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A note on amalgams
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(Received March 13, 1989, Revised March 6, 1990)

To state our result, we account the situation along [1], [3] or [6].
We use the standard notation and one of [4] unless otherwise specified.
Let P_{1} and P_{2} be distinct finite subgroups of a group G. We assume
throughout this paper that

(A. 1) G=\langle P_{1}, P_{2}\rangle ;
(A. 2) no non-trivial normal subgroup of G is contained in P_{1}\cap P_{2} ;
(A. 3) P_{1}\cap P_{2}\in Syt_{2}(P_{1})\cap Syl_{2}(P_{2}) : and
(A. 4) C_{P_{i}}(O(P_{i}))\leqq 0(P_{i}) for i=1,2 .

By a graph \Gamma . we mean a set \Gamma with a symmetric and irrefiexive rela-
tion which we call adjacent. For 0\in\Gamma , we define \Delta(0) the set of all ver-
tices adjacent to 0. For an ordered (n+1) -tuple \gamma=(\lambda_{0}, \lambda_{1_{ }},\ldots.\lambda_{n}) , \gamma is
an arc of lenath n if \lambda_{i}\in\Delta(\lambda_{i+1}) , 0\leqq i\leqq n-1 (possibly, \lambda_{i}=\lambda_{j} if i\neq j). \Gamma

is connected if every pair of vertices is joined by an arc. For \lambda\in\Gamma . we
denote by d(0, \lambda) the minimal length of arcs connecting 0 and \lambda . Let \Gamma=

\Gamma(G, P_{1}, P_{2}) be the set of the right cosets of G with respect to P_{1} and P_{2} .
Let two cosets be adjacent if they are different and have non-empty inter-
section. Then we obtain a graph \Gamma . the right coset graph of G with
respect to P_{1} and P_{2} that is defined in [2], and G operates on \Gamma by right
multiplication. The following fundamental properties of \Gamma can be also
found in [2].

(a) \Gamma is connected.
(b) G is edge-transitive on \Gamma

(c) Each vertex-stabilizer in G is conjugate to P_{1} or P_{2} .
(d) Each edge-stabilizer in G is conjugate to P_{1}\cap P_{2} .

Throughout this note, we use the following notation. X\leqq Y means X is a
subgroup of Y For a subset \Lambda of \Gamma_{-}G_{\Lambda}= {g\in G : \lambda^{g}=\lambda for all \lambda\in\Lambda }.
For \lambda\in\Gamma .

Q_{\lambda}=(\lambda(G_{\lambda}) ,
Z_{\lambda}=\langle\Omega_{1}Z(G_{\lambda\mu}) ; \mu\in\Delta(\lambda)\rangle ,
C_{\lambda}=\langle C_{Z\mu}(O^{2}(G_{\lambda})) ; \mu\in\Delta(\lambda)\rangle and V_{\lambda}= \langle z\in\bigcup_{\mu\in\Delta(\lambda)}z_{\mu} ; [z, Q_{\lambda}]\leqq C_{\lambda}\rangle

if Z_{\lambda}\leqq Z(G_{\lambda}) , and C_{\lambda}=1 and V_{\lambda}=Z_{\lambda} otherwise.
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b_{\lambda}= \min\{d(\mu, \lambda) ; V_{\mu}\not\leqq Q_{\lambda}, \mu\in\Gamma\} .
\nu\lambda the number of non-central composition facors of G_{\lambda} within Q_{\lambda} .

Let Q_{\lambda}=\infty>Q>\cdots>Q_{r}=1 be a composition series of G_{\lambda} within Q_{\lambda} .
For x\in G_{\lambda} , define |[Q_{\lambda}/-, x]|= \prod_{i=0}^{r-1}|[Q_{i}/Q_{i+1}, x]| . We note that |[Q_{\lambda}/-, x]|

is independent of the choice of \{Q_{i} ; 0\leqq i\leqq r\} by the Jordan-H\"order’s the0-
rem.

Let 0\in\Gamma and b=h. To determine the structure of G_{0} , M plays an
important role in pushig up problems using amalgam method. In many
cases, it is shown that b is rather small. The purpose of this note is to
give an estimation of M by using information about an arc (0, 1, ... . b)

with V_{b}\not\leqq a .

THEOREM. Let (0, 1, 2, \ldots , b) be an arc of \Gamma such that b=h and V_{b}

is not contained in a. Set n_{i}=|G_{i-1,1} : G_{i-1,i}\cap G_{i,i+1}| for 1\leqq i\leqq b-1 .

Then |[ \Omega/-, x]|\leqq\prod_{i=1}^{b-1}n_{i}\cross|G_{b-1,b}/Q_{b}|\cross|C_{b}| for all x\in V_{b} .

COROLLARY. Continue with the assumption and the notation of the
theorem. Let m= \min\{|[V, x]| : x\in G_{1},-N\} , where N ranges over all the
proper normal subgroups of G_{0} , annV does over all the finite dimensional

faithful GF(2)G/N-madules. Then m^{\nu_{0}} \leqq\prod_{i=1}^{b-1}n_{i}\cross|G_{b-1,b}/Q_{b}|\cross|C_{b}| .
For the proof of the theorem, we require two elementary lemmas.

LEMMA 1. Let H be a finite group, and Q=O(H) . Then |[Q/- ,
x]|\leqq|Q:D|\cross|[D, x]| for all x\in H with x^{2}\in Q.

PROOF. Fix x\in H with x^{2}\in Q. Let Y=[D, x] . Let Q=Q_{0}\geqq Q_{1}\geqq

\ldots\geqq Q_{r}=1 be a composition series of H within Q. We proceed using
induction on r . Let B=Q_{r-1} and A=B\cap D. Take elements b_{i} of B ,
1\leqq i\leqq s, so that \{b_{i}A;1\leqq i\leqq s\} is a basis of B/A as a vector space over
GF(2) . Since B\leqq\Omega_{1}Z(Q) and [A, x]\leqq[B, x]\cap[D, x]\leqq B\cap Y , it follows
that |[B, x]|\leqq|\langle[Ab_{i}, x];1\leqq i\leqq s\rangle|\leqq|[A, x]|\cross|\langle[b_{i}, x];1\leqq i\leqq s\rangle|\leqq|B\cap Y|\cross

2^{s}\leqq|B\cap Y||B|/|A| . Using induction, we have that |[Q/-, x]|=|[B, x]|\cross

\prod_{i=1}^{r-1}|[Q_{i}/Q_{i+1}, x]|\leqq|B\cap Y||B|/|A|\cross|QB : DB|\cross|YB/B|=|B\cap Y|\cross|B|/|A|\cross

|Q||B|/|Q\cap B|\cross|D\cap B|/|D||B|\cross|Y|/|Y\cap B|=|Q : D|\cross|Y| , as desired.

Lemma 2. Let b be a positive integer, and (0, 1, \ldots.b) be an arc of
\Gamma_{-} Set n_{i}=|G_{i-1,i} : G_{i-1,i}\cap G_{i,i+1}| for 1\leqq i\leqq b-1 . Then

(a) |G_{1}, : G_{1},\cap G_{b-1.b}|\leqq\prod_{i=1}^{b-1}n_{i} .
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(b) | a : Q\cap Q_{b}|\leqq\prod_{i=1}^{b-1}n_{i}\cross|G_{b-1,b}/Q_{b}| .

PROOF. By induction on b , we have that |G_{0,1} : G_{0,1}\cap G_{b-1,b}|=|G_{0,1} :
G_{0,1}\cap G_{b-2,b-1}|\cross|G_{0,1}\cap G_{b-2,b-1} : G_{0,1} \cap G_{b-2,b-1}\cap G_{b-1,b}|\leqq\prod_{i=1}^{-}n_{i}\cross|G_{b-2.b-1}b2 :

G_{b-1,b}|= \prod_{i=1}^{b-1}n_{i} , proving ( _{a}) . It is easy to see that |a : Q\cap Q_{b}|\leqq|Q:a\cap

G_{b-1,b}|\cross|G_{b,b-1}/Q_{b}|\leqq|G_{0,1} : G_{0,1}\cap G_{b-1,b}|\cross|G_{b-1,b}/Q_{b}| . Then ( b) follows
from ( a) .

Proof of the theorem and corollary. The preceeding lemma shows
that |Q_{0} : Q_{0} \cap Q_{b}|\leqq\prod_{i=1}^{b-1}n_{i}\cross|G_{b-1,b}/Q_{b}| . Note that [ V_{b}, Q_{0}\cap Q_{b}]\leqq C_{b} . On
the other hand, it follows from (A. 4), the defnition of V_{b} and minimality
of b that C_{b}\leqq Z_{b-1}\leqq Q . Since V_{b}/C_{b} is elementary abelian, so is V_{b}Q/a .
Now applying Lemma 1 (with H=G_{0} , S=G_{0,1} and D=Q\cap Q_{b}), we have
that |[Q/-, x]|\leqq|\emptyset:a\cap Q_{b}|\cross|C_{b}| for all x\in V_{b} . Then the theorem fol-
lows from the above two inequalities, and the corollary follows immedi-
ately from the theorem.

Now we show two examples:

EXAMPLE 1. Let G be the Tits’s simple group 2 F_{4}(2)’ Let G_{0} and
G be subgroups of G with a common Sylow 2-subgroup such that |Q|=2^{9} ,
|Q_{1}|=2^{10} . G/a is a Frobenius group of order 20 and G/Q is one of order
6. Then b_{J}=2 , b_{1}=3 , and we can take an arc (0, 1, 2, 3, 4) of \Gamma with V_{2}\not\leqq

a and V_{4}\not\leqq Q . Since |\Omega|=2 and C_{1}=1 , according to our results, we have
that |[Q_{0}/-, x]|\leqq|G_{0,1}/Q_{0}|\cross|G_{0,1}/Q_{1}|\cross|C_{0}|=2^{4} for all x\in V_{2} , |[Q_{1}/-, x]|\leqq

|G_{2},/Q_{1}|^{2}\cross|G_{1},/\mathfrak{R}|=2^{4} for all x\in V_{2}-\zeta\lambda , |[Q_{1}/-, x]|=2^{3} for all x\in V_{4}-Q ,
\iota\tau_{)}=2 and \nu_{1}=3 . For precise, see [1] or [3].

EXAMPLE 2. Let G=PSL_{3}(2^{n}) . Let G_{0} and G be distinct minimal
parabolic subgroups of G with a common Sylow 2-subgroup. Then we
have that G=C_{1}=1 and b_{1}=b_{1}=2 . Let (0, 1, 2, 3) be an arc of \Gamma with
V_{2}\not\leqq Q and V_{3}\not\leqq Q_{-}1 . According to our results, for i=0,1 , we have that
|[Q_{i}/-, x]|\leqq|G_{i,i+1}/Q_{i}|^{2}=2^{2n} for all x\in V_{i+2} , and \nu_{i}\leqq 2 . Actually, for i=0 ,
1, |[Q_{i}/-, x]|=2^{n} for all x\in V_{3-i}-Q_{i} , and \nu_{i}=1 .
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