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On block-schematic Steiner systems
S(t, t+2, v) and S(¢, t+3, v)
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1. Introduction

A Steiner system S(¢ %, v) is a pair consisting of a set Q of v points
and a family B of k-point subsets, called blocks, of Q with the property
that any #-point subset is contained in a unique block. We assume 1< ¢<
k<v, excluding trivial designs. A Steiner system is called block-
schematic if the blocks form an association scheme with the relations
determined by size of intersection. By [9], for each #=1 there exist
finitely many block-schematic Steiner systems S(¢ %, v) with k—¢=# and
t=3. Yoshizawa proved that S(¢ t+1, v) is block-schematic if and
only if /=2 or (¢, v)=(3,8), (4,11) or (5,12). The purpose of this paper
is to prove the following theorems.

THEOREM 1. A Steiner system S(t, t+2, v) is block-schematic if and
only if t=2.

THEOREM 2. A Steiner system S(t, t+3, v) is block-schematic if and
only if t=2o0r (t, v)=(3,22), (4,23) or (5,24).

It is well known that S(3,6,22), S(4,7,23) and S(5,8,24) are unique
(cf. [8]), and S(2, % v), S(3,6,22), S(4,7,23) and S(5,8,24) are block-
schematic (cf. [2], [4], [GD.

2. Notation and preliminaries

For a Steiner system S=S(¢ & v) we use A,(0<i{<¢) to represent the
number of blocks which contain given 7 points of S. Then we have

(=D (v—i—1)--- (v—t+1)
(k=D (k—i—1) (k—t+1)

Let x,(0<:<k) denote the number of blocks each of which has exactly
points in common with a fixed block B. By the number x; depends on
S, but not on the choice of a block B, and the following equality holds for
1=0,..., t—1.

A O=i<t—1).
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vt (T e (! ;1)xt_1=<ai—1>(f). W

i
We remark that x,=------ =%,-1=0 and x,=1.
Let By, ..., B, be the blocks of S. Let A,(0=<h=<k) be the k- adja-
cency matrix of S of degree A, defined by A,(, ))=1 if |B;NBj=h 0
otherwise. We remark that A,=------ =A,_ =0 (the zero matrix) and A

=1 (the identity matrix). Let @,..., @, be the points of S, and 4,,, ...,
Ah@;) be the %-point subsets of Q(0<i2<t—1). Let M,(0£h<t—1) be the

(Z) by A, incidence matrix of blocks on #Z-point subsets defined by

M,(i, ;) =1 if 4,;<B;, 0 otherwise. Let ¢,(1=:=<v) be the column vector
of degree A, defined by the j* component of a;=1 if @;=B;, 0 otherwise.

PRrOPOSITION 1. The adjacency matrix A,(h=0, ..., t—1) of a Steiner
system S(t, k, v) has an eigenvalue d, belonging to a;—a; (i+j) such that

:g:(f)dh+(k>:(k_1>(/1r—/1r+1> (r=0, ..., t—1).

v r—1

PrROOF. By the definitions we have

:g:(f,‘>A,,+<k)I:tMer (r=0,..., t—1), @

4

and we have the following for a;+a;:

tMer(di_aj>:t(f‘Tl) cee ) j‘fﬂo))

where
o (|B,NB. o (|B,NB,
frq: Z <| ‘1|)_ 2 (l Q|>'
m=1 s m=1 /4
(a;€Bm) (@;€Bm)

Let us assume that ¢;€B,, a;&B,. Then we have

3 (IBmmBqI
m=1 /4
(a;€Bm)

k
)=1U, Ba):J B Bu, 1=, a€Ball=(})iras

and

4 <|B,,,ﬂBq|>: & <|B,,lm€3q|-1>Jr él <|BmﬂBq|—1>

m=1 /4 m=1 r—1 m /4
(ai€Bm) (ai€eBm) (ai€Bm)

={{J, Bn) : ] EBnNB;—{ai}, VI=7r—1, &:EBn}|
+|{(j, Bm) ]gBmmBq_{a’z}, |]|:7/; a/zEBmH
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(k=1 k—1
(i
k—1

Therefore, f,,= ( r—1

)(Ar—/bﬂ) when ¢;€B,, a;&B,. Hence we have

MM, a-a) =" )= @, €

Setting »=¢t—1, t—2, ... and 0 in (2) and (3) by turns, we find that a;—a;
is an eigenvector of A;_,, A;_,, ... and 4, and get the result.

PROPOSITION 2. For any point a and any block B of a Steiner system
Stk v) with a€B, the number of blocks which contain a and have
exactly h points in common with B is d,+k(x,—d,)/v (0Ssh<t—1).

PrROOF. We may assume that ¢=a, B=B, and that all the blocks
containing ¢ are B, ..., B,. Let us set b,=a¢,—a; (i=1,..., v). Then
we have A , (b4 +b,)=dp b+ +b,) (0£h<t—1), where b,+
------ +b,="(v—Fk, ..., v—k —Fk, ..., —k). Let f be the number of blocks
each of which contains @; and has exactly % points in common with B,.
Calculating the 1st component of A ,(b,+ - +b,), we get f(v—Fk)+
(x,—f)(—k)=d,(v—k). Hence, f=d,+k(x,—d,)/v.

PROPOSITION 3. Let S be a Steiner system S(t k, v). If there is an
integer 1 (0<i<t—1) with x,>0 and v>(k—t+1)(k—1i)+Ek, then for any
integer 7 with 0=X7=<1 and 1+1t—1—j=<k there exist three blocks B,, B, and
B; of S such that |BiNBy|=i, |BINBs|=t—1 and |B:N Bs|=}.

ProoF. By the assumption there exist two blocks B, and B, with
|BiNB,|=i. Let @, ..., a; be j points of B.NB, and @41, ..., @, be t—1—
J points of Bi—B,. Let Wi(=B,), W,, ..., W, be the blocks which con-
tain @, ..., a.-1. Let us suppose W,NB2{a, ..., o} for h=2,..., A
Then W,N(B,—B,)+¢ holds for 2=2,..., A,-;. Hence we have

v—1t+1
k—t+1

that is, v=<(k—t+1)(k—1i)+k, a contradiction.

—1=k—q,

Hereafter we assume that S is block-schematic.
Then we have

k
A= 3G, j, DA, (0, 5Sh), @
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where p(z, 7, h) is a non-negative integer defined by the following : When
there exist blocks B, and B, with |B,N B4=h, u(i j, h)=|{B €B:
|B,NB|=i, |B,N B|=j}|, and when there exist no blocks B, and B, with
|BpNBy|=h, x(i,j,h)=0. Now the following equalities are easily verified

(cf. [3]):

i, j, =% if >0,

#(Z.; j’ h):ﬂgy i) h)) ﬂ(i) j) k)zaijxiy (5)
ﬂ(i’ j) h>xh:#<h) j) Z.)xz:#(hJ i) j>xj'

The intersection matrix P;(j=0,..., t—1, k) is the (t+1) X (¢+1D
matrix whose (7, k) entry is u(4, 7, h) (G, h=0,..., t—1, k). We remark
that the map A;— P, (=0, ..., t—1, k) extends to an isomorphism from
the algebra (A, ..., A,_i, A.) over R (the set of real numbers) to the
algebra (B, ..., Pi_i, P> over R (cf. [3]). In particular, any eigenvalue
of Aj is an eigenvalue of P;, and vice versa. We say that a vector x is
standard when the first entry of x is 1. Then by [1, Theorem 2.4.1] we
have

PROPOSITION 4. If the multiplicity of an eigenvalue 6 of P, \
(0=j=t—1) is one, then the multiplicity of 9 as an eigenvalue of A, is

Ao/ Cut, )

where (, ) denotes the usual inner product of row vectors and u and *v
are unique standardized left and right eigenvectors of P; such that uP;= 0u
and p; 'v=_0 v respectively.

3. Proof of Theorem 1

Let S be a block-schematic Steiner system S(¢ t+2, v) (¢=3). By
(1) we get the following lemma.

. . t
LEMMA 1. x,-+<h;1>xi+l+ ...... +< l.l)xt_1=(/1i—1)< 7;2)
(i=0, ..., t—1). In particular

_ (w—t=D+DU+DE

Xe-1 18 s
_ —=t=-1D@—t=2) U+ ¢+ DtE-1
S 288 ’
tp = W=D UFDUADIE D E=D{ (v == =130 =t =2) +72}

7200
_ (== D DI =D (=D (=3){(0=t=2)=18(0—1=D™+137(v——2) - 600}
e = 259200 '
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By [6] we have
%>000=0, ..., t—1). 6)
Then by we have
v2t+13(t=4), v=15(t=3). Q)

LEMMA 2. (v—t)(v—t—1) is not divisible by 4 nor by any prime
between 3 and t—+2.

PrROOF. Let p be 4 or a prime between 3 and {+2. Then we have

1 _ (w=t=24+p)(w—Et=3+p)--" (v—t+1)
t+2-p— p(p—1)-+e- 3 )

Since A.42_p iS an integer, we get the result.

By Proposition 1 we have

LeEmMMA 3. The adjacency matrvix A,(h=0, -, t—1) of S has an
eigenvalue d, belonging to a;—a;(i+j) such that

ti‘.l(h)dﬁ(t”):(Hl)(/u—/m) (r=0, ..., t—1).

h=0\7 v r—1
The following lemma is easily verified.
LEMMA 4. If i—j=4, then (i, t—1,7)=0 (0=j<ist—1).
LEMMA 5.
() da= 3 plt=1, t=1, Dxt s,

i=t—

t—1
dtz-—l: . 24#(t—1, t—l, i)di+xt_1.

i=t—
t—1

(ii) xt—zxt—1:i§_5/l(f—2, t—1, D,

di—2de-1= tZ‘._l p(t—=2, t—1, i)d;, where

i=t-5

ﬁl(t__Z, t__l, t__1>::ﬁl(t__1, t__l) t__Z)xt—Z/xt—l'
t—1
(111) xt_sxt_l:i§—6#<t—3, t_l; i>xi1
t—1
dt—sdt—1:l_§_6#(t—3, t—1, 1)d;, where

ﬂ(t_g, t—1, t_D:#(t_l, -1, t_S)xt—s/xt—l and
ﬂ(t_S; t_l) t_2>:ﬂ<t_2) t_]-) t.‘3>xt—3/xt—2'
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PrROOF. Multiplying both sides of (4) by the all-1 vector of degree A,
we have

t_l . . - .
xiszlgou(z, 7 Wx+p(, g, k).

On the other hand, multiplying both sides of (4) by a,—a, (q+7), we
have the following by [Lemma 3 :

t—1
didy= 2 uCi, j, D dyt 1, J, B

Hence by (5) and Lemma 4, we get (i), (ii) and [Gii).

LEMMA 6.

(i) plt—1,t—1,0=<x,_, holds and u(t—1,t—1,17) is divisible by
Xe-1/ (Xe-1, X)), wheve (x,_,, x;) 1S the greatest common divisor of x._, and
X;. Moreover if t—4<i<t—1, then 1=u(t—1,t—1, 7).

(i) wp(t=2,t—1, 0)<x,_, holds and u(t—2,t—1,1:) is divisible by
Xe_o/ (Xe_a, %;).  Moreover if v=t+15 and t—55i<t—1, then
1Spu(t—2,t—1, 7).

(i) wp(t—=3,t=1,90)=<x,_, holds and u(t—3,t—1,17) is divisible by
Xe_3/ (X3, %;). Moveover if v=t+18 and t—6=i<t—1, then
1=u(t—=3,t—1, ).

Proor. By (5), (6), (7) and Proposition 3, we get (i), (ii) and (iii).

LEMMA 7. 3=t=40.

PROOF. Let us suppose t=41. Let us set z=v—¢t—2. Then we have
z°—182°+1372—600=2°—182*+122z,

because z=v—t—2=Q2¢t+3)—t—2=42. Now by Lemmas 5(i) and
6(i), we have x>.,>x,_,. Hence,

800(t+2)(t+1)¢
—DU=2)1t-3)

Since the left-hand side of the above inequality is less than 1000, we get
2 <40, a contradiction.

>z*—18z+122.

LEMMA 8. If t=3, then 15=v=<32. If t=4, then
max(2t+3, t+13) =< v and the following inequality holds :

00U+ U+DEt>U—-D(U—-2)#—=3)(v—t=2)(v—1t—=20).
Proor. By (7) and v=2¢+3, we get the lower bounds on v. If {=3,
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we have v<32 by [5]. If £=4, then by x?,>x_, we get the following
(cf. Proof of Lemma 7) :

800Cv—t—2)(t+2)(t+1)¢
(t=DU=2{=3)
(v—t—2)*—18(v—t—2)*+137(v—t—2) — 600.

>

Since the right-hand side of the above inequality is greater than
(v—1t—2)3—18(v—t—2)2, we complete the proof.

LEMMA 9. p(t—1,t—1, t—4)<40, p(t—1,¢t—1,t—-3)<
min{10¢—10, 120}, 16=p(t—1, t—1, t—2)<16+min{12(¢—2), 36}+

min{2(t—2) (£ —3), 16}, —”%w(t—néwﬂ, (-1, t—1=<

v—t—5 3U—DU=2 | ¢-DU—2D(=3)
3 2 6 '

Proor. Let B, and B, be blocks of S with |BNB)|=i(t—4<i<t—1).
Let us set

Cijn(B, B)=|{BEB:|BNBNB|=h |BN(B—B)|
:|Bﬂ<Bz—Bl>|:j}|

(0<7<3,t—4<h=t—1). Then we have

+9(t—1D+

. 3
ll(t—l, t—1, Z>:j=§1—ici,j,t—l—j<Bl; B),

where

]

t+2—1
Coners B BO=(T )1

Jict+2-02/) G+0, and
Curers(B, BYS(' T itises,
([(t+2—1)/j] is the greatest integer not exeeding (¢+2—1)/7.) Moreover

we find

Ci—2.1,t—2(B1, B;) =4X4=16,
Ci-11,e-2(Bi, B) =3X(t—1)%x3=9(¢t—1) and
Ct—l,o,t—1<Bl, B)=w—-t-5)/3.

Hence we get the result.

By we have
LEMMA 10. There is no Steiner system S(4,6,18).
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Now by using computer we search the elements of the set

Wi={all (¢, v, u(t—1,t—1, t—4), pu(t—1,¢t-1,¢t-3),
u(t—1,t—1,t—2),u(t—1, t—1, t—1)) satisfying Lemmas 1, 2,
3,5(i), 6(i), 7,8,9,10}.

We note that every element of W, satisfies (¢, v)=(3,17) or ({ t+23)
(35t<8).
Next by using computer we search the elements of the set

Wo={all (¢, v, p(t—1,t—1,t—4), p(t—1,t—1,¢t-3),
u(t—1,t—1,t=2), p(t—1,t—1,¢t—-1), p(t—2,t—1,t—5),
p(t=2,t=1,t—4), ..., p(¢—2,¢—1,¢t=1))
satisfying Lemmas 5(ii) and 6(ii) each of which satisfies
that (t v, p(¢—1, t—1, t—4), p(t—1, t—1, t—3),
u(t—1,t—1,t=2), pu(t—1, t—1, t—1)) is an element of Wi}.

We note that every element of W, satisfies (¢ v)=(3,17) or (¢ t+23)
(3=5t<5).
Similarly by using computer we search the elements of the set

Wi={all (t, v, u(t—1,t—1,t—4), p(t—1,t-1,1t-3),
pu(t—1,t-1,t—2), p(t—1,t-1,t-1), p(t—2,t-1, t—5),
pu(t—2,t—1,t—4), ..., p(t—2,t—1,t—1),
u(t=3,t—1,t—6), p(t—3,t—1,t=5), ..., p(t—3,t—=1,t—1))
satisfying Lemmas 5(iii) and 6(iii) each of which satisfies
that (t, v, p(t—1, t—1, t—4), p(t—1, t—1, t=3),
pu(t—1,t—1,t=2), p(t—1,t—1,t—1), p(t—2,t—1,t-5),
pu(t—2,t—1,t—4), ..., p(t—2,t—1,t—1)) is an element of
We}.

We note that | W] is thirty-one and there exist one element with (f, v)=
(3,17), one element with (¢, v)=(3,26) and twenty-nine elements with (¢,
v)=04,27) in W;. Really the elements of W; with (¢, v)=(4,27) satisfy
the following :

(1@3,3,0), p@3,3,1), p@,3,2), ¢B3,3,3), u3,0,

1(2,3,1), p2,3,2),p(1,3,0), 1,31

= (4, 10, 28, 34, 6, 50, 28, 96, 40), (4, 10, 28, 34, 12, 45, 32, 84, 50),

= (4, 10, 28, 34, 18, 40, 36, 72, 60), (4, 10, 28, 34, 24, 35, 40, 60, 70),
= (4, 10, 28, 34, 30, 30, 44, 48, 80), (4, 10, 28, 34, 36, 25, 48, 36, 90),
=(4, 10, 28, 34, 42, 20, 52, 24, 100), (4, 10, 28, 34, 48, 15, 56, 12, 110),
=(6, 10, 24, 40, 3, 50, 34, 96, 40), (6, 10, 24, 40, 9, 45, 38, 84, 50),
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= (6, 10, 24, 40, 15, 40, 42, 72, 60), (6, 10, 24, 40, 21, 35, 46, 60, 70),

= (6, 10, 24, 40, 27, 30, 50, 48, 80), (6, 10, 24, 40, 33, 25, 54, 36, 90),

= (6, 10, 24, 40, 39, 20, 58, 24, 100), (6, 10, 24, 40, 45, 15, 62, 12, 110),
=10, 5, 32, 34, 3, 55, 18, 84, 45), (10, 5, 32, 34, 9, 50, 22, 72, 55),

= (10, 5, 32, 34, 15, 45, 26, 60, 65), (10, 5, 32, 34, 21, 40, 30, 48, 75),

= (10, 5, 32, 34, 27, 35, 34, 36, 85), (10, 5, 32, 34, 33, 30, 38, 24, 95),
=10, 5, 32, 34, 39, 25, 42, 12, 105), (12,5, 28, 40, 6, 50, 28, 72, 55),

= (12,5, 28, 40, 12, 45, 32, 60, 65), (12,5, 28, 40, 18, 40, 36, 48, 75),
=12, 5, 28, 40, 24, 35, 40, 36, 85), (12,5, 28, 40, 30, 30, 44, 24, 95) or
=12, 5, 28, 40, 36, 25, 48, 12, 105).

Since t=3 or 4, each element of W, determines just one intersection
matrix P,_; (cf. (5)).
Let us suppose (¢, v)=(3,17). So we note

10 8 6 0
10 8 9 0
20 24 24 40
0010

P=

Since the multiplicity of the eigenvalue d,=6 of B, is one, we can calculate
that of the eigenvalue 6 of A, by [Proposition 4 Really we find easily that
it is 33.333:----- , a contradiction.

Next let us suppose (¢, v)=(3,26). So we note

302412 0
1302433 0
27110222470
0010
By the similar argument to that in the case (¢ v)=(3,17), we find easily
that the multiplicity of the eigenvalue 18 of A, is 119.047------ , a contradic-
tion.

Last let us suppose (f, v)=(4,27). So we note that P, is one of the
twenty-nine matrices, but we find the following by using computer and the
similar argument to that in the case (¢ v)=(3,17): If B, is anyone of the
twenty-nine matrices, the multiplicity of the eigenvalue 50 of A is 445.714
------ , a contradiction.

Thus we complete the proof of [Theorem 1.
4. Proof of Theorem 2

Let S be a block-schematic Steiner system S(¢ t+3, v) (¢=3). By
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(1), we get the following lemma.

] — t
LEMMA ].1 xz+<l—ll_1>xz+l+ """ +<t Zl>xt_1=(/11—1)( -:3>

(1=0, ..., t—1). In particular

@+ E+DEw—E=3)

Xe—1— 96 ,

_ U+ U+D U+ DD w—t=3) (v—t—19)

2400 ’
_ 4D H+DE+DEE-1D (=) (w—t=3){(v—t—3)*—21(v—1-3) +200}
86400 ’

Xea= () A+2) U+ DE-D -2 (=3 (-t -3 (w—t-19) X
{(v—t—3)*—11(v—t—3)+150}/4233600,

Xos=(t+3) A+ U+ DtE-D U= -3DU—H(w—Et—3)X
{(v—t—=3)"—34(v—t—3)*+515(v—{—3)*—4682(v —t—3) +
29400}/270950400.

If x;=0 holds for some 7 (0<i<f{—1), then S is a Steiner system S(3,
6,22), S(4,7,23) or S(5,8,24) by [6]. Hence from now on we consider
the case

t-2

t—3

x,>0(Z:0, cee s t—1> (8>
Then by we have
v>t+20. 9

LEMMA 12. v—t v—t—1 and v—t—2 are divisible by mno prime
between 5 and t+3, and v—1t+1 is divisible by 4.

PROOF. Let p be a prime between 5 and ¢£+3. Then we have

— = — =4+ D) —
At+3—p: (1) ¢ 3+p><p?)<p_1)4+1)>4 (U t+1> and

Since A:;+3-p and A,_; are integers, we get the result.
By Proposition 1 we have

LEMMA 13. The adjacency wmatrix A,(h=0, ..., t—1) of S has an
eigenvalue d, belonging to a;—a;(i#j) such that

S () (L) (=0, 1D
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The following lemma is easily verified.

LEMMA 14. If i—j=5, then p(i, t—1, H=0 (0<j<i<t—1).
By the similar proof to that of we have

LEMMA 15.

(i) xtz_1=i§i5/x(t—1, F—1, D)X+ %1,

t—1

di = ,25#0_1, t—1, Ddi+x .

i=t—
t—1

(i) %-atea= 3 p(t=2, =1, Da,

di_odi_ 1= 'tie,u(t—z, t—1, 0)d;, where

i=t—

u(t—Z, t—1, t_1>:#<t—1, t—1, t_2>xt—-2/xt-l-

LEMMA 16.

(i) plt—1,t—1,0)<x_, holds and u(t—1,t—1,17) is divisible by
Xe_1/ (X1, ). Moveover if t—5=i<t—1, then 1=u(t—1,1t—-1,1).

(i) p(t—2,t—1,0)=x_, holds and u(t—2,t—1,17) is divisible by
Xe—o) (Xe_a, %;). Moreover if v=2t+24 and t—6=1<t—1, then
1=pu(t—2,t—1, 7).

Proor. By (5), (8), (9) and Proposition 3, we get (i) and (ii).
LEMMA 17. 3<1=<49.

PrRoOOF. Let us suppose ¢ =50. Let us set z=v—¢—3. Then we have
24— 342%+51522— 46822 +29400= 2% (2 — 17)2.
Now by Lemmas [5(i) and 16( i), we nave x?_;>x,_s. Hence,

29400 +3)(t+2)(E+ D¢ )
—D—D- g tE1D"

Since the left-hand side of the above inequality is less than 41000, we get
z2<50. Hence we have 2¢/+4=<v<53+¢, and so <49, a contradiction.

LEMMA 18. If t=3, then 23<v=62. If t=4, then 24<v=280. If
t=5, then max{2t+4, t+20}<v and the following inequality holds

29400 t+3) t+2) ¢+ Dt>¢t—-Dt—2)t—3)t—4) (v—t—3)
(v—t—20)2

PrROOF. Since v=2¢{+4 and v=¢+2(, we have lower bounds on ». If
t=3, we have v<62 by [5]. If £=5, then by x?_,>x,_s we get the inequal-
ity which yields an upper bound on v (cf. Proof of Lemma 17). If =4,
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then by Lemmas [5( i ) and 16( i ), we have x2>%. Then,

76’54 (v —=7)? S 746°5:4+3:2:.1(0 =D (@ —=2N{(v—D*~11(v=7) +150}
9216 4233600

Hence 64400> (v —23) (v —18) holds, and so we have v <280.

LEMMA 19. u(t—1,¢t—1,t—5)<140, pu(t—1,t—1,t—4)<
min{35(f—2), 1295}, p(¢—1, t—1, t—3) <45+ min{40(¢—3), 400} +
min{15(¢—3)(t—4)/2,225}, 25=<pu(t—1, t—1, t—2) <25+min{20(¢—2), 100}
+min{5(¢—2) (£ —3), 100} +min{5(¢ —2) (t—3)(t —4)/6, 25}.

—_— _— — — t_
L6 - D=1, t-1, - st RUGS e (I

l‘—l) (t—l)
4( 3 * 4 )

PrROOF. Let B, and B, be blocks of S with |[BNB|=i(t—5<i<t—1).
Let us set

Ci,j,h(Bl,&)Zl{BEB:|BﬂBlﬂBZ|:h, |Bﬂ<Bl—Bz>|:
|IBN(B,—B)|=7j}| (0=j<4, t—5<h<t—1). Then we have

4
#(t—l, -1, i): 2 ici,j,t—l—jCBl; Bz),

j=t=1-

where

CunenrnsBr B=(" 3N L Ga-0/7) G0, and

Cijii-1-;(B1, By) §<t+§_ Z>2 if i<t—2.
Moreover we find

Cioan,e—2(By, B,) =5X5=25,

Cioini—2(By, B)=4Xx(t—1) X4=16(t—1) and
Cicr0,e-1(By, B)=(v—t—17)/4.

Hence we get the result.
By [5, Proposition 1.3] we have
LEMMA 20. If t=3, then u(2,2,1)+25.
Now by using computer we search the elements of the set

Wi={all (¢, v, u(t—1,t—1, t—5), p(t—=1,t=-1,1t-4, ...,
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u(t—1, t—1, t—1)) satisfying Lemmas 01, 02, I3, I5(i), 17,
18, 19 and 20).

We note that every element of W, satisfies (¢, v)=(6,45) or (8, 47).
Next by using computer we search the elements of the set

Wo={all (t, v, u(t—1,t—1, t—5), p(t—1,t—1, t—4), ...,
p(t—1,t—1,t—1), p(t—2,t—1,t—6), p(t—2,t—1,t-5), ...,
u(t—2, t—1, t—1)) satisfying Lemmas [I5(ii) and 16(ii)
each of which satisfies that (¢, v, u(¢t—1, t—1, t—5),

u(t—=1,t—1,t—4), ..., u(t—1,t—1,t—1)) is an element of
Wi}.

We note that there is no element in W,.
Thus we complete the proof of [Theorem 2.
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