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The character table of the commutative association scheme
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Abstract. The theme discussed in this paper is a continuation of that of
our previous papers [1, 2, 3, 5, 6], i . e. , the character tables of certain com-
mutative association schemes are controlled by the character tables of
certain smaller association schemes. In this paper, we will see this for
the commutative association scheme, denoted by \mathscr{H}(GL(n, q) , \Delta) , of class
q+2 (for n\geq 3 ) coming from the action of the group GL(n, q) on the set
of non-incident point-hyperplane pairs. Namely, it is shown that this
character table is controlled by the character table of the association
scheme of class q+1 , denoted by \mathscr{H}(GL(2, q) , \Delta) or \mathscr{H}(PGL(2, q)/Z_{q-1}) ,

which controls the character table of the association scheme coming from
the action of PSp(2n, q) on the set of non-isotropic projective lines.

0. Introduction

The theme discussed in this paper is a continuation of that of our
previous papers [1, 2, 3, 5, 6], i . e. , the character tables of certain com-
mutative association schemes are controlled by the character tables of
certain smaller association schemes. We will see this for the commutative
association schemes, denoted by \mathscr{H}(GL(n, q) , \Delta) , of class q+2 coming
from the action of the group GL(n, q) on the set of non-incident point-
hyperplane pairs.

Let V=V_{n}(q) be a vector space of dimension n over GF(q) . Let \Delta

be the set of non-incident point-hyperplane pairs of the projective space
attached to V. Then |\Delta|=q^{n-1}(q^{n}-1)/(q-1) . The group GL(n, q) (or

PGL(n, q)) acts transitively on the set \Delta . Darafsheh [8] determined the
decomposition of this permutation character into irreducible characters of
GL(n, q) for n\geq 3 , and showed in particular that the permutation charac-
ter is with inner product q+5 and is not multiplicity-free. However, if we
consider the action of the involutive graph automorphism of GL(n, q) on
the set \Delta , we can see that two pairs of relations (of the original noncom-
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mutative association scheme obtained from the action) are fused, and so
we get a symmetric (hence commutative) association scheme of class q+2
(i . e. , of rank q+3 as a permutation group). The purpose of this paper is
to study the character table of this association scheme \mathscr{H}(GL(n, q) , \Delta) in
what follows. For n=2 , it is also shown that GL(2, q) acts transitively
on the set \Delta , which is identified with the set of ordered pairs of distinct
projective points. This permutation character is with inner product q+4,

and is not multiplicity-free. Let Z_{2} be the group action on \Delta interchang-
ing the order of projective points in each element of \Delta . Then the group
Z_{2}\cross GL(2, q) acts on \Delta , and two pairs of relations are fused, and so we
get a symmetric (hence a commutative) association scheme of class q+1 ,

which will be denoted by \mathscr{H}(GL(2, q) , \Delta) in what follows. This is exactly
ly the same as the association scheme obtained from the action of PGL(2 ,

q) on the cosets by Z_{q-1} , denoted here by \mathscr{H}(PGL(2, q)/Z_{q-1}) , which was
described in [3]. In [3], it was proved that the character table of the
association scheme of PSp(2n, q) , with n\geq 2 , acting on the set of non-
isotropic projective lines is controlled by the character table of the associ-
ation scheme \mathscr{H}(PGL(2, q)/Z_{q-1}) . In this paper we will show that the
character table of the same association scheme \mathscr{H}(GL(2, q) , \Delta) controls
the character table of the association scheme \mathscr{H}(GL(n, q) , \Delta) with n\geq 3 .

REMARK. It seems that the rank of the multiplicity-free permutation
group corresponding to the commutative association scheme \mathscr{H}(GL(n, q) ,
\Delta) was given \overline{1}ncorrectly in [9]. The correct rank is q+3 as it is easily
seen from [8] (also, see [7]). We understood that the commutative ass0-

ciation scheme \mathscr{H}(GL(n, q) , \Delta) was also studied by A. Cohen recently
very extensively. We heard from him at Pingree Park Conference that he
observed that PSL(2, q) also controlled (geometrically) the behavior of
the association scheme \mathscr{H}(GL(n, q), \Delta) . His observation can be regarded
as a counterpart of the algebraic control (i. e. , controls among the charac-
ter tables) that is discussed in this paper. We also heard from him that
he calculated the parameters p_{ij}^{h} of this association scheme. The calcula-
tion given in this paper has been done independently for the purpose of
determination of the character table of the association scheme which is
our main object here.

1. Association scheme \mathscr{H}(GL(n, q), \Delta) , n\geq 3

Let V_{n}(q) be the n-dimensional vector space over the finite field F=
GF(q) . Let \mathscr{U} be the set of 1-dimensional subspace U and \mathscr{H} be the set
of (n-1) -dimensional subspaces H of V_{n}(q) . Let \Delta be the set \{(U, H)\in

\mathscr{U}\cross \mathscr{H}|U\not\in H\} . Then by the straightforward counting, we have |\mathscr{U}|=
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|\mathscr{H}|=(q^{n}-1)/(q-1) , and |\Delta|=q^{n-1}(q^{n}-1)/(q-1) . In the vector space
V_{n}(q) , we denote the usual inner product by \langle . \rangle , i . e. , \langle u_{s}, u_{t}\rangle=\sigma_{1}\tau_{1}+

\sigma_{2}\tau_{2}+\cdots+\sigma_{n}\tau_{n} for the vectors u_{s}=(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}) and u_{t}=(\tau_{1}, \tau_{2}, \cdots, \tau_{n}) .
With this inner product the orthogonal complement relation between the
projective points and the hyperplanes yields a one-t0-0ne correspondence

between \mathscr{U}=\{U_{1}-U_{2}. \cdots U_{r}\} a nd \mathscr{H}=\{H_{1} \ldots H_{r}\} , where
r=(q^{n}-1)/(q-1) . In what follows, we will always assume that the
hyperplane H_{t} , indexed by l , represents the orthogonal complement of U_{l} ,

the projective point indexed by l , and vice versa for each l\in\{1,2, \cdots, r\} .

Also, we will denote the representing vector for the suspace U_{t} by u_{t}=

(\mu_{1}, \mu_{2}, \cdots, \mu_{n}) with the convention that the first nonzero component of u_{l} is
1. Finally, the ordered pair ( U_{t}, H_{m})\in\Delta will also be denoted by f_{tm} in

short.
GL(n, q) acts transitively on the set \Delta of the ordered nonincident

projective point and hyperplane pairs. This action carries q+5 orbits of
GL(n, q) on \Delta\cross\Delta . As usual, by taking these q+5 orbits as association
relations, we have an association scheme of class q+4 . It is known that

this association scheme is not commutative because the transitive permuta-

tion representation on \Delta is not multiplicity free. However, we get a sym-

metric association scheme, denoted by \mathscr{H}(GL(n, q) , \Delta) , of class q+2

from the noncommutative association scheme of class q+4 by combining

two pairs of relations pairwise (to eliminate non-symmetric association
relations). This can be explained if we consider the action of the

involutive graph automorphism, the automorphism which sends a pair of

nonincident point and hyperplane to its dual pair (the orthogonal comple-

ment of hyperplane and that of projective point pair), of GL(n, q) on the

set \Delta , which fuses two pairs of relations.
We now describe the association relations \{R_{i}\} of the symmetric ass0-

ciation scheme \mathscr{H}(GL(n, q) , \Delta) explicitly \overline{1}n the following.

R_{0}=\{(f_{lm\prime}f_{\iota m})|f_{lm}\in\Delta\}

R_{1}=\{(f_{tm}, f_{xy})\in\Delta\cross\Delta|U_{x}\subseteq H_{m}, U_{t}\subseteq H_{y}\}

R_{q+1}=\{(f_{tm}, f_{xy})\in\Delta\cross\Delta|eitherU_{l}\subseteq H_{y} and U_{x}\not\in H_{m} ,

or U_{t}\not\in H_{y} and U_{x}\subseteq H_{m} }
R_{q+2}=\{(f_{lm}, f_{xy})\in\Delta\cross\Delta|eitherU_{l}=U_{x} and H_{m}\neq H_{y} ,

or U_{l}\neq U_{x} and H_{m}=H_{y}}.

For j=2,3,\cdots , q,

R_{j}= \{(f_{tm}, f_{xy})\in\Delta\cross\Delta|\frac{\langle u_{t},u_{m}\rangle\langle u_{x},u_{y}\rangle}{\langle u_{t},u_{y}\rangle\langle u_{x},u_{m}\rangle}=\eta^{j-1} , f_{tm}\neq f_{xy}\}
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where \eta is a primitive element of F.

LEMMA 1. 1. The valencies of the association scheme \mathscr{H}(GL(n, q) ,
\Delta) are given as follows:

h=1
k_{1}=q^{n-2}(q^{n-1}-1)/(q-1)

k_{2}=k_{3}=\cdots=k_{q-1}=q^{n-2}(q^{n-1}-1)

k_{q}=(q^{n-2}-1)(q^{n-1}-1)

k_{q+1}=2q^{n-2}(q^{n-1}-1)

k_{q+2}=2(q^{n-1}-1) .

PROOF: Let \Gamma_{i}(f_{lm})=\{f_{st}\in\Delta|(f_{lm}, f_{st})\in R_{i}\} , and u_{t} and u_{m} be the re-
presenting vectors for U_{t} and U_{m}=H_{m}^{\perp} , the orthogonal complement of H_{m} ,
etc. Set u_{l}=u_{m}=(1,0,0,\cdots, 0) , u_{s}=(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}) , and u_{t}=(\tau_{1}, \tau_{2}, \cdots, \tau_{n}) .
Then

k_{1}=|\Gamma_{1}(f_{tm})|=| { (U_{s}, H_{t})\in\Delta|U_{s}\subseteq H_{m} and U_{t}\subseteq H_{t}} |

=|\{(U_{s}, U_{t})\in \mathscr{U}\cross \mathscr{U}|\langle u_{s}, u_{t}\rangle\neq 0, \langle u_{t}, u_{t}\rangle=\langle u_{s}, u_{m}\rangle=0\}|

= \frac{1}{(q-1)^{2}}|\{(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n} : \tau_{1}, \tau_{2}, \cdots, \tau_{n})\in F^{2n}|\sigma_{1}=\tau_{1}=0 ,

\sigma_{2}\tau_{2}+\cdots+\sigma_{n}\tau_{n}\neq 0\}|

= \frac{1}{q-1}q^{n-2}(q^{n-1}-1) .

For j=2,3,\cdots , q-1 ,

k_{j}=| \{(U_{s}, H_{t})\in\Delta|\frac{\langle u_{t},u_{m}\rangle\langle u_{s},u_{t}\rangle}{\langle u_{l},u_{t}\rangle\langle u_{s},u_{m}\rangle}=\eta^{j-1}\}|

=|\{(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n} ; \tau_{1}, \tau_{2}, \cdots, \tau_{n})\in F^{2n}|\sigma_{1}=\tau_{1}=1 ,
\sigma_{2}\tau_{2}+\sigma_{3}\tau_{3}+\cdots+\sigma_{n}\tau_{n}=\eta^{j-1}-1\}|

=q^{n-2}(q^{n-1}-1)

k_{q}=|\{(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n} ; \tau_{1}, \tau_{2}, \cdots, \tau_{n})\in F^{2n}|\sigma_{1}=\tau_{1}=1 ,
\sigma_{2}\tau_{2}+\cdots+\sigma_{n}\tau_{n}=0 , u_{s}\neq u_{t}, u_{t}\neq u_{m}\}|

=(q^{n-2}-1)(q^{n-1}-1) .

By the similar counting argument, we complete the proof.

LEMMA 1. 2. Let \{p_{ij}^{h}\} be the set of intersection numbers of the assO-

ciation scheme \mathscr{H}(GL(n, q) , \Delta) .
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-q^{n-3}(q^{n-2}-1)/(q-1)

q^{n-3}(q^{n-2}-1)

(1. 2. 1) p_{1j}^{1}=(q^{n-3}-1)(q^{n-2}-1)

2q^{n-3}(q^{n-2}-1)

-2 (q^{n-2}-1)

if i=1,

if i=2,3, \cdots , q-1 ,

if j=q,

if j=q+1,

if i=q+2 .
(1. 2. 2) For h, i\in\{2,3, \cdots, q-1\} ,

p_{1j}^{h}=\{ q^{n-s}(q^{n-2}-1)q^{n-3}(q^{n-2}-1)+q^{n-2} ifif\eta^{h+j-2}\neq\eta^{h-1}+\eta^{j-1}\eta^{h+j-2}=\eta^{h-1}+\eta^{j-1},

.

(1. 2. 3) p_{1q}^{h}=\{ q^{2n-5}q^{n-3}(q^{n-2}-1) if h=2,3, \cdots , q-1
if h=p

p_{1q+1}^{h}=\{ 2q^{2n-5}2q^{n-3}(q^{n-2}-1) if h=2,3, \cdots , q-1 , q+1 ,

if h=q.

(1. 2. 4) For h, i, j\in\{2,3, \cdots, q-1\} ,

p_{ij}^{h}=\{

q^{n-3}(q^{n-1}-q^{n-2}+q+1)q^{n-3}(q^{n-1}-q^{n-2}+1)
if (h, i, j)\in T_{0}

if (h, i, j)\in T_{1}

q^{n-3}(q^{n-1}-q^{n-2}-q+1) if (h, i, j)\in T_{2} ,

where T_{0} , T_{1_{J}} and T_{2} are defined as follows.
(i) If q is odd prime power, then set

D=\eta^{-2(j-1)}\{(\eta^{h+i-2}+\eta^{i+j-2}+\eta^{j+h-2}-\eta^{h+i+j-3})^{2}-4\eta^{h+i+j-3}\} ,

and define
T_{0}= { ( h, i, J)-ID =0},
T_{1}= {(h, i, j) |D is a non-zero square element in F }
T_{2}= {(h, i, j) |D is a non-square element in F }.

(ii) If q is a power of 2, then set

D^{h-1}=\eta+\eta^{i-1}+\eta^{h+i-j-1}+\eta^{h+i-2} ,

and define
T_{0}=\{(h, i, j)|D=0\}

T_{1}=\{(h, i, j)|D\neq 0, (1+\eta^{h-1})(1+\eta^{i-1})D^{-2}\in\{\tau^{2}+\tau|\tau\in F\}\}

T_{2}=\{(h, i, j)|D\neq 0, (1+\eta^{h-1})(1+\eta^{i-1})D^{-2}\in\{\tau^{2}+\tau|\tau\not\in F\}\} .
(1. 2. 5) For h, i\in\{2,3, \cdots , q-1\} ,

p_{iq}^{h}=\{ q^{n-3}(q-1)(q^{n-2}-1)(q^{n-2}-q^{n-3}-1)(q^{n-2}-1) if h\neq i

if h=i,
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p_{iq}^{q}=\{ q^{n-2}(q^{n-2}-q^{n-3}+q-3)+4q^{n-2}(q^{n-2}-q^{n-3}-2)
if i=2,3, \cdots , q-1
if i=q.

(1. 2. 6) For h, i\in\{2,3, \cdots, q-1\} ,

p_{iq+1}^{h}=\{ 2q^{n-3}(q^{n-1}-q^{n-2}-q+1)2q^{n-3}(q^{n-1}-q^{n-2}+1) ifif\eta^{h+i-2}=\eta^{h-1}+\eta^{i-1}\eta^{h+i-2}\neq\eta^{h-1}+\eta^{i-1}

.

p_{iq+1}^{q}=\{ 2q^{n-3}(q^{n-1}-q^{n-2})2q^{n-s}(q^{n-1}-q^{n-2}-q)
if i=2,3, \cdots , q-1
if i=q.

p_{iq}^{q+1}=\{\begin{array}{l}2q^{n-3}(q-1)(q^{n-2}-1)+q^{n-2} ifi=2,3,\cdots,q-12q^{n-2}(q-1)(q^{n-2}-l)-q^{n-2}+14q^{n-3}(q-1)(q^{n-2}-1)+q^{n-2}\end{array}if i=q
if i=q+1 .

The intersection numbers which are not listed above are obtained from
the above by the following basic equalities

(i) p_{ij}^{h}=p_{ji}^{h}

(ii) \sum_{j=1}^{q+2}p_{ij}^{h}=\{

k_{i}-1 if h=i
k_{i} if h\neq i

(iii) k_{i}p_{hj}^{i}=k_{h}p_{ij}^{h}=k_{j}p_{ih}^{j} .

PROOF: For (1.2.1), set u_{t}=u_{m}=(1,0,0, \cdots, 0) , u_{x}=u_{y}=(0,1,0, \cdots, 0) ,

u_{s}= (\sigma_{1}, \sigma_{2}, \cdots , \sigma_{n}) , and u_{t}=(\tau_{1}, \tau_{2}, \cdots, \tau_{n}) .

p_{11}^{1}=|\Gamma_{1}(f_{\iota m})\cap\Gamma_{1}(f_{\chi y})|

=|\{(U_{S\prime}H_{t})\in\Delta|U_{s}\subseteq H_{m\prime}U_{l}\subseteq H_{t}, U_{s}\subseteq H_{y}, U_{x}\subseteq H_{t}\}|

=|\{(u_{s}, u_{t})|\langle u_{t}, u_{t}\rangle=\langle u_{s}, u_{m}\rangle=\langle u_{\chi}, u_{t}\rangle=\langle u_{s}, u_{y}\rangle=0 ,
\langle u_{s}, u_{t}\rangle\neq 0\}|

= \frac{1}{(q-1)^{2}}|\{(\sigma_{1\prime}\sigma_{2}, \cdots, \sigma_{n} : _{T_{1\prime}}\tau_{2^{ }},\cdots, \tau_{n})\in F^{2n}|\sigma_{1}=\tau_{1}=\sigma_{2}=\tau_{2}=0 ,

\sigma_{3}\tau_{3}+\sigma_{4}\tau_{4}+\cdots+\sigma_{n}\tau_{n}\neq 0\}|

=q^{n-s}(q^{n-2}-1)/(q-1) .
p_{1j}^{1}=|\Gamma_{1}(f_{lm})\cap\Gamma_{j}(f_{xy})|

=|\{(u_{S\prime}u_{t})|\langle u_{t}, u_{t}\rangle=\langle u_{s}, u_{m}\rangle=0, \langle u_{s}, u_{t}\rangle=\eta^{j-1}\langle u_{x}, u_{t}\rangle\langle u_{s}, u_{y}\rangle\}|

= \frac{1}{(q-1)^{2}}|\{(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n};_{\tau_{1}} ,\cdots,_{\tau_{n})\in F^{2n}|\sigma_{1}=\tau_{1}=0} ,

\sigma_{2}\tau_{2}+\sigma_{3}\tau_{3}+\cdots+\sigma_{n}\tau_{n}=\eta^{j-1}\sigma_{2}\tau_{2}\}|

=|\{(0,1, \sigma_{3}, \cdots , \sigma_{n} ; o, 1, \tau_{3}, \cdots, \tau_{n})\in F^{2n}|\sigma_{3}\tau_{3}+\cdots+\sigma_{n}\tau_{n}=\eta^{j-1}-1 ,
(\sigma_{3}, \cdots, \sigma_{n})\neq(0, \cdots, 0) , (\tau_{3\prime}\ldots , \tau_{n})\neq(0, \cdots, 0)\}|

=\{ q^{n-3}(q^{n-2}-1)(q^{n-3}-1)(q^{n-2}-1)
if j=2,3, \cdots , q-1
if j=q.

p_{1q+1}^{1}=|\{(u_{s}, u_{t})|\langle u_{s}, u_{t}\rangle\neq 0 , \langle u_{l}, u_{t}\rangle=\langle u_{s}, u_{m}\rangle=0 ,

\langle u_{x}, u_{t}\rangle=0 , \langle u_{s}, u_{y}\rangle\neq 0\}|
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+|\{(u_{s}, u_{t})|\langle u_{s}, u_{t}\rangle\neq 0 , \langle u_{l}, u_{t}\rangle=\langle u_{s}, u_{m}\rangle=0 ,
\langle u_{\chi}, u_{t}\rangle\neq 0 , \langle u_{s}, u_{y}\rangle=0\}|

= \frac{2}{q-1}|\{(0,1, \sigma_{3}, \cdots, \sigma_{n} ^{;} ^{0}, ^{0}, ^{\tau_{3}} \cdots ,

+\cdots+\sigma_{n}\tau_{n}\neq 0\}|

=2q^{n-3}(q^{n-z}-1) .
p_{1q+2}^{1}=k_{1}- \sum_{j=0}^{q+1}p_{1j}^{1}=2(q^{n-2}-1) .

This completes the proof of (1.2.1).

For (1.2.4), set u_{t}=u_{m}=(1,0,\cdots, 0) , u_{x}=(1,1, 0,\cdots, 0) , u_{y}=(1, \eta^{h-1}-1 ,

0, 0, \cdots , 0), u_{s}=(\sigma_{1}, \sigma_{2}, \cdots , \sigma_{n}) and u_{t}=(\tau_{1}, \tau_{2}, \cdots, \tau_{n}) .

p_{ij}^{h}=|\Gamma_{i}(f_{tm})\cap\Gamma_{j}(f_{\chi y})|

=| \{(u_{S}, u_{t})|\frac{\langle u_{s},u_{t}\rangle}{\langle u_{s\prime}u_{m}\rangle\langle u_{t},u_{t}\rangle}=\eta^{j-1}, \frac{\eta^{h-1}\langle u_{s},u_{t}\rangle}{\langle u_{s\prime}u_{y}\rangle\langle u_{x},u_{t}\rangle}=\eta^{j-1}\}|

= \frac{1}{(q-1)^{2}}|\{(_{0_{1}} \cdots, \cdots,, \tau_{1}\neq 0 ,

\sigma_{1}+(\eta^{h-1}-1)\sigma_{2}\neq 0 , \tau_{1}+\tau_{2}\neq 0 , \sigma_{1}\tau_{1}+\cdots+\sigma_{n}\tau_{n}=\eta^{i-1}\sigma_{1}\tau_{1} ,
\sigma_{1}\tau_{1}+\cdots+\sigma_{n}\tau_{n}=\eta^{j-h}(\tau_{1}+\tau_{2})\{\sigma_{1}+(\eta^{h-1}-1)\sigma_{2}\}\}|

=|\{(1, \sigma_{2}, \cdots, \sigma_{n} ; 1, \tau_{2}, \cdots, \tau_{n})\in F^{2n}|1+(\eta^{h-1}-1)\sigma_{2}\neq 0 ,
1+\tau_{2}\neq 0 , \sigma_{2}\tau_{1}+\cdots+\sigma_{n}\tau_{n}=\eta^{i-1}-1 ,
\sigma_{2}\tau_{2}+\cdots+\sigma_{n}\tau_{n}=\eta^{j-h}(1+\tau_{2})\{1+(\eta^{h-1}-1)\sigma_{2}\}-1\}|

=|\{(\sigma_{2}, \cdots, \sigma_{n} _{;} _{\tau_{2}} \cdots ,

= \eta^{i-1}-1-\frac{\sigma_{2}\{\eta^{h+i-j-1}-(\eta^{h-1}-1)\sigma_{2}-1\}}{1+(\eta^{h-1}-1)\sigma_{2}}\}| .

The last equality is obtained by replacing \tau_{2} by \frac{\eta^{h+i-j-1}-(\eta^{h-1}-1)\sigma_{2}-1}{1+(\eta^{h-1}-1)\sigma_{2}}

for each \sigma_{2} except \sigma_{2}=-(\eta^{h-1}-1)^{-1} . Notice that there are (q-1) pairs
(\sigma_{2}, \tau_{2}) which satisfy the equality \eta^{i-1}=\eta^{j-h}(1+\tau_{2})\{1+(\eta^{h-1}-1)\sigma_{2}\} . Since
the number of choices in (\sigma_{3}, \sigma_{4}, \cdots, \sigma_{n} ; \tau_{3}, \tau_{4}, \cdots, \tau_{n})\in F^{2(n-2\rangle} satisfying
\sigma_{3}\tau_{3}+\cdots+\sigma_{n}\tau_{n}=\theta is given by q^{n-2}+q^{n-3}(q^{n-2}-1) if \theta=0 , and q^{n-3}(q^{n-2}-1)

if \theta\neq 0 , p_{ij}^{h} does depend on the number of solutions of the equation

\eta^{i-1}-\frac{\sigma_{2}\{\eta^{h+i-j-1}-(\eta^{h-1}-1)\sigma_{2}-1\}}{1+(\eta^{h-1}-1)\sigma_{2}}=0 ,

or equivalently, the equation

(*) (\eta^{h-1}-1)\sigma_{2}^{2}+\{(\eta^{h-1}-1)(\eta^{i-1}-1)+1-\eta^{h+i-j-1}\}\sigma_{2}+\eta^{i-1}-1=0 .

This quadratic equation (*) for \sigma_{2} has either two, one, or no solution
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from the set F-\{-(\eta^{h-1}-1)^{-1}\} depending on the sign of its discriminant
D which is also depending on the choice of (h, i, j) . The discriminant of
the quadratic equation (*) is described as follows.

(i) If the characteristic of the field F is odd, then

D=\{(\eta^{h-1}-1)(\eta^{i-1}-1)+1-\eta^{h+i-j-1}\}^{2}-4(\eta^{h-1}-1)(\eta^{i-1}-1)

=\eta^{-2(j-1)}\{(\eta^{h+i-2}+\eta^{i+j-2}+\eta^{j+h-2}-\eta^{h+i+j-3})^{2}-4\eta^{h+i+j-3}\} .

(ii) If the characteristic of F is 2, then the equation (*) becomes

(**) (\eta^{h-1}+1)\sigma_{2}^{2}+(\eta^{h-1}+\eta^{i-1}+\eta^{h+i-2}+\eta^{h+i-j-1})\sigma_{2}+\eta^{i-1}+1=0 ,

and has single solution if D=\eta^{h-1}+\eta^{i-1}+\eta^{h+i-2}+\eta^{h+i-j-1} is equal to zero.
If D\neq 0 , then (**) becomes

\frac{D^{2}}{1+\eta^{h-1}}\{t^{2}+t+(\eta^{h-1}+1)(\eta^{i-1}+1)D^{-2}\}=0

by setting \sigma^{2}=\frac{Dt}{1+\eta^{h-1}} . This equation has two or no solution according

as either (\eta^{h-1}+1)(\eta^{i-1}+1)D^{-2} belongs or does not belong to the set \{\tau^{2}+

\tau|\tau\in F\} , respectively. Therefore, afterall we have

p_{ij}^{h}=\{\begin{array}{l}2\{q^{n-2}+q^{n-3}(q^{n-2}-1)\}+(q-3)q^{n-3}(q^{n-2}-1) if(h,i,j)\in T_{1}1\{q^{n-2}+q^{n-3}(q^{n-2}-1)\}+(q-2)q^{n-3}(q^{n-2}-l) if(h,i,j)\in T_{0}0\{q^{n-2}+q^{n-3}(q^{n-2}-2)\}+(q-1)q^{n-3}(q^{n-2}-1) if(h,i,j)\in T_{2}\end{array}

which gives (1.2.4).

This completes (1.2.4).

The rest of the parameters are computed in the same counting argument.

2. Association scheme \mathscr{H}(GL(2, q), \Delta)

When n=2 , the association scheme \mathscr{H}(GL(2, q) , \Delta) is defined exactly
the same way as for n\geq 3 cases except the fact that it has one less class
than what \mathscr{H}(GL(n, q) , \Delta) does for n\geq 3 . However, we treat this associ-
ation scheme \mathscr{H}(GL(2, q) , \Delta) separately because of the following two rea-
sons. Firstly, its character table controls that of \mathscr{H}(GL(n, q) , \Delta) for
every n\geq 3 . Secondly, it has exactly the same parameters, and thus the
same character table, as those of the association scheme \mathscr{H}_{\backslash }^{(}PGL(2, q)/

Z_{q-1}) which is coming from the action of PGL(2, q) on the cosets by the
cyclic subgroup Z_{q-1}[3] .

Let \mathscr{U} be the set of 1-dimensional subspaces of the 2-dimensi0nal
vector space V_{2}(q) over F=GF(q) . Denote the elements of \mathscr{U} by U_{1} ,

U_{2} , \cdots , U_{q+1} , while their representing vectors by u_{1} , u_{2} , \cdots , u_{q+1} , respective-
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1y . We will use the convention that for every w , the representing vector
u_{m} is one of the vectors in the set { (1,0) , (0, 1) , (1, \eta) , (1_{ \eta}^{2},) , \cdots , (1,
\eta^{q-1})\} where \eta is a primitive element of F. Let \Delta be the set of ordered
pairs ( U_{l}, U_{m})\in \mathscr{U}\cross \mathscr{U} such that U_{l}\neq U_{m} . i . e .

\Delta=\{f_{tm}|f_{tm}=(U_{t}, U_{m})\in \mathscr{U}\cross \mathscr{U}, U_{t}\neq U_{m}\} .

For each m\in\{1,2,\cdots, q+1\} , there is l\in\{1,2,\cdots, q+1\} such that U_{m}^{\perp}=U_{l} .
In this case we denote l by m’ so that the orthogonal complement of U_{m} is
to be U_{m^{r}} (with respect to the usual inner product of the vectors). The
corresponding respresenting vector for U_{m’} will be denoted by u_{m’} as well.

The association classes for \mathscr{H}(GL(2, q) , \Delta) are defined by

R_{0}=\{(f_{tm}, f_{tm})|f_{tm}\in\Delta\} ,
R_{1}=\{(f_{lm\prime}f_{ml})|f_{lm}\in\Delta\} ,

R_{q+1}=\{(f_{tm}, f_{st})\in\Delta\cross\Delta| either U_{s}=U_{m} and U_{t}\neq U_{t} ,

or U_{s}\neq U_{m} and U_{t}=U_{t}}
R_{q+2}=\{(f_{lm}, f_{st})\in\Delta\cross\Delta| either U_{t}=U_{s} and U_{m}\neq U_{t} ,

or U_{l}\neq U_{s} and U_{m}=U_{t}},

for j=2,3,\cdots , q-1,

R_{j}= \{(f_{tm}, f_{st})|\frac{\langle u_{l},u_{m’}\rangle\langle u_{s},u_{t’}\rangle}{\langle u_{l},u_{t’}\rangle\langle u_{s},u_{m’}\rangle}=\eta^{j-1\}} .

Notice that there is no class indexed by q. That is, this is a symmetric
association scheme of class q+1 with |\Delta|=q(q+1) .

LEMMA 2. 1. The valencies of \mathscr{H}(GL(2, q) , \Delta) are given by

k_{0}=k_{1}=1

k_{2}=k_{3}=k_{4}=\cdots=k_{q-1}=q-1

k_{q+1}=k_{q+2}=2(q-1) .

PROOF: For j=2,3,\cdots , q-1 , set u_{t}=u_{m^{r}}=(1,0) , u_{s}=(\sigma_{1}, \sigma_{2}) , u_{t’}=

(\tau_{1}’, \tau_{2}’) .

k_{j}=|\Gamma_{j}(f_{tm})|

=| \{(u_{s}, u_{t})|\frac{\langle u_{s},u_{t’}\rangle}{\langle u_{t},u_{t}\rangle\langle u_{s},u_{m^{r}}\rangle},=\eta^{j-1\}1}

=|\{(\sigma_{1}, \sigma_{2} ; \tau_{1}’, \tau_{2}’)\in F^{4}|\sigma_{1}=\tau_{1}’=1, \sigma_{2}\tau_{2}’=\eta^{j-1}-1\}|

=q-1 .

All remaining valencies are computed by direct counting.

LEMMA 2. 2. Let \{b_{ij}^{h}\} be the set of intersection numbers for the
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association scheme \mathscr{H}(GL(2, q) , \Delta) .
(2. 2. 1)

b_{1j}^{1}=\{
1 if j=0
0 otherwise.

(2. 2. 2)

b_{1j}^{h}=\{
1 if \eta^{h+j-2}=\eta^{h-1}+\eta^{j-1}

for h, j\in\{2,3, \cdot-\cdot, q-1\}

0 otherwise
(2. 2. 3)

b_{1q+1}^{h}=\{
0 if h=0,1,2 , \cdots , q-1 , q+1
1 if h=q+2 .

(2. 2. 4) For h, i, j\in\{2,3, \cdots, q-1\}

b_{ij}^{h}=\{

1 if (h, i, j)\in T_{0}

2 if (h, i, j)\in T_{1}

0 if (h, i, j)\in T_{2} ,

where T_{0} , T_{1} , and T_{2} are defined as in Lemma 1.2.
(2. 2. 5) For h, i\in\{2,3, \cdots, q-1\}

b_{iq+1}^{h}=\{
0 if \eta^{h+i-2}=\eta^{i-1}+\eta^{h-1}

2 if \eta^{h+i-2}\neq\eta^{i-1}+\eta^{h-1}

b_{iq+1}^{q+1}=\{\begin{array}{l}0 ifi=1q-21\end{array}if i=q+2
otherwise.

The rest of f cm are easily computed from the above by using the basic
equalities given in Lemma 1. 2.

PROOF: For (2.2.4), set u_{t}=(1,0) , u_{m^{r}}=(1,0) , u_{x}=(1,1) , u_{\mathcal{Y}’}=(1 ,
\eta^{h-1}-1) , u_{s}=(\sigma_{1}, \sigma_{2}) , and u_{t’}=(\tau_{1}’, \tau_{2}’) . Then

b_{ij}^{h}=|\Gamma_{i}(f_{lm})\cap\Gamma_{i}(f_{xy})|

= \frac{1}{(q-1)^{2}}|\{(\sigma_{1}, \sigma_{2\prime}. \tau_{1}’, \tau_{2}’)\in F^{4}|\frac{\sigma_{1}\tau_{1}’+\sigma_{2}\tau_{2}’}{\sigma_{1}\tau_{1}},=\eta^{i-1} ,

, \frac{\eta^{h-1}(\sigma_{1}\tau_{1}’+\sigma_{2}\tau_{2}’)}{(\tau_{1}’+\tau_{2})\{\sigma_{1}+(\eta^{h-1}-1)\sigma_{2}\}}=\eta^{j-1}\}|

=|\{\sigma_{2}\in F|1+(\eta^{h-1}-1)\sigma_{2}\neq 0 , (\eta^{h-1}-1)\sigma_{2}^{2}

+\{(\eta^{h-1}-1)(\eta^{i-1}-1)+1-\eta^{h+i-j-1}\}\sigma_{2}+\eta^{i-1}-1=0\}| .

Hence from the proof of (1.2.4), we have (2.2.4) as we desired. Every-
thing else will be analogue of the proof of Lemma 1.2.

By comparing with the results given in \S 2.5 of [3], we observe that
all parameters of this association scheme coincide with those of the associ-
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ation scheme \mathscr{H}(PGL(2, q)/Z_{q-1}) and \mathscr{H}(SO_{3}(q), \Theta) in [3]. Therefore,

we have the following lemma.

Lemma 2. 3. The character table P of \mathscr{H}(GL(2, q) , \Delta) is given as
follows.

P=\{\begin{array}{llllllll}1 1 q-1 q-1 q-1 2(q-1) 2(q-1)1 1 -2 -2\vdots \vdots p_{j}(i) \vdots \vdots\vdots -1l 1\leq i\leq q-1 -22 \vdots\vdots \vdots 2\leq j\leq q-1 \vdots \vdots 1 -1 2 -21 1 -2 -2 -2 q-3 q-31 -1 0 0 0 -q+l q-1\end{array}\}

REMARK 2. 4. As a consequence of above Lemmas 2.2 and 2.3, the
character table of \mathscr{H}(GL(2, q) , \Delta) controls that of \mathscr{H}(Sp_{2n}(q), \Omega) for
every n\geq 2 , the association scheme obtained from the action of Sp_{2n}(q) on
the set of non-isotropic lines in symplectic geometry on V_{2n}(q) . [cf. 3].

3. Character table of \mathscr{H}(GL(n, q), \Delta) , n\geq 3

In this chapter, we will construct the character table of \mathscr{H}(GL(n, q) ,
\Delta) for n\geq 3 , by using the relationship between the two sets of parameters
\{p_{ij}^{h}\} and \{b_{ij}^{h}\} . We have the following relation between the two sets.

For h=2,3,\cdots , q-1 ,

p_{1j}^{h}=\{

q^{n-2}b_{11}^{h}+q^{n-3}(q^{n-2}-1)/(q-1)q^{n-2}b_{1j}^{h}+q^{n-3}(q^{n-2}-1)
if j=1
if j=2,3,\cdots , q-1 ,

q^{n-2}b_{1q+1}^{h}+2q^{n-3}(q^{n-2}-1) if j=q-1 .

For h, i\in\{2,3,\cdots , q-1\} ,

p_{ij}^{h}=\{

q^{n-2}b_{i1}^{h}+q^{n-3}(q^{n-2}-1)q^{n-2}b_{ij}^{h}+q^{n-3}(q-1)(q^{n-2}-1) ifif j=1j=2
, 3, \cdots , q-1 ,

q^{n-2}b_{iq+1}^{h}+2q^{n-3}(q-1)(q^{n-2}-1) if j=q+1 .

p_{q+1q+1}^{h}=q^{n-2}b_{q+1q+1}^{h}+4q^{n-3}(q-1)(q^{n-2}-1) ,

and so on.
For the association scheme \mathscr{H} (GL(2, q) , \Delta) , if we denote the i-th

intersection matrix, whose (j, h) -entry \overline{1}S given by b_{ij}^{h} , by B_{i} , and the
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diagonal matrix with its diagonal entries [p_{i}(0), p_{i}(1), \cdots, p_{i}(q+2)] , the
i-th column of the character table P , by P_{i} , then we have B_{i}\cdot {}^{t}P={}^{t}P\cdot P_{i}

for all i\in\{1,2,\cdots, q-1, q+1, q+2\} .

THEOREM 3. 1. The character table \tilde{P} of the association scheme \mathscr{H}

(GL(n, q) , \Delta) is given as in Figure 1.

PROOF: Suppose we denote the intersection matrix, the diagonal
matrix with its diagonal entries [\tilde{p}_{i}(0),\tilde{p}(1), \cdots,\tilde{p}_{i}(q+2)] , the i-th col-
umn of the matrix \tilde{P} , for \mathscr{H}(GL(n, q) , \Delta) by \tilde{B}_{i},\tilde{P}_{i} , then from the above
relation between the two parameters and the equality B_{i}\cdot {}^{t}P={}^{t}P\cdot P_{i} , we
can show that \tilde{B}_{i}\cdot{}^{t}\tilde{P}={}^{t}\tilde{P}\cdot\tilde{P}_{i} , which is enough to assert the statement, for
all i.

\tilde{P}=[_{1}^{1}111^{\cdot}\cdot.1\cdot.\cdot.\cdot..\cdot.\cdot\cdot.\frac{q^{n-2}(q^{n-1}-1)}{q-1,q^{n-}}-q^{3}q^{3_{(n- 2)}}-q^{n- 2}-q^{n-2}q^{n-3}q^{n-2}2\dashv.\cdot..\cdot.\cdot.\cdot-^{o},\rangle 2^{n_{\sim}}2\tilde{\beta}_{j}(i)=q^{n2}\beta_{j}(i)-q^{n-2}(q^{\frac{n- 2q+}{2}}+1)q^{n-2}(q^{\frac{n- 2}{2}}-1)q^{n-2}(q^{n-1}-1)-q^{n-3}(1)2\leq j\leq q-11\leq i\leq q-1.\cdot.\cdot.\cdot.\cdot.\cdot.\cdot-q^{n-2}(q^{\frac{n- 2q+}{2}}+1)q^{n-2}(q^{\frac{n- 2}{2}}-1)q^{n-2}(q^{n-1}-1)-q^{n-3}(1)(q^{n-2}-1)(.\cdot.\cdot.\cdot..\cdot.\cdot.\cdot.\cdot--1)q^{n-1}-q-2-n-3+1(q^{n-2}-1)(q^{\frac{+1q^{\frac{n- 2}{2}}n- 2q^{n}}{2}}-1)(q^{n-2}-1)(q^{n-1}-1)-q^{n-2}-q^{n-2}+1-q^{n-2}(q^{\frac{n}{2}}-\cdot.\cdot..\cdot.\cdot.2q^{\frac{n- 2}{2}}+1)q^{n-2}(q^{\frac{n}{2}}-2q^{\frac{n- 2}{2}}-1)2q-2(n_{2q^{n-2}}q^{n-1}-1)-2q^{n-3}-2p^{n-2}-2q^{n-2}2q^{n-2}q^{n-1}+q^{\frac{n- 2}{2}}.\cdot.\cdot..\cdot.\cdot.\cdot.\cdot.\cdot-2q^{n-1}-q^{\frac{22n- 2}{2}}-22(q^{n1}-1)---2]

Figure 1
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