^{\prime(4)} \cap M_{3}^{\prime(4)}$. Since $f_{4}^{\prime-1}$ is not an isomorphism there, we would conclude that $D_{2} \cap D_{3}=\emptyset$, as shown in Step 3 of (c).

We thus have four components $D_{1}, D_{2}, D_{3}, D_{4}$ with canonical pairs $(3,1),(4,1),(5,1)$ and $(6,1) . B_{1}=f_{1}\left[D_{2}\right]$ is smooth of degree 1 , and there is a curve A_{0} in D_{4} along which f_{1} is not well-defined, whose blowing-up has canonical pair $(7,2) . f_{1}$ is well-defined except on A_{0} and possibly $D_{4} \cap\left(D_{1} \cup D_{3}\right) . D_{1} \cap D_{2}=\emptyset$ and $D_{2} \cap D_{3}=\emptyset$.
(g) A_{0} is smooth at each of its singleton points

We want to show that A_{0} is smooth and transversal to D_{1} and D_{2}. We let $Y_{0}, Y_{1}, Y_{2}, Y_{3}$ be the factorization sequence obtained by blowing up y, B_{1}, and then $B_{2}=M_{2} \cap M_{1}^{(2)}$. $\quad M_{3}$ has a fibration which is induced by f_{3}^{-1} mapping M_{3} onto A_{0}. Except for two special fibers $B_{3}^{\prime}=M_{3} \cap M_{1}^{(3)}$ and $B_{3}^{\prime \prime}=M_{3} \cap M_{2}^{(3)}$, all the other fibers consist of singleton points. Because f_{1} fails to be well-defined at every point of A_{0}, each fiber contains a section B_{3} of B_{1}. Let Y_{4} be the space obtained by a quasi-blowing up of one of these sections B_{3}, which will have canonical pair $(8,2)=(7,2)+(2-1,0)$, by lemma 2.4. Applying lemma 2.9, the image of M_{4} in X must lie in a single component, with $s_{1}=1$, and

$$
4=8-2 \cdot 2 \leq e_{1}\left(w_{1}-2 s_{1}\right)
$$

The only possibility is D_{4}, with $e_{1}=1$. By lemma 2.4 we then have

$$
(8,2)=(6,1)+\left(k_{1}^{\prime}-1, d_{1}\right)
$$

So $k_{1}^{\prime}=3$ and $d_{1}=1$. Thus M_{4} is generically isomorphic to the blowing up of a single point x of A_{0} lying only in D_{4}, and $f^{-1}[H]$ has multiplicity one at x. Since a single blowing up separates generic hyperplanes H_{1}, H_{2} whose liftings $h_{1}^{-1}\left[H_{1}\right]$ and $h_{1}^{-1}\left[H_{2}\right]$ to Y_{1} intersect B_{1} at different points, we conclude that $A_{0}=f^{-1}\left[H_{1}\right] \cap f^{-1}\left[H_{2}\right]$, as the transversal intersection of smooth surfaces, is nonsingular at x. It remains to check $A_{0} \cap D_{1}$ and A_{0} $\cap D_{2}$.
(h) A_{0} intersects D_{1} and D_{2} transversally :

We now make a similar analysis for the two special sections B_{3}^{\prime} and $B_{3}^{\prime \prime}$. We begin with $B_{3}^{\prime}=M_{3} \cap M_{1}^{(3)}$. Blowing up B_{3}^{\prime} to get $b_{4}^{\prime}: Y_{4}^{\prime} \rightarrow Y_{3}$, we have an exceptional divisor M_{4}^{\prime} with canonical pair $(7,2)+(3,1)=(10,3)$. We want to locate $f_{4}^{\prime-1}\left[M_{4}^{\prime}\right]$. From the formulas of 2.9.

$$
3 \leq \sum e_{i} s_{i}+d l, 10 \leq \sum e_{i} w_{i} .
$$

If $l=1$, then each $e_{i} \leq 1$, since the multiplicity of $s_{p}\left(E_{i}, N_{1}\right)=1$. Furthermore, $x=f_{4}^{\prime-1}\left[M_{4}\right]$ is in D_{4}, since we proved early in our consideration of case D that the entire pinch locus is in D_{4}. Thus the only possible combinations of components are $(3,1)+(6,1)+(1,1),(4,1)+(6,1)+(0,0)$, or $(6,1)+(2,1)+(2,1)$.

The last possibility involves as an intermediate stage a component with canonical pair $(8,2)$ which has excess 2 , too small to contain a singleton point in the pinch locus. We want to show that the first possibility is the only one which can hold, so we must eliminate the second possibility, that $f_{4}^{\prime-1}\left[M_{4}^{\prime}\right]$ is $D_{2} \cap D_{4}$.

We have already shown that $D_{1} \cap D_{2}=\boldsymbol{\phi}$ and $D_{2} \cap D_{3}=\boldsymbol{\phi}$. Except for A_{0}, we have already shown that components of the pinch locus all lie in $D_{4} \cap D_{2}$ and $D_{4} \cap D_{3}$. For generic H, we consider $f^{-1}[H]$, which is generically isomorphic to $h_{3}^{-1}[H] . h_{3}^{-1}[H] \cap K_{h_{3}}$ is a union of three curves, C_{1}^{\prime} in $M_{1}^{(3)}, C_{2}^{\prime}$ in $M_{2}^{(3)}$, and C_{3}^{\prime} in M_{3}, which lies between C_{1}^{\prime} and C_{2}^{\prime}. (See Figure 6.)

Since f_{3}^{-1} is an isomorphism at the generic point of $M_{1}^{(3)}$ and $M_{2}^{(3)}$, we have curves $C_{1} \subset f^{-1}[H] \cap D_{1}$ and $C_{2} \subset f^{-1}[H] \cap D_{2}$, which are isomorphic to C_{1}^{\prime} and C_{2}^{\prime} respectively. The restriction of f_{3} to $f_{3}^{-1}[H]$ will map A_{0} to C_{3}^{\prime}, since the blowing up of A_{0} is generically isomorphic to M_{3}. Thus in the correspondence $f_{3}: f^{-1}[H]-->h_{3}^{-1}[H]$, there are no components of $h_{3}^{-1}[H]$ which collapse under f_{3}^{-1}. We conclude that $\bar{f}_{3}=\left.f_{3}\right|_{f-1}[H]$ is welldefined. If we let $P_{1}^{\prime}=C_{1}^{\prime} \cap C_{3}^{\prime}$ and $P_{2}^{\prime}=C_{2}^{\prime} \cap C_{3}^{\prime}$, we find that the pinch locus is the union of A_{0} and the preimages of P_{1}^{\prime} and P_{2}^{\prime}. Since $D_{1} \cap D_{2}$ is

Fig. 6
empty the only possible component of the pinch locus which could intersect C_{1} would be a component of $D_{4} \cap D_{3}$. Since $D_{3} \cap D_{2}$ is also empty, this could not be followed by a component of $D_{4} \cap D_{2}$, but only by A_{0}. Since $f_{3}^{-1}\left[B_{3}\right]=f_{4}^{\prime-1}\left[M_{4}^{\prime}\right]$ must be contained in $f_{1}^{-1}\left(B_{1}\right) \cap D_{1}$, we conclude that it cannot be a curve in $D_{2} \cap D_{4}$, and we are left with the possibility that we wanted, that $f_{4}^{\prime-1}\left[M_{4}\right]$ is a point P_{1} in $D_{1} \cap D_{4}$.

We have $(10,3)=(3,1)+(6,1)+(1,1)$, so M_{4}^{\prime} is generically isomorphic to the blowing up of the point. We conclude that for generic H, $f^{-1}[H]$ is not tangent to either D_{1} or D_{4} at the point. Since it has degree 1 and is nonsingular, we conclude that A_{0} is nonsingular and transversal to D_{1} at P_{1}.

We now make a similar analysis at the other end of A_{0}. Let $C_{2}^{\prime}=$ $h_{3}^{-1}[H] \cap M_{2}^{(3)}$ and let P_{2}^{\prime} be the point where it intersects C_{3}^{\prime}. Letting $\bar{f}_{3}: f^{-1}[H] \rightarrow h_{3}^{-1}[H]$ be the morphism of surfaces induced by $f_{1}: X \rightarrow Y_{3}$, we consider the preimage $\bar{f}_{3}^{-1}\left(P_{2}^{\prime}\right)$ which is a tree of curves contained in the pinch locus. Because $D_{2} \cap D_{3}=\emptyset$, if $\bar{f}_{3}^{-1}\left(P_{2}^{\prime}\right)$ were not a point, it could only be a single component of $D_{2} \cap D_{3}$. We wish to show that it is indeed a point.

Let $b_{4}^{\prime \prime}: Y_{4}^{\prime \prime} \rightarrow Y_{3}$ be a blowing up of $B_{3}^{\prime \prime}=M_{2}^{(3)} \cap M_{3} . h_{4}^{\prime \prime-1}[H] \cap M_{4}$ is just the blowing up of the point $P_{2}^{\prime} . f_{4}^{\prime \prime-1}\left[M_{4}^{\prime \prime}\right]$ is thus contained in $\bar{f}_{3}^{-1}\left(P_{2}^{\prime}\right)$. The canonical pair of $M_{4}^{\prime \prime}$ is just the sum of the canonical pairs of $M_{2}^{(3)}$ and M_{3}.

$$
(11,3)=(4,1)+(7,2)
$$

We have shown that the image must be contained in D_{2} and D_{4}. By 2.9 (ii) we have $3=s=\sum e_{i} s_{i}+\sum c_{i} d_{i}$. We conclude that there is only one blowing up, and $e_{2}=e_{4}=1$. We then have

$$
(11,3)=(4,1)+(6,1)+\left(k^{\prime}-2,1\right) .
$$

We conclude that $M_{4}^{\prime \prime}$ is generically isomorphic to the blowing-up of a point in $D_{2} \cap D_{4}$, at which $f^{-1}[H]$ has multiplicity 1 . As before we see
that for generic $H, f^{-1}[H]$ cannot be tangent to D_{2} or D_{4}. We conclude that A_{0} intersects D_{2} transversally at this point, and that there are no more components to the pinch locus.
(i) We construct a strong factorization for f :

We now blow up A_{0}. Since that is the only component of the pinch locus and the resulting space is generically isomorphic to M_{3}, so that the liftings $f^{-1}[H]$ of generic hypersurfaces are separated, we conclude that $f_{11}: X_{1} \rightarrow Y_{1}$ is well-defined. For any point of B except $f_{1}\left[D_{3}\right]$, we can choose a hyperplane H such that $h_{1}^{-1}[H]$ passes through the point. $f^{-1}[H]$ will be A_{0} which in $f^{-1}[H]$ will be a P^{1} with self intersection -1 . The blowing up to X_{1} will not change the configuration of exceptional curves in $f^{-1}[H]$, since we are blowing up a curve in a surface. The fiber of N_{1} over $f_{1}\left[D_{3}\right]$ is $N_{1} \cap D_{4}$, also isomorphic to A_{0}. Thus N_{1} has irreducible fibers, the generic fiber being a P^{1} of selfintersection -1 . We conclude that N_{1} is contractible. After contracting it we are left with three components collapsing to a non-singular curve. By the main theorem of [9], this is locally factorizable. In the particular case, the appropriate factorization is the one given by blowing up $P=f_{1}\left[D_{3}\right]$ to get M_{2}^{\prime} $\sim D_{3}$, then blowing up $f_{2}^{\prime}\left[D_{4}\right]$, and finally $f_{3}^{\prime}\left[D_{2}\right]$. This concludes the proof.

§4: Three collapsing surfaces

In analyzing morphisms collapsing four surfaces to a point, we encountered two cases, those which do not factor through the blowing up of the point, and those which do. In the previous chapter we analyzed those which do not. We now wish to show that those which do are locally factorizable. After factoring through the blowing up the resulting morphism $f_{1}: X \rightarrow Y_{1}$ collapses three normally crossing surfaces to a set of higher codimension. It suffices, therefore, to prove the following :

Proposition 2: Let $\bar{f}: \bar{X} \rightarrow \bar{Y}$ be a proper birational morphism of three dimensional algebraic spaces, collapsing three or fewer normally crossing surfaces. Then \bar{f} is locally factorizable.

Proof: Over isolated points of $S_{\bar{f}}$ this is just the main theorem of Crauder [1], in the three surface case. We may thus assume that $S_{\bar{f}}$ contains a curve. By lemma 1.6, if \bar{f} were not locally factorizable then there would be a morphism $f: X \rightarrow Y$ occurring in a local factorization tree of \bar{f}, with a point obstruction at a point $y \in Y$.

It thus suffices to show that for any f in such a tree there is an etale covering such that f factors through some blowing-up in a neighborhood
of each point y. We may presume that we have passed to an arbitrarily fine neighborhood of y, and that $b_{1}: Y_{1} \rightarrow Y$ is the blowing up of the point. By lemma 1.8, we may presume that $f_{1}^{-1}\left[M_{1}\right]$ is a surface, but f_{1} is not well defined. We must show that for a properly chosen scheme Y, there is a subscheme $B \subset Y$ such that f factors through the blowing-up $b_{1}^{\prime}: Y_{1}^{\prime} \rightarrow$ Y of B.

Let $D_{1}=f_{1}^{-1}\left[M_{1}\right]$. Let $\alpha=\beta^{-}$be a pair of adjacent vertices in the partial factorization tree leading to f. Let D_{j} be a component of K_{f}. π_{β} : $X_{\beta} \rightarrow X_{\alpha}$ is an etale morphism. We define $D_{j}^{\alpha}=\pi_{\beta}\left(D_{j}^{\beta}\right)$. By the construction of the local factorization, π_{β} is one-to-one over any point y_{α} which is the image of a surface in X_{α}. If $f_{\beta}\left(D_{j}^{\beta}\right)$ is a point y_{β}, then $f_{\alpha}\left(D_{j}^{\alpha}\right)$ is also a point $y_{\alpha}=e_{\beta}\left(y_{\beta}\right)$. Thus $\left(\pi_{\beta}\right)^{-1}\left(D_{j}^{\alpha}\right)=D_{j}^{\beta}$. We conclude that if S_{f} is a point, each component of K_{f} corresponds one-to-one to a component of $S_{\bar{f}}$. Thus there would be at most three components in K_{f}, and the morphism would be locally factorizable by [1]. Henceforward we may assume that S_{f} is a curve.

By lemma 1.2 of [9], there must be a component of K_{f} which is generically isomorphic to the blowing-up of any component of S_{f}. Thus there is at least one component D_{21} with canonical pair (2,0). We denote all other components of K_{f} whose image in \bar{X} is the same component D_{2} by $D_{22}, \ldots, D_{2 j_{2}}$, and note that $D_{2 j} \cap D_{2 j^{\prime}}=\phi$ for $j \neq j^{\prime}$, since components of $K_{\bar{f}}$ have no self-intersections.

There is at most one other class of divisors $D_{31}, \ldots, D_{3 j_{3}}$ in K_{f}, all mapping to the same divisor \bar{D}_{3} in $K_{\bar{f}}$. At least one of the images \bar{f} $\left(\bar{D}_{2}\right), \bar{f}\left(\bar{D}_{3}\right)$ is a curve in $S_{\bar{f}}$. We presume D_{21} to be chosen so that if it is only one of them, $\bar{f}\left(\bar{D}_{2}\right)$ is the one, with canonical \bar{y}-pair $(2,0)$, and that if both map to the same curve B_{0}, then $\left(\bar{D}_{2}\right)$ is the component generically isomorphic to the blowing up of B_{0}, which exists by 1.2 of [9]. In that case $\bar{f}\left(\bar{D}_{3}\right)$ is generically isomorphic to the blowing up of a section, therefore has canonical pair $(3,0)$. By the additivity formula, the weights of components can only drop as we proceed out the branches of a local factorization tree, and the canonical y-pair of a surface $D_{i j}$ whose image is a curve will always have second component 0 because $f\left(D_{i j}\right)$ is not contained in the generic hyperplane H through y, whence $s_{f}\left(D_{i j}, H\right)=$ 0 . Since the weight is always at least the codimension of the image, we see that the components $D_{2 j}$ all have canonical pair (2,0). If there is a second divisor class $\left\{D_{3 i}\right\}$ for which each $f\left(D_{3 i}\right)$ is a curve, $D_{3 i}$ either has canonical pair $(2,0)$ or, if $f\left(D_{3 i}\right)=f\left(D_{2 j}\right)$ for some j, it has the pair $(3,0)$.

EXAMPLE: Divisor class with different canonical pairs. Let $C \subset P^{3}=$ Y be an ordinary node contained in a hyperplane $G \Im P^{2}$. Let \bar{y} be the singular point of C, and let $e_{1}: Y_{1} \rightarrow Y$ be an etale neighborhood of \bar{y} in which C splits into two irreducible normally crossing branches C_{1} and C_{2}. Let $\bar{f}: X \rightarrow Y$ be the locally factorizable morphism which is obtained in Y_{1} by five blowings-up with the following centers: (i) C_{1}, (ii) the intersection of the preimage of C_{2} with the fiber over \bar{y}, (iii) the curve which is the intersection of the first exceptional divisor with the strict preimage of G, (iv) the strict preimage of C_{2}, (v) the intersection of the exceptional divisor over C_{2} with the strict preimage of G. In \bar{f} itself we have a divisor D_{1} collapsing to \bar{y}, a divisor class $\left\{D_{21}, D_{22}\right\}$ in which both divisors have canonical pair $(2,0)$ and a divisor class $\left\{D_{31}, D_{32}\right\}$ in which both divisors have canonical pair.

Now let $f_{1}: X_{1} \rightarrow Y_{1}^{\prime}$ be the first node in the local factorization tree. Let y_{1} be the center of the second blowing-up. In $K_{f_{1}}$ we have a divisor D_{1}^{\prime}, a divisor class $\left\{D_{22}^{\prime}\right\}$ with canonical pair (2,0) and a divisor class $\left\{D_{31}^{\prime}, D_{32}^{\prime}\right\}$ in which the first divisor has canonical pair $(2,0)$ and the second has canonical pair (3,0). (See Fig. 7.)

Fig. 7

Let Δ be an irreducible curve in M_{1} along which f_{1}^{-1} is not an isomorphism. Let Y_{2} be the space obtained by quasi blowing-up with center $\Delta_{1}=\Delta$ and accessible component M_{2}. Consider $f_{2}^{-1}\left[M_{2}\right]$. We claim that it cannot be a surface. If it were a surface D_{3}, then it would also have a point image, and thus be the unique preimage of some component \bar{D}_{3} in \bar{X}. There can only be one remaining class of components, all of canonical pair (2,0). None of the components has an excess of 3 , and none of the intersections has an excess of 4 , since the excesses of $D_{1}, D_{2 j}, D_{3}$ are
$0,2,1$ respectively. f_{1} would then be well defined, a contradiction. Thus $f_{2}^{-1}\left[M_{2}\right]$ is not a surface.

Since M_{2} is the blowing up of a curve on a surface with canonical y-pair (3,1), the canonical y-pair of M_{2} must be (4,1). Applying lemma $2.9(\mathrm{v})$ with $(w, s)=(4,1)$, and (w_{1}, s_{i}) the canonical y-pairs of components of K_{f} containing $f_{2}^{-1}\left[M_{2}\right]$, we have

$$
s \leq \sum s_{i}+d l,
$$

where l is the number of blowings up in the quasi-factorization sequence obtained by blowing-up the image of M_{2} until a component generically isomorphic to M_{2} is obtained. Since $s=1$, we must have $s_{i}=0$ for all i, and $d=l=1$. Lemma 2.8 then gives

$$
(4,1)=\sum\left(w_{i}, 0\right)+\left(k^{\prime}-k, 1\right),
$$

with each $w_{i}=2,3 . f_{2}^{-1}\left[M_{2}\right]$ is in the pinch locus and thus by lemma 2.11 it cannot lie only in a component with canonical pair (2,0) and excess $2-0=2$. Thus the only possibilities are a single component with pair (3, 0) or an intersection $(2,0),(2,0)$. In the first case $k=1$ and $k^{\prime}-k=1$, so the codimension k^{\prime} of $f_{2}^{-1}\left[M_{2}\right]$ is 2 , and in the second case $k=2$ and $k^{\prime}-$ $k=0$, so again $f_{2}^{-1}\left[M_{2}\right]$ is a curve, with codimension 2. In both cases $d=$ 1 implies that B_{1} is of degree 1 , and is thus isomorphic to P^{1}.

There may be several bad curves on M_{1}. We want to analyze the various possibilities, and show that in every case there is some smooth curve L_{i} in Y such that f factors through the blowing-up of L_{i}. Each bad curve Δ_{i} in M_{1} corresponds to a unique bad curve C_{i} in X, with the blowing-up of Δ_{i} generically isomorphic to the blowing-up of A_{i}, and having canonical y-pair (4,1).

For a given bad curve C_{1} in X, we want to show that $f^{-1}(y)$ has multiplicity 1 along C_{1}. We construct a quasi-factorization sequence Y, Y_{1}, Y_{2} by blowing up first y and then Δ_{1}. The accessible component M_{2} $\subset Y_{2}$ is thus, as we showed above, generically isomorphic to the blowing up of C_{1}. Let y_{2} be a general point of M_{2} and $t_{2} \in O_{Y_{2}, y_{2}}$ be a local parameter for the divisor M_{2}. We first show that $h_{2}^{-1}(g)$ has multiplicity 1 on M_{2}. More precisely, we want to show that the ideal $h_{2}^{-1}\left(I_{y}\right) O_{Y_{2}, y_{2}}$ is the principal ideal (t_{2}). Since h_{2} factors through the blowing-up h_{1} of y, $h_{2}^{-1}\left(I_{y}\right) O_{Y_{2}, y_{2}}$ must be invertible. Since M_{2} is the only exceptional divisor of h_{2} containing y_{2}, this ideal must be generated by some power t_{2}^{r} of the local parameter t_{2}. The lifting of an arbitrary generator of I_{y} must therefore be divisible by t_{2}^{r}, which translates in our combinatorial notation into the statement that $S_{h_{2}}\left(M_{2}, H\right) \geq r$ for every hypersurface H through y.

Since the canonical y-pair of M_{2} is $(4,1)$, we have $s_{h_{2}}\left(M_{2}, H\right)=1$ for generic H, so $r=1$, and thus $h_{2}^{-1}\left(I_{y}\right) O_{Y_{2}, y_{2}}=\left(t_{2}\right)$. Let x be the image of y_{2} in X. h_{2} factors locally through X, and $h_{2}^{-1}\left(I_{y}\right) O_{Y_{2}, y_{2}}$ is the lifting of $f^{-1}\left(I_{y}\right) O_{X, x}$, whence this latter ideal must also have multiplicity one. Translating back from ideals to subvarieties, this is what we mean by saying that $f^{-1}(y)$ has multiplicity 1 at x. For y_{2} a general point of M_{2}, x is a general point of C_{1}, so we have $f^{-1}(y)$ of multiplicity 1 along C_{1}.

Passing to the Henselization \widetilde{Y} of Y at y, then for each component of K_{f} containing general point x of C_{1}, we can choose a transversal curve Z_{i} through x contained in that component which does not intersect $f^{-1}(y)$ at any other points. By Nakayama's lemma, the image $L_{i}=f\left(Z_{i}\right)$ must be nonsingular (see Danilov's argument in the proof of lemma 1.8). The L_{i} will be the images of the components containing the Z_{i}. Let V be a closed hypersurface containing Z_{1} and Z_{2}. Let $H_{1} \subset \tilde{Y}$ be a generic hyperplane through L_{1}, and let \bar{f} be the restriction of $\tilde{f}: X \times \tilde{Y} \rightarrow \tilde{Y}$ to $V . \bar{f}$: $V \rightarrow \widetilde{Y}$ is also proper, so by the projection formula we will get

$$
\begin{aligned}
\operatorname{deg} Z_{2} \cdot \bar{f}^{*}\left(H_{1}\right) & =\operatorname{deg} \bar{f}\left(Z_{2}\right) \cdot H_{1} \\
& =\operatorname{deg} L_{2} \cdot H_{1} .
\end{aligned}
$$

Z_{2} can only intersect $\bar{f}^{*}\left(H_{1}\right)$ on $f^{-1}(y)$, since L_{2} intersects H_{1} only at y, \tilde{Y} being local. Thus if $D_{j 1}$ is the component containing Z_{1}, $\operatorname{deg} Z_{2}$. $\bar{f}^{*}\left(H_{1}\right)=\operatorname{deg} Z_{2} \cdot \tilde{f}^{*}\left(H_{1}\right)=\operatorname{deg} Z_{2} \cdot s_{\tilde{f}}\left(D_{j 1}, H_{1}\right) D_{j 1}=s_{\tilde{f}}\left(D_{j 1}, H_{1}\right)=1$, since all the components mapping to L have L_{1} pairs with (2,1) or (3,1), being the result of one or two blowings-up of $L_{1} . Z_{2} \cdot D_{j 1}=1$ because Z_{2} is transversal to $C_{1} \subset D_{i 1}$. We conclude that L_{1} and L_{2} are transversal.

We can repeat this analysis for each bad curve C_{i}, continuing to work after base extension by the Henselization. We now assume that our base scheme Y was chosen sufficiently fine that all the L_{i} are smooth curves in Y.

Suppose C_{1} is contained in a single component $D_{i i}$, let Z_{3} be a transversal curve at a point of C_{1}, and let H be a generic hyperplane through L_{1} in $Y, 1=\operatorname{deg} Z_{3} \cdot f^{*}(H)=\operatorname{deg} f\left(Z_{3}\right) \cdot H$. We conclude that $f\left(Z_{3}\right)$ is nonsingular and transversal to H, therefore to L_{1}. Let H_{1} be a smooth hypersurface in Y containing L_{1} and $f\left(Z_{3}\right)$. Then $H_{1}^{\prime}=f^{-1}\left[H_{1}\right]$ is a smooth hypersurface transversal to C_{1} at $Z_{3} \cap C_{1}$. H_{1}^{\prime} thus intersects the general fiber of any component containing C_{1}, and thus H_{1} contains L_{1}. If C_{1} is contained in two components, then their images, as we proved above, are transversal, and we choose H_{1} to be a smooth hypersurface containing both.

We now consider the two possible cases :

Case 1: For some curve $\Delta, f^{-1}\left[M_{2}\right]$ is a curve on a component D_{31} of order (3,0). For such a component to exist, there must also be a component D_{21} such that D_{31} is generically the blowing up of a section of the image C_{1} of D_{21} in Y. For generic H we found above that $f^{-1}[H]$ has order 1 along the bad curve, so Δ has degree 1 , and thus is isomorphic to P^{1}. In fact, the additivity analysis in the previous paragraph shows that every bad curve in M_{1} is a P^{1}. We wish to show that if there is more than one bad curve, all intersect at a single point P, which will be the intersection of M_{1} with the strict image of D_{21}, and that f will factor through the blowing up of $L_{1}=f\left(D_{21}\right)$.

Let us suppose that there is a second bad curve C_{2}. Let $\Delta_{1}, \Delta_{2} \subset M_{1}$ be the bad curves in Y_{1} corresponding to C_{1} and C_{2}, whose blowings-up, with canonical pair (4,1), are generically isomorphic to the blowing up of C_{1} and C_{2} respectively. C_{1} is contained in a single component D_{31}, and we can find a hyperplane H_{1} in Y containing L_{1}, by taking the image in Y of a hypersurface transversal to C_{1} at general point. Since that means that after blowing up C_{1} to get $X_{1}, f_{10}^{-1}\left[H_{1}\right]$ would contain a fiber of N_{1} over C_{1}, we conclude that $h_{1}^{-1}\left[H_{1}\right]$ contains the image Δ_{1} of such a fiber. Since $\Delta_{1} \neq \Delta_{2}$, and $h_{1}^{-1}\left[H_{1}\right]$ is nonsingular since H_{1} is nonsingular, this means that $h_{1}^{-1}\left[H_{1}\right]$ does not contain Δ_{2}, since $h_{1}^{-1}\left[H_{1}\right] \cap M_{1} \xlongequal{\leftrightarrows}$ cannot contain any points not in Δ_{1}.

Now consider the factorization sequences corresponding to C_{2} and Δ_{2}. We let $a^{\prime}: X^{\prime} \rightarrow X$ be the blowing up of C_{2} with exceptional divisor N_{1}^{\prime}, and we let $b_{2}^{\prime}: Y_{2}^{\prime} \rightarrow X_{1}$ be the blowing up of Δ_{2}, with exceptional divisor M_{2}^{\prime}, generically isomorphic to N_{1}^{\prime}. Since $h_{1}^{-1}\left[H_{1}\right] D \Delta_{2}$, we have $1=$ $s_{h_{1}}\left(M_{1}, H_{1}\right)=s_{h_{2}}\left(M_{2}^{\prime}, H_{1}\right)=s_{f_{10}}\left(N_{1}^{\prime}, H_{1}\right)$. By lemma 2.8

$$
s_{f_{10}}\left(N_{1}^{\prime}, H_{1}\right)=\sum_{c_{2} \subset E_{i}} s_{f}\left(E_{i}, H_{1}\right)+s_{a_{1}^{\prime}}\left(N_{1}^{\prime}, f^{-1}\left[H_{1}\right]\right) .
$$

$f^{-1}\left[H_{1}\right]$ intersects $f^{-1}(y)$ only on C_{1}, so $C_{2} \llbracket f^{-1}\left[H_{1}\right]$, whence $S_{a_{1}}\left(N_{1}^{1}, f^{-1}\left[H_{1}\right]\right)=0$. We conclude that C_{2} in contained in exactly one component E_{1} with $s_{f}\left(E_{i}, H_{1}\right)=1$. Let $L=f\left(E_{i}\right)$. Since $f^{-1}\left(H_{1}\right)$ is connected, $f^{-1}\left[H_{1}\right]$ must intersect $f^{-1}(L)$ in a section of L. This section must intersect $f^{-1}(y)$. However, the only component of K_{f} containing the unique intersection point of $f^{-1}\left[H_{1}\right]$ and $f^{-1}(y)$ is D_{31}. Thus $f^{-1}\left[H_{1}\right] \cap$ $f^{-1}(L)$ contains a point of the generic fiber of D_{31}. We conclude that $L=$ L_{1}.

Letting H_{2} be a smooth hypersurface in Y whose strict preimage $f^{-1}\left[H_{2}\right]$ in X intersects $f^{-1}(y)$ only on C_{2}, we know that H_{2} contains the image L_{1} of the unique component containing C_{2}. Since $h_{1}^{-1}\left[H_{2}\right]$ is a P^{2},
equal to Δ_{2}, we see that $P=h_{1}^{-1}\left[L_{1}\right] \cap M_{1}$ must lie in $\Delta_{2}=h_{1}^{-1}\left[H_{2}\right] \cap M_{1}$. This proves the claim that $P \in \Delta_{1} \cap \Delta_{2}$.

Let $h_{1}^{\prime}: Y_{1}^{\prime} \rightarrow Y$ be the blowing-up of $L_{1}=f\left(D_{21}\right)$. We will now show that $f_{1}^{\prime}: X \rightarrow Y_{1}^{\prime}$ is well-defined everywhere. We begin by showing that D_{21} intersects $f^{-1}[y]=D_{1}$. We have a section $D_{21} \cap D_{31}$ of L_{1}, which must intersect $f^{-1}(y) . f^{-1}(y)$ is the union of D_{1} and isolated curves, all belonging to the pinch locus, and thus not contained in D_{21}. Since D_{21} and D_{31} are representatives of the only divisor classes with curve image, and components of the same divisor class cannot intersect, the point of intersection $D_{21} \cap D_{32} \cap f^{-1}(y)$ must be a point of D_{1}. Thus $D_{21} \cap D_{1}$ is a non-empty curve C. Let H_{1}, H_{2}, H_{3} be coordinate hypersurfaces at y with $L_{1}=$ $H_{1} \cap H_{2}$. Since the excesses of D_{21} and D_{1} in these coordinates are 0 , both the map f_{1}^{\prime} to the blowing up of L_{1} and the map f_{1} to the blowing up of y, are well-defined at all double points of C, by lemma 2.3 of [9]. Since f_{1} is well-defined there, $f_{1}[C]=f_{1}\left[D_{21}\right] \cap f_{1}\left[D_{1}\right]=h_{1}^{-1}\left[L_{1}\right] \cap M_{1}=P$. Letting Y_{2}^{\prime} be obtained by blowing up $f_{1}\left[D_{2}\right]$, and X_{1}^{\prime} by blowing up $D_{21} \cap D_{1}$, we get $f_{2}^{\prime}\left[N_{1}\right] \subset M_{1}^{(2)} \cap M_{2}^{\prime}$. Since $(5,1)=(3,1)+(2,0)$, the image is the whole intersection, and N_{1}^{\prime} is generically isomorphic to the blowing-up of $M_{1}^{2} \cap M_{2}^{\prime}$. Taking a generic test curve through this intersection, its closure point x then lies in $D_{21} \cap D_{3}$. Applying lemma 1.2 of [9] to f_{1}^{\prime} at x, and regarding Y_{2}^{\prime} as the blowing up of $h_{1}^{\prime-1}(y)$, we get f_{2}^{\prime} well defined at x. Since f_{2}^{\prime} is a quasifactor for D_{21}, D_{3} we conclude that it-is an isomorphism at x, by 1.3 of [9]. Since $f_{2}^{\prime-1}$ is then an isomorphism except on the bad curves in $M_{1}, f_{2}^{\prime-1}$ is an isomorphism except on their strict transforms, each of which is fiber over a point in Y_{1}^{\prime}. Thus $f_{1}^{\prime-1}$ is an isomorphism on the generic point of $h_{1}^{\prime-1}(y)$. Thus by lemma 1.4 of [9], f_{1}^{\prime} is well-defined. This was what we needed to show.
Case 2: All bad curves in M_{1} are of the $(2,0)+(2,0)$ type. We want to show that all the bad curves intersect at a single point P. Let D_{21} and D_{31} be components containing a bad curve. Let $L_{2}=f\left(D_{21}\right)$ and $L_{3}=f\left(D_{31}\right)$. Let $P_{2}=f_{1}^{-1}\left[L_{2}\right] \cap M_{1}$ and $P_{3}=f_{1}^{-1}\left[L_{3}\right] \cap M_{1}$. We may presume that L_{2} and L_{3} are smooth, and transversal at y as we showed above.

Let A_{0} be the bad curve C_{1}, and blow up to get $a_{1}: X_{1} \rightarrow X_{0}$. By the normal crossings of K_{1}, A_{0} must be be smooth, and by the connectedness of $f^{-1}(y)$, it must intersect D_{1}. Let H_{1}^{\prime} be a plane intersecting $f^{-1}(y)$ at a single point of A_{0} with multiplicity 1 . Take H_{1} so that $H_{1}^{\prime}=f^{-1}\left[H_{1}\right]$. If A_{0}^{\prime} is another bad curve, and a_{1}^{\prime} is the blowing up, then E_{1}, E_{2} are the components of K_{f} containing A_{0}^{\prime}.

$$
\begin{aligned}
(4,1) & =u_{f_{10}}\left(N_{1}^{\prime}, H_{1}\right)=\left(4, s_{f}\left(E_{1}, H_{1}\right)+s_{f}\left(E_{2}, H_{1}\right)\right. \\
& \left.+s_{a_{1}^{\prime}}\left(N_{1}^{\prime}, f^{-1}\left[H_{1}\right]\right)\right) .
\end{aligned}
$$

Since $A_{0}^{\prime} \nsubseteq f^{-1}\left[H_{1}\right]$, we must have $s_{f}\left(E_{1}, H_{1}\right)=1$ for some i. Thus A_{0} and A_{0}^{\prime} share a common component, D_{21}. Let D_{32} be the second component containing A_{0}^{\prime}. Every other bad curve $A_{0}^{\prime \prime}$ in X must be in $D_{21} \cup D_{3 i}$ for $i=1$, 2, by applying the previous argument with $A_{0}^{\prime \prime}$ in place of A_{0} or of A_{0}^{\prime}. Since $D_{31} \cap D_{32}=\emptyset, A_{0}^{\prime \prime} \subset D_{21}$. Thus every bad curve in M_{1} passes through P. We know that $D_{21} \cap D_{1}$ is non-empty, at $A_{0} \cap D_{1}$, and conclude as in the previous case that if Y_{2}^{\prime} is the blowing up of $f_{1}\left[D_{21}\right]$, then f_{2}^{\prime} is an isomorphism except over a finite number of fibers of Y_{2}^{\prime} over Y_{1}^{\prime}. Thus by lemma 1.4 of [9], f^{\prime} is well defined, as we wished to show.

References

[1] B. CRAUDER, Birational morphisms of smooth algebraic three-folds collapsing three surfaces to a point, Duke Math. J. 48 (1981), No. 2, 401-420.
[2] V. I. DANilov, Decomposition of certain birational morphisms, Math. USSR Izvestija 16 (1981), No. 2, 419-429.
[3] -, Birational geometry of toric three-folds, Math. USSR Izvestija 21 (1983), No. 2, 269-280.
[4] J. Dieudonne, A. Grothendieck, Eléments de Géométrie Algébrique, IV, I. H. E. S., No. 32, 1967.
[5] J. KOLLAR, The structure of algebraic three-folds: an introduction to Mori's program, Bulletin of A. M. S. 17 (1987), No. 2, 211-273.
[6] T. OdA, Torus Embeddings and Applications, (based on joint work with Katsuya Miyake), Tata Inst. Fund. Research, 1978.
[7] H. Pinkham, Factorization of birational maps in dimension 3, A. M. S. Summer Institute on Singularities, Arcata, 1981.
[8] M. SCHAPS, Birational morphisms factorizable by two monoidal transformations, Math. Ann. 222 (1976), 223-228.
[9] , Birational morphisms of smooth threefolds collapsing three surfaces to a curve, Duke Math. J. 48, No. 2 (1981).
[10] M. TEICHER, Factorization of a birational morphism between 4 -folds, Math. Annalen 256 (1981), 391-399.

