A note on amalgams

Makoto HAYASHI (Received March 13, 1989, Revised March 6, 1990)

To state our result, we account the situation along [1], [3] or [6]. We use the standard notation and one of [4] unless otherwise specified. Let P_1 and P_2 be distinct finite subgroups of a group G. We assume throughout this paper that

(A. 1) $G = \langle P_1, P_2 \rangle;$

(A.2) no non-trivial normal subgroup of G is contained in $P_1 \cap P_2$;

(A. 3) $P_1 \cap P_2 \in Syl_2(P_1) \cap Syl_2(P_2)$; and

(A. 4) $C_{P_i}(O_2(P_i)) \leq O_2(P_i)$ for i=1, 2.

By a graph Γ , we mean a set Γ with a symmetric and irreflexive relation which we call *adjacent*. For $0 \in \Gamma$, we define $\Delta(0)$ the set of all vertices adjacent to 0. For an ordered (n+1)-tuple $\gamma = (\lambda_0, \lambda_1, \dots, \lambda_n)$, γ is an *arc of lenath* n if $\lambda_i \in \Delta(\lambda_{i+1})$, $0 \le i \le n-1$ (possibly, $\lambda_i = \lambda_j$ if $i \ne j$). Γ is *connected* if every pair of vertices is joined by an arc. For $\lambda \in \Gamma$, we denote by $d(0, \lambda)$ the minimal length of arcs connecting 0 and λ . Let $\Gamma =$ $\Gamma(G, P_1, P_2)$ be the set of the right cosets of G with respect to P_1 and P_2 . Let two cosets be adjacent if they are different and have non-empty intersection. Then we obtain a graph Γ , the *right coset graph of G with respect to* P_1 and P_2 that is defined in [2], and G operates on Γ by right multiplication. The following fundamental properties of Γ can be also found in [2].

- (a) Γ is connected.
- (b) G is edge-transitive on Γ .
- (c) Each vertex-stabilizer in G is conjugate to P_1 or P_2 .
- (d) Each edge-stabilizer in G is conjugate to $P_1 \cap P_2$.

Throughout this note, we use the following notation. $X \leq Y$ means X is a subgroup of Y. For a subset Λ of Γ , $G_{\Lambda} = \{g \in G; \lambda^g = \lambda \text{ for all } \lambda \in \Lambda\}$. For $\lambda \in \Gamma$,

$$Q_{\lambda} = O_{2}(G_{\lambda}),$$

$$Z_{\lambda} = \langle \Omega_{1}Z(G_{\lambda\mu}); \mu \in \Delta(\lambda) \rangle,$$

$$C_{\lambda} = \langle C_{Z_{\mu}}(O^{2}(G_{\lambda})); \mu \in \Delta(\lambda) \rangle \text{ and } V_{\lambda} = \langle z \in \bigcup_{\mu \in \mathcal{A}(\lambda)} Z_{\mu}; [z, Q_{\lambda}] \leq C_{\lambda} \rangle$$

if $Z_{\lambda} \leq Z(G_{\lambda})$, and $C_{\lambda} = 1$ and $V_{\lambda} = Z_{\lambda}$ otherwise.

 $b_{\lambda} = \min\{d(\mu, \lambda); V_{\mu} \leq Q_{\lambda}, \mu \in \Gamma\}.$

 ν_{λ} the number of non-central composition facors of G_{λ} within Q_{λ} .

Let $Q_{\lambda} = Q_0 > Q_1 > \cdots > Q_r = 1$ be a composition series of G_{λ} within Q_{λ} . For $x \in G_{\lambda}$, define $|[Q_{\lambda}/-, x]| = \prod_{i=0}^{r-1} |[Q_i/Q_{i+1}, x]|$. We note that $|[Q_{\lambda}/-, x]|$ is independent of the choice of $\{Q_i; 0 \le i \le r\}$ by the Jordan-Hörder's theorem.

Let $0 \in \Gamma$ and $b = b_0$. To determine the structure of G_0 , v_0 plays an important role in pushig up problems using amalgam method. In many cases, it is shown that b is rather small. The purpose of this note is to give an estimation of v_0 by using information about an arc (0, 1, ..., b) with $V_b \leq Q_0$.

THEOREM. Let (0, 1, 2, ..., b) be an arc of Γ such that $b = b_0$ and V_b is not contained in Q_0 . Set $n_i = |G_{i-1,1}: G_{i-1,i} \cap G_{i,i+1}|$ for $1 \le i \le b-1$. Then $|[Q_0/-, x]| \le \prod_{i=1}^{b-1} n_i \times |G_{b-1,b}/Q_b| \times |C_b|$ for all $x \in V_b$.

COROLLARY. Continue with the assumption and the notation of the theorem. Let $m = min\{|[V, x]|; x \in G_{0,1} - N\}$, where N ranges over all the proper normal subgroups of G_0 , ann V does over all the finite dimensional faithful $GF(2)G_0/N$ -madules. Then $m^{\nu_0} \leq \prod_{i=1}^{b-1} n_i \times |G_{b-1,b}/Q_b| \times |C_b|$.

For the proof of the theorem, we require two elementary lemmas.

LEMMA 1. Let H be a finite group, and $Q = O_2(H)$. Then $|[Q/-, x]| \le |Q: D| \times |[D, x]|$ for all $x \in H$ with $x^2 \in Q$.

PROOF. Fix $x \in H$ with $x^2 \in Q$. Let Y = [D, x]. Let $Q = Q_0 \ge Q_1 \ge$ $\dots \ge Q_r = 1$ be a composition series of H within Q. We proceed using induction on r. Let $B = Q_{r-1}$ and $A = B \cap D$. Take elements b_i of B, $1 \le i \le s$, so that $\{b_iA; 1 \le i \le s\}$ is a basis of B/A as a vector space over GF(2). Since $B \le \Omega_1 Z(Q)$ and $[A, x] \le [B, x] \cap [D, x] \le B \cap Y$, it follows that $|[B, x]| \le |\langle [Ab_i, x]; 1 \le i \le s \rangle| \le |[A, x]| \times |\langle [b_i, x]; 1 \le i \le s \rangle| \le |B \cap Y| \times 2^s \le |B \cap Y| |B|/|A|$. Using induction, we have that $|[Q/-, x]| = |[B, x]| \times \prod_{i=1}^{r-1} |[Q_i/Q_{i+1}, x]| \le |B \cap Y| |B|/|A| \times |QB : DB| \times |YB/B| = |B \cap Y| \times |B|/|A| \times |Q||B|/|Q \cap B| \times |D \cap B|/|D||B| \times |Y|/|Y \cap B| = |Q: D| \times |Y|$, as desired.

LEMMA 2. Let b be a positive integer, and (0, 1, ..., b) be an arc of Γ . Set $n_i = |G_{i-1,i}: G_{i-1,i} \cap G_{i,i+1}|$ for $1 \le i \le b-1$. Then

(a)
$$|G_{0,1}: G_{0,1} \cap G_{b-1,b}| \leq \prod_{i=1}^{b-1} n_i.$$

(**b**)
$$|Q_0: Q_0 \cap Q_b| \leq \prod_{i=1}^{b-1} n_i \times |G_{b-1,b}/Q_b|.$$

PROOF. By induction on *b*, we have that $|G_{0,1}:G_{0,1}\cap G_{b-1,b}| = |G_{0,1}:$ $G_{0,1}\cap G_{b-2,b-1}|\times |G_{0,1}\cap G_{b-2,b-1}: G_{0,1}\cap G_{b-2,b-1}\cap G_{b-1,b}| \leq \prod_{i=1}^{b-2} n_i \times |G_{b-2,b-1}:$ $G_{b-1,b}| = \prod_{i=1}^{b-1} n_i$, proving (a). It is easy to see that $|Q_0: Q_0 \cap Q_b| \leq |Q_0: Q_0 \cap G_{b-1,b}| \times |G_{b,b-1}/Q_b| \leq |G_{0,1}: G_{0,1}\cap G_{b-1,b}| \times |G_{b-1,b}/Q_b|$. Then (b) follows from (a).

Proof of the theorem and corollary. The preceeding lemma shows that $|Q_0: Q_0 \cap Q_b| \leq \prod_{i=1}^{b-1} n_i \times |G_{b-1,b}/Q_b|$. Note that $[V_b, Q_0 \cap Q_b] \leq C_b$. On the other hand, it follows from (A. 4), the definition of V_b and minimality of *b* that $C_b \leq Z_{b-1} \leq Q_0$. Since V_b/C_b is elementary abelian, so is V_bQ_0/Q_0 . Now applying Lemma 1 (with $H = G_0$, $S = G_{0,1}$ and $D = Q_0 \cap Q_b$), we have that $|[Q_0/-, x]| \leq |Q_0: Q_0 \cap Q_b| \times |C_b|$ for all $x \in V_b$. Then the theorem follows from the above two inequalities, and the corollary follows immediately from the theorem.

Now we show two examples :

EXAMPLE 1. Let G be the Tits's simple group ${}^{2}F_{4}(2)'$. Let G_{0} and G_{1} be subgroups of G with a common Sylow 2-subgroup such that $|Q_{0}|=2^{9}$, $|Q_{1}|=2^{10}$, G_{0}/Q_{0} is a Frobenius group of order 20 and G_{1}/Q_{1} is one of order 6. Then $b_{0}=2$, $b_{1}=3$, and we can take an arc (0, 1, 2, 3, 4) of Γ with $V_{2} \leq Q_{0}$ and $V_{4} \leq Q_{1}$. Since $|C_{0}|=2$ and $C_{1}=1$, according to our results, we have that $|[Q_{0}/-, x]| \leq |G_{0,1}/Q_{0}| \times |G_{0,1}/Q_{1}| \times |C_{0}|=2^{4}$ for all $x \in V_{2}$, $|[Q_{1}/-, x]| \leq |G_{1,2}/Q_{1}|^{2} \times |G_{0,1}/Q_{0}|=2^{4}$ for all $x \in V_{2}-Q_{0}$, $|[Q_{1}/-, x]|=2^{3}$ for all $x \in V_{4}-Q_{1}$, $\nu_{0}=2$ and $\nu_{1}=3$. For precise, see [1] or [3].

EXAMPLE 2. Let $G=PSL_3(2^n)$. Let G_0 and G_1 be distinct minimal parabolic subgroups of G with a common Sylow 2-subgroup. Then we have that $C_0=C_1=1$ and $b_0=b_1=2$. Let (0, 1, 2, 3) be an arc of Γ with $V_2 \not\leq Q_0$ and $V_3 \not\leq Q_1$. According to our results, for i=0, 1, we have that $|[Q_i/-, x]| \leq |G_{i,i+1}/Q_i|^2 = 2^{2n}$ for all $x \in V_{i+2}$, and $\nu_i \leq 2$. Actually, for i=0, 1, $|[Q_i/-, x]| = 2^n$ for all $x \in V_{3-i} - Q_i$, and $\nu_i = 1$.

Acknowledgment. The author would like to thank the refree for his pointing out many mistakes in the original version and giving useful comments.

References

[1] P. S. FAN, Amalgams of prime index, j. Alg. 98 (1986), 375-421.

M. Hayashi

- [2] D. GOLDSCHMIDT, Automorphisms of trivalent graphs, ann. of Math. 111 (1980), 377-406.
- [3] K. GOMI, A pair of groups having a common 2-subgroup of prime indeces, j. Alg. 97 (1985), 407-437.
- [4] D. GORENSTEIN, "Finite Groups", Harper & Row, New York, 1968.
- [5] H. JIANHUA, B. Stellmacher and G. Stroth, Some Parabolic systems of rank 2 related to sporadic groups, J. Alg. 102 (1986), 78-118.
- [6] B. STELLMACHER, Pushing up, Arch. Math. 46 (1986), 8-17.

Department of Mathematics Aichi University of Education Kariya, Japan 448