A note on amalgams

Makoto Hayashi
(Received March 13, 1989, Revised March 6, 1990)

To state our result, we account the situation along [1], [3] or [6]. We use the standard notation and one of [4] unless otherwise specified. Let P_{1} and P_{2} be distinct finite subgroups of a group G. We assume throughout this paper that
(A. 1) $\quad G=\left\langle P_{1}, P_{2}\right\rangle$;
(A. 2) no non-trivial normal subgroup of G is contained in $P_{1} \cap P_{2}$;
(A. 3) $\quad P_{1} \cap P_{2} \in \operatorname{Syl}_{2}\left(P_{1}\right) \cap \operatorname{Syl}_{2}\left(P_{2}\right)$; and
(A.4) $\quad C_{P_{i}}\left(O_{2}\left(P_{i}\right)\right) \leqq O_{2}\left(P_{i}\right)$ for $\mathrm{i}=1,2$.

By a graph Γ, we mean a set Γ with a symmetric and irrefiexive relation which we call adjacent. For $0 \in \Gamma$, we define $\Delta(0)$ the set of all vertices adjacent to 0 . For an ordered ($n+1$)-tuple $\gamma=\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right), \gamma$ is an arc of lenath n if $\lambda_{i} \in \Delta\left(\lambda_{i+1}\right), 0 \leqq i \leqq n-1$ (possibly, $\lambda_{i}=\lambda_{j}$ if $i \neq j$). $\quad \Gamma$ is connected if every pair of vertices is joined by an arc. For $\lambda \in \Gamma$, we denote by $d(0, \lambda)$ the minimal length of arcs connecting 0 and λ. Let $\Gamma=$ $\Gamma\left(G, P_{1}, P_{2}\right)$ be the set of the right cosets of G with respect to P_{1} and P_{2}. Let two cosets be adjacent if they are different and have non-empty intersection. Then we obtain a graph Γ, the right coset graph of G with respect to P_{1} and P_{2} that is defined in [2], and G operates on Γ by right multiplication. The following fundamental properties of Γ can be also found in [2].
(a) Γ is connected.
(b) G is edge-transitive on Γ.
(c) Each vertex-stabilizer in G is conjugate to P_{1} or P_{2}.
(d) Each edge-stabilizer in G is conjugate to $P_{1} \cap P_{2}$.

Throughout this note, we use the following notation. $X \leqq Y$ means X is a subgroup of Y. For a subset Λ of $\Gamma, G_{\Lambda}=\left\{g \in G ; \lambda^{g}=\lambda\right.$ for all $\left.\lambda \in \Lambda\right\}$. For $\lambda \in \Gamma$,

$$
\begin{aligned}
& Q_{\lambda}=O_{2}\left(G_{\lambda}\right), \\
& Z_{\lambda}=\left\langle\Omega_{1} Z\left(G_{\lambda \mu}\right) ; \mu \in \Delta(\lambda)\right\rangle, \\
& C_{\lambda}=\left\langle C_{Z_{\mu}}\left(O^{2}\left(G_{\lambda}\right)\right) ; \mu \in \Delta(\lambda)\right\rangle \text { and } \quad V_{\lambda}=\left\langle z \in \underset{\mu \in \Delta(\lambda)}{\bigcup} Z_{\mu} ;\left[z, Q_{\lambda}\right] \leqq C_{\lambda}\right\rangle \\
& \text { if } Z_{\lambda} \leqq Z\left(G_{\lambda}\right), \text { and } C_{\lambda}=1 \text { and } V_{\lambda}=Z_{\lambda} \text { otherwise. }
\end{aligned}
$$

$b_{\lambda}=\min \left\{d(\mu, \lambda) ; V_{\mu} \not \equiv Q_{\lambda}, \mu \in \Gamma\right\}$.
ν_{λ} the number of non-central composition facors of G_{λ} within Q_{λ}.
Let $Q_{\lambda}=Q_{0}>Q_{1}>\cdots>Q_{r}=1$ be a composition series of G_{λ} within Q_{λ}. For $x \in G_{\lambda}$, define $\left|\left[Q_{\lambda} /-, x\right]\right|=\prod_{i=0}^{r-1}\left|\left[Q_{i} / Q_{i+1}, x\right]\right|$. We note that $\left|\left[Q_{\lambda} /-, x\right]\right|$ is independent of the choice of $\left\{Q_{i} ; 0 \leqq i \leqq r\right\}$ by the Jordan-Hörder's theorem.

Let $0 \in \Gamma$ and $b=b_{0}$. To determine the structure of G_{0}, ν_{0} plays an important role in pushig up problems using amalgam method. In many cases, it is shown that b is rather small. The purpose of this note is to give an estimation of ν_{0} by using information about an $\operatorname{arc}(0,1, \ldots, b)$ with $V_{b} \nsubseteq Q_{0}$.

THEOREM. Let $(0,1,2, \ldots, b)$ be an arc of Γ such that $b=b_{0}$ and V_{b} is not contained in Q_{0}. Set $n_{i}=\left|G_{i-1,1}: G_{i-1, i} \cap G_{i, i+1}\right|$ for $1 \leqq i \leqq b-1$. Then $\left|\left[Q_{0} /-, x\right]\right| \leqq \prod_{i=1}^{b-1} n_{i} \times\left|G_{b-1, b} / Q_{b}\right| \times\left|C_{b}\right|$ for all $x \in V_{b}$.

COROLLARY. Continue with the assumption and the notation of the theorem. Let $m=\min \left\{|[V, x]| ; x \in G_{0,1}-N\right\}$, where N ranges over all the proper normal subgroups of G_{0}, ann V does over all the finite dimensional faithful $G F(2) G_{0} / N$-madules. Then $m^{\nu_{0}} \leqq \prod_{i=1}^{b-1} n_{i} \times\left|G_{b-1, b} / Q_{b}\right| \times\left|C_{b}\right|$.

For the proof of the theorem, we require two elementary lemmas.
Lemma 1. Let H be a finite group, and $Q=O_{2}(H)$. Then $\mid[Q /-$, $x]\left|\leqq|Q: D| \times|[D, x]|\right.$ for all $x \in H$ with $x^{2} \in Q$.

Proof. Fix $x \in H$ with $x^{2} \in Q$. Let $Y=[D, x]$. Let $Q=Q_{0} \geqq Q_{1} \geqq$ $\cdots \geqq Q_{r}=1$ be a composition series of H within Q. We proceed using induction on r. Let $B=Q_{r-1}$ and $A=B \cap D$. Take elements b_{i} of B, $1 \leqq i \leqq s$, so that $\left\{b_{i} A ; 1 \leqq i \leqq s\right\}$ is a basis of B / A as a vector space over $G F(2)$. Since $B \leqq \Omega_{1} Z(Q)$ and $[A, x] \leqq[B, x] \cap[D, x] \leqq B \cap Y$, it follows that $|[B, x]| \leqq\left|<\left[A b_{i}, x\right] ; 1 \leqq i \leqq s\right\rangle\left|\leqq|[A, x]| \times\left|\left\langle\left[b_{i}, x\right] ; 1 \leqq i \leqq s\right\rangle\right| \leqq|B \cap Y| \times\right.$ $2^{s} \leqq|B \cap Y||B| /|A|$. Using induction, we have that $|[Q /-, x]|=|[B, x]| \times$ $\prod_{i=1}^{r-1}\left|\left[Q_{i} / Q_{i+1}, x\right]\right| \leqq|B \cap Y||B| /|A| \times|Q B: D B| \times|Y B / B|=|B \cap Y| \times|B| /|A| \times$ $|Q||B| /|Q \cap B| \times|D \cap B| /|D||B| \times|Y| /|Y \cap B|=|Q: D| \times|Y|$, as desired.

Lemma 2. Let b be a positive integer, and $(0,1, \ldots, b)$ be an arc of Γ. Set $n_{i}=\left|G_{i-1, i}: G_{i-1, i} \cap G_{i, i+1}\right|$ for $1 \leqq i \leqq b-1$. Then
(a) $\left|G_{0,1}: G_{0,1} \cap G_{b-1, b}\right| \leqq \prod_{i=1}^{b-1} n_{i}$.
(b) $\left|Q_{0}: Q_{0} \cap Q_{b}\right| \leqq \prod_{i=1}^{b-1} n_{i} \times\left|G_{b-1, b} / Q_{b}\right|$.

Proof. By induction on b, we have that $\left|G_{0,1}: G_{0,1} \cap G_{b-1, b}\right|=\mid G_{0,1}$: $G_{0,1} \cap G_{b-2, b-1}\left|\times\left|G_{0,1} \cap G_{b-2, b-1}: G_{0,1} \cap G_{b-2, b-1} \cap G_{b-1, b}\right| \leqq \prod_{i=1}^{b-2} n_{i} \times\right| G_{b-2, b-1}:$ $G_{b-1, b} \mid=\prod_{i=1}^{b-1} n_{i}$, proving (a). It is easy to see that $\left|Q_{0}: Q_{0} \cap Q_{b}\right| \leqq \mid Q_{0}: Q_{0} \cap$ $G_{b-1, b}\left|\times\left|G_{b, b-1} / Q_{b}\right| \leqq\left|G_{0,1}: G_{0,1} \cap G_{b-1, b}\right| \times\left|G_{b-1, b} / Q_{b}\right|\right.$. Then (b) follows from (a).

Proof of the theorem and corollary. The preceeding lemma shows that $\left|Q_{0}: Q_{0} \cap Q_{b}\right| \leqq \prod_{i=1}^{b-1} n_{i} \times\left|G_{b-1, b} / Q_{b}\right|$. Note that $\left[V_{b}, Q_{0} \cap Q_{b}\right] \leqq C_{b}$. On the other hand, it follows from (A.4), the defnition of V_{b} and minimality of b that $C_{b} \leqq Z_{b-1} \leqq Q_{0}$. Since V_{b} / C_{b} is elementary abelian, so is $V_{b} Q_{0} / Q_{0}$. Now applying Lemma 1 (with $H=G_{0}, S=G_{0,1}$ and $D=Q_{0} \cap Q_{b}$), we have that $\left|\left[Q_{0} /-, x\right]\right| \leqq\left|Q_{b}: Q_{0} \cap Q_{b}\right| \times\left|C_{b}\right|$ for all $x \in V_{b}$. Then the theorem follows from the above two inequalities, and the corollary follows immediately from the theorem.

Now we show two examples:
Example 1. Let G be the Tits's simple group ${ }^{2} F_{4}(2)^{\prime}$. Let G_{0} and G_{1} be subgroups of G with a common Sylow 2-subgroup such that $\left|Q_{0}\right|=2^{9}$, $\left|Q_{1}\right|=2^{10}, G_{0} / Q_{0}$ is a Frobenius group of order 20 and G_{1} / Q_{1} is one of order 6. Then $b_{0}=2, b_{1}=3$, and we can take an $\operatorname{arc}(0,1,2,3,4)$ of Γ with $V_{2} \nsubseteq$ Q_{0} and $V_{4} \nsubseteq Q_{1}$. Since $\left|C_{0}\right|=2$ and $C_{1}=1$, according to our results, we have that $\left|\left[Q_{0} /-, x\right]\right| \leqq\left|G_{0,1} / Q_{0}\right| \times\left|G_{0,1} / Q_{1}\right| \times\left|C_{0}\right|=2^{4}$ for all $x \in V_{2},\left|\left[Q_{1} /-, x\right]\right| \leqq$ $\left|G_{, 2} / Q_{1}\right|^{2} \times\left|G_{0,1} / Q_{0}\right|=2^{4}$ for all $x \in V_{2}-Q_{0},\left|\left[Q_{1} /-, x\right]\right|=2^{3}$ for all $x \in V_{4}-Q_{1}$, $\nu_{0}=2$ and $\nu_{1}=3$. For precise, see [1] or [3].

Example 2. Let $G=\operatorname{PSL}_{3}\left(2^{n}\right)$. Let G_{0} and G be distinct minimal parabolic subgroups of G with a common Sylow 2 -subgroup. Then we have that $C_{0}=C_{1}=1$ and $b_{0}=b_{1}=2$. Let $(0,1,2,3)$ be an arc of Γ with $V_{2} \nsubseteq Q_{0}$ and $V_{3} \nsubseteq Q_{1}$. According to our results, for $i=0,1$, we have that $\left|\left[Q_{i} /-, x\right]\right| \leqq\left|G_{i, i+1} / Q_{i}\right|^{2}=2^{2 n}$ for all $x \in V_{i+2}$, and $\nu_{i} \leqq 2$. Actually, for $i=0$, 1, $\left|\left[Q_{i} /-, x\right]\right|=2^{n}$ for all $x \in V_{3-i}-Q_{i}$, and $\nu_{i}=1$.

Acknowledgment. The author would like to thank the refree for his pointing out many mistakes in the original version and giving useful comments.

References

[1] P. S. FAN, Amalgams of prime index, j. Alg. 98 (1986), 375-421.
[2] D. GOLDSCHMIDT, Automorphisms of trivalent graphs, ann. of Math. 111 (1980), 377406.
[3] K. GOMI, A pair of groups having a common 2-subgroup of prime indeces, j. Alg. 97 (1985), 407-437.
[4] D. Gorenstein, " Finite Groups", Harper \& Row, New York, 1968.
[5] H. JianhuA, B. Stellmacher and G. Stroth, Some Parabolic systems of rank 2 related to sporadic groups, J. Alg. 102 (1986), 78-118.
[6] B. Stellmacher, Pushing up, Arch. Math. 46 (1986), 8-17.

Department of Mathematics Aichi University of Education Kariya, Japan 448

