
Hokkaido Mathemtical Joumal Vol. 19 (1990) p. 509\sim 574

The generalized Burnside ring
of a finite group*

Tomoyuki YOSHIDA
(Received April 10, 1990)

Contents: 1. Introduction. 2. The Burnside ring of a finite group. 3. The
generalized Burnside ring and the fundamental theorem. 4. Primitive
idempotents. 5. Prime ideals. 6. Transfer-Induction theorems. 7.
Symmentric groups. 8. Applications to congruences. 9. The generalized
Hecke ring. A. Appendix: The abstract Burnside ring of a finite cate-
gory.
MR subject classification number: 20B05 ; secondary 19A22,20C99 ,

20D60 , 20D30

1 Introduction

Let G be a finite group and let \mathfrak{X} be a family of subgroups of G closed
under G-conjugation. We consider the free abelian group \Omega(G, \mathfrak{X}) gener-
ated by the isomorphism classes of transitive G-sets of the form [ G/S] ,
whereS\in \mathfrak{X} . This group \Omega(G, \mathfrak{X}) is a subgroup of the ordinary Burnside
ring \Omega(G) of the category of finite G-sets and G-maps. The purpose of
this paper is to study when \Omega(G, \mathfrak{X}) has a ring structure called a general-
ized Burnside ring. It is easily checked that if \mathfrak{X} is closed under intersec-
tion, then \Omega(G, \mathfrak{X}) is a subring of the Burnside ring \Omega(G) . But the struc-
ture of the generalized Burnside ring can be introduced under some wea-
ker conditions.

As in the case of usual Burnside rings, there is a homomorphism

\varphi_{S} : \Omega(G, \mathfrak{X})arrow Z : [X]\mapsto|X^{s}| ,

where X^{s} denotes the set of S-fixed points in a (G, \mathfrak{X}) -set X , that is, a
G-set in which the stabilizer of each point belongs to \mathfrak{X} . Thus taking the
direct product on the set C(\mathfrak{X}) of the conjugacy classes (S) of subgroups
S in \mathfrak{X} , we have an additive homomorphism

\varphi:=(\varphi_{S})_{(S)} : \Omega(G, \mathfrak{X})arrow\tilde{\Omega}(G, \mathfrak{X})

:= \prod_{(S)\in C(t)}Z .

*This work was supported by the SFB 7^{3} “Diskrete Strukturen in der Mathematik”.
Universitat Bielefeld.
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In the case of the usual Burnside ring \Omega(G) , this homomorphism is a ring
homomorphism and is called a Burnside homomorphism or mark
homomorphism. However \Omega(G, \mathfrak{X}) has not yet possessed a ring structure,
and so \varphi has not been a ring homomorphism. We want a ring structure
on \Omega(G, \mathfrak{X}) for which \varphi is an injective ring homomorphism into the ring
\tilde{\Omega}(G, \mathfrak{X}) . When \Omega(G, \mathfrak{X}) has such a ring structure, we call this ring a
generalized Burnside ring.

We use the notation \overline{H}\leq G for any subgroup H defined by
\overline{H} :=\cap\{S\in \mathfrak{X}|H\subseteq S\} .

Then the following theorem holds. For the proof, see Theorem 3.11.

THEOREM A. Assume that the family satisfifies the following condition:
(C)_{\infty} S\in \mathfrak{X} , g\in WS\supset\overline{\langle g\rangle S}\in \mathfrak{X}

Then \Omega(G, \mathfrak{X}) is a generalized Burnside ring.
Such rings are not subrings of the usual Burnside ring \Omega(G) in gen-

eral, but many properties which the usual Burnside rings satisfy hold also
for generalized Burnside rings.

First of all, the fundamental theorem holds. (The proof will be given
in Section 3 Theorem 3.10.)

THEOREM B. Under the condition (C)_{\infty} , there is an exact sequence of
abelian groups as follows:

00->\Omega(G, \mathfrak{X})arrow\tilde{\Omega}(G, \mathfrak{X})arrow Obs(G, \mathfrak{X})arrow 0\varphi\psi .

Here similarly to usual Burnside rings, we define

Obs(G, \mathfrak{X}) := \prod_{(S)\in C(*)}(Z/|WS|Z) ,

where WS:=N_{G}(S)/S , and furthermore, \psi is defined by

\psi:\tilde{\Omega}(G, \mathfrak{X}) - Obs(G,\mathfrak{X})

: (\chi(S))_{(S)}- ( \sum_{gS\in WS}\chi(\overline{\langle g\rangle S}) mod |WS|)_{(S)} .

This map \psi is called a Cauchy-Frobenius homomorphism because the
Cauchy-Frobenius lemma proves the fact that \psi\varphi=0 .

This theorem is essential in the study of generalized Burnside rings.
In Section 4, as an application of the fundamental theorem, we will show
that primitive idempotents in \Omega(G, \mathfrak{X})_{(p)} , the generalized Burnside ring
localized at a prime p , are bijectively corresponding to equivalence classes
of an equivalence relation-p .
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About prime ideals, some similar facts as in the case of usual Burn-
side rings hold. See Section 5.

In Section 6, we study functorial properties of generalized Burnside
rings. That is, we can construct restriction maps, induction maps,
inflation maps, fixed-point maps, etc. Especially, restrictions and induc-
tions satisfy Mackey decomposition and Frobenius reciprocity, and so the
map H\mapsto\Omega(H, \mathfrak{X}_{H}) makes a s0-called G-functor.

In Section 7, we give an application to the classical theory of repre-
sentation of symmetric groups. The purpose of this section is to give an
elementary and probably new proof for the fact that any ordinary charac-
ter of a symmetric group can be written as a linear combination of permu-
tation characters induced from Young subgroups.

There are some congruences in finite group theory that can be proved
by the theory of Burnside rings, for example, Sylow’s third theorem,
Frobenius’ theorem about the number of solutions of the equation g^{n}=1 on
a finite group and Brown’s theorem (cf. Example 8.1) about the Euler
characteristic of nontrivial p-subgroups. See [Wa 70], [Gl 81], [DSY
90], [DY 90]. Using the same way to generalized Burnside rings, we
obtain corresponding results, which are far generalized than the ordinary
results, for a family of subgroups. For example, by observing the
coefficients of standard basis in the identity element of a generalized Burn-
side ring, we can easily prove the following result:

THEOREM C. Assume that for a prime p, \mathfrak{X} satisfifies the condition (C)_{p}

S\in \mathfrak{X} , g\in WS is a p-element \Rightarrow\overline{\langle g\rangle S}\in \mathfrak{X} .

Then for any S\in \mathfrak{X} ,

\sum_{T\in aae}\mu_{aae}(S, T)\equiv 0 (mod |WS|_{p}),

where \mu\alpha i is the M\"obius function of the poset \mathfrak{X} with the order relation by
inclusion.

The proof will be given in Theorem 8.12 in Section 8. The above
theorem implies some congruences (e . g . Corollary 2.2) in Brown-
Th\’evenaz paper [BT 88]. To prove their theorem by generalized Burn-
side rings instead of Crapo complementation formula is an interesting
problem.

In Section 9, we study Mackey functors and their representation cate \cdot

gory–the generalized Hecke category with coefficient in a generalized
Burnside ring functor.

A generalized Burnside ring with respect to a family \mathfrak{X} of subgroups
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of G is a typical example of the notion of abstract Burnside rings
introduced in [Yo 87a ]. In Appendix, we state a brief outline of the the-
ory of abstract Burnside rings together with the theory of generalized
Burnside rings.

Acknowledgement. I wish to thank Professor A. Dress and C.
Siebeneicher for helpful conversations and hospitality. This work was
supported by the SFB 7^{3}

“ Diskrete Strukturen in der Mathematik ” while
1 was visiting Universit\"at Bielefeld. Finally I am grateful to the referee
of this paper who pointed out many errors in the previous version and
gave me some advices.

2 The Burnside ring of a finite group

In this section, we give a brief outline of the theory of the Burnside
ring of a finite group. The details and further results (prime ideals,
transfer theorems, Dress induction theorem, etc.) are found in [Ar 82],
[Di 79], [Dr 71a ], [Yo 83a ], [Yo 90], etc.

Throughout this paper, G denotes a finite group and p denotes a
prime (or 0, \infty sometimes).

2. 1 The set of G-isomorphism classes of finite left G-sets makes a
commutative semi-ring with respect 0 disjoint union X+Y and cartesian
product X\cross Y. Its Grothendieck ring is called the Burnside ring of G
and is denoted by \Omega(G) , and so \Omega(G) is an abelian group generated by
the isomorphism classes [X] of finite G-sets with relation [X+Y]=
[X]+[Y] . A finite G set is G-isomorphic to a disjoint union of homoge-
neous G-sets G/H. Furthermore, two G-sets G/H and G/K are G-
isomorphic if and only if H and K are G-conjugate. Thus the Burnside
ring \Omega(G) is additively the free abelian group on the set \{[G/H]|(H)\in
C(G)\} , where C(G) is the set of the G-conjugacy classes (H) of sub-
group H of G. Using this standard basis, the multiplication is given by

[G/H] \cdot[G/K]=\sum_{KgH\in K\backslash G/H}[G/gHg^{-1}\cap K] . (1)

2. 2 For any G set X and a subgroup S of G, let X^{s} be the set of all
S-fixed points. Then for a homogeneous G set G/H,

(G/H)^{S}=\{gH\in G/H|S\subseteq^{g}H\} , (2)

where

gH :=gHg^{-1} .

In particular,
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(G/H)^{S}\neq\emptyset\Leftrightarrow S\leq_{G}H, (3)

where S\leq {}_{c}H means that H contains a G-conjugate of S.
For a subgroup S of G, we use the following symbols for the normal-

izer and the Weyl group:

NS:=N_{G}(S) , WS:=W_{G}S NS/S.
By (2), there are bijections among (G/H)^{H} . WH and the set of G-
automorphisms of G/H :

(G/S)^{S}=WS\cong Aut_{G}(G/S) . (4)

We can extend the map X\mapsto|X^{s}| into a ring homomorphism

\varphi_{S} :=\Omega(G)arrow Z : [X]\mapsto|X^{s}| .

Using (2), we have that

\varphi_{S}([G/H])=\frac{1}{|H|}\sum_{g\in G}\zeta(S^{ g},H) , (5)

where \zeta(S, T) :=1 if S\leq T, :=0 otherwise.
The gftosf ring is the direct product of some copies of the integer

ring:

\tilde{\Omega}(G)

:= \prod_{(S)\in C(G)}Z .

Then we have a ring homomorphism called a Burnside homomo\uparrow phism as
follows:

\varphi=(\varphi_{S}) : \Omega(G)arrow\tilde{\Omega}(G) : x\mapsto(\varphi_{S}(x)) ,

2. 3 Lemma. The Burnside homomo\psi hism \varphi:\Omega(G)arrow\tilde{\Omega}(G) is an
injective ring homomorphism and

Coker \varphi\cong\prod_{(S)\in C(G)}(Z/|WS|Z) .

In particular, \varphi gives a ring isomorphism
1\otimes\varphi:Q\otimes_{Z}\Omega(G)arrow Q\otimes_{Z}\tilde{\Omega}(G)\cong . (6)

This lemma was proved by Burnside. Refer to [Dr 71a ], [Di 79] for
the proof.

2. 4 By the above lemma, we can regard \Omega(G) a subring of \tilde{\Omega}(G) .
So we often write

x(S) :=\varphi_{S}(x) for x\in\Omega(G) , S\leq G. (7)
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Furthermore, the cokernel of \varphi is called an obstruction group and is
written as

Obs (G) := \prod_{(S)\in C(G)}(Z/|WS|Z) .

2. 5 For a prime p , let Z_{(p)} be the localization of Z at p :

Z_{(p)} :=\{a/b|a\in Z, b\in Z-pZ\}\subseteq Q

Put

\Omega(G)_{(p)} :=Z_{(p)}\otimes_{Z}\Omega(G),\tilde{\Omega}(G)_{(p)} :=Z_{(p)}\otimes_{Z}\tilde{\Omega}(G) ,

Obs (G)_{(p)} := \prod_{(S)\in C(G)}(Z/|WS|_{p}Z)\cong Z_{(p)}\otimes Obs(G) .

Then we can view \Omega(G)_{(p)} (resp. \tilde{\Omega}(G)_{(p)}) as a subring of Q\otimes\Omega(G) (resp.
Q\otimes\tilde{\Omega}(G)) . The Burnside homomorphism \varphi induces

\varphi^{(p)} : \Omega(G)_{(p)}arrow\tilde{\Omega}(G)_{(p)} ,

which has a cokernel isomorphic to Obs(G)_{(p)} .

2. 6 Furthermore, if there is no confusion, it is convenient to extend
the above notation to p=\infty and p=0 :

\Omega(G)_{(\infty)} := \Omega(G) , \tilde{\Omega}(G)_{(\infty)} := \tilde{\Omega}(G) ,

Obs (G)_{(\infty)} := Obs(G), \varphi^{t\infty)} := \varphi,
\Omega(G)_{(0)} :=Q\otimes\Omega(G),\tilde{\Omega}(G)_{(0)} :=Q\otimes\tilde{\Omega}(G) ,

Obs (G)_{(0)} := 0, \varphi^{(0)} := 1_{Q}\otimes\varphi .

2. 7 LEMMA(Cauchy-Frobenius). Let X be a fifinite G-set. Then

\sum_{g\in G}|X^{(g)}|=|G|\cdot|G\backslash X|\equiv 0 (mod |G| ),

where G\backslash X is the set of G-Orbits in X.

2. 8 We define the Cauchy-Frobenius homomorphism by

\psi^{(p)} : \tilde{\Omega}(G)_{(p)}arrow Obs(G)_{(p)}

: x_{gS\in}^{\mapsto(} \sum_{(WS)p}\chi(\langle g\rangle S) mod |WS|_{p}), (8)

where ( WS)_{p} is a Sylow p subgroup of WS. We simply write
\psi:=\psi^{(\infty)} : \tilde{\Omega}(G)arrow Obs(G)

: \mathcal{X}_{gS}^{\mapsto(}\sum_{\in WS}\chi(\langle g\rangle S) mod |WS| ). (9)

Here we interpret as
(WS)_{\infty}=WS, |WS|_{\infty}=|WS| (10)
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2. 9 PROPOSITION(Fundamental Theorem for Burnside Rings). The
following sequence of abelian groups is exact:

0—- \Omega(G)_{(p)}arrow\tilde{\Omega}(G)_{(p)}arrow Obs(G)_{(p)}arrow 0\varphi^{(p)}\psi^{(p)}

,

This proposition was essentially found by A. Dress in his unpublished
work at first. The proof is found in [Dr 86], [Di 79, Chapter 1], [Yo 90].

2. 10 REMARK. A. Drees ([DY90]) pointed out that \psi^{(p)}\neq 1\otimes\psi for
a prime p in general and this difference implies a Frobenius type congru-
ence

\#{P-element of G} \equiv 0 (mod |G|_{p})

which is a weak form of the Frobenius theorem on the number of solutions
of the equation g^{n}=1 on G. In fact, let \chi\in\tilde{\Omega}(G) be an element of \tilde{\Omega}(G)

defined by

\chi(S) :=\{
|G|_{p\prime} if S is a subgroup
0 otherwise.

(11)

Then by the definition of the Cauchy-Frobenius homomorphism, we have
that \psi^{(p)}(\chi)=0 and \psi^{(q)}(\chi)=0 , where q is a prime distinct to p. Thus
the fundamental theorem implies that

\chi\in\Omega(G)_{(p)}\cap\bigcap_{q\neq q}\Omega(G)_{(q)}=\Omega(G) .

Applying the Cauchy-Frobenius homomorphism \psi to \chi , we have that

\phi(\chi)_{1}=\#{p-element of G} \equiv 0 (mod |G|_{p}),

as required.

2. 11 By the isomorphism 1 \otimes\varphi : Q\otimes\Omega(G)\cong Q\otimes\tilde{\Omega}(G)=\Pi_{ts)}Q

(cf. (6)), there is an element e_{H}\in Q\otimes\Omega(G) for each H\leq G such that

\varphi_{S}(e_{H})=\{
1 if (S)=(H)
0 otherwise.

(12)

Clearly, \{e_{H}|(H)\in C(G)\} is the set of primitive idempotents of Q\otimes\Omega(G) .
About idempotents of Burnside rings of finite groups, refer to [Gl 81],
[Yo 83a ].

2. 12 In order to present the primitive idempotent e_{H} by the standard
basis, we need the M\"obius function of the poset of subgroups of G. In
general, the M\"obius function \mu_{P} : P\cross P– Z of a finite poset is defined
inductively as follows:
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\mu_{P}(x, x)=1;\mu_{P}(x, y)=0 if x\not\leq y ;
\sum_{t\leq y}\mu_{P}(x, t)=0 if x<y.

Let \mu denote the M\"obius function of the poset of subgroups of G.

2. 13 LEMMA. e_{H}= \frac{1}{|NS|}\sum_{D\leq H}|D|\mu(D, H)[G/D] .

2. 14 For a finite group S, we denote by S^{p} the smallest normal sub-
group of S with S/S^{p} a p-group. The group S is called p-peJfect if S^{p}=S.
So S is p-perfect if and only if S has no proper normal subgroup of index
p.

For p=\infty , let S^{\infty} denote the last term of the derived sequence of S, so
that \infty -perfectness stands for the usual perfectness.

2. 15 Let Q be a p perfect subgroup of G. Define an idempotent e_{Q}^{p} of
Q\otimes\Omega(G) by

e_{Q}^{p}:= \sum_{(\begin{array}{l}H()\end{array})\in C( ^{e_{H}}=(Q)G)},
’

where the summation is taken over (H)\in C(G) such that H^{p} is G-
conjugate to Q. By (12), e_{Q}^{p} has the following value at a subgroup S :

\varphi_{S}(e_{Q}^{p})=\{
1 if (S^{p})=(Q)

0 otherwise. (13)

2. 16 LEMMA. For a p-perfect subgroup Q of G, the idempotent e_{Q}^{p} of
Q\otimes\Omega(G) belongs to \Omega(G)_{(p)} . Conversely, any idempotent of \Omega(G)_{(p)} has
the form e_{Q}^{p} for a p-perfect subgroup Q.

2. 17 LEMMA. Let \chi\in Q\otimes\tilde{\Omega}(G) . Then

\chi=\sum_{(D)\in C(G)}\frac{1}{|WD|}(\sum_{H\leq G}\mu(D, H)\chi(H))[G/D] .

This follows immediately from the idempotent formula (Lemma 2.13).
Note that \chi\cdot e_{H}=\chi(H)\cdot e_{H} .

2. 18 COROLLARY. For a p-perfect subgroup Q,

e_{Q}^{p}:= \frac{1}{|NQ|}\sum_{H^{p}=Q}\sum_{DH\leq NQ\leq H}|D|\mu(D, H)[G/D] ,

2. 19 LEMMA. Fetn be a divisor of |G| . Let \chi_{n} be an element of \tilde{\Omega}

(G) defifined by

\chi_{n}(S) :=\{
|G|/n if |S| divides n
0 otherwise.
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Then \chi_{n} is in \Omega(G) .

This result was first proved by Wagner [Wa 70]. The element \chi_{n} is
called a Frobenius element. Another short proof of this lemma is found in
Dress-Siebeneicher-Yoshida [DSY 90].

2. 20 Applying the fundamental theorem (Proposition 2.9 and Lemma
2.17 to the Frobenius element \chi_{n} , we have some congruences, for example,
Frobenius theorem as follows:

COROLLARY(Frobenius). If n is a divisor of |G| , then

\#\{g\in G|g^{n}=1\}\equiv 0 (mod n).

Refer to Dress-Siebeneicher-Yoshida [DSY 90].

3 The generalized Burnside ring and the fundamental theorem

3. 1 Let \mathfrak{X} be a family of subgroups of a finite group G such that if H
\in \mathfrak{X} , then gH :=gHg^{-1}\in \mathfrak{X} for any g\in G. Throughout this paper, \mathfrak{X}

denotes such a family. Let \Omega(G, \mathfrak{X}) be the subgroup of \Omega(G) generated
by elements [ G/H] for H\in \mathfrak{X} . Then \Omega(G\mathfrak{X}) is a free abelian group
with basis

\{[G/H]|(H)\in C(G), H\in \mathfrak{X}\} .

A (G, \mathfrak{X}) -set X is a finite G-set in which the stabilizer of every element
belongs to \mathfrak{X} . Thus \Omega(G, \mathfrak{X}) is the Grothendieck group of the category of
(G, \mathfrak{X}) -sets and G-maps. Note that \Omega(G, \mathfrak{X}) is a subring of \Omega(G) if and
only if \mathfrak{X} is closed under intersection and G\in \mathfrak{X} .

3. 2 Let C(\mathfrak{X}) be the set of G,conjugacy classes of subgroups belong-
ing to \mathfrak{X} . A ghost ring \tilde{\Omega}(G, \mathfrak{X}) is the direct product of |C(\mathfrak{X})| copies of
the integer ring Z.

\tilde{\Omega}(G, \mathfrak{X})

:= \prod_{(S)\in C(t)}Z .

For any S\in \mathfrak{X} , let

\varphi_{S} : \Omega(G, \mathfrak{X})arrow Z:[X]\mapsto|X^{s}| (1)

be the restriction of \varphi_{S} : \Omega(G)– Z into \Omega(G, \mathfrak{X}) . Thus we have an addi-
tive homomorphism called the Burnside homomorphism with respect to \mathfrak{X}

\varphi:=(\varphi_{S})_{(S)} : \Omega(G\mathfrak{X})arrow\tilde{\Omega}(G, \mathfrak{X}) : x\mapsto(\varphi_{S}(x)) .

3. 3 Lemma. The Burnside homomo\eta)hism \varphi:\Omega(G, \mathfrak{X})arrow\tilde{\Omega}(G, \mathfrak{X}) is
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an injective additive homomorphism with a cokernel

Coker \varphi\cong\prod_{(S)\in C(X)}(Z/|WS|Z) .

PROOF. The matrix corresponding to \varphi:\Omega(G, \mathfrak{X})arrow\tilde{\Omega}(G, \mathfrak{X}) is a
square matrix and under some suitable rearrangement of C(\mathfrak{X}) , this
matrix becomes a triangular matrix of which diagonal constituents
\{|WS||S\in \mathfrak{X}\} . See (2), (3), (4) of Section 2. This proves the lemma. \square

3. 4 COROLLARY. Q\otimes_{Z}\Omega(G, \mathfrak{X}) has a unique ring structure isomorphic
to Q\otimes\tilde{\Omega}(G, \mathfrak{X}) via the Burnside homomorphism 1\otimes\varphi:Q\otimes\Omega(G, \mathfrak{X})arrow\cong

Q\otimes\tilde{\Omega}(G, \mathfrak{X}) .

PROOF. By the lemma, 1\otimes\varphi is an isomorphism of Q-vector spaces. \square

3. 5 REMARK. For any element x of \Omega(G, \mathfrak{X}) (or Q\otimes\Omega (G, \mathfrak{X})) and
any S in \mathfrak{X} , we often write

x(S) :=\varphi_{S}(x) . (2)

Then the above corollary means that elements of \Omega(G, \mathfrak{X}) are determined
by their values at subgroups in \mathfrak{X} , that is, for x, y\in\Omega(G, \mathfrak{X}) ,

x=y\Leftrightarrow x(S)=y(S) for all S\in \mathfrak{X} .
3. 6 Condition (C)_{p} Let p be a prime or \infty . For a subgroup H of

G, let
\overline{H}

:=\cap\{S\in \mathfrak{X}|H\subseteq S\} . (3)

(We put \overline{H} :=G if there is no element U\in \mathfrak{X} containing H. ) We consider
the following condition:
(C)_{p} gS\in(WS)_{p} , S\in \mathfrak{X} \supset \overline{\langle g\rangle S}\in \mathfrak{X} .
where (^{WS)_{p}} is a Sylow p subgroup of WS. For p=\infty , we interpret
(C)_{p} as follows:
(C)_{\infty} gS\in WS, S\in \mathfrak{X} \supset \overline{\langle g\rangle S}\in \mathfrak{X} .

Clearly, for a prime q such that WS is a q’ -group for every S\in \mathfrak{X},- in
particular, for a prime q which does not divide |G| , the above condition
(C) q is valid.

3. 7 LEMMA. (a) Assume that the condition (C)_{p} holds for a prime p.
Then

S\in \mathfrak{X} , P/S is a p subgroup of WS \supset \overline{P}\in \mathfrak{X} .
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(b) Assume that the condition (C)_{\infty} holds. Then
S\in \mathfrak{X} , H/S is a solvable subgroup of WS \supset \overline{H}\in \mathfrak{X} .

(c) (C)_{\infty} \Leftrightarrow (C)_{p} for all prime p.

PROOF. First we claim that under the condition (C)_{p} ,

N\underline{\triangleleft}P\leq G,\overline{N}\in \mathfrak{X} , P/N is a cyclic p-group \supset \overline{P}\in \mathfrak{X} . (4)

In fact, let g be an element with P=\langle g\rangle N. Then g normalizes \overline{N}r and so
by the assumption (C) p ,

P=\langle g\rangle N\subseteq\overline{\langle g\rangle\overline{N}}\in \mathfrak{X} .

On the other hand, if P\subseteq T\in\underline{\mathfrak{X},}then T contains \overline{N} and also \langle g\rangle\overline{N}r

,

whence T contains furthermore \langle g\rangle\overline{N} . Thus the above claim (4) holds.
We will prove (a) by induction on |P| . Let N be a normal subgroup

of P such that N contains S and P/N is cyclic of prime order. Then by
the assumption of induction, we have that \overline{N}\in \mathfrak{X} . Thus (4) implies that
\overline{P}\in \mathfrak{X} , proving (a). If we interpret a “

\infty -group ” as a solvable group,
the proof of (a) gives the proof of (b). Finally we will prove (c).

Assume that the condition (C)_{p} holds for all prime p. Let S\in \mathfrak{X} and let
C/S be a cyclic subgroup of WS. We will prove that \overline{C}\in \mathfrak{X} by induction
on |C| . Let N/S be a normal subgroup of C/S of prime index p. Then
by the induction assumption, we have that \overline{N}\in \mathfrak{X} . Thus by the condition
(C)_{p} and the above claim (4), we have that \overline{C}\in \mathfrak{X} , proving (c). \square

3. 8 LEMMA. Let x be an element of \Omega(G, \mathfrak{X}) and H a subgroup of
G such that \overline{H}\in \mathfrak{X} . Then

x(H)=x(\overline{H}) ,

where x(H) denotes the image of x\in\Omega(G, \mathfrak{X})\subseteq\Omega(G) by \varphi_{H} : \Omega(G)-arrow Z.

PROOF. We may assume that x=[G/T] , T\in \mathfrak{X} . Then by (2) in
Section 2,

x(H)=\#\{gT\in G/T|H\subseteq^{g}T\}

=\#\{gT\in G/T|\overline{H}\subseteq^{g}T\}

=x(\overline{H}) ,

proving the lemma. \square

3. 9 We define the obstruction groups by

Obs(G,X) := \prod_{(S)\in C(\not\in)}(Z/|WS|Z) ,
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Obs (G, \mathfrak{X})_{(p)}
:= \prod_{(S)\in C(aae)}(Z/|WS|_{p}Z) .

Furthermore we define Cauchy-Frobenius homomorphisms by

\psi=\psi(\infty) : \tilde{\Omega}(G, \mathfrak{X})
– Obs (G, \mathfrak{X})

: ( \chi(S))_{(S)}\mapsto(\sum_{gS\in WS}\chi(\overline{\langle g\rangle S}) mod |WS|)_{(S)} ’ (5)

\psi^{(p)} : \tilde{\Omega}(G, \mathfrak{X})_{(p)}
– Obs (G, \mathfrak{X})_{(p)}

: (\chi(S))_{(S)} – ( \sum_{gS\in(WS)p}\chi(\overline{\langle g\rangle S}) mod |WS|_{p})_{(S)}
(6)

where as before, ( WS)_{p} is a Sylow p-subgroup of WS.

3. 10 THEOREM (Fundamental theorem). Let p be a prime or \infty .
Then under the condition (C)_{p} , the following sequence is exact:

0- \Omega(G, \mathfrak{X})_{(p)}arrow\tilde{\Omega}(G, \mathfrak{X})_{(p)}arrow Obs(G, \mathfrak{X})_{(p)}arrow 0\varphi^{(p)}\psi^{(p)}

(7)

In particular, under (C)_{\infty} , the following sequence is exact:

0– \Omega(G, \mathfrak{X})arrow\tilde{\Omega}(G, \mathfrak{X})arrow\varphi\psiObs(G,\mathfrak{X})–0(8)

PROOF. First of all, it follows from Lemma 3.3 that \varphi^{(p)}=1\otimes\varphi is in-
jective and its cokernel is isomorphic to Obs (G, \mathfrak{X})_{(p)}\cong Z_{(p)}\otimes Obs(G, \mathfrak{X}) .
Furthermore, \psi^{(p)} is surjective because the matrix of \psi^{(p)} is a unipotent
triangular matrix. Thus Ker \psi^{(p)} and Im \varphi^{(p)} have the same index
\Pi_{(S)\in C(t)}|WS|_{p} , whence it will suffice to show that \psi^{(p)}\varphi^{(p)}=0 . Let
x\in\Omega(G, \mathfrak{X}) . Then for any S\in \mathfrak{X} and gS\in(WS)_{p} ,

x(\overline{\langle g\rangle S})=x(\langle g\rangle S) .

by the condition (C)_{p} and Lemma 3.8. Now by the Cauchy-Frobenius
lemma and this identity, the S-component of \psi^{(p)}\varphi^{(p\rangle}(x) is

\sum_{gS\in(WS)p}x(\overline{\langle g\rangle S})=\sum_{gS\in(WS)p}x(\langle g\rangle S)

\equiv 0 (mod |WS|_{p}).

Thus \psi^{(p)}\varphi^{(p)}=0 , and so the sequence (7) is exact. The exactness of the
sequence (8) is proved by the same way. \square

3. 11 THEOREM. (a) Under the condition (C) p , \Omega(G, \mathfrak{X})_{(p)} has a
unique ring structure such that \varphi^{(p)} : \Omega(G, \mathfrak{X})_{(p)}- \tilde{\Omega}(G, \mathfrak{X})_{(p)} is a ring
homomorphism.

(b) In particular, under the condition (C)_{\infty} , \Omega(G, \mathfrak{X}) has a unique ring
structure such that \varphi:\Omega(G, \mathfrak{X})arrow\tilde{\Omega}(G, \mathfrak{X}) is a ring homomorphism.
Furthermore, for a prime p, the two ring structures on Z_{(p)}\otimes\Omega(G, \mathfrak{X})=

\Omega(G, \mathfrak{X})_{(p)} defifined by (a) and (b) coincide.
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PROOF. In order to prove that the existence of a ring structure on
\Omega(G, \mathfrak{X})_{(p)} , it will suffice to show that Im \varphi^{(p)} is a subring of \tilde{\Omega}(G, \mathfrak{X})_{(p)} ,
because \varphi^{(p)} is injective. Take x=[X] , y=[Y] , where X and Y are
(G, \mathfrak{X}) -sets. Then by Lemma 3.8, for any subgroup H of G with \overline{H}\in \mathfrak{X} ,

\varphi(x)(H)=x(\overline{H})=|X^{H}| .

Thus

\psi^{(p)}(\varphi^{(p)}(x)\cdot\varphi^{(p)}(y))_{S}=\sum_{gS\in(WS)p}(\varphi^{(p)}(x)\cdot\varphi^{(p)}(y))(\overline{\langle g\rangle S})

= \sum_{gS\in(WS)p}\varphi((p)x)(\overline{\langle g\rangle S})\cdot\varphi^{(p)}(y)(\overline{\langle g\rangle S})

= \sum_{gS\in(WS)_{P}}x(\langle g\rangle S)\cdot y(\langle g\rangle S)

= \sum_{gS\in(WS)p}|X^{<g>S}|\cdot|Y^{<g>S}|

– \sum_{gS\in(WS)p}|((X\cross Y)^{s})^{<g>}|

\equiv 0 mod |WS|_{p} .

The last congruence follows from the Cauchy-Frobenius lemma. This
proves that \varphi(x)\cdot\varphi(y) belongs to Ker \psi^{(p)}={\rm Im}\varphi^{(p)} , that is, the image of
\varphi^{(p)} is closed under multiplication.

Next, in order to prove the existence of an identity element, it will
suffice to show that the identity element 1 of \tilde{\Omega}(G, \mathfrak{X}) belongs to the image
of \varphi^{(p)} . But

\psi^{(p)}(1)_{S}=\sum_{gS\in(WS)p}1\equiv 0 mod |WS|_{p} ,

and so by the fundamental theorem, we conclude that the identity element
1 of \tilde{\Omega}(G, \mathfrak{X}) is contained in Im \varphi^{(p)}=Ker\psi^{(p)} . Thus \Omega(G, \mathfrak{X}) has an iden-
tity element and \varphi^{(p)} maps the identity element to 1.

The above proof is valid when p=\infty , too \square

3. 12 DEFINITION. Let R be a commutative ring. The R-module
R\otimes_{Z}\Omega(G, \mathfrak{X}) is called a generalized Burnside ring provided it has a ring
structure with identity element such that the Burnside homomorphism

1\otimes\varphi:R\otimes\Omega(G, \mathfrak{X})arrow R\otimes\tilde{\Omega}(G, \mathfrak{X})

is an injective ring homomorphism. Usually 1\otimes\varphi is simply written as \varphi .
By Corollary 3.11, if the condition (C)_{p} in 3.6 holds, R is p-torsion

free and |G|_{p^{\gamma}}\cdot 1_{R} is invertible in R , then R\otimes\Omega(G, \mathfrak{X}) , particularly
\Omega(G, \mathfrak{X})_{(p)} , is a generalized Burnside ring. Furthermore, Q\otimes\Omega(G, \mathfrak{X}) is
always a generalized Burnside ring by Corollary 3.4. An interesting open
question is that \Omega(G, \mathfrak{X}) becomes a generalized Burnside ring under what
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condition on \mathfrak{X} .

3. 13 LEMMA. Assume that |G|\cdot 1_{R} is not a zero divisor in R and that
R\otimes\Omega(G, \mathfrak{X}) is a generalized Burnside ring. Let S\in \mathfrak{X} and x\in R\otimes\Omega(G,
\mathfrak{X}) . Then the multiplication of x and [ G/S] in this generalized Burnside
ring has the form

[G/S]\cdot x=\varphi_{S}(x) . [ ^{G}/S]+ \sum_{(D)<(S)}m(D) [ ^{G}/D] , (9)

where (D) runs over conjugacy classes such that D is G-conjugate to a
proper subgroup of S.

PROOF. Decompose the multiplication [ G/S]\cdot x into a summation of
transitive (G, \mathfrak{X}) -sets:

[G/S] \cdot x=\prod_{(D)\in C(X)}m(D) [G/D] . (10)

Let E be any maximal element of \mathfrak{X} under the condition that m(E)\neq 0 .
Then applying \varphi_{E} to (10), it follows from (3) of Section 2 that

\varphi_{E}([G/S])\cdot\varphi_{E}(x)=m(E)\cdot|7fE|\neq 0 ,

and so \varphi_{E}([G/S]\neq 0 . Again by (3) of Section 2, we have that E\leq_{G}S.
So in the above summation, only the terms m(D) . [ G/D] such that D\leq_{G}

S appear. Applying \varphi_{S} again on (10), we have that

\varphi_{S}([G/S])\cdot\varphi_{S}(x)=m(S)\cdot\varphi_{S}([G/S]) .

Since \varphi_{S}([G/S])=|WS|\cdot 1_{R}\neq 0 (see (4) in Section 2), we have that
m(S)=\varphi_{S}(x) , proving the lemma. \square

3. 14 Let K(\mathfrak{X}) be the ideal of the ordinary Burnside ring \Omega(G)

defined by

K(\mathfrak{X}) := {x\in G|x(S)=0 for all S\in \mathfrak{X}}.

Then \varphi is factorized as follows:
\varphi:\Omega(G, \mathfrak{X})arrow\Omega(G)/K(\mathfrak{X})arrow\tilde{\Omega}(G, \mathfrak{X})\mathcal{A}\mu ,

where
\mathcal{A} : x \mapsto x+K(\mathfrak{X})

\mu:y+K(\mathfrak{X})\mapsto(y(S))_{(S)\in C(t)} .

Since \mu is an injective ring homomorphism, we have that \Omega(G, \mathfrak{X}) is a
generalized Burnside ring if and only if \Omega(G, \mathfrak{X}) is isomorphic to a subring
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of \Omega(G)/K(\mathfrak{X}) via \mathcal{A} .
To characterize a family \mathfrak{X} for which \mathcal{A}:\Omega(G, \mathfrak{X})– \Omega(G)/K(\mathfrak{X}) is an

isomorphism is another interesting open problem.

3. 15 EXAMPLE. We will first give some examples of generalized Bur-
nside rings which are obtained from the ordinary Burnside rings.

(a) Q\otimes\Omega(G, \mathfrak{X}) is a trivial generalized Burnside ring for any family \mathfrak{X} ,

which is isomorphic to the direct product of some copies of Q . See Corol-
lary 3.4.

(b) Assume that \mathfrak{X} is closed under intersection and that G\in \mathfrak{X} . Then
the condition (C)_{\infty} trivially holds, and so \Omega(G, \mathfrak{X}) is a generalized Burn-
side ring by Corollary 3.11. On the other hand, \Omega(G, \mathfrak{X}) is a subring of
\Omega(G) by (1) in Section 2. Two ring structures on \Omega(G, \mathfrak{X}) coincide.

(c) Assume the following condition on \mathfrak{X} :
S\in \mathfrak{X} , gS\in(WS)_{p} \supset \langle g\rangle S\in \mathfrak{X} .

Then the condition (C)_{p} holds trivially, and so \Omega(G, \mathfrak{X})_{(p\rangle} is a generalized
Burnside ring. This ring is isomorphic to \Omega(G)_{(p)}/K(\mathfrak{X})_{(p)} , where

K(\mathfrak{X})_{(p)} := {x\in\Omega(G)|x(S)=0 for all S\in \mathfrak{X} }.

To prove this, let x be an element of \Omega(G) and put

\chi:=(x(S))_{(S)\in C(X)}\in\tilde{\Omega}(G, \mathfrak{X}) ,

where x(S) is the image of x by \Omega(G, \mathfrak{X})=\Omega(G)arrow Z\varphi_{S}. Then by the
fundamental theorem of the Burnside ring (or the Cauchy-Frobenius
lemma), we have that for any S\in \mathfrak{X} ,

\psi^{(p)}(\chi)_{S}\equiv\sum_{gS\in(WS)p}\chi(\overline{\langle g\rangle S})

\equiv\sum_{gS\in(WS)_{P}}\chi(\langle g\rangle S)

\equiv 0 (mod |WS_{p}| ).

Here \overline{\langle g\rangle S}=\langle g\rangle S by the assumption. Thus by the fundamental theorem
of the generalized Burnside ring, we have that \chi belongs to \Omega(G, \mathfrak{X}) . The
correspondence x\mapsto\chi defines a linear map \rho which makes the following
diagram commutative:
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\Omega(G)_{(p)}\underline{\rho}\Omega(G, \mathfrak{X})_{(p)}

\varphi\downarrow \downarrow\varphi

\tilde{\Omega}(G)_{(p)}\underline{proj.}\tilde{\Omega}(G, \mathfrak{X})_{(p\rangle} .

By an easy argument, we can prove that \rho preserves multiplication and its
kernel is K(\mathfrak{X})_{(p)} . See Proposition 6.3 and Corollary 6.4.

(d) Let e_{Q}^{p} be a primitive idempotent of \Omega(Q)_{(p)} corresponding to a
p-perfect subgroup Q of G (cf. 2.15, 2.16), and let

\mathfrak{X}:=\{H\leq G|(H^{p})=(Q)\} .

Then \mathfrak{X} satisfies the condition (C)_{p} , and so \Omega(G, \mathfrak{X})_{(p)} is a generalized
Burnside ring. This ring is isomorphic to the ring e_{Q}^{p}\Omega(G)_{(p)} with identity
element e_{Q}^{p} . In order to prove this isomorphism, check that the Burnside
homomorphisms for \Omega(G) and \Omega(G, \mathfrak{X}) give injective ring homomorphisms
\varphi’ : e_{Q}^{p}\Omega(G)_{(p)}arrow\tilde{\Omega}(G, \mathfrak{X})_{(p)} and \varphi:\Omega(G, \mathfrak{X})_{(p)}arrow\tilde{\Omega}(G, \mathfrak{X})_{(p)} both of which
cokernels are isomorphic to Obs (G, \mathfrak{X})_{(p)} , and that there is a linear map
from \Omega(G, \mathfrak{X})_{(p)} to e_{Q}^{p}\Omega(G)_{(p)} commutative with the above two maps.

3. 16 EXAMPLE. Let S_{n} be the symmetric group of degree n and \mathfrak{Y}

the set of Young subgroups in S_{n} . Then \mathfrak{Y} is closed under intersection
and it contains G. Thus \Omega(G, \mathfrak{Y}) is a subring of \Omega(G) and the ring struc-
ture of the generalized Burnside ring on \Omega(G, \mathfrak{Y}) is coincident with this
subring structure. A. Dress proved that this generalized Burnside ring
\Omega(S_{n}, \mathfrak{Y}) is isomorphic to the representation ring (the ordinary character
ring) R(S_{n}) (cf. [Dr 86]).

3. 17 EXAMPLE. (a) Let p be a prime and let r be a non-negative
integer. Let P=C_{p^{\gamma}} denote a cyclic group of order p^{r} . Then P has a
unique subgroup P_{i} of order p^{i} for each 0\leq i\leq r. For any 0\leq s, i\leq r, we
have that

\varphi_{Ps}([P/P_{i}])=\{

p^{r-i} if s\leq i

0 otherwise.

Let I be any subset of \{0, 1, \cdots, r\} and let

\mathfrak{X}:=\{P_{i}|i\in I\}\subseteq Sub(P) .

Consider the generalized Burnside ring Q\otimes\Omega(P, \mathfrak{X}) . In this ring, multipli-
cation is given by the followin formula:
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[P/P_{i}]\cdot[P/P_{j}]=\{_{p^{r-i}[P/P_{j}]}^{p^{r-j}[P/P_{i}]} ifj\leq iifi\leq j

This formula is proved by comparing the values of the both sides at any
P_{s} . See also Corollary 4.6. Note that the coefficients are always integers.
Similarly, the identity element of Q\otimes\Omega(P, \mathfrak{X}) is given as follows:

1_{Q\otimes\Omega(P,X)}= \frac{1}{p^{r-\max(I)}}[P/P_{\max(I)}] ,

where \max(I) denotes a maximal element of I. See Corollary 4.4. Thus
the necessary and sufficient condition that \Omega(P, \mathfrak{X}) (or \Omega (P, \mathfrak{X} ) ) becomes
a generalized Burnside ring, that is, it contains this identity element, is
that r\in I. Clearly this condition is equivalent to the familiar (C)_{p} .

(b) Let C:=C_{n} be a cyclic group of order n. Then C has a unique
subgroup C_{d} of order d for any divisor d of n. For any divisors d, s, we
have that

\varphi_{C_{S}}([C/C_{d}])=\{
n/d is s divides d
0 otherwise.

Let D be a set of divisors of n and let

\mathfrak{D}:=\{C_{d}|d\in D\}\subseteq Sub(C) .

Consider the generalized Burnside ring Q\otimes\Omega(C, \mathfrak{D}) . In this ring, multi-
plication is given by the following formula:

[C/C_{a}] \cdot[C/C_{d}]=\sum_{d\in D}\frac{nd}{ab}(\sum_{h|(a,b)}\mu_{D}(d, h))[C/C_{d}] ,

where h runs over divisors of the greatest common divisor of a and b , and
\mu_{D} is the M\"obius function of the poset D with order relation defined by
divisor relation. This formula is proved by comparing the values of the
both sides at any C_{s} . But such a direct proof is complicated, so we
should use Corollary 4.6. Similarly, the identity element of Q\otimes\Omega(C, \mathfrak{D}) is
given as follows:

1_{Q\otimes\Omega(C,\mathfrak{D})}= \sum(\sum\mu_{\mathfrak{D}}(d, h))[C/C_{d}]\underline{d} .
d\in Dnh\in D

See Corollary 4.4. The author does not know that the necessary and
sufficient condition that \Omega(C, \mathfrak{D}) (or \Omega (C, \mathfrak{D}) ) becomes a generalized
Burnside ring is n\in D.

An interesting problem is that under what condition there is a ring



526 T. Yoshida

homomorphism from \Omega(C, \mathfrak{D}) to \Omega(G, \mathfrak{X}) . For the ordinary Burnside
rings, there is such a map from \Omega(C_{|G|}) to \Omega(G) (cf. [DSY 90]).

4 Primitive idempotents

4. 1 By Corollary 3.4, Q\otimes\Omega(G, \mathfrak{X}) has a ring structure isomorphic to
Q\otimes\tilde{\Omega}(G, \mathfrak{X})=\Pi_{(S)\in C(aae)}Q via the Burnside homomorphism 1\otimes\varphi . Thus as
in the case of the ordinary Burnside rings, there is an element e_{H} of
Q\otimes\Omega(G\mathfrak{X}) for each H\in \mathfrak{X} such that for any S\in \mathfrak{X} ,

\varphi_{S}(e_{H})=\{
1 if (S)=(H)
0 otherwise.

(1)

Clearly, the set of primitive idempotents of Q\otimes\Omega(G, \mathfrak{X}) consists of all
e_{H\prime}(H)\in C(\mathfrak{X}) .

In order to obtain an explicit formula for e_{H} , let

\mu aae : \mathfrak{X}\cross \mathfrak{X}arrow Z

be the M\"obius function on the poset \mathfrak{X} with the order relation by inclusion
(cf. paragraph 2.12). Define functions \zeta , \delta:\mathfrak{X}\cross \mathfrak{X}arrow Z by \zeta(S, T):=1 if
S\subseteq T , and: =0 otherwise; \delta(S, T) :=1 if S=T . and: =0 otherwise.
Then by the definition of the M\"obius function, we have that

\mu_{f}(S, S)=1 : \mu_{X}(S, T)=0 if S\not\in T (2)

( \mu_{if}*\zeta)(S, T)=\sum_{U\in X}\mu_{if}(S, U)\zeta(U, T)=\delta(S, T) , (3)

( \zeta_{x}*\mu)(S, T)=\sum_{U\in aae}\zeta(S, U)\mu_{X}(U, T)=\delta(S, T) , (4)

See [Ai 79], [St 86].

4. 2 THEOREM. e_{H}= \frac{1}{|NS|}\sum_{D\in f}|D|\mu x(D, H) [c/D]

PROOF. Let S be an element of \mathfrak{X} . By (2) of Section 2, we have that

\varphi_{S}([G/D])=\#\{gD\in G/D|S\subseteq^{g}D\}

= \frac{1}{|D|}\sum_{g\in G}\zeta(S^{ g},D)

= \frac{1}{|D|}\sum_{g\in G}\zeta(^{g}S, D) .

Thus \varphi_{S} maps the right hand side of the equation of this theorem to

\frac{1}{|NH|}\sum_{D\in X}|D|\mu ae(D, H)\varphi_{S}([G/D])=\frac{1}{|NH|}\sum_{D\in X}\sum_{g\in G}\zeta(^{g}S, D)\mu_{X}(D, H)
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= \frac{1}{|NH|}\sum_{g\in G}\delta(^{g}S, H)

=\{
1 if (S)=(H) ,

0 otherwise.

This equals \varphi_{S}(e_{H}) by (1). Thus the proposition follows from the in-
jectivity of \varphi=(\varphi_{S}) . \square

4. 3 COROLLARY(Standard expansion). Let \chi\in Q\otimes\tilde{\Omega}(G, \mathfrak{X}) . Then

\chi=\sum_{(D)\in C(*)}\frac{1}{|\uparrow ID|}(\sum_{H\in X}\mu_{X}(DH)\chi(H))[G/D] .

PROOF. We identify Q\otimes\Omega(G, \mathfrak{X}) with a subring of Q\otimes\tilde{\Omega}(G, \mathfrak{X}) . For
any H\in \mathfrak{X} ,

\chi\cdot e_{H}=\chi(H)\cdot e_{H} .

In fact, the values of the both sides at any S\in \mathfrak{X} is \chi(H) if (S)=(H) and
is 0 otherwise. Thus we have that

\chi=\sum_{(H)\in C(X)}\chi\cdot e_{H}

= \sum_{H\in aae}\overline{|G}\cdot. 1NH|\chi(H)\cdot e_{H}

= \frac{1}{|G|}\sum_{H\in f}\chi(H)\sum_{D\in X}|D|\mu_{X}(D, H)[G/D]

= \frac{1}{|G|}\sum_{D\in aae}|D|(\sum_{H\in X}\mu aae(D, H)\chi(H))[G/D]

= \sum_{(D)\in C(t)}\frac{1}{|WD|}(\sum_{H\in aae}\mu_{X}(D, H)\chi(H))[GKD] .

Note that each G-conjugacy class (D) contains |G:ND| conjugations of
D. \square

4. 4 COROLLARY Tfe identity of the ring Q\otimes\Omega(G, \mathfrak{X}) is given by

1_{Q\otimes\Omega(G,X)}= \sum_{(D)\in C(aae)}\frac{1}{|WD|}(\sum_{H\in X}\mu_{f}(D, H))[G/D]

PROOF. Trivial by Corollary 4.3. \square

4. 5 REMARK. In general, the Euler characteristic \chi(P) of a finite
poset P is defined by

\chi(P) := \sum_{x,y\in P}\mu_{P}(x, y) .

so that it equals the usual Euler characteristic of the geometric realization
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of the order complex of P. Using this concept, the coefficients in the iden-
tity element of Q\otimes\Omega(G,\mathfrak{X}) can be written by the Euler characteristics as
follows. Let \mathfrak{X}_{>D} be the subposet \{S\in \mathfrak{X}|S>D\} of \mathfrak{X} . Then by the
definition of M\"obius function, we have that

\sum_{S\in X}\mu_{if}(D, S)=1-\sum_{R,S\in if_{>D}}\mu_{iae}(R, S)

=1-\chi(\mathfrak{X}_{>D}) .

4. 6 COROLLARY. Let A, B\in \mathfrak{X} . Then the multiplication in Q\otimes\Omega(G, \mathfrak{X})

is given by

[G/A] \cdot[G/B]=\sum_{(D)A}\sum_{\sim A},\sum_{B\sim B}\frac{|WA|\cdot|\mathcal{W}B|}{|WD|}(\sum_{H\subseteq A’\cap B’}\mu aae(D, H))[G/D] ,

where (D) runs over C(\mathfrak{X}) , A_{j}’B’ runs over G-conjugations of A and B,
respectively, and H runs over elements of \mathfrak{X} contained in A’ and B’

PROOF. Let a:=[G/A] , b:=[G/B] . Then by Corollary 4.3, we
have that

a \cdot b=\sum_{(D)\in C(X)}\frac{1}{|WD|}(\sum_{H\in ae}\mu aae(D, H)a(H)b(H))[G/D] .

By (1) and (5) in Section 2,

a(H)\cdot b(H)=|(G/A\cross G/B)^{H}|

= \sum_{AgB\in A\backslash G/B}|(G/A\cap^{g}B)^{H}|

= \sum_{g\in G}\frac{|A\cap gB|}{|A|\cdot|B|}\cdot\frac{1}{|A\cap^{g}B|}\sum_{g\in G}\zeta(H^{ g^{r}},(A\cap^{g}B))

= \frac{1}{|A|\cdot|B|}\sum_{g,g\in G}\zeta(H^{ g},A\cap^{g^{r}}B)

= \sum_{A\sim A},\sum_{B\sim B}|WA|\cdot|?\mathfrak{l}\mathfrak{B}|\zeta(H, A’\cap B’) ,

where \zeta(H, K) :=1 if H\subseteq K and: =0 otherwise, and in the summation
\Sigma_{A’\sim A} , A’ runs over G-conjugations of A . Now the expansion of [G/A] .
[G/B] in \Omega(G, \mathfrak{X}) follows from the above two equalities. \square

4. 7 The equivalence relation \sim_{p} We assume the condition (C)_{p} ,
where p is a prime or \infty , so that by the Corollary 3.11, \Omega(G, \mathfrak{X}) has the
structure of a generalized Burnside ring. We study the primitive
idempotents of the generalized Burnside ring \Omega(G, \mathfrak{X}) .

Let -p be the equivalence relation on C(\mathfrak{X}) generated by the relation
(\overline{\langle g\rangle S})\sim_{p}(S) for S\in \mathfrak{X} , gS\in(WS). (5)

where ( WS)_{p} means a Sylow p subgroup ((WS)_{\infty} : =WS) . This definition
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can be lifted to \mathfrak{X} , that is, S -pT if and only if (S) -p (T) . An easy
induction argument (cf. the proof of Lemma 3.7 (c)) shows that

S=S_{1}\sim p_{1}S-\cdots\sim_{p_{n- 1}}S_{n^{-}p_{n}}T
S\sim\infty T\Leftrightarrow (6)

for some S_{i}\in \mathfrak{X} and primes p_{i} .

4.8 Lemma. Assume that (C)_{p} holds for a prime p. Then

S-pT\supset\varphi_{S}(x)\equiv\varphi_{T}(x) (mod p) for all x\in\Omega(G, \mathfrak{X})

PROOF. We prove that \varphi_{S}([X])\equiv\varphi_{T}([X]) (mod p) for a (G, \mathfrak{X}) set
X. We may assume that T=\overline{\langle g\rangle S} for some p element gS\in WS. Then

|X^{T}|=|X^{<g>S}| .

(See Lemma 3.8 of Section 3.) Since S is a normal subgroup of \langle g\rangle S of
p-power index, it follows from the basic principle of finite permutation
groups that

|X^{<g>S}|\equiv|X^{s}| (mod p).

This proves that \varphi_{S}([X])\equiv\varphi_{T}([X]) (mod p). \square

4. 9 For an element Q\in \mathfrak{X} , we define an idempotent of Q\otimes\Omega(G, \mathfrak{X}) by

e_{Q}^{p}:= \sum_{H\sim_{p}S} ^{e_{H}}(H)\in C(*),
’ (7)

so that

e_{Q}^{p}(S)=\{
1 is S-pQ
0 otherwise.

(8)

4. 10 REMARK. We can not choose a p-perfect subgroup Q in the
primitive idempotent e_{Q}^{p} as in the case of ordinary Burnside ring \Omega(G) (cf.
2.15) because Q^{p} does not belong to \mathfrak{X} in general. But we can choose Q

such that WQ is a p’ -group. Furthermore, if p is a prime, then such (Q)

is uniquely determined for each primitive idempotent of \Omega(G, \mathfrak{X})_{(p)} . See
Proposition 5.13 for the proof of this fact.

4. 11 Lemma. e_{Q}^{p}= \sum_{(D)\in C(*)}\frac{1}{|77D|}(\sum_{H\sim pQ}\mu_{if}(D, H)) [ _{G}/D] .

PROOF. By Corollary 4.3. \square

4. 12 THEOREM. The element e_{Q}^{p} is a primitive idempotent of
\Omega(G, \mathfrak{X})_{(p)} , and conversely any primitive idempotent of \Omega(G, \mathfrak{X})_{(p)} has this
form. Thus the set of primitive idempotents of \Omega(G, \mathfrak{X})_{(p)} is bijectively
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corresponding to the equivalence classes of the equivalence retation\sim_{p} in
C(\mathfrak{X}) .

PROOF. The idempotent e_{Q}^{p} depends only on the equivalence class
containing Q. We will first show that e_{Q}^{p} belongs to \Omega(G, \mathfrak{X})_{(p)} . The S-
component of \psi^{(p)}(e_{Q}^{p}) , where \psi^{(p)} is the Cauchy-Frobenius homomorphism
(cf. 3.9) is equal to

\psi\xi^{p)}(e_{Q}^{p})=\sum_{gS\in(WS)p}e_{Q}^{p}(\overline{\langle g\rangle S})

=\#\{gS\in(WS)_{p}|\overline{\langle g\rangle S} -_{p}Q\}

=\#\{gS\in(WS)_{p}|S\sim_{p}Q\}

=\{
|WS|_{p} is S\sim pQ

0 otherwise
\equiv 0 mod |WS|_{p} .

Thus by the fundamental theorem, we have that e_{Q}^{p}\in Ker\psi^{(p)}={\rm Im}\varphi^{(p)} , and
so e_{Q}^{p}\in\Omega(G, \mathfrak{X})_{(p)} . Hence e_{Q}^{p} is an idempotent of \Omega(G, \mathfrak{X})_{(p)} .

Next let e be a primitive idempotent of \Omega(G, \mathfrak{X})_{(p)} . Then again by
the fundamental theorem,

\psi^{(p)}(e)_{S}=\sum_{gS\in(WS)p}e(\overline{\langle g\rangle S})\equiv 0 mod |WS|_{p} .

However, the value e(\overline{\langle g\rangle S})=1 or 0, and so
e(\overline{\langle g\rangle S})=e(S) for all gS\in(WS)_{p} .

This means that e is constant on each -_{P}-equivalence class. Thus e is a
summation of distinct idempotents of the form e_{Q}^{p} . By the fact that each
e_{Q}^{p}\in\Omega(G, \mathfrak{X})_{(p)} which has been already proved, we conclude that any primi-
tive idempotent coincides with one of e_{Q}^{p} ’s. The theorem is proved. \square

4. 13 COROLLARY. (a) Assume that (C)_{p} holds for a prime p. Then
S\sim_{p}T=\varphi_{S}(x)\equiv\varphi_{T}(x) (mod p) for all x\in\Omega(G, \mathfrak{X}) .

(b) (S)=(T)\Leftrightarrow\varphi_{S}=\varphi_{T} .

RROOF. (a) By Lemma 4.8, it remains only to show the if-part. The
element x:=|G|_{p^{r}}e\zeta belongs to \Omega(G,\mathfrak{X}) by the idempotent formula and The-
orem 4.12. By (8),

\varphi_{T}(x)\equiv\varphi_{S}(x)=|G|_{p^{r}}\not\equiv 0 (mod p).

Thus again by (8), we have that S\sim_{p}T.
(b) Assume that \varphi_{S}=\varphi_{T} , so that
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0\neq|WS|=\varphi_{S}([G/S])=\varphi_{T}([G/S]) ,

and so T\subseteq_{G}S. By the symmetry, we have that S\subseteq_{G}T. Hence
(S)=(T). The converse is trivial. \square

4. 14 REMARK. As was stated before, when p is a prime, each -p-

equivalence class in \mathfrak{X} contains a “ defect subgroup ” D , unique up to G-
conjugation, such that |WD| is prime to p. The proof will be give in the
next section (Proposition 5.13).

4. 15 PROPOSITION. Assume that the condition (C)_{p} holds. Let e_{Q}^{p} be
a primitive idempotent of \Omega(G, \mathfrak{X})_{(p)} corresponding to a subgroup Q\in \mathfrak{X} .
Then the Burnside homomorphism induces the following ring homomor-
phism :

\varphi b^{p)} : e_{Q}^{p} \Omega(G, \mathfrak{X})_{(p)}arrow\prod_{(S)\sim p(Q)}Z_{(p)} .

Furthermore, the cokernel of this map is isomorphic to

Coker ( \varphi_{Q}^{p})\cong\prod_{(S)\sim p(Q)}Z_{(p)} .

PROOF. This is clear from the fundamental theorem and (8). \square

5 Prime ideals

In this section, we decide prime ideals of the generalized Burnside
ring \Omega(G, \mathfrak{X}) by the method of Dress [Dr 71a ]. For a commutative ring
R , let Spec(R) denote the set of prime ideals of R. Usually, Spec(R) is
equipped with Zariski topology. In this section p denotes a prime or 0,
and so pZ is a prime ideal of Z. If we hope to avoid distinguishing p=0
from other primes, it is convenient to interpret as \Omega(G, \mathfrak{X})_{(0)}=Q\otimes\Omega(G, \mathfrak{X}) ,
n_{0}=1 , n_{0’}=n , etc.

5. 1 For any S\in \mathfrak{X} and p , a prime or 0, define a subgroup of \Omega(G, \mathfrak{X})

by

\mathfrak{p}(S, p) :=\varphi_{S}^{-1}(pZ)= {x\in\Omega(G, \mathfrak{X})|\varphi_{S}(x)\equiv 0 (mod p) }. (1)

If \Omega(G, \mathfrak{X}) has a structure of a generalized Burnside ring together
with the Burnside homomorphism \varphi=(\varphi_{S}) : \Omega(G, \mathfrak{X})arrow\tilde{\Omega}(G, \mathfrak{X}) , then the
S component of \varphi

\varphi_{S} : \Omega(G, \mathfrak{X})arrow Z

is a surjective ring homomorphism, and so \mathfrak{p}(S, p) is a prime ideal of
\Omega(G, \mathfrak{X}) . Conversely, by the going-up theorem (or another theorem like
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this) about integral extension of commutative rings, prime ideals of
\Omega(G, \mathfrak{X}) have this form. Using the going-up theorem is the second way by
which Dress [Dr 71a ] proved that each prime ideal of the Burnside ring of
a finite group has the form \mathfrak{p}(S, p) . In this section, we will study prime
ideals by the first way of Dress.

5. 2 We assume that \Omega(G, \mathfrak{X}) is a generalized Burnside ring, that is,
\Omega(G\mathfrak{X}) has a ring structure such that the Burnside homomorphism \varphi :
\Omega(G, \mathfrak{X})arrow\tilde{\Omega}(G, \mathfrak{X}) is an injective ring homomorphism.

A support supp \mathfrak{p} of a prime ideal \mathfrak{p} of \Omega(G, \mathfrak{X}) is a pair ((S), pZ)\in
C(\mathfrak{X})\cross Spec(Z) such that pZ=\mathfrak{p}\cap Z and S\in \mathfrak{X} is a minimal subject to
[G/S]\not\in \mathfrak{p} .

5. 3 LEMMA Let ((S), pZ):=supp\mathfrak{p} be a support of a prime ideal \mathfrak{p}

of \Omega(G, \mathfrak{X}) . Then for any x\in\Omega(G, \mathfrak{X}) ,

x\equiv\varphi_{S}(x)\cdot 1 mod \mathfrak{p} .

PROOF. The decomposition of x . [ G/S] into a sum of transitive
(G, \mathfrak{X}) -sets has the following form:

x . [ ^{G}/S]=\varphi_{S}(x) . [G/S]+ \sum_{D<S}m(D) [ ^{G}/D] ,

where D runs over proper subgroups of S (cf. Lemma 3.13). Since [ G/D]
\in \mathfrak{p} for any proper subgroup D of S, we have that

x . [ G/S]\equiv\varphi_{S}(x) . [ G/S] mod \mathfrak{p} ,

which implies that x\equiv\varphi_{S}(x)\cdot 1 mod \mathfrak{p} because [G/S] is not contained in
the prime ideal \mathfrak{p} . \square

5. 4 COROLLARY. A support ((S), pZ) of a prime ideal \mathfrak{p} of \Omega(G, \mathfrak{X})

is uniquely determined. Furthermore, WS is a p’ -group if p is a prime.

PROOF. Let ((T), pZ) be another support of \mathfrak{p} . Applying Lemma 5.3
to x=[G/T] , we have that

\mathfrak{p}\not\in[G/T]\equiv\varphi_{S}([G/T])\cdot 1 mod \mathfrak{p} ,

and so \varphi_{S}([G/T])\neq 0 , which implies that S\subseteq_{G}T by (3) in Section 2.
By the minimality of T. we conclude that (S)=(T) . \square

5. 5 THEOREM. Assume that \Omega(G, \mathfrak{X}) is a generalized Burnside ring.
Let \mathfrak{S} be the set of pair ((S), pZ)\in C(\mathfrak{X})\cross Spec(Z) such that
(|WS|, p)=1 if p is a prime. Then the map
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f : \mathfrak{S} – Spec (\Omega(G\mathfrak{X}))

: ((S), pZ)-\mathfrak{p}(S, p)(=\varphi_{S}^{-1}(pZ))

is a bijection. Furthermore, the inverse g of f is given by g:\mathfrak{p}-supp\mathfrak{p} .

PROOF. By Lemma 5.4, the map g from Spec(\Omega(G, \mathfrak{X})) to \mathfrak{X} is well-
defined Let ((S), pZ)\in \mathfrak{S} , and put \mathfrak{p} :=\mathfrak{p}(S, p) . Since \varphi_{s}([G/S])=

|WS|\cdot 1\not\in \mathfrak{p} , we have that [G/S]\not\in \mathfrak{p} . If D is a proper subgroup of S, then
\varphi_{S}[G/D]=0 , and so [ G/D]\in \mathfrak{p} , whence S is a minimal subject to
[G/S]\not\in \mathfrak{p} . Thus ((S), pZ) is a support of \mathfrak{p}(S, p) . This means gf=id.
Next let \mathfrak{p} be any prime ideal of \Omega(G, \mathfrak{X}) with support ((S), pZ) . By
Lemma 5.3, an element x\in\Omega(G, \mathfrak{X}) belongs to \mathfrak{p} if and only if \varphi_{S}(x)\in pZ.
Thus \mathfrak{p}=\mathfrak{p}(S, p) , proving that fg=id. \square

5. 6 LEMMA. \mathfrak{p}(S, p)\subseteq \mathfrak{p}(T, q) if and only if \mathfrak{p}(S, q)=\mathfrak{p}(T, q) and
P=0 or q.

PROOF. Assume that \mathfrak{p}(S, p)\subseteq \mathfrak{p}(T, q) . Then there is a canonical sur-
jection:

Z/pZ\cong\Omega(G, \mathfrak{X})/\mathfrak{p}(S, p)arrow\Omega(G, \mathfrak{X})/\mathfrak{p}(T, q)\cong Z/qZ.
Thus p=0 or q , and \mathfrak{p}(S, q)=\mathfrak{p}(T, q) . \square

5. 7 It still remains the problem when \mathfrak{p}(H, p)=\mathfrak{p}(K, p) happens for
H, K\in \mathfrak{X} . We can solve this problem under the condition (C)_{\infty} in 3.6.
So assume (C)_{\infty} , that is,

S\in \mathfrak{X} , gS\in(WS)_{\infty} \supset \overline{\langle g\rangle S}\in \mathfrak{X} ,

where \overline{H} for a subgroup H of G is the intersection of all subgroup S in \mathfrak{X}

containing H. Under this condition, \Omega(G, \mathfrak{X}) becomes a generalized Burn-
side ring by Theorem 3.11. Furthermore, as in the paragraph 4.7, for a
prime p (or p=\infty), let -p be the equivalence relation on C(\mathfrak{X}) , and also
on \mathfrak{X} , generated by the relation

(\overline{\langle g\rangle S}) -p(S) for all X\in \mathfrak{X} , gS\in(WS)_{p} .

We extend this relation to p=0 by

(S) -0(T)\Leftrightarrow(S)=(T) . (2)

5. 8 THEOREM. Assume the condition (C)_{\infty} and let -p be the equiva-
lence relations defifined as above. Then

\mathfrak{p}(S, p)=\mathfrak{p}( T, q)\Leftrightarrow p=q and (S) -p (T) .
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PROOF. Assume that \mathfrak{p}
:=\mathfrak{p}(S, p)=\mathfrak{p}( T, q) . Comparing the character-

istics of the residue rings, we have that p=q. Let

f_{Q} :=\{
|G|_{p^{\gamma}}e6 if p is a prime,
|G|e_{Q} if P=0,

where e_{Q} (resp. e_{Q}^{p}) is the primitive idempotent of Q\otimes\Omega(G, \mathfrak{X}) (resp.
\Omega(G, \mathfrak{X})_{(p)}) corresponding to a subgroup Q. Then by Theorem 4.2, 4.12,
(1), (8) in Section 4, we have that f_{Q} is contained in \Omega(G, \mathfrak{X}) and that for
any H\in \mathfrak{X} ,

f_{Q}\not\in \mathfrak{p}(H, p) = \varphi_{H}(f_{Q})\not\equiv 0 (mod p)
\Leftrightarrow \varphi_{H}(f_{Q})=|G|_{p^{\gamma}}

\Leftrightarrow H-_{p}Q.

Thus we have that S -pT. Conversely, it follows immediately from
Corollary 4.13 that if S -pT then \mathfrak{p}(S, p)=\mathfrak{p}(T, p) . \square

5. 9 COROLLARY. \mathfrak{p}(S, p)\subseteq \mathfrak{p}(T, q) if and only if p=0 or q, and
(S)\sim_{q}(T) .

PROOF. This result follows from the theorem and Lemma 5.6. \square

5. 10 COROLLARY. Let - \infty be the equivalence class on \mathfrak{X} defifined in 4.7.
Then there is a bijective correspondence between the set of connected com-
ponents of Spec(\Omega(G, \mathfrak{X})) and the set \mathfrak{X}/\sim\infty of -\infty -equivalence classes.

PROOF. This follows trivially from the above corollary and (6) in
Section 4. (Another Proof : By Theorem 4.12). \square

5. 11 REMARK. (a) There is a proof of Theorem 5.8 without using the
knowledge about idempotents. So by Corollary 5.10, we know that the
number of primitive idempotents of \Omega(G, \mathfrak{X})_{(p)} equals |\mathfrak{X}/\sim|\infty . This is a
classical method by which A. Dress and T. tom Dieck proved that the
number of primitive idempotents of the Burnside ring \Omega(G) equals the
number of conjugacy classes of perfect subgroups of G. See tom Dieck’s
book [Di 79].

(b) We can study Spec (\Omega ( G, \mathfrak{X})_{(p)}) and more generally
Spec(R\otimes\Omega(G, \mathfrak{X})) . (Refer to [Dr 71a] .) For example, the following the0-
rem holds. We can prove it easily and similarly to Theorem 5.8. So the
proof is omitted.

5. 12 THEOREM. Assume the condition (C) p for a prime p. Then
there is a bijective correspondence between Spec(\Omega(G, \mathfrak{X})_{(p)}) and \sim_{p}

-
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equivalence classes.

5. 13 PROPOSITION. Let p be a prime and assume that the condition
(C)_{p} holds. Then each -p-equivalence class in \mathfrak{X} contains a unique (D)\in

C(\mathfrak{X}) such that WD is a p -group. In particular, maximal subgroups
belonging to a -_{p}-equivalence class are conjugate each other in G Thus
the set { (D)\in C(\mathfrak{X})|WD is a p^{\gamma} -group} is a complete set of representatives
of equivalence classes.

PROOF. This result follows from Theorem 5.5 and 5.8 under the
assumption (C)_{\infty} . But because in this paper we omitted to prove the
result for prime ideals of \Omega(G, \mathfrak{X})_{(p)} corresponding to these two theorems,
we will give a direct proof of this proposition. Let \mathfrak{C} be a -_{p} equivalence
class in \mathfrak{X} , and let D be a maximal element of \mathfrak{C} . Then by (C)_{p} , we have
that WD is a p’ -group. Let S be an element of \mathfrak{C} such that WS is a
p^{r} -group. Then by Lemma 4.8,

\varphi_{D}(x)\equiv\varphi_{S}(x) (mod p )

for all x\in\Omega(G, \mathfrak{X}) . In particular, applying this to x=[G/S] , we have
that

\varphi_{D}([G/S])\equiv\varphi_{S}([G/S])=|WS|\not\equiv 0 (mod p),

and so D\leq_{G}S. The maximality of D implies that D and S are G-
conjugate each other. \square

5. 14 The above proposition is a purely group-theoretic statement.
However the author does not know any application of this fact to finite
group theory.

We will give an example. Let \mathfrak{X}=Sub(G) , the lattice of all subgroups
of G. In this case, S -pT if and only if (S^{p})=(T^{p}) . Thus there is a
p-perfect subgroup Q in each equivalence class. Let D be a subgroup
such that D/Q is a Sylow p-subgroup of WQ. Then D satisfies the condi-
tion of the proposition.

Clearly, such a subgroup D does not exist if p=\infty , because WQ does
not possess maximal solvable subgroups unique up to G-conjugation. So
for a generalized Burnside ring, we have not yet had a good set of repre-
sentatives of -\infty-equivalence classes of subgroups in \mathfrak{X}

6 Transfer-Induction theorems

In this section, we will study some functorial properties of generalized
Burnside rings. Similarly as in the case of usual Burnside rings, there
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exist restrictions, inductions, inflations, fifixed-point maps between general-
ized Burnside rings, and using such maps, we can prove some transfer
theorems.

6. 1 For any finite group H. we denote by Sub(H) the lattice of sub-
groups of H. The group H acts on this lattice by conjugation. When a
family \mathfrak{Y} of subgroups of H is closed under H-conjugation, we write it as

\mathfrak{Y}\subseteq_{H} Sub (H).

Through this section, \mathfrak{X} denotes such a family of subgroups of G, that
is,

\mathfrak{X}\subseteq_{G} Sub (G).

We define a family \cap \mathfrak{X}\subseteq_{G} Sub(G) by

\cap \mathfrak{X}:=\{S_{1}\cap\cdots\cap S_{n}|n\geq 0, S_{i}\in \mathfrak{X}\} .

This family contains G.
As before, we define

\overline{K} :=\cap\{S\in \mathfrak{X}|K\subseteq S\} .

(We will use this symbol only for \mathfrak{X} ; we do not use for other families.)
Furthermore, p denotes a prime, 0 or \infty and we write M_{(p)} for Z_{(p)}\otimes M for
any abelian group M as usual.

The condition (C)_{p} (cf. 3.6) and the equivalence relation -p (cf. 4.7)

play again essential roles in this section. The condition (C)_{p} states that
if S\in \mathfrak{X} , gS\in(WS)_{p} , then \overline{\langle g\rangle S}\in \mathfrak{X} , and - p\overline{1}S generated by the relation
(\overline{\langle g\rangle S}) -p(S) for S\in \mathfrak{X} , gS\in(WS)_{p} .

6. 2 Let H be a subgroup of G and let \mathfrak{Y}\subseteq_{H} Sub(G)\cap X. Then we
have two linear maps as follows:

ind^{G} : \Omega(H, \mathfrak{Y})_{(p)} arrow \Omega(G, \mathfrak{X})_{(p)}

: [H/T] – [ G/T] ;
res_{H}^{\sim} : \tilde{\Omega}(G, \mathfrak{X})_{(p)} arrow \tilde{\Omega}(H, \mathfrak{Y})_{(p)}

: (\chi(S))_{(S)\in C(Xi)}arrow(\chi(T))_{(T)\in C(\mathfrak{Y})}

The map res^{\sim} is a ring homomorphism. We are interesting in the case
where ind induces a linear map between the ghost rings and the case
where res induces a ring homomorphism between the generalized Burnside
rings. Such maps res and ind are called a restriction and an induction,
respectively.
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6. 3 PROPOSITION. Under the above notation, assume that
T\in \mathfrak{Y} , hT\in(W_{H}T)_{p} \supset \overline{\langle h\rangle T}\in \mathfrak{Y} . (1)

Then the restriction of res^{\sim}into \Omega(G, \mathfrak{X})_{(p)} gives a map
res_{H} : \Omega(G, \mathfrak{X})_{(p)}arrow\Omega(H, \mathfrak{Y})_{(p)} .

If furthermore \Omega(G, \mathfrak{X})_{(p)} is a generalized Burnside rings, then res is a
ring homomorphism.

PROOF. By the assumption, the family \mathfrak{Y} satisfies the condition (C) p

in 3.6. Thus \Omega(H\mathfrak{Y})_{(p)} is a generalized Burnside ring and furthermore
the fundamental theorem (Theorem 3.10) holds. Let x=[X]\in\Omega(G, \mathfrak{X})_{(p)}

for a (G, \mathfrak{X}) -set X. Then

\theta:=res_{H}^{\sim}\varphi^{(p)}(x)=(|X^{T}|)_{(T)\in C(\mathfrak{Y})} .

It will suffice to show that \theta is contained in the image of \varphi^{(p)} . Let T\in \mathfrak{Y} .
By the Cauchy-Frobenius theorem (Lemma 2.7) and Lemma 3.8,

\psi^{(p)}(\theta)_{T}=\sum_{hT\in(W_{H}T)p}\theta(\overline{\langle h\rangle T})

= \sum_{hT\in(W_{H}T)p}x(\overline{\langle h\rangle T})

= \sum_{hT\in(W_{H}T)p}x(\overline{\langle h\rangle T})

= \sum_{hT\in(W_{H}T)p}|(X^{T})^{(h)T}|

\equiv 0 mod |W_{H}T|_{p} .
Thus \theta\in Ker\psi^{(p)}={\rm Im}\varphi^{(p)} , and so by the fundamental theorem, there
exists a unique x’\in\Omega(H, \mathfrak{Y}) such that \varphi^{(p)}(x’)=\theta . The correspondence

x-x’ gives the desired homomorphism

res_{H} : \Omega(G, \mathfrak{X})_{(p)}arrow\Omega(H, \mathfrak{Y})_{(p)} .
If \Omega(G, \mathfrak{X})_{(p)} is a generalized Burnside ring, then two Burnside homomor-
phisms \varphi^{(p)} ’s with respect to G and H are injective ring homomorphisms
and they are commutaive with the restriction maps res_{H} and res_{H}^{\sim} . Since
res_{H}^{\sim} is a ring homomorphism, res_{H} is also a ring homomorphism. \square

6. 4 COROLLARY. Assume that the following condition holds:
\langle g\rangle S\in \mathfrak{X} for any S\in \mathfrak{X} , gS\in(WS)_{p} .

Then \Omega(G, \mathfrak{X})_{(p)} is a generalized Burnside ring and there exists a ring
homomorphism \rho from \Omega(G) to \Omega(G, \mathfrak{X}) which makes the following dia-
gram commuta ive :
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\Omega(G)\underline{\rho}\Omega(G, \mathfrak{X})

\varphi\downarrow \varphi\downarrow

\tilde{\Omega}(G)\underline{proj.}\tilde{\Omega}(G, \mathfrak{X}) .

PROOF. The condition (C)_{p} holds by the assumption. We can apply
Proposition 6.3 to \mathfrak{X}\subseteq Sub(G) . \square

6. 5 COROLLARY. Assume that \mathfrak{X} satisfifies the condition (C) p . Then
there is a surjective ring homomorphism

\rho:\Omega(G, \cap \mathfrak{X})_{(p)} arrow \Omega(G, \mathfrak{X})_{(p)} (2)

such that \rho(x)(S)=x(S) for S\in \mathfrak{X} . Thus the generalized Burnside ring
\Omega(G, \mathfrak{X})_{(p)} is isomo\uparrow phic to the factor ring of \Omega(G, \cap \mathfrak{X}) , the subring of
\Omega(G) , by the ideal

{x\in\Omega ( G, \cap \mathfrak{X}) |x(T)=0 if T\in\cap \mathfrak{X}-\mathfrak{X}}. (3)

PROOF. The family \cap \mathfrak{X} , together with \mathfrak{X} , satisfies the assumption of
the Proposition 6.3. Thus we have a map \rho which has the desired prop-
erty. To prove the surjectivity of \rho , we restrict \rho into \Omega(G, \mathfrak{X})\subseteq

\Omega(G\cap \mathfrak{X}) , so that we have identity map, and so \rho is a split epimorphism.
\square

6. 6 COROLLARY. Assume that (C) p holds for \mathfrak{X} . Let H\in\cap \mathfrak{X} and
\mathfrak{X}_{H} :=\mathfrak{X}\cap Sub(H) . Then there is a ring homomo\phi hism

res_{H} : \Omega(G, \mathfrak{X})_{(p)}arrow\Omega(H, \mathfrak{X}_{H})_{(p)}

such that res_{H}(x) (T)=x(T) for T\in \mathfrak{X}_{H} . If \mathfrak{X} is closed under intersec-
tion, then

res_{H}([G/S])=\sum_{HgS\in H\backslash G/S}[H/H\cap^{g}S] .

PROOF. The first part follows immediately from Proposition 6.3. The
remainder and be easily proved from the fact that \Omega(G, \mathfrak{X}) is the subring

of \Omega(G) . \square

6. 7 PROPOSITION. Assume that the family \mathfrak{X} satisfifies the condition
(C)_{p} and that \mathfrak{X}=\mathfrak{X}_{1}\cup\cdot \mathfrak{X}_{2} is a disjoint union of two families \mathfrak{X}_{i} closed with
respect to -p . Then there is a ring isomorphism

\rho:\Omega(G, \mathfrak{X})_{(p)}\cong\Omega(G, \mathfrak{X}_{1})_{(p)}\cross\Omega(G, \mathfrak{X}_{2})_{(p)} (4)
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such that \rho(x)(S_{1}, S)=(x(S_{1})x(S)) for S_{i}\in \mathfrak{X} .

PROOF. Applying Proposition 6.3 to \mathfrak{X}_{i} , we have a ring homomor-
phism

res_{i} : \Omega(G, \mathfrak{X})_{(p\rangle} arrow \Omega(G, \mathfrak{X}_{i})_{(p)} .

Thus we have a commutative diagram

\Omega(G, \mathfrak{X})_{(p)}arrow\rho\Omega(G\mathfrak{X}_{1})_{(p)}\cross\Omega(G, \mathfrak{X}_{2})_{(p)}

\varphi\downarrow \downarrow\varphi’

\tilde{\Omega}(G, \mathfrak{X})_{(p)}arrow\cong\tilde{\Omega}(G, \mathfrak{X}_{1})_{(p)}\cross\tilde{\Omega}(G, \mathfrak{X}_{2})_{(p)} ,

where \varphi’ :=\varphi_{1}\cross\varphi_{2} . Since \varphi and \varphi’ are both injective and since their c0-

kernels are both isomorphic to Obs (G, \mathfrak{X})_{(p)} , we have that \rho=res_{1}\cross res_{2} is
an isomorphism. \square

6. 8 COROLLARY. Assume that the condition (C)_{p} holds for \mathfrak{X} . Let e

be an idempotent of \Omega(G, \mathfrak{X})_{(p)} and let

\mathfrak{X}_{1} :=\{S\in \mathfrak{X}|e(S)=1\} .

Then
e\cdot\Omega(G, \mathfrak{X})_{(p)}\cong\Omega(G, \mathfrak{X}_{1})_{(p)} .

PROOF. Let e_{1} :=e, e_{2} :=1-e, and let \mathfrak{X}_{2} :=\{S\in \mathfrak{X}|e(S)=0\} . Then the
families \mathfrak{X}_{i} , i=1,2 satisfy (C)_{p} by Theorem 4.12 and (8) in Section 4.
Let \rho be the isomorphism in Proposition 6.7. Since \rho(e_{i})(S_{j})=\delta_{ij} for
S_{i}\in \mathfrak{X}_{j} ,

\rho(e_{i}\Omega(G, \mathfrak{X})_{(p)})\subseteq\Omega(G, \mathfrak{X}_{i})_{(p)} .

Furthermore since \Omega(G, \mathfrak{X})_{(p)}=e_{1}\Omega(G, \mathfrak{X})_{(p)}\oplus e_{2}\Omega(G, \mathfrak{X})_{(p)} , we have that \rho .

induces ring isomorphisms

e_{i}\Omega(G, \mathfrak{X})_{(p)} arrow \Omega(G, \mathfrak{X}_{i})_{(p)} , i=1,2 .
\square

6. 9 COROLLARY. Assume (C) p . Let \mathfrak{C}_{1} , \mathfrak{C}_{2} , \cdots be the -p-equivalence
classes in \mathfrak{X} . Then the restriction maps induce the following ring isomor-
phism :

\Omega(G, \mathfrak{X})_{(p)}

arrow\cong

\prod_{i}\Omega(G, \mathfrak{C}_{i})_{(p)} .
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PROOF. This follows from above two corollaries. \square

6. 10 For any H\in\cap \mathfrak{X} , we define a family \mathfrak{X}_{H} by

\mathfrak{X}_{H} :=\mathfrak{X}\cap Sub(H)=\{T\in \mathfrak{X}|T\subseteq H\} .

Assume that
\mathfrak{X} satisfies (C)_{p} for p a prime 0, or \infty .

Then by Corollary 6.6, for any pair H\leq K in \cap \mathfrak{X} , there exist maps as
follows:

res_{H}^{K} : \Omega(K, \mathfrak{X}_{K})_{(p)}arrow\Omega(H, \mathfrak{X}_{H})_{(p)}

ind_{H}^{K} : \Omega(H\mathfrak{X}_{H})_{(p)}arrow\Omega(K, \mathfrak{X}_{K})_{(p)}

: [H/T] -[G/T] .

Furthermore, for H\in\cap \mathfrak{X} and g\in G , the conjugation map is defined by

con_{H}^{g} : \Omega(H, \mathfrak{X}_{H})_{(p)}arrow\Omega(^{g}H, \mathfrak{X}_{H}q)_{(p)}

: [H/S] – [^{g}H/gS] ,

where gH:=gHg^{-1} . By the definition of restriction and conjugation, we
have that

res_{H}^{K}(x)(S)=x(S) , x\in\Omega(K, \mathfrak{X}_{K})_{(p)} , S\in \mathfrak{X}_{K} ; (5)
con_{H}^{g}(y)(^{g}T)=y(T) , y\in\Omega(H, \mathfrak{X}_{H})_{(p)\prime}T\in \mathfrak{X}_{H} . (6)

About induction maps, we can calculate their values at subgroups by
the following lemma:

6. 11 LEMMA. Let H, K\in\cap \mathfrak{X} with H\subseteq K. Then under (C) p ,

ind_{H}^{K}(y)(T)=\frac{1}{|H|}
\sum_{\oint_{\subseteq^{g}H}^{\in,K}}y(g^{-1}Tg)

for any y\in\Omega(H, \mathfrak{X}_{H}) and T\in \mathfrak{X}_{K} . In particular, ind caw be extended to
ind^{\sim}: \tilde{\Omega}(H, \mathfrak{X}_{H})arrow\tilde{\Omega}(K, \mathfrak{X}_{K}) (7)

PROOF. Let y=[H/T] , T\in \mathfrak{X}_{H} , and S\in \mathfrak{X}_{K} . Then

\varphi_{S}(ind^{K}([H/T])=\varphi_{S}([K/T])

=\#\{kT\in K/T|S\subseteq^{k}T\}

= \sum_{kH\in K/H}\#\{kT\in H/T|S\subseteq^{kh}T\}

= \frac{1}{|H|}\sum_{k\in K}\#\{hT\in H/T|kS\subseteq^{h}T\}
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= \frac{1}{|H|}\sum_{k\in K}([H/T])(^{k}S)

= \frac{1}{|H|}\sum_{k\in K}y(^{k}S) .

This proves the lemma. \square

6. 12 LEMMA(Mackey decomposition). Let H, K, L\in\cap \mathfrak{X} with H, K
\subseteq L and let x\in\Omega(G, \mathfrak{X}_{H}) . Then

res_{K}\cdot ind^{L}(x)=\sum_{KgH\in K\backslash L/H}ind^{K}reS_{H\cap K}^{g}con^{g}(x) . (8)

PROOF. We put simply

gx:=con^{g}(x) .
Then for any T\in \mathfrak{X}_{K} ,

res_{K}\cdot ind^{L}(x)(T)=ind^{L}(x)(T)

= \frac{1}{|H|}\sum_{9}x(^{g}T)f_{\subseteq H}^{\in L}

= \frac{1}{|H|}
T \subseteq^{g}H\sum_{g\in L},

x(g^{-1}Tg)

= \frac{1}{|H|}\sum_{\oint_{\subseteq^{g}H}^{\in L}}gx(T)

= \sum_{KgHk} ^{\sum_{KH}x(k^{-1}Tk)}T\subseteq^{k}(^{9}H\cap K)\in K/n^{\theta},g

= \sum_{KgH}ind^{Kres}_{K\cap^{9}H}con^{g}(x)(T) ,

as required.
\square

6. 13 L EMMA (Frobenius reciprocity). Let H, K\in\cap \mathfrak{X} with H\subseteq K,
x\in\Omega(H, \mathfrak{X}_{H}) and y\in\Omega(K, \mathfrak{X}_{K}) . Then

ind^{K}(x)\cdot y=ind^{K}(x\cdot res_{H}(y)) .

PROOF. Let T\in \mathfrak{X}_{K} . Then

( ind^{K}(x)\cdot y)(T)=\frac{1}{|H|}
9k\in K\sum_{T\subseteq H},

x(^{k}T)y(T)

= \frac{1}{|H|}
9k\in K\sum_{T\subseteq H},

(x\cdot res_{H}(y))(^{k}T)

=ind^{K}(x\cdot res_{H}(y))(T) .
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\square

6. 14 LEMMA. Let H\in \mathfrak{X} and x\in\Omega(G, \mathfrak{X})_{(p)} . Then

ind^{Gres}_{H}(x)=ind^{G}(1_{H})\cdot x,

where 1_{H} denotes the identity element of \Omega(H, \mathfrak{X}_{H})_{(p)} .

PROOF. For any S\in \mathfrak{X} ,

ind^{Gres}_{H}(x)(S)=\frac{1}{|H|}
9g\in G\sum_{S\subseteq H},res_{H}(x)(^{g}S)

= \frac{1}{|H|}
9g\in G\sum_{S\subseteq H},x(^{g}S)

= \frac{1}{|H|}
9g\in G\sum_{S\subseteq H},x(S)

=(ind^{G}(1_{H})\cdot x)(S) .

\square

6. 15 The above lemmas show that the correspondence H(\in\cap \mathfrak{X})-

\Omega(H, \mathfrak{X}_{H})_{(p)} together with induction, restriction and conjugation makes a
G-functor. Here a G-functor a with respect to a family \mathfrak{X} is a family
(a(H), ind_{H}^{K}, res_{H}^{K}, con_{H}^{g}) consisting of abelian groups a(H)(H\in \mathfrak{X}) and
three kinds of linear maps (induction or corestiction, restriction, and con-
jugation) as follows:

ind_{H}^{K} : \Omega(H, \mathfrak{X}_{H})arrow\Omega(K, \mathfrak{X}_{K}) : x-x\uparrow K :
mes_{H}^{K} : \Omega(K, \mathfrak{X}_{K})arrow\Omega(H, \mathfrak{X}_{H}) : y\mapsto y\downarrow H ;
con_{H}^{g} : \Omega(H, \mathfrak{X}_{H})arrow\Omega(^{g}H, \mathfrak{X}_{H}^{g}) : x\mapsto gx,

where H, K are elements of \cap \mathfrak{X} with H\subseteq K and g\in G . Furthermore,
these maps must satisfy some axioms, that is, the transitivity: ind_{K}^{Lind}_{H}^{K}=

ind|/ , etc., the commutativity of conjugations with induction and restric-
tion, and Mackey decomposition like Lemma 6.12. The precise definition
(for the usual G-functors) is found in Green [Gr 71] or [Yo 80].

6. 16 Similarly as in the case of the usual G functors, we can define
some concepts, for example, pairings, Green functors (ie . a G-functor
with ring structure), modules on Green functors, morphisms between G-
functors, the action of a generalized Burnside ring on a G-functors, rela-
tive projectivity, Dress induction theorem, the stable element theorem,
Araki’s excision theorem, the representability of G-functors, Hecke rings
with coefficient in a generalized Burnside ring (span rings), and so on.
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However, such a theory can be made much more like the ordinary
theory of G functors. So here we state only a few results.

6. 17 For an H\in\cap \mathfrak{X} , we denote the idempotent of \Omega(H, \mathfrak{X}_{H})_{(p)} corre-
sponding to D\in \mathfrak{X}_{H} by e_{H,D}^{p} if we need to state H clearly.

We introduce the following symbols:

gy:=con_{H}^{g}(y) for g\in G, y\in\Omega(H, \mathfrak{X}_{H})_{(p)} ;
H(g) :=gH\cap H for g\in G ;

\chi_{\downarrow H} :=res_{H}^{K}(x) for H\leq K\in \mathfrak{X} , x\in\Omega(K, \mathfrak{X}_{K})_{(p)} ;
y^{\uparrow K} :=ind_{H}^{K}(y) for H\leq K\in \mathfrak{X} , y\in\Omega(H, \mathfrak{X}_{H})_{(p)} ;

\Omega(H, \mathfrak{X}_{H})_{(p)}^{G} :=\{y\in\Omega(H, \mathfrak{X}_{H})_{(p)}|y_{\mathfrak{l}H(g)}=^{g}y_{\mathfrak{l}H(g)}\}\subseteq\Omega(H, \mathfrak{X}_{H}) .

6. 18 THEOREM (Stable element theorem). Assume (C) p for p a
prime, 0 or \infty . Let D be an element of \mathfrak{X} such that WD is a p^{r} group
Then the restriction map induces the following ring isomorphism:

e_{G,D}^{p}\cdot\Omega(G, \mathfrak{X})_{(p)}\cong res_{D}(e_{G,D}^{p})\cdot\Omega(D, \mathfrak{X}_{D})_{(p)}^{G} . (9)

The inverse is given by y\mapsto ind^{G}(y) .

PROOF. Put

e :=e_{G,D}^{p} , f :=res_{D}(e_{G,D}^{p}) .

Define maps \rho and \tau as follows:

\rho : e\cdot\Omega(G\mathfrak{X})_{(p)}arrow f\cdot\Omega(D, \mathfrak{X}_{D})_{(p)}^{G}

: x – res_{D}(x)

\tau : f\cdot\Omega(D, \mathfrak{X}_{D})_{(p)}^{G}arrow e\cdot\Omega(G, \mathfrak{X})_{(p)}

: y – ind_{D}(y) .

By the Frobenius reciprocity, these maps are well defined and \rho is a ring
homomorphism. By Lemma 6.14,

\tau\cdot\rho(x)=e\cdot ind^{G} res_{D}(x)=e . [ G/D]\cdot x.

Take any S\in \mathfrak{X} . If S+_{p}D , then

(e. [ G/D])(S)=e(S) . [ G/D](S)=0 :

and if S-pD, then

(e. [ G/D])(S)=e(D) . [ G/D](D)=|WD|\not\equiv 0 (mod p )

by Lemma 4.13. Thus \varphi(e. [ G/D]) is invertible in \varphi(e)\cdot\tilde{\Omega}(G, \mathfrak{X})_{(p)}=

\Pi_{(S)\sim p(D)}Z_{(p)} . See Proposition 4.15. Since \varphi(e)\cdot
\tilde{\Omega}(G, \mathfrak{X})_{(p)} is an integral

extension of e\cdot\Omega(G, \mathfrak{X})_{(p)} , we have that e . [ G/D] is also invertible in
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e\cdot\Omega(G, \mathfrak{X})_{(p)} (cf. Proposition 4.15), and so it is also a unit of e\cdot\Omega(G, \mathfrak{X})_{(p)} .
Thus x-\tau\cdot\rho(x) is an isomorphism.

Next let y\in f\cdot\Omega(D, \mathfrak{X}_{D})_{(p)}^{G} . Then by Mackey decomposition and
Lemma 6.14, we have that

\rho\cdot\tau(y)=res_{D}(e\cdot ind^{G}(y))

=f \cdot\sum_{DgD}ind^{Dres}_{D(g)}(^{g}y)

=f \cdot\sum_{DgD}ind^{Dres}_{D(g)}(y)

=f \cdot\sum_{DgD}ind^{D}(1_{D(g)})y

=f\cdot res_{D}([G/D])\cdot y

=res_{D}(e\cdot [ G/D])\cdot y .

As is proved above, e\cdot[G/D] is a unit of e\cdot\Omega(G, \mathfrak{X})_{(p)} , and so
res_{D}(e. [ G/D]) is a unit of f\cdot\Omega(D, \mathfrak{X}_{D}) . Thus \rho\cdot\tau is also an isomor-
phism. Hence \rho gives an isomorphism. It is easily checked that the
above proof is valid even in the case where p=0. \square

6. 19 REMARK. In the case of the usual Burnside rings,

res_{D}(e_{G,D}^{p})=e_{DD}^{p} (10)

holds. In fact, for T\leq D,

res_{D}(e_{G,D}^{p}) ( T)=e_{G,D}^{p}( T)

=\{
1 if D^{p} is G-conjugate to T^{p}

0 otherwise

=\{
1 if D^{p} is D-conjugate to T^{p}

0 otherwise
=e_{D,D}^{p}(T)

But the author does not know whether (10) holds in a generalized Burn-
side ring. Moreover, there remains the problem whether there is an
isomorphism as in (9) for p=\infty .

In the case of the ordinary Burnside ring of a finite group, there is an
important isomorphism:

e_{G,Q}^{p}\cdot\Omega(G)_{(p)}\cong e_{N,Q}^{p}\cdot\Omega(N)_{(p)} , (11)

where Q is a p-perfect subgroup of G and N:=NQ. S. Araki ([Ar 82])
pointed out that this isomorphism is still valid even if p=\infty , that is,

e_{G,Q}^{\infty}\cdot\Omega(G)\cong e_{N,Q}^{\infty}\cdot\Omega(N) . (12)

But in the present case, a \sim_{p}-equivalence class may not contain a p-
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perfect subgroup Q, and so there is no isomorphisms corresponding to
(11), (12).

6. 20 Assume the condition (C)_{p} holds for \mathfrak{X} . Let \mathfrak{Y} be a subset of \mathfrak{X}

closed under G-conjugation. Define
\mathfrak{H}p\mathfrak{Y}:= { S\in \mathfrak{X}|S -pT for \exists T\in \mathfrak{Y} },\cdot (13)

K(G, \mathfrak{Y}) :=\{x\in\Omega(G, \mathfrak{X})|x(T)=0\forall T\in \mathfrak{Y}\} (14)
I(G, \mathfrak{H}p\mathfrak{Y}) :=\Sigma\{ind^{G}(\Omega(H, \mathfrak{X}_{H}))|H\in \mathfrak{H}p\mathfrak{Y}\} . (15)

By the Frobenius reciprocity and the fact that the restriction map is a ring
homomorphism, K(G, \mathfrak{Y}) and I(G, \mathfrak{H}p\mathfrak{Y}) are both ideals of \Omega(G, \mathfrak{X}) .

Then the following Dress induction theorem holds:

6. 21 THEOREM (Dress induction theorem [Dr 71a] ). Let p be a
prime, 0 or \infty .

|G|_{p\prime}\Omega(G, \mathfrak{X})\subseteq K(G, \mathfrak{Y})+I(G, \mathfrak{H}p\mathfrak{Y}) , (16)

In particular,

\Omega(G, \mathfrak{X})=K(G, \mathfrak{Y})+I(G,\mathfrak{H}\mathfrak{Y}) , (17)

where

\mathfrak{H}\mathfrak{Y}:= { S\in \mathfrak{X}|S-\infty T for \exists T\in \mathfrak{Y} }. (18)

PROOF. Present the identity element of \Omega(G, \mathfrak{X})_{(p)} as the sum of primi-
tive idempotents:

1= \sum_{(D)\in C(*)/-p}e_{G,D}^{p} ,

where (D) runs over a complete set of representatives of -P-equivalence
classes on C(\mathfrak{X}) . The idempotent formula (Theorem 4.2) implies that
|G|_{p\prime}e_{G,D}^{p} belongs to \Omega(G, \mathfrak{X}) . Thus by (8),

|G|_{p^{r}} e_{G,D}^{p}\not\in K(G, \mathfrak{X})\Leftrightarrow|G|_{p\prime}e_{G,D}^{p}(T)\neq 0 for some T\in \mathfrak{Y}

\Leftrightarrow T -pD for some T\in \mathfrak{Y}

\Leftrightarrow D\in \mathfrak{H}p\mathfrak{Y} .

On the other hand, when D\in \mathfrak{H}p\mathfrak{Y} , Lemma 4.11 implies that |G|_{p^{r}}e_{G,D}^{p}\in

ind^{G}(\Omega(D, \mathfrak{X}_{D})) . Thus
|G|_{p^{r}}\in K(G, \mathfrak{Y})+I(G, \mathfrak{H}p\mathfrak{Y}) .

Since K(G, \mathfrak{Y}) and I(G, \mathfrak{H}p\mathfrak{Y}) are both ideals of \Omega(G, \mathfrak{X}) , the theorem is
proved. This proof is valid also when p=\infty . \square
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6. 22 REMARK, (a) The above Dress induction theorem is useful even
for Q\otimes\Omega(G,\mathfrak{X}) . For example, applying Dress induction theorem via the
canonical ring homomorphism \pi from \Omega(G) to the representation ring
R(G) , we have Artin’s induction theorem.

(b) Similarly, applying (17) to the representation ring R(G) , we have
a s0-called hyper-elementary induction theorem (cf [Yo 83a] ). In the
case where G is a symmetric group S_{n} and \mathfrak{X}=\mathfrak{Y}=\mathfrak{H}\mathfrak{Y} , the set of Young
subgroups, (17) holds because any Young subgroup is -\infty-equivalent to G.

(c) The above proof of Dress induction theorem is a modification of
the proof in [Yo 83a ]. We can prove it by Dress’ way using prime ideals,
too (cf. [Dr 71a] ).

6. 23 Let N be a normal subgroup of G, For the family \mathfrak{X} , define a
family \mathfrak{X}/N of G/N by

\mathfrak{X}/N :=\{S/N|N\subseteq S\in \mathfrak{X}\} .

Then we have the following maps:

fix : \Omega(G, \mathfrak{X})_{(p)} – \Omega(G/N, \mathfrak{X}/N)_{(p)}

: [G/A] \mapsto\{
[(G/N)/(A/N)] if N\subseteq A

0 otherwise:
fifix^{\sim}: \tilde{\Omega}(G, \mathfrak{X})_{(p)}

– \tilde{\Omega}(G/N\mathfrak{X}/N)_{(p)}

: (\chi(S))_{(S)\in C(X)} – (\chi(S))_{(s/N)\in C(if/N)} ;
inf : \Omega(G/N, \mathfrak{X}KN)_{(p)} – \Omega(G, \mathfrak{X})_{(p)}

: [(G/N)/(S/N)]-[G/S] .

Clearly, fifix^{\sim} is an extension of fix, and if \Omega(G, \mathfrak{X})_{(p)} is a generalized Burn-
side ring, then fifix^{\sim} and fix are ring homomorphisms.

6. 24 PROPOSITION. Assume the following condition:
S\in \mathfrak{X} \supset \overline{SN}\in \mathfrak{X} . (19)

Then \inf:\Omega(G/N)_{(p)^{-}} \Omega(G, \mathfrak{X})_{(p)} can be extended to
\inf^{\sim}: \tilde{\Omega}(G/N\mathfrak{X}/N)_{(p)}

:
(\theta(S/N))_{(S/N)\in X/N}\mapstoarrow\tilde{\Omega}(_{(p)}(\theta(^{\frac{G,\mathfrak{X})}{SN}}/N))_{(S)\in t}

.

If furthermore \Omega(G, \mathfrak{X})_{(p)} is a generalized Burnside ring, then inf is a ring
homomorphism.

PROOF. To prove that \inf^{\sim} is an extension of \inf , let S/N\in \mathfrak{X}/N and
T\in \mathfrak{X} . Then by Lemma 3.8,
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\varphi_{T}(\inf([(G/N)/(S/N)]))=\varphi_{T}([G/S])=[G/S](T)

=[G/S](\overline{TN})

=[(G/N)/(S/N)](\overline{TN}/N)

= \inf^{\sim}([G/N)/(S/N)])_{T} .

Thus \inf^{\sim} is an extension of \inf . Since \inf^{\sim} is clearly a ring homomor-
phism, the remainder follows. \square

6. 25 The maps \inf^{\sim} and inf are called inflations. The maps fifix^{\sim} and
fix are called fifixed-point homomorphisms.

Under the condition (19), we have another map which is called an
orbit homomorphism :

orb:
\Omega(G,\mathfrak{X})_{(p)}[G/S]\mapstoarrow\Omega(G/N_{\frac{\mathfrak{X}/}{SN}},N)_{(p)}[G/].

This map can not be extended to a linear map from \tilde{\Omega}(G \mathfrak{X})_{(p)} in general.
In the case of the ordinary Burnside rings, we have a multiplicative

induction map

jnd:\Omega(H)\mapsto\Omega(G) .

See [Yo 90]. However, it is an open question that under what conditions
such multiplicative induction maps between generalized Burnside rings
exist.

6. 26 COROLLARY. Let N be a normal subgroup of G, and assume
that the condition (19) holds. Let S be an elemnt of \mathfrak{X} which does not
contain N. Then

\sum_{T\in f}\mu_{X}(S, T)=0 .

PROOF. Extend the maps \inf^{\sim} and fifix^{\sim} to Q\otimes\Omega(G, \mathfrak{X})\cong Q\otimes\tilde{\Omega}(G, \mathfrak{X}) .
Then these maps are ring homomorphisms and they preserve an identity
element

1= \sum_{(S)\in C(\chi)}\frac{1}{|WS|}\sum_{T\in(aae)}\mu aae(S, T)[G/S] .

Thus the statement follows directly from the following equality:

\inf^{\sim}fifix^{\sim}([G/S])=\{
[G/S] if N\subseteq S

0 otherwise.

\square
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6. 27 As an example for this corollary, assume that \mathfrak{X} is a family of
p-subgroups of G satisfying the condition (C)_{p} and that S is a p-subgroup.
Then the assumption of the corollary holds. In the meaning of Brown-
Th\’evenaz paper [BT 88], such an N is a cone point of the poset \mathfrak{X} .
Furthermore, if we use the notation of Euler characteristics, the above
equality means that

\chi(\mathfrak{X}_{>s})=1 .

See 4.5

6. 28 Let (G, \mathfrak{X}) and (H, \mathfrak{Y}) be pairs of a finite group and a family
of subgroups closed under conjugation. Assume that the condition (C)_{p}

holds for both pairs. In this section, we studied maps between generalized
Burnside rings induced from group homomorphisms. But under some con-
ditions, a map \alpha:\mathfrak{X}arrow \mathfrak{Y} which may not necessarily come from a group
homomorphism can induce a linear map from \Omega(H, \mathfrak{Y})_{(p)} to \Omega(G, \mathfrak{X})_{(p)} .

Assume that \alpha(^{g}S) and \alpha(S) are H-conjugate for all S\in \mathfrak{X} and g\in G.
Then \alpha induces a ring homomorphism

\tilde{\alpha}:\tilde{\Omega}(H, \mathfrak{Y})_{(p)} arrow\tilde{\Omega}(G, \mathfrak{X})_{(p)}

: (\theta(T))_{(T)\in \mathfrak{Y}}arrow(\theta(\alpha(S)))_{(S)\in X}

Furthermore assume that \tilde{\alpha} induces a linear map

\overline{\alpha} : Obs (H, \mathfrak{Y})_{(p)}arrow Obs(G, \mathfrak{X})_{(p)} .

This condition can be written in term of \alpha , but such a formula is compli-
cated and not practical for a non-abelian H. If we use the second funda-
mental theorem (Theorem 8.3) which will be stated in the next section,
we obtain a simpler formula but containing M\"obius functions.

Anyway, there is no useful criterion by which we can decide whether
\alpha induce a linear map

\alpha^{*}: \Omega(H, \mathfrak{Y})arrow\Omega(G, \mathfrak{X}) .

We will only give two examples of unusual maps between generalized
Burnside rings.

6. 29 EXAMPLE. The first extraordinary example is the Frobenius-
Wielandt homomorphism f : \Omega(Gc|)arrow\Omega(G) , where C_{n} denotes a cyclic
group of order n , which was given in Dress-Siebeneicher-Yoshida [DSY
90]. The map f maps a transitive C_{|G|} -set [ C_{|G|}/C_{n}] to a Frobenius ele-
next \chi_{n} , where
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\chi_{n}(S)=\{
|G|/n is n divides |S|

0 otherwise.

Although the map

\alpha : Sub (G)arrow Sub(C_{|G|}) : H-C_{|H|}(\leq C_{|G|})

does not come from any group homomorphism, \alpha induces the ring
homomorphism f. The proof of this fact needs either the Frobenius the0-
rem :

\{g\in G|g^{n}=1\}\equiv 0 (mod n)

for a divisor n of |G| or another argument about the Wielandt element
\wedge^{n}(G/1) .

Furthermore, if there is a ring homomorphism \rho:\Omega(G)-\Omega(G, \mathfrak{X}) ,

for example, if \langle g\rangle S\in \mathfrak{X} for any S\in \mathfrak{X} , g\in WS, then we have a ring
homomorphism

f : \Omega(C_{|C|})arrow\Omega(G, \mathfrak{X}) .

In the next section, we will apply this homomorphism to get some congru-
ences of Frobenius type.

6. 20 EXAMPLE. Another interesting and well-known example of un-
usual ring homomorphisms between generalized Burnside rings appears
together with the character ring of a symmetric group. The details will
be treated in the next section. See also [Dr 86], [JK 81]. Let S_{n} be the
symmetric group of degree n and \mathfrak{Y} the set of Young subgroups in S_{n} .
Then the generalized Burnside ring \Omega(S_{n}, \mathfrak{Y}) is isomorphic to the represen-
tation ring (the ordinary character ring) R(S_{n}) (Refer to [Dr 86]). On
the other hand, there is a canonical ring homomorphism

\pi:\Omega(S_{n})arrow R(S_{n})

which assigns to the class of each S_{n} set [X] the associated permutation
character \pi_{X} . Thus we have a surjective ring homomorphism from \Omega(S_{n})

to \Omega(S_{n}, \mathfrak{Y}) . But this map does not come from the canonical inclusion \iota :
\mathfrak{Y}=Sub(S_{n}) , because \pi_{X}(g)\neq[X](\overline{\langle g\rangle}) for X=S_{n}/H with H\not\in \mathfrak{Y} .

7 Symmetric groups

7. 1 Let G:=S_{n} be the symmetric group of degree n. Let \mathfrak{Y} be the
set of Young subgroups, where Y(\pi) is called a Young subgroup with
respect to a partition \pi=\{\pi_{1}, \pi_{2},\cdots\} of \{ 1, \cdots , n\} if
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Y(\pi)=\{\sigma\in G|\sigma(\pi_{i})=\pi_{i}\} .

Thus Y(\pi) is isomorphic to the direct product of the symmetric groups
Sym(\pi_{i}) on \pi_{i} , i=1,2,\cdots . Then the family \mathfrak{Y} is closed under G-
conjugation and intersection, and G itself belongs to \mathfrak{Y} , and so we have a
generalized Burnside ring \Omega(G, \mathfrak{Y}) as a subring of \Omega(G) . Note that two
Young subgroups Y(\pi) and Y(\pi’)are conjugate if and only if the types
of \pi and \pi’ are coincident.

Let \mathfrak{C} be a set of all cyclic subgroups of G. Then the map

\alpha:\mathfrak{C}arrow \mathfrak{Y}:C-\overline{C} :=\cap\{Y\in \mathfrak{Y}|C\subseteq Y\}

induces an isomorphism
\tilde{\alpha}:\tilde{\Omega}(G, \mathfrak{Y})arrow\tilde{\Omega}(G, \mathfrak{C})\cong ,

and g\mapsto\langle g\rangle induces a bijection between the set of conjugacy classes of
G and C(\mathfrak{C}) .

Thus we have a commutative diagram as follows:

\Omega(G, \mathfrak{Y})=\Omega(G)arrow\pi R(G)

\varphi\downarrow \downarrow\nu

\tilde{\Omega}(G, \mathfrak{Y})arrow\tilde{\Omega}(G, \mathfrak{C})arrow\tilde{R}\cong\cong(G) ,

where R(C) and \tilde{R}(G) are the ring of virtual characters and the ring of
integral valued class functions, respectively, the map 1/ is the canonical
injection, the map \pi:[X]\mapsto\pi_{X} assigns to [X] the permutation charac-
ter \pi_{X} . Let \pi’ be the restriction of \pi to \Omega(G, \mathfrak{Y}) . Then the following
well-known fact follows easily from our theory. Refer to [HK 81].

7. 2 PROPOSITION (Classical result). The above map
\pi’ : \Omega(G, \mathfrak{Y})arrow R(G) : [X]-\pi_{X}

is an isomorphism of rings. Thus in particular, each irreducible character
of G is an integral linear combination of permutation characters induced
from Young subgroups.

PROOF. We identify \tilde{\Omega}(G, \mathfrak{Y}),\tilde{\Omega}(G, \mathfrak{C}) and \tilde{R}(G) , so that Im \varphi\subseteq{\rm Im}

\nu by the commutativity of the above diagram. The injectivity of \varphi

implies the injectivity of \pi’ . So in order to prove the surjectivity of \pi’ , it
will suffice to show that |Cok\varphi|=|Cok\nu| . Let \mathcal{A}=1^{\lambda_{1}}\cdots n^{\lambda n} be a partition
and Y_{\lambda} the Young subgroup corresponding to \mathcal{A} . Then |WY_{\lambda}|=\Pi_{i}\mathcal{A}_{i} !, and
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so

| Cok\varphi|=\prod_{(Y)\in C(\mathfrak{Y})}|WY|=\prod_{\lambda}\prod_{i}\mathcal{A}_{i} !. (1)

On the other hand, let X be the character table of G. If x_{\lambda} be an element
of the conjugation class of G corresponding to a partition \mathcal{A}=1^{\lambda_{1}}\cdots n^{\lambda_{n}} , then
|C_{G}(x_{\lambda})|=\Pi_{i}i^{\lambda_{i}}\mathcal{A}_{i} !. Thus by the orthognal relation, we have that

| Cok\nu|^{2}=(\det X)^{2}=\prod_{(\chi)}|C_{G}(x)|

= \prod_{\lambda}\prod_{i}i^{\lambda_{i}}\mathcal{A}_{i} !. (2)

Then by (1) and (2), we can easily prove that Cok \varphi and Cok \nu have the
same order. \square

7. 3 REMARK. As is shown by A. Dress [Dr 86], a necessary and
sufficient condition for which a class function \chi of G=S_{n} is an irreducible
character is that it is contained in the kernels of the Cauchy-Frobenius
homomorphisms and its inner product is 1.

8 Applications to congruences

8. 1 EXAMPLE. As is well-known, the theory of ordinary Burnside
rings gives some congruences about subgroup lattices of a finite group, for
example,
(1)Sylow’s third theorem (Wagner [Wa 70]) :

|Sy1_{p}(G)|\equiv 1 (mod p).

(2)Its generalization by Frobenius (Wagner [Wa 70]) : For prime
power divisor p^{k} of |G| ,

\#\{H\leq G||H|=p^{k}\}\equiv 1 (mod p).

(3)Frobenius theorem (Wagner [Wa 70]): For a divisor n of |G| ,

\#\{g\in G|g^{n}=1\}\equiv 0 (mod n).

(4)Brown’s homological Sylow’s theorem (Brown [Br 75], Quillen [Qu
78], Gluck [Gl 81], Yoshida [Yo 83a ] ) :

\chi ( \{p subgroup (\neq 1) of G\}) \equiv 1 (mod |G|_{p^{\gamma}}),

where \chi denotes the Euler characteristic of the poset of nontrivial p-
subgroup of G.

See [DSY 90], [BT 88] for other examples. In general, for a finite
poset P , the Euler characteristic \chi(P) of P is defined by
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\chi(P) := \sum_{x,y\in P}\mu(x, y) .

8. 2 We will first rewrite the fundamental theorem in another form.
Note that the assumption that \Omega(G, \mathfrak{X}) is a generalized Burnside ring is
not necessary.

For any family \mathfrak{X} of subgroups of G closed under G-conjugation, we
define the second Cauchy-Frobenius homomo\eta)hism by

\psi’=(\psi_{\acute{S}}) : \tilde{\Omega}(G, \mathfrak{X}) arrow Obs(G,\mathfrak{X})
\psi_{\acute{S}}(\chi)

:= \sum_{T\in X}\mu_{X}(S, T)\chi(T) mod |WS| .

8. 3 THEOREM (Second fundamental theorem). The following
sequence of abelian groups is exact:

0– \Omega(G, \mathfrak{X})arrow\tilde{\Omega}\varphi(G, \mathfrak{X})arrow\psi’Obs (G, \mathfrak{X})arrow 0 .

PROOF. This exact sequence follows from Lemma 2.3 and Corollary
4.3 by the similar way as in the proof of the fundamental theorem. \square

8. 4 REMARK. Under the condition (C)_{\infty} of 3.6(0r 8.8 as below), this
theorem follows from the first fundamental theorem (3.10). In fact, we
can present explicitly \psi_{s} as a linear combination of the second Cauchy-
Frobenius maps. Furthermore, if there is an automorphism of Obs(G, \mathfrak{X}),

it makes another form of the Cauchy-Frobenius homomorphism with an
exact sequence.

8. 5 Lemma. Assume that the condition (C) \infty holds. Defifine endomor-
phisms \tilde{\psi}_{s} and \tilde{\psi}_{\acute{s}} of \tilde{\Omega}(G, \mathfrak{X}) as follows :

\tilde{\psi}_{S}(\chi)

:= \sum_{gS\in WS}\chi(\overline{\langle g\rangle S}) ;

\tilde{\psi}_{\acute{S}}(\chi):=\sum_{T\in aae}\mu aae(S, T)\chi(T) .

Then

\frac{\tilde{\psi}_{S}(\chi)}{|WS|}=\sum_{(R)\in C(*)}|WS\backslash (G/R)^{S}|\cdot\frac{\tilde{\psi}_{\acute{R}}(\chi)}{|WR|} .

Thus one of the fifirst and second fundamental theorems can be induced
from another one.

PROOF. It will suffice to show this equality for \chi=[G/A] , where A
\in \mathfrak{X} . By Corollary 4.3, we have that
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\tilde{\psi}_{\acute{R}}([G/A])=\{
|WR| if (A)=(R)
0 otherwise.

On the other hand, the Cauchy-Frobenius lemma implies that
\tilde{\psi}_{S}([G/A])=|WS|\cdot|WS\backslash (G/A)^{S}| .

Thus the equality of the lemma holds for \chi=[G/A] . \square

8. 6 REMARK. Comparing to the first fundamental theorem, the sec-
ond fundamental theorem has two advantages. The first advantage is that
the second fundamental theorem holds without the assumption (C)_{p} .
(Under the assumption (C)_{p} , we have a p local version of the second fun-
damental theorem, which I am going to study in another paper.) Next,
we can obtain the explicit inverse image of any element by the second
Cauchy-Frobenius homomorphism stated in the following lemma. Using
this lemma, we can obtain an explicit formula for the homomorphism
between obstruction groups induced by restriction maps. Excepting the
case of the usual Burnside ring of an abelian group, the author has no
such a simple formula for the ordinal Cauchy-Frobenius homomorphism
like the second one in general.

8. 7 LEMMA. Let \theta’= ( \theta’(T) mod |WT| ) be an element of Obs (G, \mathfrak{X}) .
Defifine an element \theta=(\theta(S)) of \tilde{\Omega}(G, \mathfrak{X}) by

\theta(T) := \sum_{R\supseteq T}\theta’(R) ,

where R runs over elements of \mathfrak{X} containing T. Then \psi’(\theta)=\theta’-

PROOF. Define \zeta(S, T):=1 if S\subseteq T, :=0 otherwise for S, T\in \mathfrak{X} .
Then for any S\in \mathfrak{X} ,

\psi_{\acute{S}}(\theta)=\sum_{T\in X}\mu_{X}(S, T)\theta(T)

=, \sum_{TR\in X}\mu aae(S, T)\zeta(T, R)\theta’(R)

= \sum_{R\in X}\delta(S, R)\theta’(R)

=\theta’(S) ,

where \delta is Kronecker’s delta. This proves the lemma. \square

8. 8 In this section, we will give some generalizations of the above
congruences. We use frequently the notation related with the condition
(C)_{p} (cf. 3.6), where p is a prime or \infty which makes \Omega(G, \mathfrak{X})_{(p)} a general-
ized Burnside ring. So we write down them again. \overline{H} denotes the inter-
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section of all S\in \mathfrak{X} containing H.

(C) p gS\in(WS)_{p}, S\in \mathfrak{X} \supset \overline{\langle g\rangle S}\in \mathfrak{X} ,

where ( WS)_{p} is a Sylow p-subgroup of WS. The condition (C)_{\infty} is inter-
preted as follows:
(C)_{\infty} gS\in WS, S\in \mathfrak{X} \supset\overline{\langle g\rangle S}\in \mathfrak{X} .

The equivalenc relation -p is generated by the relation
S-p\overline{\langle g\rangle S} for any S\in \mathfrak{X} , gS\in(WS .

We interpret as ( WS)_{\infty}=WS.
Furthermore, remember the Cauchy-Frobenius homomorphisms.

Their S-components are given by

\psi\S^{p)}(\chi)=\sum_{gS\in(WS)p}\chi(\overline{\langle g\rangle S}) (mod |WS|_{p}),

\psi\S^{\infty)}(\chi)=\sum_{gS\in WS}\chi(\overline{\langle g\rangle S}) (mod |WS| ).

In the following proposition, we list some technics proving congruences
like ones of 8.1.

8. 9 PROPOSITION. Let S\in \mathfrak{X} and x\in\Omega(G, \mathfrak{X}) . Then the following
hold :

(a) \sum_{T\in X}\mu_{X}(S, T)x(T)\equiv 0 (mod |WS| ).

(b) Under the condition (C) p for a prime p,

\sum_{gS\in(WP)p}x(\overline{\langle g\rangle S})\equiv 0 (mod |WS|_{p}).

(c) Under the condition (C)
\infty ’

\sum_{gS\in WS}x(\overline{\langle g\rangle S})\equiv 0 (mod |WS| ).

PROOF, (a) follows from the second fundamental theorem (TheO-

rem 8.3). (b) and (c) follow from the first fundamental theorem (TheO-

rem 3.10). \square

8. 10 COROLLARY. Assume the condition (C) p . Let x\in\Omega(G, \mathfrak{X}) and
D, S\in \mathfrak{X} . Then

\sum_{T\sim pD}\mu_{X}(S, T)x(T)\equiv 0 (mod |WS|_{p}),

where T runs over all subgroups T in \mathfrak{X} such that T\sim_{p}D.
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PROOF. Let e_{D}^{p} be the idempotent of \Omega(G, \mathfrak{X})_{(p)} corresponding to D.
Then e_{D}^{p}(S)=1 if S\sim pD, =0 otherwise. By the idempotent formula
(4.11) or from the fundamental theorem, |G|_{p\prime}e_{D}^{p} belongs to \Omega(G, \mathfrak{X}) .
Thus we can apply (a) of the above proposition to |G|_{p^{r}}e_{D}^{p}\cdot x\in\Omega(G\mathfrak{X}) . \square

8. 11 COROLLARY. Let p be a prime or \infty . Defifine a linear map \psi^{r(p)}

by

\psi^{r(p)}=(\psi’\S^{p)}) : \tilde{\Omega}(G, \mathfrak{X})_{(p)}arrow Obs(G\mathfrak{X})_{(p)} ,

where

\psi’\S^{p)}(\chi)=\sum_{T\sim pS}\mu_{if}(S, T)\chi(T) mod |WS|_{p} .

Then the following sequence of abelian groups is exact:

0– \Omega(G, \mathfrak{X})_{(p)}^{\varphi^{(p)}\psi^{\prime(p)}}arrow\tilde{\Omega}(G, \mathfrak{X})_{(p)}arrow Obs(G, \mathfrak{X})_{(p)}arrow 0 .

PROOF. The fact that \psi^{\prime(p)}\varphi^{(p)}=0 follows from Comollary 8.10.
Furthermore, \psi^{\prime(p)} is surjective. Thus this corollary follows from the first
fundamental theorem (Theorem 3.10) or Lemma 3.3. \square

8. 12 THEOREM. Let S be any element of \mathfrak{X} . Assume that the condi-
lion (C) p holds. Then

\sum_{T\in X}\mu aae(S, T)\equiv 0 (mod |WS|_{p}).

In particular, if the condition (C) \infty holds, then

\sum_{T\in X}\mu aae(S, T)\equiv 0 (mod |WS| ).

PROOF. Under (C) p , the module \Omega(G, \mathfrak{X}) becomes a generalized
Burnside ring with an identity element 1. So the theorem follows from
Proposition 8.9 (a). Another short proof is given by Corollary 4.4. \square

8. 13 COROLLARY (Brown-Th\’evenaz[BT 88], Corollary 2.2). Let H
be a proper subgroup of G such that G=H\cdot O^{p}(G) , where O^{p}(G) is the
smallest normal subgroup of G by which quotient group G/O^{p}(G) is a
p-group. Let \mu be the M\"obius function of the subgroup lattice of G. Then

\mu(H, G)\equiv 0 (mod |WH|_{p}).

PROOF. Let \mathfrak{X} be the family of proper subgroups of G containing
some conjugates of H. Then \mathfrak{X} satisfies the condition (C)_{p} . Furthermore,
\mu x(H, T)=\mu(H, T) for any T\in \mathfrak{X} , and so the therem yields that
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\mu(H, G)=-\sum_{T\in X}\mu(H, T)\equiv 0 (mod |WH|_{p}).

\square

In their paper [BT 88], Brown and Th\’evenaz called a subgroup H
such that G=HO^{p}(G) a p-perfect mod H.

8. 14 THEOREM. Assume the condition (C)_{p} . Then for any D, S\in \mathfrak{X} ,

\sum_{T\sim pD}\mu_{X}(S, T)\equiv 0 (mod |WS|_{p}).

PROOF. This congruence follows from Corollary 4.11 or Corollary
8.10. \square

8. 15 THEOREM (Weak Frobenius theorem). Assume the condition
(C)_{\infty} . Let p be a prime and D, S\in \mathfrak{X} . Then

\#\{gS\in WS|\overline{\langle g\rangle S}\sim_{p}D\}\equiv 0 (mod |WS|_{p}).

PROOF. This proof is based on the idea of Dress ([DY90]) . Let e_{D}^{p}

be the idempotent corresponding to D, so that e_{D}^{p}(S)=1 if S\sim_{p}D, =0
otherwise. By Lemma 4.11, |G|_{p\prime}e_{D}^{p} belongs to \Omega(G, \mathfrak{X}) . Thus by applying
the Cauchy-Frobenius homomorphism \psi^{(\infty)} to this element, we have that

\sum_{gS\in WS}|G|_{p^{\gamma}}e_{D}^{p}(\overline{\langle g\rangle S})=|G|_{p^{r}}\#\{gS\in WS|\langle g\rangle S-pD\}

\equiv 0 (mod |WS| ).

\square

8. 16 THEOREM. Let p be a prime or \infty and n a divisor of |G| .
Assume that the family \mathfrak{X} satisfifies the following condition:

S\in \mathfrak{X} , gS\in(WS)_{p} \supset \langle g\rangle S\in \mathfrak{X} . (1)

Let S, D\in \mathfrak{X} . Then the following hold:

(a) \sum_{|T||n}\mu ae(S, T)\equiv 0
mod \frac{n|WS|}{|G|},

where T runs over subgroups in \mathfrak{X} of which order is divisible by n.

(b) \sum_{T\sim_{\rho}D}\mu_{X}(S, T)\equiv 0 mod\frac{n_{p}|WS|_{p}}{|G|_{p}} .
|T||n

PROOF. Under the above assumption (1), there is a ring homomor-
phism \rho : \Omega(G)arrow\Omega(G\mathfrak{X}) given by Corollary 6.4. On the other hand, let



The generalized Burnside ring of a fifinile group 557

\chi_{n} be the Frobenius element of \Omega(G) (cf. Lema 2.19), that is, \chi_{n}(S)=

|G|/n if n divides |G| , and =0 otherwise. Apply Proposition 8.9 and Cor-
ollary 8.10 to \rho(\chi_{n}) , so (a) and (b) follow. \square

8. 17 REMARK. The author expects a congruence which contains
both of Theorem 8.15 and Theorem 8.16. Theorem 8.15 is a generalization
of the following weak Frobenius theorem:

\# {p-element of G} \equiv 0 (mod |G|_{p}).

See Remark 2.10. Theorem 8.15 needed only the condition (C)_{\infty} . Under
the assumption (C)_{\infty} , we have not yet obtained a generalization of the
Frobenius theorem which states that if n a divisor of |G| , then

\#\{g\in G|g^{n}=1\}\equiv 0 (mod n).

On the other hand, the congruences in Theorem 8.16 which were proved
under the stronger assumption (1) imply the Frobenius theorem.

9 Mackey functors and the generalized Hecke ring

In this section, we will study Mackey functors and the generalized
Hecke ring with respect to a family \mathfrak{X} of a finite group G closed under
intersection. It is possible to make a similar theory to this section under
the assumption (C)_{\infty} or (C)_{p} . But we will not consider the general case
for the two reasons that the theory under the condition (C)_{p} is compli-
cated to state although it is essentially equal to the theory in this section
and that such a general theory has only a few interesting applications.
Because the proofs of many results are similar as in usual generalized
Burnside rings and abstract Burnside rings (cf. [Yo 87a] ), we give only
outline of them. Refer to [Dr 73], [Yo 87b ] for the theory of Mackey
functors.

9. 1 Throughout this section, we assume that \mathfrak{X} is a family of sub-
groups of G satisfying the following condition:

S\in \mathfrak{X} , g\in G \supset gS\in \mathfrak{X} , (1)
S, T\in \mathfrak{X} \supset S\cap T\in \mathfrak{X} . (2)

Remember that a (G, \mathfrak{X}) -set X is a G-set such that the stabilizer G_{x}

for each x\in X is a member of \mathfrak{X} . We denote by Set_{f}(G, \mathfrak{X}) the category
of (G, \mathfrak{X}) -sets and G-maps. This category is a subcategory of the cate-
gory Set/ of finite G-sets and closed under disjoint union and finite limits
by the above assumption. Of course, the Grothendieck ring of Set_{f}(G, \mathfrak{X})

with respect to disjoint union and cartesian product is coincident with the
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generalized Burnside ring \Omega(G, \mathfrak{X}) .

9. 2 We use the above notation and terminology. A(G, \mathfrak{X}) -set over a
(G, \mathfrak{X}) -set X is a G-map

\alpha:Aarrow X

from a (G, \mathfrak{X}) -set A . A morphism between (G, \mathfrak{X}) -sets \alpha : A—- X and
\beta : Barrow X over X is defined by a G-map f from A to B such that
\alpha=\beta f. The category of (G, \mathfrak{X}) -sets over X is denoted by Setf(G,\mathfrak{X}) /X.
(Sometimes, it is called a comma category.) This category has finite c0-
product :

(Aarrow X)+(B-arrow X)=(A+Barrow X)

and an initial object \emptysetarrow X.
As an example, let X=G/H for H\in \mathfrak{X} . Then we have that

Set_{f}(G, \mathfrak{X})/(G/H)\cong Set_{f}(H, \mathfrak{X}_{H}) , (3)

where \mathfrak{X}_{H} is the set of members of \mathfrak{X} contained in H. In fact, if \alpha:Aarrow

G/H is an object of Set_{f}(G, \mathfrak{X})/(G/H) , that is, a G-map, then \alpha^{-1}(H)\subseteq

A is an H-subset of A and the stabilizer of any element of \alpha^{-1}(H) belongs
to \mathfrak{X}_{H} . Conversely, if B is an object of Set_{f}(H, \mathfrak{X}_{H}) , then A:=G\cross_{H}Barrow

G/H is an object of Setf(G,\mathfrak{X}) /(G/H) . These assignments are both fun-
ctorial and inverses each other.

9. 3 Let \Omega_{X}(X) be the Grothendieck group of Set_{f}(G, \mathfrak{X})/X with
respect to coproduct. Then \Omega_{X}(X) is generated by elements of the form
[G/Sarrow X] with S\in \mathfrak{X} . Note that \alpha:G/Sarrow X and \beta:G/Tarrow X are
isomorphic to each other as (G, \mathfrak{X}) -sets over X if and only if there exists
an element g of G such that S=^{g}T(:=gTg^{-1}) and \alpha(S)=g\beta(T) , and so
the rank of \Omega_{X}(X) is given by

rank \Omega_{X}(X)= \sum |WS\backslash X^{s}| .
(S)\in C(x)

By an easy calculation, we have that this number is equal to

rank \Omega_{X}(X)=\sum_{x\in G\backslash X}|C(\mathfrak{X}\cap Sub(G_{x}))| ,

where x runs over a complete set of representatives of G-0rbits of X and
C(\mathfrak{X}\cap Sub(G_{x})) denotes the set of G_{x}-conjugacy classes of subgroups S of
G_{x} with S\in \mathfrak{X} .

9. 4 We define the ghost ring \tilde{\Omega}_{X}(X) as the product of some copies of
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the integer ring Z as follows:
\tilde{\Omega}_{X}(X)

:= \prod_{(S)\in C(t)}\prod_{x\in WS\backslash X^{S}}Z ,

where x runs over a set of complete representatives of WS-0rbits in X^{s} .
Furthermore we define the obstruction group Obs_{X}(X) by

Obs_{aae}(X) := \prod_{(S)\in C(aae)}\prod_{x\in WS\backslash X^{S}}(Z/|(WS)_{x}|Z) .

The Burnside homomorphism \varphi and the Cauchy-Frobenius map \psi are
defined by

\varphi=(\varphi_{S,x}) : \Omega_{aae}(X)arrow\tilde{\Omega}_{t}(X)

: [Aarrow X\varphi]\mapsto(|A^{s}\cap\alpha^{-1}(x)|)_{(S,x)} ,

\psi=(\psi_{S,x}):\tilde{\Omega}_{X}(X)arrow Obs_{f}(X)

: ( \chi(S, x))_{(S,x)}-(\sum_{gS\in(WS)\chi}\chi(\overline{\langle g\rangle S}, x)) .

Under these notation, the following fundamental theorem for the general-
ized Burnside ring over X holds:

9. 6 THEOREM. The following sequence of abelian groups is exact:

0arrow\Omega_{X}(X)arrow\tilde{\Omega}_{aae}(\varphi X)arrow Obs_{X}(X)\psiarrow 0 .

PROOF. The proof is similar as in the fundamental theorem of gener-
alized Burnside ring (Theorem 3.10). So the proof is omitted. See also
the proof of the fundamental theorem for abstract Burnside rings in [Yo
87a] . \square

9. 6 THEOREM. \Omega_{X}(X) has a unique ring structure such that the Bur-
nside homomo\Phi hism \varphi is a ring homomorphism.

PROOF. This theorem is a corollary of the fundamental theorem and
proved by a similar way as in Theorem 3.11. \square

9. 7 We call the above ring \Omega_{X}(X) the generalized Burnside ring of
G with respect to \mathfrak{X} over X. Clearly, for the terminal object 1, we have
that the \Omega_{X}(1) is isomorphic to the generalized Burnside ring \Omega(G, \mathfrak{X}) .

9. 8 As in Section 6, we put \mathfrak{X}_{H}:=\mathfrak{X}\cap Sub(H) for H\in \mathfrak{X} . Further-
more, we simply put

\Omega(H, \mathfrak{X}) :=\Omega(H, \mathfrak{X}_{H}) .
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For any g\in G and H\in \mathfrak{X} , the conjugation map is defined by

con^{g} : \Omega(H, \mathfrak{X})arrow\Omega(^{g}H, \mathfrak{X})

: [H/T]-[^{g}H/gT] .

9. 9 LEMMA. There are ring isomorphisms as follows:
\Omega_{X}(X)\cong(\bigoplus_{x\in X}\Omega(G_{x}, \mathfrak{X}))^{G} (4)

\cong\bigoplus_{x\in G\backslash X}\Omega(G_{x\prime}\mathfrak{X}) ,

where (\cdots)^{G} denotes the G-fifixed point set with respect to the G-action
defifined by G-conjugation. In particular,

\Omega_{X}(G/H)\cong\Omega(H, \mathfrak{X}) . (5)

The isomorphism (4) is given by

f : [\alpha:Aarrow X]\mapsto(\alpha^{-1}(x)) .

PROOF. The map f defined above can be extended to the ghost
ring :

\tilde{f} : \tilde{\Omega}_{X}(X) arrow(\oplus_{x\in X}\tilde{\Omega}(G_{x}, \mathfrak{X}))^{G}

: (\chi(S, x))_{S,x}\mapsto ((\chi(S, x)_{S})_{x}) .

This map is clearly a ring homomorphism. Furthermore, f and \tilde{f} are
commutative with the Burnside homomorphisms, and so f is also a ring
homomorphism. The inverse image f^{-1}(([A_{x}])_{x}) of a G-fixed element
([A_{x}])_{x} of \oplus_{x}\Omega(G_{x}, \mathfrak{X}) is given by the natural G map [\coprod_{x}A_{x}arrow X] .
Finally, G permutes the direct summands \Omega(G_{x}, \mathfrak{X}) , x\in X, the second
isomorphism is trivial. \square

9. 10 Let \mathcal{A}:Xarrow Y be a G-map between (G, \mathfrak{X}) -sets X and Y.
Then we have a linear map

\mathcal{A}_{*}: \Omega_{X}(X) arrow \Omega_{X}(Y)

(6)
: [Aarrow X]\mapsto[Aarrow Xarrow Y] .

This map can be extended to

\mathcal{A}_{*}:
\tilde{\Omega}_{X}(X) arrow

\tilde{\Omega}_{aae}(Y)

: ( \theta(S, x))_{S,x}-(\sum_{x\in\lambda^{-1}(y)^{T}}\theta(T, x))_{T,y} . (7)

In fact, let \theta=\varphi([Aarrow X]\alpha)\in\tilde{\Omega}_{X}(X) , so that \theta(S, x)=|\alpha^{-1}(x)^{S}| . On the
other hand, for any T\in \mathfrak{X} and y\in Y^{T},
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(\mathcal{A}_{*}\theta)(T, y)=|(\mathcal{A}\alpha)^{-1}(y)^{T}|

=|\alpha^{-1}\mathcal{A}^{-1}(y)^{T}|

= \sum_{x\in\lambda^{-1}(y)^{T}}|\alpha^{-1}(x)^{T}|

= \sum_{x\in\lambda^{-1}(y)^{T}}\theta(T, x) .

When X=G/H, Y=G/K and \mathcal{A}:G/Harrow G/K is a G-map induced
by inclusion H\subseteq K , the above map \mathcal{A}_{*} coincides with the induction map
ind_{H}^{K} : \Omega(G, \mathfrak{X}_{H}) – \Omega(K, \mathfrak{X}_{K}) defined in 6.2.

9. 11 As in the last paragraph, let \mathcal{A}:Xarrow Y be a G-map between
(G, \mathfrak{X}) -sets X and Y. Then there is a ring homomorphism with inverse
direction:

\mathcal{A}^{*} : \tilde{\Omega}_{X}(Y) arrow \tilde{\Omega}_{X}(X)

: (\chi(S, y))_{S,y}\mapsto(\chi(S, \mathcal{A}(x)))_{S,X} .

By the fundamental theorem, the restriction of \mathcal{A}^{*} into \Omega_{X}(Y) gives a
ring homomorphism

\mathcal{A}^{*}: \Omega_{X}(Y)arrow\Omega_{aae}(X) .

When X=G/H, Y=G/K and \mathcal{A}:G/Harrow G/K is a G-map induced by
inclusion H\subseteq K , the above map \mathcal{A}^{*} coincides with the restriction map in
Proposition 6.3.

9. 12 LEMMA. Let X, Y be (G, \mathfrak{X}) -sets. Then the canonical injec-
tions X^{C}arrow X+Yarrow^{\supset}Y induce a bi-product diagram

\Omega_{X}(X)\underline{arrow}\Omega_{X}(X+Y)arrow\Omega_{X}arrow(Y) .

Similarly, \tilde{\Omega}_{X}(X+Y) is a bi product of \tilde{\Omega}_{X}(X) and \tilde{\Omega}_{if}(Y) .

PROOF. The statement that \tilde{\Omega}_{X}(X+Y)\cong\tilde{\Omega}_{X}(X)\oplus\tilde{\Omega}_{X} ( Y) follows
from the commutativity of \mathcal{A}_{*} and \lambda^{*} with the Burnside homomorphisms.
(REMARK: the fibre products of Xarrow X+Y and Yarrow X+Y is \emptysetarrow

X+Y and the fibre product of Xarrow X+Y and itself is also Xarrow X+
Y. Thus this lemma follows from the following Mackey decomposition,
too.) \square

9. 13 Lemma (Mackey decomposition). Let
Warrow pX

q\downarrow \downarrow f

Yarrow gZ
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be a pull-back diagram of (G, \mathfrak{X}) -sets and G-maps. Then the maps given
in 9.10 and 9.11 make the following diagram commutative.

\Omega_{X}(W)arrow\Omega_{X}(X)p*

q^{*}| |f^{*}

\Omega_{X}(Y)arrow g^{*}\Omega_{X}(Z)

PROOF. We have to check that
f^{*}g_{*}=p_{*}q^{*} . (8)

Let \theta=(\theta(T, y))_{T,y} be an element of \Omega_{X}(Y) viewed as an element of
\tilde{\Omega}_{aae}(Y) . Then we have that

f^{*}g_{*}( \theta)=(\sum_{y\in(g^{-1}f(x))^{T}}\theta(T, y))_{T,x} (9)

p_{*}q^{*}( \theta)=(\sum_{(w\in p1\chi)T}\theta(Tq-,(w)))_{T.X} . (10)

Let T\in \mathfrak{X} and x\in X^{T}. We may assume that W=X\cross_{Z}Y and p, q are
projections into X, Y. Thus

w \in p-\sum_{(\chi)^{T}}\theta(T, q(w))=(x,y)\in W\sum_{y\in Y^{T}}\theta(T, y)

=y \in(g^{-1}f \sum_{(x,y)\in W}(x))^{T},\theta(T, y)

= \sum_{y\in(g^{-1}f(\chi))^{T}}\theta(T, y) .

Here note that if y\in g^{-1}f(x)^{T} , then (x, y)\in W. Thus the equality (8)
holds by (9). \square

9. 14 LEMMA (Frobenius reciprocity). Let \mathcal{A}:X – Y be a G-map
between (G, \mathfrak{X}) -sets. Let a\in\Omega_{X}(X) and b\in\Omega_{X}(Y) . Then

\mathcal{A}_{*}(a)\cdot b=\mathcal{A}_{*}(a\cdot \mathcal{A}^{*}(b)) . (11)

Similar equation holds for elements of \tilde{\Omega}_{X}(X) and \tilde{\Omega}_{X}(Y) , too.

PROOF. It will suffice to show that the equation (11) for a\in\tilde{\Omega}_{\alpha i}(X)

and b\in\tilde{\Omega}_{X}(Y) holds. Let T\in \mathfrak{X} and y\in Y^{T}. Then we have that

\mathcal{A}_{*}(a\cdot \mathcal{A}^{*}(b))(T, y)=\sum_{x\in\lambda^{-1}(y)^{T}}a(T, x)\cdot b(T, \lambda(x))

= \sum_{x\in\lambda^{-1}(y)^{T}}a(T, x)\cdot b(T, y)

=\mathcal{A}_{*}(a) (T, y)\cdot b(T, y) .
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This proves the lemma. \square

9. 15 PROPOSITION. The correspondence X-\Omega_{X}(X) together with
the maps defifined in 9.10 and 9.11 makes a Green functor on the category of
(G, \mathfrak{X}) -set.

PROOF. By Lemma 9.12 and Lemma 9.13, the above correspondence
is a Mackey functor. Furthermore, \Omega_{f}(X) has a ring structure and
Frobenius reciprocity (Lemma 9.14), and so we have a Green functor.
(See [Gr 70], [Dr 73], [Yo 80] for the definition of Mackey functors and
Green functors.) \square

9. 16 We now construct a category which represents Mackey fun-
ctors. Let Hec(G, \Omega_{X}) be the category defined by the following data. An
object of Hec(G, \Omega_{X}) is a (G, \mathfrak{X}) -set. A hom-set is defined and denoted by

\Omega_{X}(X, Y) :=\Omega_{f}(X\cross Y) .

Finally, the composition

\Omega_{aae}(Y, Z)\cross\Omega_{if}(X, Y)– \Omega_{X}(X, Z)

is defined by the composition as follows. (We simply write \Omega(XYZ) for
\Omega_{aae}(X\cross Y\cross Z) , etc.)

\Omega(X, Z)\cross\Omega(X, Y)\Omega(X\underline{\pi_{23}^{*}\cross\pi_{12}^{*}}YZ)\cross\Omega(XYZ)

\underline{multi}\Omega(XYZ)
\pi_{13*}

\Omega(X, Z)

where \pi_{ij} is the projection map from (X\cross Y\cross Z) to the i, j-th comp0-

nents.
This category Hec(G, \Omega_{aae}) is called the Hecke category with coefficient

in \Omega_{X} . Using only Mackey decomposition and Frobenius reciprocity, it is
possible to prove that Hec(G,Clx) becomes really a category. We, how-
ever, omit the proof of the associative law because it is simply an easy
diagram chase. The identity morphism of X in Hec(G, \Omega_{X}) is [\delta:Xarrow

X\cross X] , where \delta is the diagonal G-map.

9. 17 Lemma. The category of Mackey functors from Set/(G, \mathfrak{X}) is
equivalent to the additive functor category [Hec(G, \mathfrak{X})^{op}, Mod_{k}] .

PROOF. Let F:Hec(G, \mathfrak{X})^{op}arrow Mod_{k} be an additive functor. For a
(G, \mathfrak{X}) -set X , let M(X):=F(X) . For a G map \mathcal{A}:Xarrow Y. define
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\mathcal{A}^{*}: =F(\langle 1_{X}, \mathcal{A}\rangle:Xarrow X\cross Y)

\mathcal{A}_{*}: =F(\langle \mathcal{A}, 1_{Y}\rangle:Xarrow Y\cross X) .

Then we have a Mackey functor M. Conversely, if M is a Mackey fun-
ctor, then the assignment

X-M(X) ,

[\langle \mathcal{A}, \mu\rangle:Aarrow X\cross Y]-
(M ( _{Y})\mu^{*}arrow M(A)arrow M(X))\lambda_{*}

gives a contravariant functor from Hec(G, \mathfrak{X}) . \square

9. 18 For any finite group G and a commutative ring k , a permutation
kG-module is defined to be a kG-module isomorphic to the free &-module
kX with basis X , where X is a finite G-set. Let Hec(G, k) be the cate-
gory of permutation kG modules and kG-maps, so that there is a canonical
embedding into the category of finitely generated kG modules

Hec(G, k)arrow Mod_{kG} .

(Remember that the endomorphism ring End_{kG}(kX) is called the Hecker-
ing.) We often use the matrix notation for morphisms in Hec(G, k) .
Using this notation, a morphism from kY to kX is a G matrix (\alpha_{x,y}) ,
where a matrix (\alpha_{x,y}) is called a G matrix if \alpha_{gx,gy}=\alpha_{x,y} for any g\in G.
The G-map corresponding to the G matrix \alpha_{x,y} is

f : kY – kX : y( \in Y)arrow\sum_{x\in X}\alpha_{x,y}x.

The category Hec(G, k) is equivalent to the Hecke category correspond-
ing to the Green functor X-Ext^{0}(kX, k) :

Hec(G, k)\cong Hec(Set_{f}^{G}, Ext^{0}(k[-], k)) .

This category is a representation category for cohomological G-functors
(cf [Yo 83]). See Yoshida [Yo 87b ] for Hecke categories and its ap-
plicatin to the theory of block designs.

9. 19 For each S\in \mathfrak{X} , define an additive functor \Phi_{s} from Hec(G, \Omega_{\chi})

to Hec(WS, Z) by

\Phi:X-k[X^{s}]

and on hom-sets

\Phi_{S} : \Omega_{X}(X, Y) arrow(Z[X^{s}\cross Y^{s}])^{WS}

: [\gamma:Aarrow X\cross Y]-(|\gamma^{-1}(x, y)^{s}|)_{x,y} .
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We define an additive functor \Phi by the product of \Phi_{S} ’s:

\Phi=(\Phi_{S}) : Hec(G, \Omega_{X})arrow\prod_{(S)\in C(X)}Hec(WS, Z) .

We now have a fundamental theorem for the Hecke category Hec(G, \mathfrak{X})

as follows:

9. 20 THEOREM (Fundamental theorem for generalized Hecke cate-
gories). The functor \Phi is an embedding of categories. For each X, Y,

the cokernel of
\Phi:\Omega_{f}(X\cross Y)arrow\prod_{(S)\in C(X)}(Z[X^{S}\cross Y^{S}])^{WS}

is isomorphic to

\prod_{(S)\in C(X)}\prod_{(x,y)\in R\backslash X^{S}\cross Y^{S}}(Z/|(WS)_{x,y}|Z) .

PROOF. The injectivity of \Phi and the statement on the cokernel of \Phi

follow from the fundamental theorem 9.5. The fact that \Phi maps the com-
position in Hec(G, \Omega_{\chi}) to the matrix multiplication follows from the
definition of the composition in Hec(G \Omega_{aae}) . We have to prove that if
\Phi(X)\cong\Phi(Y) , then X\cong Y in Hec (G,\Omega aae). The i s omorphism
\Phi(X)\cong\Phi(Y) means that Z[X^{s}]\cong Z[ Y^{s}] as WS-modules for each S\in \mathfrak{X} ,
and so comparing the ranks, we have that |X^{s}|=|Y^{s}| . Thus X\cong Y as
G-sets, and hence X\cong Y in Hec(G, \Omega_{X}) , too. \square

9. 21 REMARK. It is not trivial to prove that the associativity for the
compositions of morphisms in Hec(G, \Omega_{X}) defined in 9.16 holds. However
it is easier to prove that \Phi preserves the composition. Thus we can prove
the associative law in the Hecke category Hec(G, \Omega_{X}) by the injectivity of
\Phi on hom-sets.

9. 22 Let M be a Mackey functor from Set_{f}(G, \mathfrak{X}) , so that each com-
ponent M(X) is an \Omega_{X}(X) -module by

[\mathcal{A}:Aarrow X]\cdot m:=\mathcal{A}_{*}\mathcal{A}^{*}(m) .

Let H, K\in \mathfrak{X} . Then the hom-set \Omega_{X}(G/H, G/K) is an abelian group
generated by

\{[H, u, A, K]|u\in G, A\in \mathfrak{X}, A\subseteq H\cap^{u}K\}

with relations

[H, huk^{ },hA, K]=[H, u, A, K] for h\in H, k\in K.
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Let (a, ind, res, con) be a G-functor defined on \mathfrak{X} . The action of
\Omega_{\chi}(G/H\cross G/K) on a(K) is written as

[H, u, A, K] : a(K) – a(H)
: \beta -ind_{Hres}_{Acon}^{u}(\beta) .

The composition of these operators is given by

[H, u, A, K] \cdot[K, v,\acute{B}, L]=\sum_{Ak\in^{u}\backslash K/B}[H, ukv, A\cap^{uk}B, L] ,

where k runs over a set of complete representatives of double cosets. (It
is very complicated to check the associative law by the above multiplica-
tion law.)

9. 23 The theory of Hecke categories gives some refinements of con-
gruences is Section 8. As is suggested in Yoshida [Yo 85] (where a
Hecke category with respect to the Burnside ring functor \Omega_{G} of G is called
a span category), such a congruences contains terms related with p-blocks
and Brauer correspondence in modular representation theory. We will
state these congruences in another paper. It is very important to be able
to treat Hecke categories like as group rings.

For example, the center Z(\mathfrak{C}) of a category \mathfrak{C} is the set of end0-
natural transformations of the identity functor of \mathfrak{C} . So we have the con-
cept of central idempotents of Hecke categories. Similarly, for a sub-
group D, the correspondence X-X^{D} induces a functor

Br_{D} : HecQG, F\otimes\Omega_{*}) – Hec(N_{G}(D), F\otimes\Omega_{\mathfrak{X}}) .

This functor Br_{D} that is called a Brauer functor plays an essential role in
the theory of generalized Hecke category and Mackey functors. This fun-
ctor induces the Brauer homomorphism between the centers of Hecke cate-
gories under some conditions.

9. 24 CONCLUDING REMARK. There are other algebraic structures
related with generalized Burnside rings, for example, the unit group of a
generalized Burnside ring (cf. [Yo 90]), the generalized monomial Burn-
side rings (cf. [Dr 71b] ), the polynomial and power series rings with
coefficient in a generalized Burnside ring (cf. [Yo 91]), and so on. We
are especially interested in generalized monomial Burnside rings because
the idempotent formula of these rings gives an explicit formula of Brauer
induction theorem. See Snaith [Sn 88], [Yo 83a ], [Bo 89].
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Appendix

A Abstract Burnside rings

In this section, we will give a brief outline of the theory of the
abstract Burnside ring of a finite category. The details are found in YO-
shida [Yo 87].

Throughout this section \Gamma denotes a finite category.

A. 1 Let \Gamma be a finite category. This means that \Gamma has finite number
of morphisms, and so in particular, \Gamma has finite number of objects and
each hom set Hom_{\Gamma}(a, b) is a finite set.

The (finite) set of objects of \Gamma is denoted by Obj (\Gamma) or \Gamma itself. The
finite set of morphisms of \Gamma is denoted by Mor (\Gamma) . For any objects a, b
\in\Gamma- we put

\Gamma(a, b) :=Hom_{\Gamma}(a, b) ,
\langle a, b\rangle:=|\Gamma(a, b)| ,

Epi (a, b):= {ep_{\dot{1}}morphism from a to b }
Mon(a, b ) := {monomorphism from a to b }

Epi (\Gamma) := {epimorphism in \Gamma }
Mon (\Gamma) := {monomorphism in \Gamma }

Iso (\Gamma) := {isomorphism in \Gamma }.

For an object a of \Gamma we denote by Aut a and End a the automorphism
group and the monoid of endomorphisms of a , respectively. \Gamma/\cong is the
set of isomorphism classes of objects of \Gamma

A. 2 Let \Omega(\Gamma) be the free abelian group Z[\Gamma/\cong] with basis \Gamma/\cong .
Define the ring \tilde{\Omega}(\Gamma) by

\tilde{\Omega}(\Gamma)

:= \prod_{i\in\Gamma/\cong}Z ,

where i runs over a complete set of representatives of isomorphism classes
of \Gamma- Thus any element \chi of \tilde{\Omega}(\Gamma) is identified with the map \chi : \Gammaarrow Z

such that

\chi(a)=\chi(b) if a\cong b .

The Burnside homomorphism \varphi is a linear map defined by

\varphi=(\varphi_{i}) : \Omega(\Gamma)arrow \tilde{\Omega}(\Gamma)

: x(\in\Gamma)-(\langle i, x\rangle)_{i} .

Let R be a commutative ring. The R module R\otimes\Omega(\Gamma) is called to be an
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abstract Burnside ring provided

(a) 1_{R}\otimes\varphi:R\otimes\Omega(\Gamma) – R\otimes\tilde{\Omega}(\Gamma) is injective ;
(b) The image {\rm Im}(1_{R}\otimes\varphi) is a subring of R\otimes\tilde{\Omega}(\Gamma) .

When these conditions hold, R\otimes\Omega(\Gamma) has a unique ring structure by
which 1_{R}\otimes\varphi becomes a ring homomorphism.

A. 3 A unique factorization system (E, M) of \Gamma consists of two clas-
ses E and M of morphisms of \Gamma satisfying the following conditions:

(a) E\cap M=Iso(\Gamma)

(b) E is closed under composition,
(c) M is closed under composition,
(d) Every morphism f : aarrow b in \Gamma has an (E, M) -factorization:

f=(aarrow im(f)arrow b)em with e\in E, m\in M.

e’ m’(e) If f=(a – i’arrow b) is another (E, M) -factorization then

there exists a unique isomorphism h’ : im(f)arrow i’ such that e’=he, m=
m’h.

When \Gamma has a unique factorization system (E, M) , we put

E(a, b) :=\Gamma(a, b)\cap E,
M(a, b) :=\Gamma(a, b)\cap M.

A. 4 HYPOTHESIS (F). The category \Gamma has a unique factorization
system (E, M) such that

E\subseteq Epi(\Gamma) , M\subseteq Mon(\Gamma) . (1)

Note that under this hypothesis (F),

E(a, a)=M(a, a)=Ant(a) . (2)

A. 5 THEOREM. Assume the above hypothesis (F). Then the Burn-
side homomorphism \varphi : \Omega(\Gamma) –

\tilde{\Omega}(\Gamma) is injective and its cokernel

Cok ( \varphi)\cong\prod_{i\in\Gamma/\cong}(Z/|Aut(i)|Z) .

A. 6 COROLLARY. Under (F), Q\otimes\Omega(\Gamma) is an abstract Burnside ring
which is isomorphic to Q\otimes\tilde{\Omega}(\Gamma)\cong Q^{r/\cong}via

1_{Q}\otimes\varphi

A. 7 In order to prove the above theorem, define \Gamma/\cong\cross\Gamma/\cong -matrices
H, L, D, U by
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H_{a,b} :=(a, b) ,
L_{a,b} :=|E(a, b)|/|Autb| ,
D_{a,b} :=|Auta|\delta_{ab} ,
U_{a,b}\cdot.=|M(a, b)|/|Auta| .

By (1), these matrices are all integral and by (d) and (e) of A. 3,
we have that

H LDU.
By (2), L(resp. U) is conjugate to a unipotent lower (resp. upper) tri-
angular matrix. This proves the theorem.

A. 8 EXAMPLE. Let \Gamma be the category of transitive (G, \mathfrak{X}) -sets and
G-maps, where \mathfrak{X} is a family of subgroups of G closed under G-
conjugation. Then since all morphisms in \Gamma are surjective, \Gamma satisfies
trivially the hypothesis with E=Mor(\Gamma) and M=Iso(\Gamma) . Applying
Theorem A. 5 to this category gives Lemma 3.3.

A. 9 Next, the condition (C)_{\infty} in (3.6) is rewritten as the following
form:

HYPOTHESIS (C). For any a\in\Gamma and any automorphism \sigma of a, there
exists a coequalizer diagram:

aa\vec{\vec{\sigma}}1arrow a/\sigma.

A. 10 EXAMPLE. Let \mathfrak{X} be a family of subgroups of G closed under
G-conjugation and let \Gamma be the full subcatgory of finite G-sets consisting
of G-sets of the form G/S, S\in \mathfrak{X} . Then any automorphism of G/S\in\Gamma

has the form

\sigma_{g} : G/Sarrow G/S:xS\mapsto xgS

for some gS\in WS.
Assume that \mathfrak{X} satisfies the condition (C)_{\infty} in (3.6), so that for any

S\in \mathfrak{X} and gS\in WS , there is the smallest element \overline{\langle g\rangle S} of \mathfrak{X} containing
\langle g\rangle X. Then for any #Se WS, G/\overline{\langle g\rangle S} is a coequalizer of 1 and \sigma_{g} .

Conversely, we can check that if \Gamma satisfies the above hypothesis (C),

then the family \mathfrak{X} satisfies (C)_{\infty} .

A. 11 Define an obstruction group Obs(F) and the Cauchy-Frobenius
map \psi by



570 T. Yoshida

Obs (\Gamma) := \prod_{i\in\Gamma/\cong}(Z/|Auti|Z) ,

\psi:=(\psi_{i}) : \tilde{\Omega}(\Gamma)
– Obs (\Gamma)

: \chi – ( \sigma\in\sum_{Auti}\chi(i/\sigma) mod |Auti| ).

A. 12 THEOREM. Under the hypotheses (F) and (C), the following
sequence of abelian groups is exact:

0- \Omega(\Gamma)arrow\tilde{\Omega}(\Gamma)arrow Obs(\Gamma)\varphi\psiarrow 0 .

This theorem is proved by the Cauchy-Frobenius lemma and the fact
that for any \sigma\in Auti ,

|\Gamma(i, x)^{<\sigma>}|=|\Gamma(i/\sigma, x)| , (3)

where \sigma acts on \Gamma(i, x) by composition.

A. 13 THEOREM. Under (F) and (C), \Omega(\Gamma) is an abstract Burnside
ring.

This is a corollary of the above theorem and is proved by a sim\overline{l}lar

way as in the case of generalized Burnside rings.

A. 14 EXAMPLE. Let \mathfrak{X} be a family of subgroups of G which is closed
under G-conjugation and satisfies the condition (C)_{\infty} of (3.6). Let \Gamma:=

\{G/S|S\in \mathfrak{X}\} be the full subcategory of transitive (G, \mathfrak{X}) -sets and G-maps.
In this case, the abstract Burnside ring \Omega(\Gamma) and the generalized Burnside
ring \Omega(G, \mathfrak{X}) is isomorphic.

As another example, there is a M\"obius ring of a finite poset. See
[Yo 84], [Ai 79], [St 86].

A. 15 In order to obtain an idempotent formula for the abstract Burn-
side ring, we have to introduce a concept corresponding to the subgroup
lattice or a family \mathfrak{X} of subgroups of G which is ordered by inclusion.

A discrete cofifibration f : \tilde{\Gamma}arrow\Gamma is a functor from a finite category \tilde{\Gamma}

such that the diagram

Mor (\tilde{\Gamma})\underline{dom} Obj (\tilde{\Gamma})

f\downarrow \downarrow f

Mor (\Gamma)\underline{dom} Obj (\Gamma)

is a pullback diagram.
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Note that the category \tilde{\Gamma} in a discrete cofibration f : \tilde{\Gamma}arrow\Gamma can not
be replaced by a category equivalent to \tilde{\Gamma} . For example, the restriction
of a discrete cofibration f : \tilde{\Gamma}arrow\Gamma into a skeleton of \tilde{\Gamma} is not a discrete
cofibration in general.

A. 16 If f : \tilde{\Gamma}arrow\Gamma is a discrete cofibration, then

F:\Gammaarrow Set_{f} : i-f^{-1}(i)

makes a functor. Conversely, if F:\Gammaarrow Set_{f} is a functor, then we have
a discrete cofibration f : \tilde{\Gamma}arrow\Gamma defined by

Obj (\tilde{\Gamma})

:= \prod_{a\in\Gamma}\{a\}\cross F(a) ,

\tilde{\Gamma}((a, s) , (b, t)) :=\{\mathcal{A}:aarrow b|F(\mathcal{A})(s)=t\}

f : \tilde{\Gamma}arrow\Gamma : (a, s)-a, \mathcal{A}\mapsto \mathcal{A} .

Thus there exists a one-t0-0ne correspondence between discrete
cofibrations over \Gamma and functors \Gammaarrow Set/ .

A. 17 In general, \tilde{\Gamma} in a discrete cofibration f : \tilde{\Gamma}arrow\Gamma is not equiva-
lent to a poset. So in order to get a better idempotent formula for the
abstract Burnside ring \Omega(\Gamma) , we have to choose a convenient discrete
cofibration over F.

Let g_{1} , g_{2} , \cdots be a set of generators of \Gamma . and let f:\tilde{\Gamma}arrow\Gamma be a
discrete cofibration over \Gamma corresponding to the functor

\prod_{i} Epi (g_{1},-) : \Gammaarrow Set_{f} .

Then \tilde{\Gamma} is a quasi-0rdered set (that is, |\tilde{\Gamma} (a, b ) |\leq 1 for any a, b\in\tilde{\Gamma}).

Furthermore, when \Gamma is a full subcategory of a finite category \Gamma’

which has an object g’\in\Gamma’ such that Epi_{\Gamma’}(g’, a)\neq\phi for every a\in\Gamma , the
category \tilde{\Gamma} in the discrete cofibration f : \tilde{\Gamma}arrow\Gamma corresponding to the fun-
ctor Epi_{\Gamma’}(g’, -) is a quasi-0rdered set, too.

A. 18 EXAMPLE. Assume that \Gamma:=\{G/S|S\in \mathfrak{X}\} , where \mathfrak{X} is a family
of subgroups of G closed under G-conjugation as before. Define a finite
category \tilde{\Gamma}:=\{gS\subseteq G|g\in G, S\in \mathfrak{X}\} by

\tilde{\Gamma}(xS, yT) :=\{ \emptyset\{x^{-1}y\}

if \chi S\subseteq^{y}T

otherwise.

Then

f : \tilde{\Gamma}arrow\Gamma:gS-G/S

is a discrete cofibration with \tilde{\Gamma} a quasi-0rdered set. The isomorphism
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classes of \tilde{\Gamma} makes a poset and it is isomorphic to the subposet \mathfrak{X} of the
subgroup lattice by the correspondence gSrightarrow^{g}S.

A. 19 Since Q\otimes\Omega(\Gamma) is isomorphic to Q\otimes\tilde{\Omega}(\Gamma) as rings via 1\otimes\varphi

under the condition (F), there is a primitive idempotent e_{t} corresponding
to each t\in\Gamma such that

\varphi_{s}(e_{t})=\{
1 if s\cong t

0 otherwise.

We wish to obtain an explicit formula for e_{t} . By the above definition of
e_{t} , we have that

e_{t}= \sum_{s\in\Gamma/\cong}H_{s,t}^{-1}s,

where H_{s,t}^{-1} is the (s, t) -entry of the inverse matrix of H=(\langle s, t\rangle)_{s,t} . So
we have to calculate the inverse matrix of the hom-set matrix H.

A. 20 We give an idempotent formula under the following stronger
assumption than (F).

(F’) All morphisms in \Gamma are epimorphisms.

An idempotent formula without the assumption (F’) is found in [Yo
87a] .

A. 21 THEOREM. Assume that all morphisms in \Gamma are epimorphisms.
Let f : \tilde{\Gamma}arrow\Gamma be a discrete cofifibration such that \tilde{\Gamma} is a quasi-Ordered set
and f is surjective on objects. Let \mu be the M\"obius function of the poset
\overline{\Gamma}:=\tilde{\Gamma}/\cong . Let \overline{f}:\overline{\Gamma}arrow\Gamma be the functor induced by f, so that \overline{f} maps an
isomorphism class \overline{a} to f(a) . Let e_{t} be the primitive idempotent corre-
sponding to t\in\Gamma . Then

e_{t}= \sum_{a\in\overline{\Gamma}t’}\sum_{\in f^{-1}(t)}\acute{\frac{\mu(a,t)}{|Aut\overline{f}(a)|\cdot\overline{\psi}^{-1}\overline{f}(a)|}}\overline{f}(a) .

The theorem follows from the decomposition of the hom-set matrix H.
See [Yo 87a ], and it coincides with Theorem 4.2 when \Gamma is the category
of transitive (G \mathfrak{X}) -sets.

A. 22 THEOREM. Assume that the hypothesis (C) and that all mor-
phisms in \Gamma are epimorphisms. Let p be a prime or \infty . Let -p be the
equivalence relation on \Gamma generated by the relation

i/\sigma-_{p}i for i\in\Gamma , \sigma\in(Auti)_{p} ,
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where (Aut i)_{p} is a Sylow p-subgroup of Aut i. Then any primitive
idempotent of \Omega(\Gamma)_{(p)} has the form

e_{s}^{(p)}
:= \sum_{t\sim pS}e_{t}

for some s\in\Gamma . where the summation is taken over a set of complete repre-
sentatives of isomorphism classes of objects of \Gamma equivalent to s.

Of course, this theorem gives theorem 4.12 about a p-local generalized
Burnside ring when \Gamma is the category of transitive (G, \mathfrak{X})- sets .
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