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Periodic modules of large periods
for extra-special p-groups
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1. Introduction

Let p be an odd prime and let k be a field of characteristic p. We
consider periodic modules over the group algebra of the extra special
p-group of order p^{3} and of exponent p :

M(p)=\langle a, b|a^{p}=b^{p}=[a, b]^{p}=1, [a, [a, b]]=[b, [a, b]]=1\rangle .

Periodic modules of period 2p had been known only for M(p) by Carlson
[6] (1979). In [17] Okuyama and the author gave new examples of such
periodic modules for a metacyclic p group

M_{m}(p)=\langle a, b|a^{pm-1}=b^{p}=1, a^{b}=a^{1+pm-2}\rangle , m\geq 3

as the kernels of cocycles representing certatin homogeneous elements of
the cohomology algebra H^{*}(M_{m}(p), k) . We note that the maximum pos-
sibility of periods of periodic modules over both of the above p-groups is
2p by Carlson [7]. In this paper we shall show another examples of peri-
odic kM(p) -modules of period 2p , which are the kernels of cocycles re-
presenting particular homogeneous elements of the cohomology algebra
H^{*}(M(p), k) .

Before stating our periodic modules we must prepare some notations.
Let G be an arbitrary finite group. The cohomology group H^{r}(G, k) is
naturally isomorphic to the set of kG-homomorphisms of the rth syzygy
\Omega^{r}(k) to k. Following Carlson, we denote by \overline{\sigma} the kG homomorphism
of \Omega^{r}(k) to k corresponding to an element \sigma in H^{r}(G, k) and let L_{s}

denote the kernel of the homomorphism \hat{\sigma} . The first cohomology group
H^{1}(G, k) is isomorphic with Hom(G, k) . We identify elements in H^{1}(G,

k) with those of Hom(G, k) via this isomorphism. For a normal sub-
group H of G of index p , the image of an element in H^{1}(G, k) which has
H as the kernel under the Bockstein homomorphism of H^{1}(G, k) to H^{2}

(G, k) is called a Bockstein element (or a Bockstein for short) corre-
sponding to the subgroup H.
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Now let us define our periodic kM(p) module Let c=[a, b] . First
of all we note that a Bocksitein corresponding to a maximal subgroup is
not zero, because its restriction to another maximal subgroup is a Bock-
stein corresponding to the subgroup \langle c\rangle . Let \lambda and \mu be the elements in
H^{1}(G, k) such that

(a) \lambda=0 , (b) \lambda=1

and

(a)_{\mu}=1 , (b)_{\mu}=0

and let \alpha and \beta in H^{2}(M(p), k) be the Bocksteins of the element \lambda and
\mu , respectively. Then \alpha and \beta are Bocksteins corresponding to the maxi-
mal subgroups ( a, c\rangle and \langle b, c\rangle , respectively. For a polynomial

f(X)=s_{)}+s_{1}X+\cdots+s_{n-1}X^{n-1}+X^{n}

in k[X] such that

f(i)\neq 0 for i=0,1 , \ldots r, p-1 ,

we define a homogeneous element \chi of degree 2n as follows:

\chi=s_{)}\beta^{n}+s_{1}\alpha\beta^{n-1}+\cdots+s_{n-1}\alpha^{n-1}\beta+\alpha^{n_{\wedge}}

With this notation

THEOREM. If n\equiv 1 mod p, then the module L_{\chi} is an indecomposable
periodic kM(p) -module of period 2p.

The periodicity and the indecomposability of the module L_{\chi} can be
shown by using the theory of the module varieties associated with mod-
ules, which have been developed by Quillen, Alperin-Evens, Carlson, and
Benson, etc.

Let B denote the maximal subgroup ( b, c\rangle of M(p) . Let \eta be the
element in H^{1}(B, k) such that (b) \eta=0 and (c) \eta=1 , and let \xi in
H^{2}(B, k) be its Bockstein. Let \tau be the image of \xi under the norm map
from H^{2}(B, k) to H^{2p}(M(p), k) . In Section 2 we will show the follow-
ing:

LEMMA 2. 1. The tensor product L_{\chi}\otimes L_{\tau} is a projective kM(p)-
module. In particular the module L_{\chi} is periodic.

LEMMA 2. 2. The module L_{\chi} is indecomposable.

In order to determine the period of the module L_{\chi} we need more infor-
mation on the cohomology algebra H^{*}(M(p), k) . In Section 3 we will
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show a dimension formula:

PROPOSITION 3. 1. The element \tau is not a zerO-divisor in
H^{*}(M(p), k) . Moreover the dimension of the cokernel of the homomor-
phism induced by multiplication by \tau is 2 (p+1) at each cohomology group
H^{r}(M(p), k) . In particular one has

dim H^{r+2p}(M(p), k)=\dim H^{r}(M(p), k)+2(p+1) for r\geqq 0 .

This will be established by investigating the cohomology exact
sequences associated with the extension which corresponds to the norm \tau .
The extension we deal with is the mod p version of that of ZM(p) -lattices
in the section 6 in Lewis [15], where some homomorphisms of the integral
cohomology groups associated with the extension was considered. Also
shown in Section 3 is

LEMMA 3. 3. The second cohomology group H^{2}(M(p), k) is four
dimensional.

Using these facts we will verify that the period of the module L_{\chi} is in
fact 2p if n\equiv 1 mod p in Section 4.

If the underlying field k is not the prime field, then one can take a \chi

in H^{2}(M(p), k) . Therefore Lemma 2. 1 and Proposition 3. 1 together with
Lemma 3. 1 in Okuyama-Sasaki [17] imply that the cohomology algebra

H^{*}(M(p), k) is generated by \chi , \tau , and \sum_{i=0}^{2p}H^{i}(M(p), k) . We believe

that this is useful to determine the cohomology algebra.
All modules considered are finitely generated right modules. Maps

are written on the right with the convention of writing composites.
We fix some more notations. Let G be a finite group. The restric-

tion of a kG module M to a subgroup H of G is denoted M_{|H} . For \phi a
kG-homomorphism of kG-modules we denote by \phi_{|H} the restriction of \phi to
H. If \gamma is an element in H^{r}(G, k) , then \gamma_{|H} is the restriction of \gamma to H.
And for \delta an element in H^{r}(H, k) we denote by \delta^{\otimes G} the image of \delta under
the norm map from H^{r}(H, k) to H^{r|GH|}(G, k) . The restriction map from
H^{r}(G, M) to H^{r}(H, M) is denoted by res_{H}^{G}. If there is no fear of confu-
sion we omit the superscript G. The corestriction map from H^{r}(H, M)

to H^{r}(G, M) is denoted by cor_{H}^{G}. We omit the subscript H if there is no
fear of confusion.

Henceforth let G denote the p group M(p) unless otherwise stated.

2. The periodicity and the indecomposability

In this section we shall prove that the module L_{\chi} is a periodic
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indecomposable kM(p) -module. We use the theory of the cohomology
varieties associated with modules. For the convenience of the reader we
write down the definition and some results we need here.

For G a finite group let H(G)= \sum_{i\geq 0}H^{2i}(G, k) . If M is a kG-module,

then we let

r_{G}(M)=radann_{H(G)}H^{*}(G, M\otimes S) ,

where S is the direct sum of the simple kG modules one for each isomor-
phism classes. The cohomology variety X_{G}(M) associated with the mod-
ule M is defined to be the prime spectrum which consists of the prime
ideals containing r_{G}(M) :

X_{G}(M)=Spec(H(G), r_{G}(M)) .

The module M is projective if and only if the variety X_{G}(M) consists of
only the irrelevant maximal ideal H^{+}(G)= \sum_{i\geq 1}H^{2i}(G, k) . The fundamen-

tal theorem is the following:

THEOREM (Alperin-Evens). With the same notation as above it fol-

lows that

r_{G}(M)=\cap res_{E}^{-1}r_{E}(M_{|E}) ,

where E runs over all elementary abelian p-subgroups of G.
Chouinard’s theorem follows from the above theorem. The following

lemma is obtained by mainly J. Carlson, See [8], [9], and [10], or Benson
[3].

LEMMA. (1) Let M and N be kG-module. Then

X_{G}(M\otimes N)=X_{G}(M)\cap X_{G}(N) .
(2) For \gamma an element in H^{r}(G, k) , one has

X_{G}(L_{\gamma})=X_{G}(\gamma) .

Namely r_{G}(L_{\gamma})=rad(\gamma) . The module L_{\gamma} is indecomposable if and only if
r_{G}(L\gamma) is a prime ideal.

Now let us proceed to our argument.

LEMMA 2. 1. The tensor product L_{\chi}\otimes L_{\tau} is a projective kM(p)-
module. In particular the module L_{\chi} is periodic.

PROOF. It is sufficient to show that the restriction of L_{\chi}\otimes L_{f} to every
maximal elementary abelian subgroup of G is projective. One has for H
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a subgroup of G

(L_{\chi}\otimes L_{\tau})_{|H}\simeq L_{(\chi_{1H})}\otimes L_{(\tau_{IH})}\oplus(projective) .

Hence we see that

X_{H}(L_{(X1H)}\otimes L_{(\tau_{1H})})=X_{H}(\chi_{|H}, \tau_{|H}) .

Recall that

\chi=s_{0}\beta^{n}+s_{1}\alpha\beta^{n-1}+\cdots+s_{n-1}\alpha^{n-1}\beta+\alpha^{n} .

First we consider about restriction to the subgroups \langle ab -c\rangles . For i ,
0\leq i\leq p-1 , let A_{i}=\langle ab^{i}. c\rangle and \xi_{i} be a Bockstein in H^{2}(A_{i}, k) corre-
sponding to the subgroup \langle ab i\rangle . And put \sigma i=\beta_{|A_{i}} . Then \sigma i is a Bockstein
in H^{2}(A_{i}, k) corresponding to the subgroup \langle c\rangle . Since (\alpha-i\beta)_{|A_{i}}=0 , we
have \alpha_{|A_{i}}=i_{Ti} , so that

\chi_{|A_{i}}=s)\sigma^{n}i+s_{1}i^{n}\sigma i+\cdots+s_{n-1}i^{n-1n}\sigma i+i_{Ti}^{nn}

=f(i)^{n}\sigma i .

On the other hand by Mackey formula for the norm map we get

\tau_{|A_{i}}=\xi_{|A_{i}}^{\otimes G}

=(\xi_{|B\cap A_{i}})^{\otimes A_{i}}

=(\xi_{|\langle C\rangle})^{\otimes A_{i}} .

Since the Bockstein \xi in H^{2}(B, k) corresponds to the subgroup \langle b\rangle , its
restriction to the subgroup \langle c\rangle is not zero. Therefore we have, by
Lemma 3. 1 in Okuyama-Sasaki [16],

(\xi_{|\langle C\rangle})^{\otimes A_{i}}=\xi_{i\zeta i}^{pp-1}-\xi_{i}

and so
\tau_{|Ai}=\xi_{i}^{p}-\sigma^{p-1}i\xi_{i} .

Consequently we get

X_{Ai}(L_{x}\otimes L_{\tau})=X_{A_{i}}(\sigma i, \xi_{i})

=\{0\} .

Namely the restriction of the tensor product L_{\chi}\otimes L_{\tau} to the subgroup A_{i} is
projective, i=0,1 , \ldots . p-1 .

Next we deal with the subgroup B . Let \sigma=\alpha_{1}B . Then \sigma is a Bock-
stein in H^{2}(B, k) corresponding to the subgroup \langle c\rangle . Since \beta_{|B}=0 , we
have
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\chi_{|B}=(\alpha_{|B})^{n}

=\sigma^{n}-

On the other hand by Mackey formula we get

\tau_{|B}=\xi_{|B}^{\otimes G}=\prod_{i=0}\xi^{a^{i}}p-1

= \prod_{i=0}^{p-1}(\xi+i_{T})

=\xi^{p}-\sigma^{p-1}\xi ,

because \xi^{a}=\sigma+\xi . Similarly to the former case, we see that the tensor
product L_{\chi}\otimes L_{\tau} is projective over kB.

Thus the tensor product L_{\chi}\otimes L_{\tau} is a projective module. By the argu-
ment in the proof of Theorem 8. 7 in Carlson [10] the module L_{\chi} is peri-
odic. This completes the proof of the lemma.

LEMMA 2. 2. The module L_{\chi} is indecomposable.

PROOF. By Lemma (2) it is enough to prove that the radical of the
principal ideal (\chi) in H(G) is a homogeneous prime ideal. We use the
same notations as in the proof of the previous lemma. Since the radical
of the principal ideal (_{\sigma}) in H(B) is a homogeneous prime ideal, its
inverse image res_{B}^{-1} (rad(\sigma )) is a homogeneous prime ideal in H(G) . We
shall show that

rad(\chi )= res_{B}^{-1} (rad (_{\sigma}) ),

which proves the lemma.
Since \chi_{|B}=\sigma^{n}- it follows that

rad (\chi)\subset res_{B}^{-1} (rad (_{\sigma}) ).

Next for an element \sigma in res_{B}^{-1} (rad(\sigma )) we can choose a number m

such that

(\sigma_{|B})^{m}=\alpha_{|B}h(\alpha, \tau)_{|B}

for some polynomial h(X, Y) in k[X, Y] , because \sigma_{|B} is G-invariant and
a non-nilpotent G-invariant element in H(B) is a polynomial in \alpha_{|B} and
\tau_{|B} . By Lemma in Quillen-Venkov [19] the square (\sigma^{m}-\alpha h(\alpha, \tau))^{2} is
contained in the ideal (\beta) . Thus the element \sigma is contained in the radical
of the ideal (\alpha, \beta) . Namely we have

res_{B}^{-1} (rad (_{T}) ) \subset rad(\alpha, \beta) .



Periodic modules of large periods for extra-special p-groups 467

Finally by a theorem of Serre [21] it follows that

( \prod_{i=0}^{p-1}(\alpha-i\beta))\beta=0 .

Hence a minimal prime divisor \mathfrak{p} of (_{\mathcal{X}}) contains either one of the
(\alpha-i\beta)s , 0\leq i\leq p-1 , or \beta . If \beta is contained in \mathfrak{p} , then so is the element
\alpha , beoanse \chi\equiv 0 mod \mathfrak{p} . If \alpha-i\beta is contained in \mathfrak{p} , then we have

0\equiv s_{)}\beta^{n}+s_{1}i\beta^{n}+\cdots+s_{n-1}i^{n-1}\beta^{n}+i^{n}\beta^{n}

=f(i)\beta^{n} mod \mathfrak{p} .

Both \alpha and \beta are therefore contained in the prime ideal \mathfrak{p} also in this
case. Thus the elements \alpha and \beta are contained in the radical of the ideal
(_{\chi}) . Namely we get

rad (\alpha, \beta)\subset rad(\chi) .

Consequently we obtain the equality

rad (\chi)=res_{B}^{-1} (rad (_{\sigma}) ),

as desired.

REMARK. Serre’s theorem was also proved by Okuyama-Sasaki [16].

3. A dimension formula

The Bockstein element \xi in H^{2}(B, k) corresponding to the subgroup
\langle b\rangle corresponds to the following extension of kB modules:

0arrow karrow k_{\langle b\rangle}^{B}arrow k_{\langle b\rangle}^{B}arrow karrow 0\iota\rho\epsilon ,

where

\iota : karrow k_{\langle b\rangle}^{B} : 1-1\otimes(c-1)^{p-1}

\rho : k_{\langle b\rangle}^{B}arrow k_{\langle b\rangle}^{B} : 1\otimes 1-1\otimes(c-1)

and

\epsilon : k_{\langle b\rangle}^{B}arrow k:1\otimes 1-1 .

Regarding karrow k_{\langle b\rangle}^{B}arrow k_{\langle b\rangle}^{B}\iota\rho as a complex of kB-modules, we form its ten-
sor induction to G (see Evens [13]) :

E_{2p}arrow E_{2p-1}arrow E_{2p-2}arrow\cdotsarrow E_{j}arrow\cdotsarrow E_{1}arrow E .

Then the extension
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0arrow karrow E_{2p-1}arrow E_{2p-2}arrow\cdotsarrow E_{j}arrow\cdotsarrow E_{1}arrow Earrow karrow 0a_{p}a_{p-1}a_{j+1}a

corresponds to the norm \tau=\xi^{\otimes G} and each term satisfies the following:

E \simeq\bigoplus_{i=0}^{p-1}k_{\langle ab^{i}\rangle}^{G}\oplus (projective)

E_{p} \simeq\bigoplus_{i=0}^{p-1}k_{\langle ab^{i}\rangle}^{G}\oplus (projective)

E_{2p-2}\simeq k_{\langle b\rangle}^{G}\oplus (projective)
E_{2p-1}\simeq k_{\langle b\rangle}^{G}

and

other E_{j}s are projective.

This can be verified as in Section 6 of Lewis [15], so that we omit the
proof. Our aim in this section is to prove the following:

PROPOSITION 3. 1. The element \tau is not a zerO-divisor in
H^{*}(M(p), k) . Moreover the dimension of the cokernel of the homomor-
phism induced by multiplication by \tau is 2 (p+1) at each cohomology group
H^{r}(M(p), k) . In particular one has

dim H^{r+2p}(M(p), k)=\dim H^{r}(M(p), k)+2(p+1) for r\geq 0 .

To prove this proposition we need the following lemma.

LEMMA 3. 2. Let E=\langle x, y\rangle be an elementary abelian p group of
order p^{2} . p an odd prime. Then the homomorphism

p-1\oplus res_{\langle X\mathcal{Y}^{i}\rangle} : H^{r}(E, k)arrow\oplus H^{r}(\langle xy^{i}\rangle, k)p-1

i=0 i=0

is epimorphic when r\geq 2p-3 .

PROOF. Let us denote by RES the above homomorphism. Let \lambda_{X}

and \lambda_{y} be the elements in H^{1}(E, k) such that

(x) \lambda_{X}=0 , (y) \lambda_{X}=1 and (x) \lambda_{\mathcal{Y}}=1 , (y) \lambda_{\mathcal{Y}}=0 ,

and let \beta_{x} and \beta_{y} be the Bocksteins of \lambda_{X} and \lambda_{y} , respectively. Then one
has

H^{*}(E, k)=k[\beta_{X}, \beta_{\mathcal{Y}}]\otimes\Lambda(\lambda_{X}, \lambda_{\mathcal{Y}}) .

Let \eta_{i} be the element in H^{1}(\langle xy^{i}\rangle, k) such that

(xy^{i})\eta_{i}=1

and let \sigma i in H^{2}(\langle xy^{i}\rangle, k) be its Bockstein, i=0,1 , \cdots , p-1 . Then one
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has

H^{*}(\langle xy^{i}\rangle, k)=k[_{Ti}]\otimes\Lambda(\eta_{i}) .

These elements satisfy the following relations:
\lambda_{x|_{<x\mathcal{Y}^{i}>}}=i\eta_{i} , \lambda_{\mathcal{Y}1<x\mathcal{Y}^{l}>}=\eta_{i}

and

\beta_{x|_{<xy^{i}>}}=i\sigma i , \beta_{y1<X\mathcal{Y}^{i}>}=\sigma i

When r is even we set r=2s. We can take a set { \beta_{\mathcal{Y}}^{s}, \beta_{X}\beta_{\mathcal{Y}}^{s-1} , \cdots , \beta_{X}^{s},
\beta_{\mathcal{Y}}^{s-1}\lambda_{X}\lambda_{\mathcal{Y}}, \beta_{x}\beta_{\mathcal{Y}}^{s-2}\lambda_{X}\lambda_{\mathcal{Y}} , \cdots , \beta_{X}^{s-1}\lambda_{X}\lambda_{\mathcal{Y}} } as a basis of H^{2s}(E, k) . And we take
the basis \{_{Ti}^{s}\} of H^{2s}(\langle xy^{i}\rangle, k) . With respect to these bases the homomor-
phism RES is represented by the following matrix:

[000001 001111 i^{s}i^{j}001i (p-1)^{s}(p-1)^{j}p-1001]

The rank of this matrix is p if s\geq p-1 and s+1 otherwise.
When r is odd, we set r=2s+1 . With respect to the bases \{\beta_{\mathcal{Y}}^{s}\lambda_{x} ,

\beta_{X}\beta_{\mathcal{Y}}^{s-1}\lambda_{X} , \cdots , \beta_{X}^{s}\lambda_{X} , \beta_{\mathcal{Y}}^{s}\lambda_{\mathcal{Y}} , \beta_{X}\beta_{\mathcal{Y}}^{s-1}\lambda_{\mathcal{Y}} , \cdots , \beta_{X}^{s}\lambda_{\mathcal{Y}} } of H^{2s+1}(E, k) and t_{Ti\eta_{i}}^{s} } of
H^{2s+1}(\langle xy^{i}\rangle, k) the homomorphism RES is represented by the following
matrix:

\{\begin{array}{l}0 1 i0 1 i^{j+1}0 1 i^{s+1}1 1 10 1 i^{j}0 1 i^{s}\end{array} (p-1)^{s+1}(p-1)^{j+1}(p-1)^{s}(p-1)^{j}p-11]
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The rank of this matrix is p if s\geq p-2 and s+2 otherwise. This com-
pletes the proof of the lemma.

PROOF OF PROPOSITION 3. 1. Let K_{i+1}=Ker\partial i , i=0,1 , \cdots 2p-2 .
The extension is decomposed into 2p short exact sequences:

0arrow K_{1}arrow Earrow karrow 0\kappa_{0}fi

0– K_{i+1}arrow E_{i}arrow K_{i}arrow 0\kappa_{i}\partial_{i},1\leq_{i}\leq 2p-2

0arrow karrow E_{2p-1}arrow K_{2p-1}arrow 0\kappa 2p-1 .
a_{p-1}

Associated with these short exact sequences there are 2p connecting
homomorphisms:

an: H^{r}(G, k)arrow H^{r+1}(G, K_{1})

\omega_{i} : H^{r+i}(G, K_{i})– H^{r+i+1}(G, K_{i+1}) , 1\leq i\leq 2p-2

\omega_{2p-1} : H^{r+2p-1}(G, K_{2p-1})arrow H^{r+2p}(G, k) .

The composition map of these connecting homomorphisms is exactly the
homomorphism induced by multiplication by the element \tau . Unless j=0 ,
p , 2p-2 , and 2p-1 , the connecting homomorphism \omega_{j} is isomorphic, for
the module E_{j} is projective. In what follows we shall show that the others
are all monomorphic so that the dimension of the cokernel of the
homomorphism (\cdot \tau) is the sum of those of the connecting homomor-
phisms. When we deal with one connecting homomorphism \omega_{j} we will
omit the index j from the notations \kappa_{j} and \partial_{j} . We shall use the theory of
relative projective covers. See Kn\"orr [14] for relative projective covers.

STEP 1. The connecting homomorphism \omega} is monomorphic and the
dimension of its cokernel is p.

PROOF. First we show that the induced homomorphism \delta* is the
zero homomorphism in the exact cohomology sequence

\ldotsarrow H^{r}(G, K_{1})arrow H^{r}(G, E)m*

\delta*

arrow H^{r}(G, k)arrow H^{r+1}(G, K_{1})\omega)– \ldots .

Recall that

E \simeq\bigoplus_{i=0}^{p-1}k_{\langle ab^{i}\rangle}^{G}\oplus (projective).

Let \nu_{i} : k_{\langle ab^{i}\rangle}^{G}arrow E be the injection with respect to the above decomposi-
tion and let \delta_{i}=\nu_{i}\partial:k_{\langle ab^{i}\rangle}^{G}arrow k , 0\leq i\leq p-1 . Then it follows that
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\partial_{*}=\sum_{i=0}^{p-1}\delta_{i*} .

By our construction of the module E and the homomorphism a, one can
verify that each homomorphism \delta_{i} is not the zero homomorphism. In par-
ticular the module E is the direct sum of the relative { \langle ab \rangle |i=0 , \cdots

p-1\} -projective cover of the trivial module k and a projective module.
Hence we have the following commutative diagram:

\bigoplus_{i=0}^{p-1}H^{r}(G, k_{\langle ab^{i}\rangle}^{G})\underline{\sum_{i=0}^{p-1}\delta_{i*}}

H^{r}(G, k)

Eckmann-Shapiro l| | \sum_{i=0}^{p-1}cor_{\langle ab^{i}\rangle}^{G}

\bigoplus_{i=0}^{p-1}H^{r}(\langle ab^{i}\rangle, k)\bigoplus_{i=0}^{p-1}H^{r}(\langle ab^{i}\rangle, k)\overline{p-1}-

\bigoplus_{i=0}\epsilon_{i*}

where \epsilon_{i} : k– k is the homomorphism corresponding to \delta_{i} under the
isomorphism of Hom_{kG}(k_{\langle ab^{i}\rangle}^{G}, k) to Hom_{k\langle ab^{i}\rangle}(k, k) . But since the sub-
group A_{i} is abelian it follows that

cor_{\langle ab^{i}\rangle}^{G}=cor_{\langle ab^{i}\rangle}^{A_{i}}cor_{A_{i}}^{G}

=0,

and so we get

\partial_{*}=0 .

Thus we obtain the exact sequence

0– H^{r}(G, k)arrow H^{r+1}(G, K_{1})arrow H^{r+1}(G, E)an\kappa*–0,

therefore

dim Coker \omega_{)}=\dim H^{r+1}(G, E)

= \dim\bigoplus_{i=0}^{p-1}H^{r+1}(\langle ab^{i}\rangle, k)

=p,

as desired.
STEP 2. The connecting homomorphism \omega p is monomo\uparrow phic and the

dimension of its cokernel is p.

Proof. Recall that
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E_{p} \simeq\bigoplus_{i=0}^{p-1}k_{\langle ab^{i}\rangle}^{G}\oplus P ,

where P is a projective kG-module. Similarly to Step 1 it is enough to
show that the induced homomorphism \partial*is the zero homomorphism in the
exact cohomology sequence

\ldotsarrow H^{r+p}(G, K_{p+1})arrow H^{r+p}(G, E_{p})arrow H^{r+p}(G, K_{p})\kappa*\partial*

arrow H^{r+p+1}(G, K_{p+1})arrow\omega p\ldots .

Let \phi_{i} be the projection of E_{p} to k_{\langle ab^{i}\rangle}^{G} and \nu_{i} be the injection of k_{\langle ab^{i}\rangle}^{G}

to E_{p} , respectively, with respect to the direct decomposition above, 0\leq i\leq

p-1 . Then the homomorphism \kappa\phi_{i} : K_{p+1}arrow k_{\langle ab^{i}\rangle}^{G} is not the zero homor-
phism. For otherwise the induced module k_{\langle ab^{i}\rangle}^{G} is a direct summand of
the module K_{p} so that the module K_{1} has a \langle ab i\rangle -projective direct sum-
mand, since the modules E_{p-1} , \cdots E_{1} are all projective. But the module
K_{1} has no such direct summand, since the module E is the direct sum of
\{\langle ab^{i}\rangle|i=0, \cdots, p-1\} -projective cover of the trivial module k and a projec-
tive module. We set \delta_{i}=\nu_{i}\partial:k_{\langle ab^{i}\rangle}^{G}arrow K_{p} . As in the step 1, it is
sufficient to show that \delta_{i*}=0 for i=0 , \cdots r.p-1 . Let

\pi_{i} : k_{\langle ab^{i}\rangle}^{G}arrow k_{\langle ab^{i}\rangle}^{A_{i}} and \theta_{i} : k_{\langle ab^{i}\rangle}^{A_{i}}arrow k_{\langle ab^{i}\rangle}^{G}

be the projection and the injection with respect to the kA_{i} decomposition

k_{\langle ab^{i}\rangle|A_{i}}^{G}=k_{\langle ab^{i}\rangle}^{A_{i}} \oplus\sum_{1\neq t\in A_{i}\backslash c}k_{\langle ab^{i}\rangle}^{A_{i}}\otimes t.

Then the homomorphism

\theta_{i}^{*} : Hom_{k}c(k_{\langle ab^{i}\rangle}^{G}, K_{p})arrow Hom_{kA_{i}}(k_{\langle ab^{i}\rangle}^{A_{i}}, K_{p})

is isomorphic. Let \psi_{i}=\theta_{i}(\delta_{i|A_{i}}) . We obtain the following commutative
diagram:

\delta_{i*}

res_{A_{i}} /
H^{r+p}(G, k_{\langle ab^{i}\rangle}^{G})arrow H^{r+p}(A_{i},k_{\langle ab^{i}\rangle}^{G})1|E-S\uparrow cor^{G}

H^{r+p}(A_{i}, k_{\langle ab^{i}\rangle}^{G})arrow H^{r+p}(A_{i}, k_{\langle ab^{i}\rangle}^{A_{i}})arrow\pi_{i*}\psi_{i*}H^{r+p}(A_{i}, K_{p})

\theta_{i*}\uparrow \nearrow (\delta_{i|A_{i}})_{*}

H^{r+p}(A_{i}, k_{\langle ab^{i}\rangle}^{G})
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where “ E-S ” means “ Eckmann-Shapiro ” Namely we have
\delta_{i*}=res_{A_{i}}\pi_{i}\psi_{i*}cor^{G}

=res_{A_{i}}\pi_{i*}\theta_{i*}(\delta_{i|A_{i}})_{*}cor^{G} .

Thus it is enough to prove that
(\delta_{i|A_{i}})_{*}=0 .

Now since E_{2p-1} , Ep-2, \cdots E_{p+1} are projective over kA_{i} , we see that
K_{p+1|A_{i}}\simeq\Omega^{-(p-1)}(k_{A_{i}})\oplus(projective)

and

k_{\langle ab^{i}\rangle|A_{i}}^{G} \simeq\bigoplus_{j=0}^{p-1}k_{\langle ab^{i}c^{j}\rangle}^{A_{i}} .

These together with the fact that the homomorphism \kappa\phi_{i} is not the zero
homomorphism for each i=0, \cdots p-1 give the following commutative
diagram:

H^{r+p}(A_{i}, K_{p+1}) \underline{(\kappa\phi_{i|A_{i}})_{*}}H^{r+p}(A_{i},\bigoplus_{j=0}^{p-1}k_{\langle ab^{i}c^{j}\rangle}^{A_{i}})

l| l| dimension shifting

H^{r+2p-1}(A_{i}, k) \underline{\eta*}H^{r+2p-1}(A_{i},\bigoplus_{j=0}^{p-1}k_{\langle ab^{i}c^{f}\rangle}^{A_{i}})

\bigoplus_{j=0}^{p-1}res_{\langle ab^{i}c^{j\rangle}}\downarrow \downarrow Eckmann-Shapiro

\bigoplus_{j=0}^{p-1}H^{r+2p-1}(\langle ab^{i}c^{j}\rangle, k)\bigoplus_{j\overline{\nu*}=0}^{p-1}H^{r+2p-1}(\langle ab^{i}c^{j}\rangle, k)-

where the homomorphism \eta : k arrow\bigoplus_{j=0}^{p-1}k_{\langle ab^{i}C^{j}\rangle}^{A_{i}} is a kA_{i} homomorphism

which is determined by the homomorphism \kappa\phi_{i|A_{i}} of K_{p+1} to \bigoplus_{j=0}^{p-1}k_{\langle ab^{i}c^{j}\rangle}^{A_{i}}

through projective resolutions, and the homomorphism \nu is the homomor-
phism which corresponds to \eta under the isomorphism of Hom kA_{i}(k, \bigoplus_{j=0}^{p-1}

k_{\langle ab^{i}c^{j}\rangle}^{A_{i}}) to pj \bigoplus_{=0}^{-1}Hom_{k\langle ab^{i}c^{j}\rangle}(k, k) . The homomorphism (\kappa\phi_{i|A_{i}})_{*} is epimor-

phic, because so is the homomorphism \bigoplus_{j=0}^{p-1}res_{\langle ab^{i}c^{j\rangle}} by Lemma 3. 1. Namely
H^{r+p}(A_{i}, k_{\langle ab^{i}\rangle}^{G})(\nu_{i|A_{i}})_{*} is contained in the kernel of (\partial Ai)_{*} . Consequently
we have

(\delta_{i|A_{i}})_{*}=0 ,
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as desired.
STEP 3. The connecting homomorphism \omega 2p-2 is monomorphic and the

dimension of its cokernel is 1.

Proof. Recall that
E_{2p-2}\simeq k_{\langle b\rangle}^{G}\oplus P ,

where P is a projective kG-module. It is enough to show that the induced
homomorphism \partial*is the zero homomorphism in the exact cohomology
sequence

\ldotsarrow H^{r+2p-2}(G, K_{2p-1})arrow H^{r+2p-2}(G, E_{2p-2})\partial_{*}\kappa*

\underline{\partial*}H^{r+2p-2}(G, K_{2p-1})arrow H^{r+2p-1}(2p-2G, K_{2p-1})\omegaarrow\ldots .

Let \nu be the injection of k_{\langle b\rangle}^{G} to E_{2p-2} with respect to the decomposi-

tion above. We set \delta=\nu\partial : k_{\langle b\rangle}^{G}arrow K_{2p-2} . Then we have the following

commutative diagram:

\delta*

H^{r+2p-2}(G, k_{\langle b\rangle}^{G})arrow H^{r+2p-2}(G, K_{2p-2})

Eckmann-Shapiro 1| \uparrow cor^{G}

H^{r+2p-2}(\langle b\rangle, k)arrow H^{r+2p-2}(\langle b\rangle, K_{2p-2})\psi*

where \psi : karrow K_{2p-2} is the kB-homomorphism whihc corresponds to the
homomorphism \delta under the isomorphism of Hom_{kG}(k_{\langle b\rangle}^{G}, K_{2p-2}) to
Hom_{k\langle b\rangle}(k, K_{2p-2}) . Since K_{2p-2|B} is isomorphic with \Omega^{2(p-1)}(k_{B})\oplus(projec -

tive), we obtain
H^{r+2p-2}(B, K_{2p-2})\simeq H^{r}(B, k)

cor^{B}\uparrow | cor^{B}=0

H^{r+2p-2}(\langle b\rangle, K_{2p-2})\simeq H^{r}(\langle b\rangle, k)

Thus we have

\partial_{*}=0 .

STEP 4. The connecting homomorphism \omega 2p-1 is monomorphic and the
dimension of its cokernel is 1.

Proof. Recall that
E_{2p-1}\simeq k_{\langle b\rangle}^{G} .
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By our construction one has that the homomorphism \kappa : karrow E_{2p-1} is not
the zero homomorphism. It is enough to show that the induced homomor-
phism \partial*is the zero homomorphism in the exact cohomology sequence

\ldotsarrow H^{r+2p-1}(G, k)arrow H^{r+2p-1}(G, E_{2p-1})arrow H^{r+2p-1}(G, K_{2p-1})\kappa_{*}\partial*

\omega 2p-1arrow H^{r+2p}(G, k)arrow\cdots .

Let \pi:k_{\langle b\rangle}^{G}arrow k_{\langle b\rangle}^{B} and \theta:k_{\langle b\rangle}^{B}arrow k_{\langle b\rangle}^{G} be the projection and the injec-
tion, respectively, with respect to the kB-decomposition

k_{\langle b\rangle}^{G}=k_{\langle b\rangle}^{B} \oplus\sum_{1\neq t\in B\backslash G}k_{\langle b\rangle}^{B}\otimes t.

Then we have
\partial_{*}=res_{B}\pi*\theta*(\partial B)_{*}cor^{G} ,

as in the proof of Step 2. Hence it is sufficient to verify that

(aB)_{*}=0 .

We have the commutative diagram:

H^{r+2p-1}(B, k) \underline{(\kappa_{|B})_{*}}H^{r+2p-1}(G, k_{\langle b\rangle}^{G})BH^{r+2p-1}(B, K_{2p-1})\underline{(a)_{*}}

\bigoplus_{j=0}^{p-1}res_{\langle bC^{j}\rangle}\downarrow /| Eckmann-Shapiro

\bigoplus_{j=0}^{p-1}H^{r+2p-1}(\langle bc^{j}\rangle, k)\bigoplus_{j\vec{\nu*}=0}^{p-1}H^{r+2p-1}(\langle bc^{j}\rangle, k)-

where \nu is the homomorphism which corresponds to the kB-homomor-

phism \kappa_{|B} : k arrow\bigoplus_{j=0}^{p-1}k_{\langle bC^{j}\rangle}^{B} under the isomorph_{\dot{1}}sm of Hom_{kB}(k,\bigoplus_{j=0}^{p-1}k_{\langle bc!\rangle}^{B}) to

\bigoplus_{j=0}^{p-1}Homk\langle bC^{j}\rangle(k, k) . By Lemma 3. 1 the homomorphism \bigoplus_{j=0}^{p-1}res_{\langle bC^{j}\rangle} is

epimorphic, and so we have (8_{B})_{*}=0 , as desired.
Thus we have established Proposition 3. 1.

The following is also needed in Section 4.

LEMMA 3. 3. The second cohomology group H^{2}(M(p), k) is four
dimensional.

PROOF. This can be verified by the results in the section six in Lewis
[15]. But we shall show this lemma by determining a minimal set of gen-
erators of the second syzygy \Omega^{2}(k) . For x an element in G let t_{X} denote
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the element (x-1)^{p-1} in kG Clearly the first syzygy \Omega^{1}(k) is minimally
generated by the elements a-1 and b-1 in kG. Let \partial : kG\oplus kG- \Omega^{1}(k)

be the essential epimorphism defined by

(x, y)-(a-1)x+(b-1)y for (x, y) in kG\oplus kG.

Let us define four elements w_{1} , w_{2} , w_{3} , and w_{4} in kG\oplus kG as follows:
w_{1}=(t_{a}, 0) , w_{2}=(0, t_{b})

w_{3}= ( (ac-1)-b(a-1) , (ac-l)(a-1) )

and

w_{4}=((bc^{-1}-1)(b-1), (bc^{-1}-1)-a(b-1)) .

It is easily checked that these elements are contained in the kernel \Omega^{2}(k) ,
by using the equality ab=bac. We shall show that the set \{w_{1}, w_{2}, w_{3}, w_{4}\}

is a minimal generating set of \Omega^{2}(k) . Since
w_{1}t_{C}=(t_{a}t_{C}, 0)

w_{2}t_{C}=(0, t_{b}t_{C})

w_{3}t_{c}=(-(a-1)(b-1)t_{c}, (a-1)^{2}t_{c})

and

w_{4}t_{C}=((b-1)^{2}t_{C}, -(a-1)(b-1)t_{C}) ,

the elements w_{1}(b-1)^{i} . 0\leq i\leq p-1 , w_{2}(a-1)^{i} , 0\leq i\leq p-1 ,
w_{3}(a-1)^{i}(b-1)^{j} , 0\leq i\leq p-3,0\leq j\leq p-2 , and w_{4}(b-1)^{j} , 0\leq j\leq p-3 gen-
erate over the group ring k\langle c\rangle a projective k\langle c\rangle -module P which is
isomorphic with the direct sum of p^{2} copies of k\langle c\rangle , And one can verify
that

w_{3}(a-1)^{p-2}t_{b}(c-1)^{p-2}=(2a(a-1)^{p-2}l_{b}t_{C}, t_{a}t_{b}t_{C}) .

This element is \langle c\rangle -invariant and is linearly independent to the
\langle c\rangle -invariant subspace of the projective k\langle c\rangle -module P. Thus the
kG submodule generated by the elements w_{1} , w_{2} , w_{3} , and w_{4} of kG\oplus kG

has dimension greater than or equal to p^{3}+1 . Noting that the dimension
of \Omega^{2}(k) is p^{3}+1 , we see that \{w_{1}, w_{2}, w_{3}, w_{4}\} is a generating set of \Omega^{2}(k) .
It is easily seen that no element of \{w_{1}, w_{2}, w_{3}, w_{4}\} is contained in the sub-
module generated by the rest of the set. For example if w_{1} is contained in
the submodule generated by w_{2} , w_{3} , and w_{4} , then w_{1}=w_{2}x+w_{3}y+w_{4}z for
some x, y, and z in kG Applying the element t_{C} to both sides, we have

(t_{a}t_{c}, 0)=(-(a-1)(b-1)t_{c}y+(b-1)^{2}t_{c}z,
t_{b}t_{C}x+(a-1)^{2}t_{c}y-(a-1)(b-1)t_{c}z) ,
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a contradiction. The proof is finished.

4. The period of the periodic module

The following lemma is our final goal.

LEMMA 4. 1. If n\equiv 1 mod p, then the period of the module L_{\chi} is 2p.

PROOF. Lemma 2. 1 implies that the module L_{\chi} is periodic. Let L
denote the module for short. Restricting the module L to the subgroup B ,
we see that the period of the module L is 2 or 2p by Lemma 4. 4 in
Benson-Carlson [4]. We must show that the period is not 2. We note
that the homomorphism induced by the element \chi

\chi : H^{1}(G, k)arrow H^{1+2n}(G, k)

is a monomorphism. In fact for an element s\lambda+t\mu in H^{1}(G, k) , where s,
t\in k, we have, letting A denote the maximal subgroup ( a, c\rangle , that

((s\lambda+t\mu)\chi)_{|A}=t\mu_{|A}f(0)\beta_{|A}^{n}

and

((_{S\lambda+t\mu})_{\mathcal{X}^{)_{|B}=s\lambda_{|B^{a}|B}^{n}}} .

Hence if (s\lambda+t\mu)\chi=0 , then both s and t are zero. Therefore, since in
the exact cohomology sequence

0arrow Hom_{kG}(k, k)arrow Hom_{kG}(\Omega^{2n}(k), k)arrow Hom_{kG}(L, k)

arrow Ext_{kG}^{1}(k, k)arrow Ext_{kG}^{1}(\Omega^{2n}(k), k)arrow\omega\hat{\chi}*\ldots

associated with the exact sequence

0arrow Larrow\Omega^{2n}(k)arrow karrow 0\hat{\chi}

it holds that

Im
\omega\simeq K=0,er (\cdot\chi)

we obtain the exact sequence

0arrow Hom_{kG}(k, k)arrow Hom_{kG}(\Omega^{2n}(k), k)arrow Hom_{kG}(L, k)arrow 0 .

This implies that

dim Hom_{kG}(L, k)=\dim H^{2n}(G, k)-1 .

On the other hand since the socle of the module L is isomrphic with



478 H. Sasaki

that of \Omega^{2n}(k) , we see that

dim Soc(L) =\dim Soc(\Omega^{2n}(k))

=\dim H^{2n-1}(G, k) .

Now suppose that n\equiv 1 mod p. Then we can put n=Appl . By the
d\overline{l}mension formula Proposition 3. 1 and Lemma 3. 3 we have

dim H^{2n}(G, k)=4+2m(p+1)

and

dim H^{2n-1}(G, k)=2+2m(p+1) .

Thus there exist the following exact sequences:

0– \Omega(L)arrow kG^{3+2m(p+1)}arrow Larrow 0

and
0arrow Larrow kG^{2+2m(p+1)}arrow\Omega^{-1}arrow 0 .

Consequently \Omega(L) and \Omega^{-1}(L) are not isomorphic. This proves the
lemma.
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