Finiteness of von Neumann algebras and non-commutative L^p -spaces

Keiichi WATANABE (Received May 15, 1989, Revised September 4, 1989)

0. Introduction

Murray and von Neumann introduced their equivalence relation among projections in a von Neumann algebra and proved that a factor is finite (i. e. every projection is finite) if and only if it has a finite trace. In [2], Cuntz and Pedersen defined another equivalence relation among all positive elements in a C^* -algebra, and proved that the algebra is finite if and only if there is a separating family of finite traces.

In this paper, we introduce an equivalence relation among the positive elements of a non-commutative L^{p} -space associated with an arbitrary von Neumann algebra, and we study the finiteness of non-commutative L^{p} -spaces with respect to it.

In §1, we recall the definition of non-commutative L^p -spaces associated with an arbitrary von Neumann algebra defined by Haagerup [4]. For non-commutative L^{p} -spaces $L^{p}(N, \tau)$ arising from a semifinite von Neumann algebra N and its trace τ , the intersection $N \cap L^p(N, \tau)$ is L^{p} -norm dense in $L^{p}(N, \tau)$. Therefore one may naturally expect some similarity of their order structures between N and $L^{p}(N, \tau)$ even if there are significant differences, for example, the existence of an order unit. On the other hand, for non-commutative L^{p} -spaces $L^{p}(M)$ associated with an arbitrary von Neumann algebra M, it is well-known that any non-zero element in $L^{p}(M)$ is not bounded and that $M \cap L^{p}(M) = \{0\}$. Therefore we need some care to deal with them throughout the paper. In §2, we study the monotone order completeness of $L^{p}(M)$. Applying the result, we show in §3 that $L^{p}(M)$ has the asymmetric Riesz decomposition property, and we introduce an equivalence relation among the positive elements in $L^{p}(M)$. In §4, using the equivalence relation introduced in §3, we define a notion of finiteness of $L^{p}(M)$. Considering bounded linear functionals on $L^{p}(M)$ which satisfy the property as traces, we show that the finiteness of $L^{p}(M)$ agrees with that of M for the case of $1 \le p \le \infty$.

The author would like to express his hearty thanks to Professor K.-S. Saito for his many suggestions. The author also wishes to extend his

K. Watanabe

thanks to Professors F. Hiai and Y. Nakamura for their valuable comments.

1. Preliminaries

In this section, we will collect definitions and basic facts on the theory of non-commutative L^{p} -spaces associated with an arbitrary von Neumann algebra. Full details are found in [4] and [12].

Let M be an arbitrary von Neumann algebra. Let N be the crossed product of M by the modular automorphism group $\{\sigma_t\}_{t\in \mathbb{R}}$ of a fixed faithful normal semifinite weight on M. Then N admits the dual action $\{\theta_s\}_{s\in \mathbb{R}}$ and the faithful normal semifinite trace τ satisfying $\tau \circ \theta_s = e^{-s}\tau$, $s \in$ \mathbb{R} . We denote by \tilde{N} the set of all τ -measurable operators (affiliated with N). For $0 , the Haagerup <math>L^p$ -space $L^p(M)$ is defined by

$$L^{p}(M) = \{a \in \tilde{N}; \theta_{s}(a) = e^{-s/p}a, s \in \mathbf{R}\}.$$

It is well-known that there exists a linear order isomorphism $\varphi \longrightarrow h_{\varphi}$ from the predual M_* onto $L^1(M)$. We thus get a positive linear functional tron $L^1(M)$ defined by $tr(h_{\varphi}) = \varphi(1)$, $\varphi \in M_*$. The (quasi-)norm of $L^p(M)$ for $0 is defined by <math>||a||_p = tr(|a|^p)^{1/p}$, $a \in L^p(M)$. When $1 \le p < \infty$, $L^p(M)$ is a Banach space, and its dual space is $L^q(M)$, where $\frac{1}{p} + \frac{1}{q} = 1$. The duality is given by the following bilinear form:

$$(a, b) \longrightarrow tr(ab) (=tr(ba)), a \in L^{p}(M), b \in L^{q}(M).$$

The space $L^{p}(M)$ is independent of the choice of a faithful normal semifinite weight on M up to isomorphism. Furthermore, when M has a faithful normal semifinite trace τ_{0} , $L^{p}(M)$ can be identified with the non-commutative L^{p} -space $L^{p}(M, \tau_{0})$ introduced in [9].

2. Monotone order completeness of measure topology

In this section we study the monotone order completeness of measure topology associated with a semifinite von Neumann algebra. The result does not seem to have been pointed out in the literature, though it may be well-known probably. As an immediate consequence, we also have the monotone order completeness of non-commutative L^p -spaces to introduce an equivalence relation in L^p -spaces. It may be useful to state these results in the form of a theorem and its corollaries.

Suppose that N is a semifinite von Neumann algebra with a faithful normal semifinite trace τ . We denote by \tilde{N} the set of all τ -measurable operators, which becomes a complete Hausdorff topological *-algebra with

the measure topology (cf. [7], [12]). For ε , $\delta > 0$, we set

$$N(\varepsilon, \delta) = \{a \in N; \text{ there exists a projection } e \text{ in } N \\ with \|ae\| \le \varepsilon, \tau(1-e) \le \delta\}.$$

Then the family $\{N(\varepsilon, \delta); \varepsilon, \delta > 0\}$ is a fundamental system of neighborhoods around 0 with respect to the measure topology. We also denote by \tilde{N}_+ the set of all positive self-adjoint elements in \tilde{N} . Recall that an operator a in \tilde{N} is to be defined τ -compact if a satisfies that $\tau(E_{(s,\infty)}(|a|)) < \infty$ for all s > 0, where $E_{(s,\infty)}(|a|)$ is the spectral projection of |a| corresponding to the interval (s, ∞) . This definition of τ -compactness is equivalent to that the generalized s-number $\mu_t(a)$ of a converges to 0 as $t \longrightarrow \infty(cf. [3; Proposition 3.2])$.

LEMMA 2. 1. Let a be a τ -compact operator. Let $\{y_n\}_{n=1}^{\infty}$ be a sequence in N which converges to 0 strongly. Then the sequence $\{y_na\}_{n=1}^{\infty}$ converges to 0 in the measure topology.

PROOF. Considering the polar decomposition of a, we may assume that a is positive self-adjoint. Let $a = \int_{[0,\infty)} \lambda de_{\lambda}$ be the spectral decomposition of a. Fix any positive numbers ε and δ . Let $\gamma = \sup \|y_n\| (<\infty)$ and $a = \frac{\varepsilon}{\gamma}$. Since a is τ -measurable, we can take a β (>a) such that $\tau \left(\int_{(\beta,\infty)} de_{\lambda} \right) \le \delta$. We write $y_n a = y_n \int_{[0,\alpha]} \lambda de_{\lambda} + y_n \int_{(\alpha,\beta]} \lambda de_{\lambda}$ $+ y_n \int_{(\beta,\infty)} \lambda de_{\lambda}$. Then the first and the last terms are in $N(\varepsilon, \delta)$. For the second term, since a is τ -compact and $\int_{(\alpha,\beta]} \lambda de_{\lambda} \le \beta \int_{(\alpha,\infty)} de_{\lambda}$, it follows that $\int_{(\alpha,\beta]} \lambda de_{\lambda} \equiv L^2(N,\tau)$. Hence, representing N on $L^2(N,\tau)$, we have $\|y_n \int_{(\alpha,\beta]} \lambda de_{\lambda}\|_2 \longrightarrow 0$ as $y_n \longrightarrow 0$ strongly. This completes the proof. \Box

THEOREM 2. 2. Let $\{a_n\}_{n=1}^{\infty}$ be an increasing sequence in \tilde{N}_+ . Assume that there is a τ -compact operator a in \tilde{N} satisfying $a_n \leq a$ for all $n \in \mathbb{N}$. Then there exists a unique element a_{∞} in \tilde{N} such that a_n converges to a_{∞} in the measure topology.

PROOF. By [8; Lemma 2. 2], for each $n \in N$, there is a unique $x_n \in N$ such that $0 \le x_n \le s(a)$ and $a_n = a^{1/2} x_n a^{1/2}$. The same lemma shows that the sequence $\{x_n\}_{n=1}^{\infty}$ is increasing. The x_n converges strongly to an element x in N. We put $a_{\infty} = a^{1/2} x a^{1/2}$. Since $x - x_n$ converges to 0 strongly,

we conclude from the previous lemma that $x_n a^{1/2}$ converges to $x a^{1/2}$ in the measure topology. This yields the result and completes the proof. \Box

REMARK 2. 3. In the preceding theorem, we can not drop the condition that a is τ -compact.

Let l^2 be the usual sequence space. We denote an increasing sequence $\{a_n\}_{n=1}^{\infty}$ of bounded operators on l^2 by matrices with respect to its canonical basis $e_n = (0, \dots, 0, \stackrel{n}{1}, 0, \dots)$ as follows;

 $a_n = \begin{bmatrix} E_n & 0 \\ 0 & 0 \end{bmatrix}$, where E_n is the identity matrix of degree n. Then $\{a_n\}_{n=1}^{\infty}$ is dominated by the identity operator. However, it is impossible that $\{a_n\}_{n=1}^{\infty}$ forms a Cauchy sequence in the measure topology.

We assume that 0 throughout the rest of this section. It is $well-known that non-commutative <math>L^p$ -spaces $L^p(N, \tau)$ associated with a semifinite von Neumann algebra N and its trace τ are included in the class of τ -compact operators (cf. [3; Remark 3.3). From Theorem 2.2 and [3; Theorem 3.6], we have the following result.

COROLLARY 2. 4. Let $\{a_n\}_{n=1}^{\infty}$ be an increasing sequence in $L^p(N, \tau)_+$. Assume that there is an element a in $L^p(N, \tau)$ satisfying $a_n \leq a$ for all $n \in \mathbb{N}$. Then there exists a unique element a_{∞} in $L^p(N, \tau)$ such that $||a_n - a_{\infty}||_p \longrightarrow 0$.

Moreover, we can also obtain a corresponding result for noncommutative L^p -spaces $L^p(M)$ associated with an arbitrary von Neumann algebra M. For any a in $L^p(M)$, it is known that $\mu_t(a) = t^{-1/p} ||a||_p$ for all t > 0, where $\mu_t(a)$ is the generalized s-number relative to the canonical trace on the crossed product (cf. [3; Lemma 4.8]). This implies that $L^p(M)$ is included in the class of τ -compact operators.

COROLLARY 2. 5. Let $\{a_n\}_{n=1}^{\infty}$ be an increasing sequence in $L^p(M)_+$. Assume that there is an element a in $L^p(M)$ satisfying $a_n \le a$ for all $n \in \mathbb{N}$. Then there exists a unique element a_{∞} in $L^p(M)$ such that $||a_n - a_{\infty}||_p \longrightarrow 0$.

PROOF. From the assumption, we conclude by Theorem 2.2 that a_n converges to an element a_{∞} in the measure topology. Since $L^p(M)$ is closed in the measure topology (cf. [4; Definition 1.7]), a_{∞} is included in $L^p(M)$. Moreover, the norm topology of $L^p(M)$ is exactly the induced measure topology (cf. [4; Proposition 1.17] or [12; ChapterII, Proposition 26]), we conclude that $||a_n - a_{\infty}||_p \longrightarrow 0$.

3. Asymmetric decomposition and equivalence relation in L^p -spaces

Let M be an arbitrary von Neumann algebra. We introduce an equivalence relation in $L^p(M)_+$ as in the theory of C^* -algebra to study a functional on L^p -spaces which satisfies the property as a trace. For a, b in $L^p(M)_+$, we define $a \sim b$ if there exists a sequence $\{x_n\}_{n=1}^{\infty}$ in $L^{2p}(M)$ such that $a = \sum_{n=1}^{\infty} x_n^* x_n$, $b = \sum_{n=1}^{\infty} x_n x_n^*$ in the sense of L^p -(quasi-)norm convergence. Also, we define a < b if there exists an element c in $L^p(M)_+$ such that $a \sim c \leq b$. Then we have the countably asymmetric decomposition for $L^p(M)$.

PROPOSITION 3. 1. Let $0 . If <math>\{x_i\}_{i=1}^{\infty}, \{y_j\}_{j=1}^{\infty}$ are sequences in $L^{2^p}(M)$ such that $\sum_{i=1}^{\infty} x_i^* x_i = \sum_{j=1}^{\infty} y_j y_j^*$. Then there exists a double sequence $\{z_{i,j}\}_{i,j=1}^{\infty}$ in $L^{2^p}(M)$ such that $x_i x_i^* = \sum_{j=1}^{\infty} z_{i,j} z_{i,j}^*$ and $y_j^* y_j = \sum_{i=1}^{\infty} z_i^*, j z_{i,j}$.

PROOF. Put $a = \sum x_i^* x_i = \sum y_j y_j^*$. As in the proof of [8; Lemma 2. 21], we can find a unique operator s_i in N satisfying the following conditions; $0 \le s_i^* s_i \le s(|x_i|) \le s(a)$, $x_i = s_i a^{1/2}$ in \tilde{N} . If follows from the uniqueness that s_i is fixed under the dual action and that $s_i \in M$. Similarly, there exists an element t_j in M such that $y_j^* = t_j^* a^{1/2}$. Since $\sum_{i=1}^n x_i^* x_i = a^{1/2} (\sum_{i=1}^n s_i^* s_i) a^{1/2}$ increases to a in the measure topology, we can conclude by the uniqueness part of [8; Lemma 2.2] that the sequence $\{\sum_{i=1}^n s_i^* s_i\}_{n=1}^{\infty}$ increases strongly to the range projection of a. Then the sequence $\{t_j^* a^{1/2} (\sum_{i=1}^n s_i^* s_i) a^{1/2} t_j\}_{n=1}^{\infty}$ increases to $t_j^* a t_j = y_j^* y_j$ in L^p -norm topology. Putting $z_{i,j} = s_i a^{1/2} t_j$, we complete the proof.

By deleting some of the x_i and corresponding $z_{i,j}$, we immediately conclude the following corollay.

COROLLARY 3. 2. Let $0 . If <math>\{x_i\}_{i=1}^{\infty}, \{y_j\}_{j=1}^{\infty}$ are sequences in $L^{2p}(M)$ such that $\sum_{i=1}^{\infty} x_i^* x_i \le \sum_{j=1}^{\infty} y_j y_j^*$. Then there exists a double sequence $\{z_{i,j}\}_{i=1}^{\infty}$ in $L^{2p}(M)$ such that $x_i x_i^* = \sum_{j=1}^{\infty} z_{i,j} z_i^*$, and $\sum_{i=1}^{\infty} z_i^*, j z_{i,j} \le y_j^* y_j$.

THEOREM 3. 3. Let $0 . The relation "~" becomes an equivalence relation in <math>L^p(M)_+$. It is countably additive in the sense that $\sum_{i=1}^{\infty} a_i \sim \sum_{i=1}^{\infty} b_i$ when the sum exists and $a_i \sim b_i$ in $L^p(M)_+$. The relation "<" satisfies the transitivity and the Riesz decomposition property: if $\sum_{i=1}^{\infty} a_i < \sum_{j=1}^{\infty} b_j$ then there exists a double sequence $\{c_{i,j}\}_{i,j=1}^{\infty}$ in $L^p(M)_+$ such that $a_i = \sum_{j=1}^{\infty} c_{i,j}$ and $\sum_{i=1}^{\infty} c_{i,j} < b_j$.

PROOF. To see that the relation " \sim " is an equivalence relation,

K. Watanabe

it is enough to show the transitivity. For elements a, b and c in $L^{p}(M)_{+}$, suppose that $a \sim b$ and $b \sim c$. From the above proposition there is a double sequence $\{z_{i,j}\}_{i,j=1}^{\infty}$ in $L^{2p}(M)$ such that

$$a = \sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} z_{i,j} z_{i,j}^* \right) and c = \sum_{j=1}^{\infty} \left(\sum_{i=1}^{\infty} z_{i,j}^* z_{i,j} \right).$$

Suppose that **K** is any bijective map $\mathbf{K}: \mathbf{N} \ni n \longrightarrow (i(n), j(n)) \in \mathbf{N} \times \mathbf{N}$. By the monotone order completeness, it is straightforward to see that the sequence $\{\sum_{n=1}^{N} \mathbf{z}_{\mathbf{K}(n)} \mathbf{z}_{\mathbf{K}}^{*}(n)\}_{N=1}^{\infty}$ converges to *a* in the L^{p} -norm topology. Moreover, the series $\sum_{j=1}^{\infty} (\sum_{i=1}^{\infty} \mathbf{z}_{i,j} \mathbf{z}_{i,j}^{*})$ also converges to *a*. Thus we have $a = \sum_{n=1}^{\infty} \mathbf{z}_{\mathbf{K}(n)} \mathbf{z}_{\mathbf{K}}^{*}(n)$ and $c = \sum_{n=1}^{\infty} \mathbf{z}_{\mathbf{K}(n)} \mathbf{z}_{\mathbf{K}(n)}$, hence the relation " \sim " becomes an equivalence relation in $L^{p}(M)_{+}$.

To show the Riesz decomposition property, suppose that $\sum_{i=1}^{\infty} a_i \sim c \leq \sum_{j=1}^{\infty} b_j$ for some c in $L^p(M)$. Then there exists a sequence $\{u_n\}_{n=1}^{\infty}$ in $L^{2p}(M)$ such that $\sum_{i=1}^{\infty} a_i = \sum_{n=1}^{\infty} u_n^* u_n$ and $\sum_{n=1}^{\infty} u_n u_n^* = c \leq \sum_{j=1}^{\infty} b_j$. By the first equation, we can take a double sequence $\{v_{i,n}\}_{i,n=1}^{\infty}$ in $L^{2p}(M)$ such that $a_i = \sum_{n=1}^{\infty} v_{i,n} v_{i,n}^*$ and $\sum_{i=1}^{\infty} v_i v_{i,n} = u_n u_n^*$. Then we have $\sum_{i,n=1}^{\infty} v_{i,n} v_{i,n} \leq \sum_{j=1}^{\infty} b_j$, hence there is a triple sequence $\{w_{i,j,n}\}_{i,j,n=1}$ in $L^{2p}(M)$ such that $v_{i,n}v_{i,n} = \sum_{j=1}^{\infty} w_{i,j,n} w_{i,j,n}$ and $\sum_{i,n=1}^{\infty} w_{i,j,n} w_{i,j,n} \sim \sum_{i,n=1}^{\infty} w_{i,j,n} w_{i,j,n} \leq b_j$. Putting $c_{i,j} = \sum_{n=1}^{\infty} w_{i,j,n} w_{i,j,n}$, we have $a_i = \sum_{j=1}^{\infty} c_{i,j}$ and $\sum_{i=1}^{\infty} c_{i,j} \leq b_j$. It is easy to establish the rest of the theorem, and the proof is omitted.

4. Finiteness of L^p -spaces

As an application of the preceding results, we study a certain finiteness of non-commutative L^{p} -spaces associated with an arbitrary von Neumann algebra, and we shall see that the notion of finiteness of L^{p} spaces for 1 is coincides with that of von Neumann algebras. LetM be an arbitrary (not necessarily semifinite) von Neumann algebra. Once Theorem 3.3 has been established, we can consider a quotient space of L^{p} -space with respect to the relation " ~ ". We denote by L_{sa}^{p} the set of all self-adjoint elements in $L^{p}(M)$ and denote by L_{0}^{p} the real linear subspace of L_{sa}^{p} consisting of elements of the form a-b, where $a, b \in A$ $L^{p}(M)_{+}$ and $a \sim b$. Moreover, we denote by Q the quotient map $Q: L^{p}_{sa}$ $\longrightarrow L_{sa}^p/L_0^p$. As in the proof of [2; Theorem 2.6], it is straightforward to verify that the subspace L_0^p is closed in L_{sa}^p . Therefore, there is a canonical linear isometry between the dual of the quotient space $Q(L_{sa}^{p})$ and the space $(L_0^p)^{\perp}$ consisting of elements f in $(L_{sa}^p)^*$ such that f(a)=0 for all a in L_0^p . Note that $f \in (L_0^p)^{\perp}$ if and only if $f(x^*x) = f(xx^*)$ for all $x \in I$ $L^{2p}(M).$

LEMMA 4. 1. Let $1 \le p \le \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. Suppose that $f \in (L_0^p)^{\perp}$. Let b be a unique element in L_{sa}^q corresponding to f such that $f = tr(b \cdot)$. If $b = b_+ - b_-$ is the Jordan decomposition of b, then $tr(b_+ \cdot)$ and $tr(b_- \cdot)$ are elements of $(L_0^p)^{\perp}$.

PROOF. Note that *b* satisfies $tr(bx^*x) = tr(bxx^*)$, $x \in L^{2p}(M)$. Putting $x = ua^{1/2}$, we have $tr(ba) = tr(u^*bua)$ for any unitary $u \in M$ and any $a \in L_+^p$. This implies that *b* is affiliated with the commutant *M'*. By the uniqueness of the Jordan decomposition, it follows that b_+ , b_- are also affiliated with *M'*. Denote by $e_1(\text{resp. } e_2)$ the support projection of b_+ (resp. b_-). Then we have $b_+ = be_1$, $b_- = -be_2$, and e_1 , e_2 are orthogonal projections in the center of *M*. Hence we have $tr(b_+x^*x) = tr(be_1x^*x) =$ $tr(bx^*e_1x) = tr(be_1xx^*e_1) = tr(b_+xx^*)$ and $tr(b_-x^*x) = tr(b_-xx^*)$. This completes the proof.

THEOREM 4. 2. Let $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$. If $a \in L^{p}(M)_{+}$, then the following four constants are equal; $a = \inf \{ \|a - c\|_{p} ; c \in L_{0}^{p} \},$ $\beta = \inf \{ \|b\|_{p} ; b > a, b \in L_{+}^{p} \},$ $\gamma = \sup \{ f(a) ; f \in (L_{sa}^{p})^{*}, \|f\| = 1, f(x^{*}x) = f(xx^{*}) \ge 0, x \in L^{2p}(M) \}, and$ $\delta = \sup \{ tr(h_{\varphi}^{1/q}a) ; \varphi \text{ is a normal tracial state on } M \}.$

A similar argument as in the proof of [2; Theorem 2.9] PROOF. shows that $\alpha \ge \beta \ge \gamma$. Suppose $\alpha > 0$ to show that $\alpha \le \gamma$. Since α is the quotient norm of a in $Q(L_{sa}^{p})$, there is by Hahn-Banach's theorem an element \tilde{f} in $Q(L_{sa}^{p})^{*}$ with $\|\tilde{f}\|=1$ such that $\tilde{f}(Q(a))=\alpha$. Let b be a unique element in L_{sa}^{q} corresponding to $\tilde{f}(Q(\cdot))$ such that $\tilde{f}(Q(\cdot)) =$ $tr(b \cdot)$. If $b = b_+ - b_-$ is the Jordan decomposition of b, then we have $tr(b_+\cdot) \in (L_0^p)^{\perp}$ by Lemma 4.1. Since $||b||_q^q = ||b_+||_q^q + ||b_-||_q^q$, we have $||b_+||_q \le 1$ and $tr(b_+a) \ge \alpha$. It follows that $||b_+||_q = 1$. Hence we have $b_-=0$ and $b \ge 0$. Put $f = \tilde{f}(Q(\cdot))$. Then we have $f \in (L_{sa}^{p})^{*}$, ||f|| = 1, and f satisfies that $f(x^*x) = f(xx^*) \ge 0$ for any $x \in L^{2^p}(M)$. Thus $\alpha \le \gamma$. To see that $\gamma = \delta$, suppose that f is an element in $(L_{sa}^{p})^{*}$ satisfying $f(x^{*}x) = f(xx^{*}) \ge 0$ for any $x \in L^{2p}(M)$. Let b be a unique element in L^{q}_{+} corresponding to f such that $f = tr(b \cdot)$. Then b is affiliated with M'. Taking a unique positive element $\varphi \in M_*$ such that $b = h_{\varphi}^{1/q}$, h_{φ} is affiliated with M'. It follows from [5; Théorème 2] or [12; ChapterIV, Proposition 4] that the Connes' spatial derivative $\frac{d\varphi}{d\psi_0}$ is affiliated with M', where ψ_0 is a faithful normal semifinite weight on M'. Due to [1; Theorem 9] or [12; ChapterIII, Corollary 27], we conclude that φ is a trace on M. Conversely, for each normal finite trace φ on M, the element h_{φ} is affiliated with M'. Hence the element $tr(h_{\varphi}^{1/q} \cdot)$ in $(L_{sa}^{p})^*$ satisfies that $tr(h_{\varphi}^{1/q}x^*x) = tr(h_{\varphi}^{1/q}xx^*) \ge 0$, $x \in L^{2p}(M)$. Thus we get the desired isometric bijective correspondence which implies that $\gamma = \delta$. This completes the proof.

DEFINITION 4.3. A positive element a in $L^{p}(M)$ is said to be finite if for each $a' \in L^{p}(M)_{+}$ such that $a' \leq a$ and $a' \sim a$ implies that a' = a. We say that $L^{p}(M)$ is finite if every element in $L^{p}(M)_{+}$ is finite.

REMARK 4. 4. For the case of p=1, the above definition is vacuous. Let a, b be elements in $L^1(M)_+$. Suppose that $a \sim b \leq a$. Then we have tr(a) = tr(b). It follows that $||a-b||_1 = tr(a-b) = 0$, i. e. a = b. Therefore, the space $L^1(M)$ is always finite in the sense defined above for an arbitrary von Neumann algebra.

It is easy to verify the following lemmas.

LEMMA 4. 5 (cf. [2; Lemma 3. 3]). $L^{p}(M)$ is finite if and only if $L^{p}(M)_{+} \cap L^{p}_{0} = \{0\}.$

LEMMA 4. 6. Suppose that $\{\varphi_{\lambda}\}_{\lambda \in \Lambda}$ is a family of positive normal functionals on M. Then the following conditions are equivalent.

- (1) The supremum of the support projections of φ_{λ} equals to 1.
- (2) $\{tr(h_{\varphi_{\lambda}}\cdot); \lambda \in \Lambda\}$ is separating for M_+ .
- (3) $\{tr(h_{\varphi_{\lambda}}^{1/q}\cdot); \lambda \in \Lambda\}$ is separating for $L^{p}(M)_{+}$.

The following theorem shows that our notion of finiteness of noncommutative L^{p} -spaces for 1 precisely agrees with that of vonNeumann algebras.

THEOREM 4. 7. Let $1 . The <math>L^{p}(M)$ is finite if and only if M is a finite von Neumann algebra.

PROOF. Suppose that $L^{p}(M)$ is finite. Let a be an element in $L^{p}(M)_{+}$. If $tr(h_{\varphi}^{1/q}a)=0$ for any normal finite trace φ on M, then Q(a)=0 by Theorem 4.2, where Q denotes the quotient map. Since Q is faithful on $L^{p}(M)_{+}$ by Lemma 4.5, we have a=0. Thus the set $\{tr(h_{\varphi}^{1/q}\cdot); \varphi \text{ is a normal finite trace on } M\}$ is separating for $L^{p}(M)_{+}$. It follows from the previous lemma that M has a sufficient family of normal finite traces. Conversely, if M has a sufficient family $\{\varphi_{\lambda}\}_{\lambda \in \Lambda}$ of normal tracial states, then $\{tr(h_{\varphi_{\lambda}}^{1/q}\cdot); \lambda \in \Lambda\}$ is separating for $L^{p}(M)_{+}$ by Lemma 4.6. For $a \in A$

 $L^{p}(M)_{+} \cap L_{0}^{p}$, we have by Theorem 4.2,

$$0 = \|Q(a)\| \ge \sup\{tr(h_{\varphi})^{1/q}a); \lambda \in \Lambda\}0.$$

Thus a=0, hence the result follows from Lemma 4.5.

References

- [1] A. CONNES, On the spatial theory of von Neumann algebras, J. Funct. Anal., 35 (1980), 153-164.
- [2] J. CUNTZ and G. K. PEDERSEN, Equivalence and traces on C*-algebras, J. Funct. Anal., 33 (1979), 135-164.
- [3] T. FACK and H. KOSAKI, Generalized s-numbers of r-measurable operators, Pacific J. Math., 123 (1986), 269-300.
- [4] U. HAAGERUP, L^p-spaces associated with an arbitrary von Neumann algebra, Colloq. Internat. CNRS, No. 274, 1979, 175-184.
- [5] M. HILSUM, Les espaces L^{p} d'une algèbre de von Neumann définies par la derivée spatiale, J. Funct. Anal., 40 (1981), 151-169.
- [6] R. V. KADISON and G. K. PEDERSEN, Equivalence in operator algebras, Math. Scand., 27 (1970), 205-222.
- [7] E. NELSON, Notes on non-commutative integration, J. Funct. Anal., 15 (1974), 103-116.
- [8] L. M. SCHMITT, The Radon-Nikodym theorem for L^p-spaces of W*-algebras, Publ. RIMS, Kyoto Univ., 22 (1986), 1025-1034.
- [9] I. SEGAL, A non-commutative extension of abstract integration, Ann. of Math., 57 (1953), 401-457.
- [10] S. STRĂTILĂ and L. ZSIDÓ, "Lectures on von Neumann algebras" Abacus Press, Tunbridge Wells, 1979.
- [11] M. TAKESAKI, "Theory of Operator Algebras I" Springer Verlag, Berlin-Heidelberg-New York, 1979.
- [12] M. TERP, L^{*p*}-spaces associated with von Neumann algebras, Notes, Copenhagen Univ., 1981.
- [13] F. J. YEADON, Convergence of measurable operators, Math. Proc. Camb. Phil. Soc., 74 (1973), 257-268.
- [14] _____, Non-commutative L^{*p*}-spaces, Math. Proc. Camb. Phil. Soc., 77 (1975), 91-102.

Department of Mathematics Faculty of Science Niigata University Niigata 950-21, Japan