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1. Introduction.

In this paper we investigate the solvability of the Dirichlet problem
for semi-linear equation

(1_{s}) Lu=- \sum_{i,j=1}^{n}D_{i}(a_{ij}(x)D_{j}u)=f(u)+s\theta(x)+h(x) in Q,

(2_{t}) u(x)=t\phi(x) on \partial Q,

in a bounded domain Q\subset R^{n} , with the boundary \partial Q of class C^{2} , where s
and t are real parameters, \theta is the first eigenfunction of L and \theta\perp h .

In the case, where t=0 anf f satisfies the Ambrosetti-Prodi conditions

(3) \lim_{tarrow-\infty}\frac{f(t)}{t}<\lambda_{1}<\lim_{tarrow\infty}\frac{f(t)}{t},

the problem (1_{s}) , (2_{0}) has an extensive literature (see [1], [2], [3], [8],
[10], [12], [13] and [14] ) . Here \lambda_{1} denotes the first eigenvalue of L. In
these papers, under suitable regularity assumptions on a_{ij} (i, j=1, \ldots n)f

and h, the following result was established. There exists a constant \theta)

such that the problem (1_{s}) , (2_{0}) has 2, 1 or 0 solutions depending on
whether s is less than, equal to or greater than \theta).

The purpose of this article is to investigate the dependence of the
existence of solutions of (1_{s}) , (2_{t}) on a parameter t.

The main result can be summarized as follows. Suppose that \phi is
sufficiently smooth, \phi\geq 0 and \phi\not\equiv 0 on \partial Q. Then there exists a number
s_{0}=s_{0}(h, \phi, f) such that for every s\leq s_{0} there exists t^{*}(s) such that for t<
t^{*}(s) the problem (1_{s}) , (2_{t}) has at least one solution and no solution for
t>t^{*}(s) .

2. Preliminaries.

Throughout this paper we make the following assumptions:

(A) There exists a constant \gamma>0 such that
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\gamma|\xi|^{2}\leq\sum_{i,j=1}^{n}a_{ij}(x)\xi_{i}\xi_{j}

for all \xi\in R^{n} and x\in Q , moreover a_{ij}\in C^{1} ( \overline{Q}) and a_{ij}=a_{ji} , i, j=1 , \ldots . n .

(B) The nonlinearity f : R– R is Lipschitz and satisfies the Ambrosetti-
Prodi conditions (3).

(C) The boundary data \phi\in L^{\infty}(\partial Q) , h\in L^{\infty}(Q) and h\perp\theta .

It is well known that \theta(x) can be taken positive on Q. We always

assume that \theta is normalized, that is, \int_{Q}\theta(x)^{2}dx=1 .
A function u is said to be a weak solution of the equation (1_{s}) , if u\in

W_{1OC}^{1,2}(Q) and u satisfies

(4) \int_{Q}\sum_{i,j=1}^{n}a_{ij}(x)D_{i}uD_{j}vdx=\int_{Q}[f(u)+s\theta(x)+h(x)]v(x)dx

for every v\in W^{1.2}(Q) with compact support in Q.
Since not every func^{1}tion\phi in L^{\infty}(\partial Q) is a trace of an element from

W^{1,2}(Q) the boundary condition (2) requires a proper formulation. We
adopt here the L^{2} -approach developed in papers [4], [5], [6] and [16].
To formulate the meaning of the boundary condition (2) we need some
terminology and definitions.

It follows from the regularity of the boundary \partial Q that there is a num-
ber \delta_{0}>0 such that for \delta\in(0, \delta_{0}] the domain Q_{\delta}=Q \cap\{x;\min_{y\in\partial Q}|x-y|>\delta\} ,

with the boundary \partial Q_{\delta} , possesses the following property: to each x_{\}}\in\partial Q

there is a unique point x_{\delta}(\chi_{)})\in\partial Q_{\delta} such that x_{\delta}(x)=x_{)}-\delta\nu(X_{1}) , where
\nu(x_{1}) is the outward normal to \partial Q at j%. The above relation gives a
one-t0-0ne mapping, of class C^{1} , of \partial Q onto \partial Q_{\delta} .

According to Lemma 14. 16 in [11] (p. 355), the distance r(x)=dist
(x, \partial Q) , x\in\overline{Q}, belongs to C^{2}( \overline{Q}-Q_{\delta 0}) if \delta_{0} is sufficiently small. Denote
by \rho(x) the extension of the function r(x) into \overline{Q} satisfying the following

properties: \rho(x)=r(x) for x\in\overline{Q}-Q_{\delta 0} , \rho\in C^{2}( \overline{Q}) , \rho(x)\geq\frac{3\delta_{0}}{4} for x\in Q_{\delta 0} ,

\gamma 1-1r(x)\leq\rho(x)\leq\gamma_{1}r(x) for x\in C^{2} ( \overline{Q}) for some positive constant \gamma_{1} ,
\partial Q_{\delta}=\{x,\cdot\rho(x)=\delta\} for \delta\in(0, \delta_{0}] and finally \partial Q=\{x;\rho(x)=0\} .

Guided by the results of [4], [5], [6] and [16] we adopt the follow-
ing approach to the Dirichlet problem (1_{s}) , (2_{t}) .

Let \phi\in L^{\infty}(\partial Q) . A weak solution u in W_{1OC}^{1,2}(Q) of (1) is a solution
of the Dirichlet problem with the boundary condition (2_{t}) if
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\lim_{\deltaarrow 0}\int_{\partial Q}[u(x_{\delta}(x))-t\phi(x)]^{2}dS_{\chi}=0

It follows from Theorem 5 in [5] (see also Theorem 1 in [4]), that if
the problem (1_{s}) , (2_{t}) admits a solution u in W_{1OC}^{1,2}(Q) , then u\in\overline{W}^{1,2}(Q) ,

where \overline{W}^{1,2}(Q) is a weighted Sobolev space defined by

\overline{W}^{1,2}(Q)=\{u;u\in W_{1OC}^{1,2}(Q) and
\int_{Q}|Du(x)|^{2}r(x)dx+\int_{Q}u(x)^{2}dx<\infty\}

and equipped with the norm

||u||_{W^{12}}^{2}= \int_{Q}|Du(x)|^{2}r(x)dx+\int_{Q}u(x)^{2}dx.

3. Main result.

We commence with the following lemma, which shows that a solution
of (1_{s}) , (2_{t}) for fixed s does not exist for t sufficiently large.

Let us denote by K\phi a unique solution in \overline{W}^{1,2}(Q)\cap L^{\infty}(Q) of the
problem

(5) Lu=0 in Q.
(6) u(x)=\phi(x) on \partial Q .

The existence of K\phi follows from Theorem 6 in [5] (see also Lemma 2 in
[6] ) .

LEMMA 1. If \int_{Q}K\phi(x)\theta(x)dx>0(\int_{Q}K\phi(x)\theta(x)dx<0) then for
every s\in R there exists a constant t_{0}=t_{0}(s) such that the problem (1_{s}) , (2_{t})

has no solution in \overline{W}^{1,2}(Q) for t>t_{0}(t<t_{0}) .

PROOF. It follows from (3) that there exists a constant b such that

(7) \lambda_{1}u-f(u)\leq b\zeta

for all u\in R. If u is a solution of (1_{s}) , (2_{t}) , then the function v=u-tK\phi

is a solution in [mathring]_{W}^{2},(Q) to the problem

Lv=f(v+tK\phi)+s\theta(x)+h(x) in Q,

v(x)=0 on \partial Q.

We only consider the case \int_{Q}K\phi(x)\theta(x)dx>0 . It is clear that

0= \int_{Q}\sum_{i,j=1}^{n}a_{ij}(x)D_{i}vD_{j}\theta dx-\lambda_{1}\int_{Q}v\theta dx=\int_{Q}f(v+tK\phi)\theta dx
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+s- \lambda_{1}\int_{Q}v\theta dx.

The estimate (7) yields that

(8) \lambda_{1}t\int_{Q}K\phi\cdot \theta dx=\lambda_{1}\int_{Q}(v+tK\phi)\cdot \theta dx-\int_{Q}f(v+tK\phi)\theta dx-s

\leq b\int_{Q}\theta dx-s .

We obtain the assertion of lemma if we set

t_{0}(s)= \frac{b\int_{Q}\theta(x)dx-s}{\int_{Q}K\phi\cdot\theta dx} .

To proceed further let us denote by L_{m,M}^{\infty}(\partial Q)(0<m<M<\infty) the set
of all functions \phi in L^{\infty}(\partial Q) such that m\leq\phi(x)\leq Ma . e . on \partial Q.

We also need a slightly modified definition of a super-and subsolution
of (1_{t}) , (2_{s}) . We recall that if \phi\in H^{1/2}(\partial Q) then a function U in
W^{1,2}(Q) is a supersolution of the problem (1_{s}) , (2_{t}) if

\int_{Q}\sum_{i,j=1}^{n}a_{ij}(x)D_{i}UD_{j}vdx\geq\int_{Q}[t^{}( U)v+s\theta(x)+h(x)]vdx

for every non-negative v in [mathring]_{W}^{2},(Q) and U(x)\geq t\phi(x) on \partial Q in the sense
of H^{1/2}(\partial Q) . We define a sub-solution of the problem (1_{s}) , (2_{t}) by rever-
sing the inequality signs in this definition.

If \phi\in L^{\infty}(\partial Q) , then in general \phi\not\in H^{1/2}(\partial Q) . Therefore we introduce
the following modification of this definition.

Let \phi\in L^{\infty}(\partial Q) . A function U\in W^{1,2}(Q) is a supersolution of the
problem (1_{s}) , (2_{t}) if there exists a sequence of functions \{\phi_{m}\} in C^{1}(\partial Q)

such that \lim_{marrow\infty}\int_{\partial Q}[\phi(x)-\phi_{m}(x)]^{2}dS_{x}=0 and for every mU is a supersolu-

tion of the problem (1_{s}) , (2_{t}) with \phi=\phi_{m} . In an obvious way we define
a subsolution.

Finally we observe that the condition (3) implies the existence of con-
stants 0<\mu<\lambda_{1}<\overline{\mu} and C>0 such that

(9) f(u)\geq\mu u-C

and

(10) f(u)\geq\overline{\mu}u-C

for all u\in R.
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We are now in a position to establ\overline{l}sh the following result.

THEOREM 1. There exists s_{0}\in R such that for each s\leq s_{0} there exists
t^{*}(s) such that for each t\leq t^{*}(s) the problem (1_{s}),(2_{t}) admits at least one
solution in \overline{W}^{1,2}(Q)\cap L^{\infty}(Q) for each \phi\in L_{m.M}^{\infty}(\partial Q) . If t>t^{*}(s) then
there exist functions \phi\in L_{m,M}^{\infty}(\partial Q) for which the problem (1_{s}) , (2_{t}) has no
solution.

PROOF.
Let N>0 and set

k= \sup\{f(u)+h(x) : x\in Q, 0\leq u\leq N\} .

Let Q_{2} and Q_{1} be open subsets of Q such that Q_{2}\subset\overline{Q}_{2}\subseteq Q_{1}\subset\overline{Q}_{1}\subset Q with \delta=

meas (Q-Q_{2}) to be determined. By H we denote a continuous function
on Q such that 0\leq H(x)\leq|k| on \overline{Q}, H(x)=|k| on \overline{Q}-Q_{1} and H(x)=0 on
Q_{2} . The Dirichlet problem

Lu=H(x) in Q,
u(x)=t\cdot M on \partial Q,

admits a unique solution U\in W^{1,2}(Q)\cap C(\overline{Q}) . If t\geq 0 , then by the maxi-
mum principle and L^{p} estimates for elliptic equations we have

0\leq U(x)\leq Mt+C_{1}|k|\delta^{1/p}

on Q for some C_{1}>0 . We now choose t_{0}>0 and \delta>0 such that
(11) Mt+C_{1}k\delta^{1/2}\leq N

for 0\leq t\leq t_{0} . It is clear that there exists s_{0}<0 such that
|k|+s\theta(x)\leq H(x) on Q

for s\leq s_{0} . Consequently

LU=H(x)\geq|k|+s\theta(x)\geq f(U)+s\theta(x)+h(x) on Q.

It is easy to see that U is a supersolution (1_{s}) , (2_{t})(s\leq s_{0},0\leq t\leq t_{0}) for
each \phi\in L_{m,M}^{\infty}(\partial Q) . To find a subsolution we consider the Dirichlet prob-
lem

Lu=\mu u-C+s\theta(x)+h(x) in Q,
u(x)=0 on \partial Q,

where \mu and C are constants from the inequality (9). We may always
assume that C>s\theta(x)+h(x) on Q for all s\leq s_{0} . Since \mu<\lambda_{1} the maxi-
mum principle yields that the solution V of this problem is negative on Q.
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We now show that the problem (1_{s}) , (2_{t}) has a solution in \overline{W}^{1,2}(Q)\cap

L^{\infty}(Q) for each \phi\in L_{m,M}^{\infty}(\partial Q) and all s\leq s_{0},0\leq t\leq t_{0} . It t=0 , then the

existence of a solution follows from [9] and it belongs to [mathring]_{W}^{2},(Q)\cap L^{\infty}

(Q) . Therefore we may assume that t>0 . If \phi\in L_{m,M}^{\infty}(\partial Q) then we can
find a sequence \{\phi_{k}\} in C^{1}(\partial Q) such that \lim_{karrow\infty}\int_{\partial Q}[\phi_{k}(x)-\phi(x)]^{2}dS_{\chi}=0 and
m\leq\phi_{k}(x)\leq M on \partial Q for each k. Since U and V are a super-and subsolu-
tion of (1_{s}) , (2_{t}) with the boundary condition u(x)=t\phi_{k}(x) on \partial Q for
each k, it follows from [9] that the problem (1_{s}) , (2_{t}) has a solution u_{k}\in

W^{1.2}(Q) satisfying the boundary condition u_{k}(x)=t\phi_{k}(x)(k=1,2, \ldots) . It
is clear that the sequence \{u_{k}\} is bounded in L^{\infty}(Q) . We now show that
the sequence \{u_{k}\} is bounded in \tilde{W}^{1,2}(Q) . To achieve this we take as a
test function in (4)

v(x)=\{
u_{k}(x)(\rho(x)-\delta) on Q_{\delta} ,

0 on Q-Q_{\delta} ,

and integrating by parts and letting \delta tend to 0 we get

\int_{Q}\sum_{i,j=1}^{n}a_{ij}D_{i}u_{k}D_{j}u_{k}\mu dx=\int_{\partial Q}\sum_{i,j=1}^{n}a_{ij}D_{i}\rho D_{j}\rho\phi_{k}^{2}dS_{x}

+ \int_{Q}\sum_{i,j=1}^{n}D_{i}(a_{ij}D_{j}\rho)u_{k}^{2}dx+\int_{Q}f(u_{k})u_{k}\rho dx+\int_{Q}(s\theta+k)u_{k}\rho dx.

Using the ellipticity condition we easily deduce from this inequality that

\int_{Q}|Du_{k}(x)|^{2}\rho(x)dx\leq C_{1}(\int_{\partial Q}\phi_{k}(x)^{2}ds_{X}+\int_{Q}u_{k}(x)^{2}dx+1)

for some constant C_{1}>0 independent of u_{k} . Since \{\phi_{k}\} is bounded in
L^{\infty}(\partial Q) , the sequence \{u_{k}\} is bounded in \overline{W}^{1,2}(Q) . Consequently, we may
assume that u_{k} converges weakly in \tilde{W}^{1,2}(Q) to a function u\in\overline{W}^{1,2}(Q) .
By virtue of Theorem 14. 12 in [15] we may assume that u_{k} converges to
u in L^{2}(Q) . It is clear that u is a weak solution of (1_{s}) in \tilde{W}^{1,2}(Q)\cap

L^{\infty}(Q) . By Theorem 5 in [4] it has a trace \zeta\in L^{\infty}(\partial Q) . Repeating a
standard argument one can show that \zeta(x)=t\phi(x)a . e . on \partial Q. Suppose
now that for fixed s\leq s_{0} the problem (1_{s}) , (2_{t}) is solvable for some t=t_{1}

We now show that the problem (1_{s}),(2_{t}) is solvable for all t<t_{1} and
all \phi\in L_{m,M}^{\infty}(\partial Q) . We only consider the case t_{1}<0 . Since a constant
function \phi=m belongs to L_{m.M}^{\infty}(\partial Q) there exists a solution \overline{U}\in W^{1,2}(Q)

of the problem

Lu=f(u)+s\theta(x)+h(x) in Q,
u(x)=t_{1}\cdot M on \partial Q,
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and \overline{U} is a supersolution of (1_{s}) , (2_{t}) with \phi=t\cdot m, t<t_{1} For fixed t<
t_{1} , let \overline{V} be a solution to the problem

Lu=gu-C+s\theta(x)+h(x) in Q,
u(x)=t\cdot M on \partial Q,

where C and \mu_{-} are the constants from the estimate (9). By virtue of this
estimate we have

L(\overline{U}-\overline{V})\geq\mu(\overline{U}-\overline{V})+C in Q
\overline{U}(x)-\overline{V}(x)=t(m-M) on \partial Q

and consequently from the maximum principle we deduce that \overline{U}(x)>\overline{V}

(x) on Q. It is clear that \overline{U} and \overline{V} are a super-and subsolution of (1_{s}) ,
(2_{t}) for each \phi\in L_{m,M}^{\infty}(\partial Q) . Repeating the argument from the previous
part of the proof we can show that the problem (1_{s}) , (2_{t}) is solvable in
\tilde{W}^{1,2}(Q) for each \phi\in L_{m,M}^{\infty}(\partial Q) . We now define for s\leq s_{0}

t^{*}(s)= \sup\{t : the problem (1_{s}) , (2_{t}) is solvable
for all \phi\in L_{m,M}^{\infty}(\partial Q)\} .

It follows from Lemma 1 that

t^{*}(s) \leq\frac{b\cdot\int_{Q}\theta(x)dx-s}{\int_{Q}K\phi(x)\theta(x)dx}\leq\frac{b}{m}-m\int_{Q}\theta(x)dxs<\infty .

It is evident that for fixed s\leq s_{0} the problem (1_{s}) , (2_{t}) is solvable for all
t<t^{*}(s) and all \phi\in L_{m,M}^{\infty}(\partial Q) . It also follows from the definition of
t^{*}(s) that for each t>t^{*}(s) there must exist \phi\in L_{m,M}^{\infty}(\partial Q) such that the
problem (1_{s}) , (2_{t}) is not solvable in \overline{W}^{1.2}(Q) . To complete the proof we
show that the problem (1_{s}) , (2_{t^{*}(s)}) is solvable for each \phi\in L_{m,M}^{\infty}(\partial Q) .
To show this we consider for a given \phi\in L_{m,M}\infty(\partial Q) the problem (1_{s}) ,
(2_{t_{k}}) with t_{k}<t^{*}(s) and \lim_{karrow\infty}t_{k}=t^{*}(s) . For every k there exists at least
one solution u_{k} in \overline{W}^{1,2}(Q) . First we observe that the sequence u_{k} is
bounded below on Q. Indeed, let w_{k} be a solution of the problem

Lu=\mu_{-}\overline{u}-C+s\theta(x)+h(x) in Q,
u(x)=t_{k}\phi(x) on \partial Q,

where C and \Delta_{-} are constants from the estimate (9). It is obvious that

L(u_{k}-w_{k})=f(u_{k})-gw_{k}+C\geq\mu^{(}u_{k}-w_{k})+C in Q,

and
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u_{k}(x)-w_{k}(x)=0 on \partial Q.

Since u_{k}-w_{k}\in[mathring]_{W}^{2},(Q) the maximum principle implies that u_{k}(x)\geq w_{k}(x)

on Q. The max\overline{l}mum principle also implies that the sequence \{w_{k}\} is
bounded in L^{\infty}(Q) and consequently the sequence \{u_{k}\} is bounded below.
We now show that \{u_{k}\} is bounded in \overline{W}^{1.2}(Q) . We argue by contradic-
tion. If the sequence \{u_{k}\} is unbounded in \overline{W}^{1,2}(Q) , we may assume that
\lim_{karrow\infty}||u_{k}||_{\tilde{W}^{12}(Q)}=\infty . We set z_{k}(x)=u_{k}(x)||u_{k}||_{\tilde{W}^{12}}^{-1} . Since ||z_{k}||_{\tilde{W}^{12}}=1 for each k,

we may also assume that z_{k} converges to z in L^{2}(Q) . Since u_{k} is bounded
below on Q, z(x)\geq 0 on Q. It is clear that z is a solution in \tilde{W}^{1.2}(Q) of
the equation

Lz=\overline{\mu}z in Q,

where \overline{\mu} is a constant from the estimate (10). Repeating the argument
from [7] one can show that the trace of z on \partial Q is 0 and consequently z

\in[mathring]_{W}^{2}.(Q) . Using as a test function

v(x)=\{
z_{k}(x)(\rho(x)-\delta) on Q_{\delta}

0 on Q-Q_{\delta}

we can show that z_{k} converges to z in \overline{W}^{1,2}(Q) (see [7]). Since ||z||_{\overline{W}^{12}}=1 ,

z\geq 0 on Q and z\in[mathring]_{W}^{2},(Q) , we obtain a contradiction with the fact that
\lambda_{1}<\overline{\mu} .

4. Smooth boundary data and final remarks.

Theorem 1 becomes more transparent if \phi\in H^{1/2}(\partial Q)\cap L^{\infty}(\partial Q) , \phi\geq 0

and \phi\not\equiv 0 on \partial Q. Inspection of the proof of this theorem shows that in
order to construct a super-and subsolution we can replace the boundary
condition with a constant function by u(x)=t\phi(x) on \partial Q at the appropri-
ate steps of the proof. Moreover, the number t^{*}(s) can be estimated by

t^{*}(s) \leq\frac{b\int_{Q}\theta(x)dx-s}{\int_{Q}K\phi(x)\theta(x)dx} .

Consequently this observation leads to the following theorem

THEOREM 2. Let \phi\in L^{\infty}(\partial Q)\cap H^{1/2}(\partial Q) , \phi\geq 0 and \phi\not\equiv 0 on \partial Q.
Then there exists a number s_{0} such that for each s\leq s_{0} there exists a con-
stant t^{*}=t^{*}(s) such that the problem (1_{s}) , (2_{t}) has at least one solution
in W^{1,2}(Q) for t\leq t^{*}(s) and no solution for t>t^{*}(s) .
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In the case where \phi varies in sign we can establish a local result.

THEOREM 3. Let \phi\in L^{\infty}(\partial Q)\cap H^{1/2}(\partial Q) . Then there exist constants
s* and t_{0} such that the problem (1_{s}) , (2_{t}) has at least one solution in
W^{1,2}(Q) for s\leq s_{*} and |t|\leq t_{0} and no solution for s>s_{*} and |t|\leq t_{0} .

PROOF.
Let

k= \max\psi(u)+h(x) ; |u|\leq N, x\in Q}

and let H a positive function defined in the proof of Theorem 1 with t_{0}

and \delta satisfying the inequality

|t|suX\in P_{Q}^{|\phi(\chi)|+C\delta^{1/\rho}\leq N}

for |t|\leq t_{0} . A solution U to the problem

Lu=H(x) in Q,
u(x)=t\phi(x) ,

is a supersolution of (1_{s}) , (2_{t}) with s\leq s_{0} and |t|\leq t_{0} . In an obvious way
we define a subsolution V such that V\leq U on Q. Consequently, the exis-
tence of a solution follows from [9]. It is now a routine to show that if
the problem (1_{s}) , (2_{t}) is solvable for some s_{1} and |t|\leq t_{0} , then it is solv-
able for all s\leq s_{1} and |t|\leq t_{0} . To complete the proof we set

s_{*}= \sup\{s ; the problem (1_{s}) , (2_{t}) is solvable
for |t|\leq t_{0} }.

In the next theorem, we show that for a given t\in R and \phi\in H^{1/2}(Q)

\cap L^{\infty}(\partial Q) there exists s such that the problem (1_{s}) , (2_{t}) has a solution.

THEOREM 4. Let \phi\in L^{\infty}(\partial Q)\cap H^{1/2}(\partial Q) . Then for every t there
exists s_{*} such that the problem (1_{s}) , (2_{t}) has at least one solution for s\leq s_{*}

and no solution for s>s_{*} .

PROOF.
We modify the construction of a super-and subsolution U and V from

the proof of Theorem 1.
Let

N>|t|_{Su_{\int}}|\phi(x)|

and set

k= \max\psi(u)+h(x) : |u|\leq N, x\in Q}.
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As in the proof of Theorem 1 we define the funct\dot{l}onH(x) with \delta satisfy-
ing the inequality

|t|su\partial P
|\phi(x)|+C_{1}\delta^{1/\rho}\leq N,

where C_{1} is a constant from the inequality (11). There exists s_{0}<0 such
that |k|+s\theta(x)\leq H(x) for x\in Q and s\leq s_{0} and a supersolution of (1_{s}) ,
(2_{t}) is defined as a solution of the problem

Lu=H(x) in Q,
u(x)=t\phi(x) on \partial Q.

The corresponding subsolution for a fixed s\leq s_{0} is defined as a solution to
the problem

Lu=\mu u-C+s\theta(x)+h(x) in Q,

u(x)= \min(-|t|su\partial P |\phi(x)|, \min_{Q}U(x)) on \partial Q

and the remaining part of the proof is similar to the proof of Theorem 1.
We point out here that this theorem cont\dot{l}nues to hold for \phi\in L^{\infty}(\partial Q) .
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