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0. Introduction

Murray and von Neumann introduced their equivalence relation
among projections in a von Neumann algebra and proved that a factor is
finite (i . e . every projection is finite) if and only if it has a finite trace. In
[2], Cuntz and Pedersen defined another equivalence relation among all
positive elements in a C^{*} -algebra, and proved that the algebra is finite if
and only if there is a separating family of finite traces.

In this paper, we introduce an equivalence relation among the positive
elements of a non-commutative L^{p} -space associated with an arbitrary von
Neumann algebra, and we study the finiteness of non-commutative
L^{p} -spaces with respect to it.

In \S 1, we recall the definition of non-commutative L^{p} -spaces associated
ed with an arbitrary von Neumann algebra defined by Haagerup [4]. For
non-commutative L^{p} -spaces L^{p}(N, \tau) arising from a semifinite von
Neumann algebra N and its trace \tau , the intersection N\cap L^{p}(N, \tau) is
L^{p} -norm dense in L^{p}(N, \tau) . Therefore one may naturally expect some
similarity of their order structures between N and L^{p}(N, \tau) even if there
are significant differences, for example, the existence of an order unit.
On the other hand, for non-commutative L^{p}-spaces L^{p}(M) associated with
an arbitrary von Neumann algebra M, it is well-known that any non-zero
element in L^{p}(M) is not bounded and that M\cap L^{p}(M)=\{0\} . Therefore
we need some care to deal with them throughout the paper. In \S 2, we
study the monotone order completeness of L^{p}(M) . Applying the result,
we show in \S 3 that L^{p}(M) has the asymmetric Riesz decomposition prop-
erty, and we introduce an equivalence relation among the positive ele-
ments in L^{p}(M) . In \S 4, using the equivalence relation introduced in \S 3,

we define a notion of finiteness of L^{p}(M) . Considering bounded linear
functional on L^{p}(M) which satisfy the property as traces, we show that
the finiteness of L^{p}(M) agrees with that of M for the case of 1<p<\infty .

The author would like to express his hearty thanks to Professor K.-S.
Saito for his many suggestions. The author also wishes to extend his
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thanks to Professors F. Hiai and Y. Nakamura for their valuable com-
ments.

1. Preliminaries

In this section, we will collect definitions and basic facts on the theory
of non-commutative L^{p}-spaces associated with an arbitrary von Neumann
algebra. Full details are found in [4] and [12].

Let M be an arbitrary von Neumann algebra. Let N be the crossed
product of M by the modular automorphism group \{\sigma_{t}\}_{t\in R} of a fixed faith-
ful normal semifinite weight on M. Then N admits the dual action
\{\theta_{s}\}_{s\in R} and the faithful normal semifinite trace \tau satisfying \tau\circ\theta_{s}=e^{-s}\tau , s\in

R. We denote by \tilde{N} the set of all \tau-measurable operators (affiliated with
N) . For 0<p\leq\infty , the Haagerup L^{p} space L^{p}(M) is defined by

L^{p}(M)=\{a\in\tilde{N} ; \theta_{s}(a)=e^{-s/p}a, s\in R\} .

It is well-known that there exists a linear order isomorphism –h_{\varphi} from
the predual M_{*} onto L^{1}(M) . We thus get a positive linear functional tr
on L^{1}(M) defined by tr(h_{\varphi})=\varphi(1) , \varphi\in M_{*} . The (quasi-)norm of L^{p}(M)

for 0<p<\infty is defined by ||a||_{p}=tr(|a|^{p})^{1/p} . a\in L^{p}(M) . When 1\leq p<\infty ,

L^{p}(M) is a Banach space, and its dual space is L^{q}(M) , where \frac{1}{p}+\frac{1}{q}=1 .

The duality is given by the following bilinear form:

(a, b)arrow tr (ab) (=tr(ba)) , a\in L^{p}(M) , b\in L^{q}(M) .

The space L^{p}(M) is independent of the choice of a faithful normal
semifinite weight on M up to isomorphism. Furthermore, when M has a
faithful normal semifinite trace \tau_{0} , L^{p}(M) can be identified with the non-
commutative L^{p} space L^{p}(M, \tau_{0}) introduced in [9].

2. Monotone order completeness of measure topology

In this section we study the monotone order completeness of measure
topology associated with a semifinite von Neumann algebra. The result
does not seem to have been pointed out in the literature, though it may be
well-known probably. As an immediate consequence, we also have the
monotone order completeness of non-commutative L^{p}ZAspaces to introduce
an equivalence relation in L^{p}-spaces. It may be useful to state these
results in the form of a theorem and its corollaries.

Suppose that N is a semifinite von Neumann algebra with a faithful
normal semifinite trace \tau . We denote by \tilde{N} the set of all \tau-measurable
operators, which becomes a complete Hausdorff topological * algebra with
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the measure topology (cf. [7], [12]). For \epsilon , \delta>0 , we set
N(\epsilon, \delta)=\{a\in\tilde{N} : there exists a projection e in N

with ||ae||\leq\epsilon , \tau(1-e)\leq\delta\} .

Then the family \{N(\epsilon, \delta) ; \epsilon, \delta>0\} is a fundamental system of neighbor-
hoods around 0 with respect to the measure topology. We also denote by
\tilde{N}_{+} the set of all positive self-adjoint elements in \tilde{N} . Recall that an opera-
tor a in \overline{N} is to be defined \tau-compact if a satisfies that \tau(E_{ts,\infty)}(|a|))<\infty

for all s>0 , where E_{(S,\infty)}(|a|) is the spectral projection of |a| correspond-
ing to the interval (s, \infty) . This definition of \tau-compactness is equivalent
to that the generalized s-number \mu_{t}(a) of a converges to 0 as tarrow\infty(cf .
[3; Proposition 3. 2] ) .

LEMMA 2. 1. Let a be a \tau-compact operator. Let \{y_{n}\}_{n=1}^{\infty} be a
sequence in N which converges to 0 strongly. Then the sequence

\{y_{n}a\}_{n=1}^{\infty} converges to 0 in the measure topology.

PROOF. Considering the polar decomposition of a , we may assume
that a is positive self-adjoint. Let a= \int_{l0,\infty)}\lambda de_{\lambda} be the spectral decomp0-

sition of a . Fix any positive numbers \epsilon and \delta . Let \gamma=\sup||y_{n}||(<\infty) and
\alpha=\frac{\epsilon}{\gamma} . Since a is \tau -measurable, we can take a \beta(>\alpha) such that

\tau(\int_{(\beta,\infty)}de_{\lambda})\leq\delta . We write y_{n}a=y_{n} \int_{l0}

, al
\mathcal{A}de_{\lambda}+y_{n}\int_{(a}

, \beta l

\mathcal{A}de_{\lambda}

+y_{n} \int_{(\beta,\infty)}\mathcal{A}de_{\lambda} . Then the first and the last terms are in N(\epsilon, \delta) . For the

second term, since a is \tau-compact and \int_{(a,\beta l}\mathcal{A}de_{\lambda}\leq\beta\int_{(a,\infty)}de_{\lambda} , it follows

that \int_{(a,\rho l}\mathcal{A}de_{\lambda}\in L^{2}(N, \tau) . Hence, representing N on L^{2}(N, \tau) , we have

||y_{n} \int_{(a,\beta l}\mathcal{A}de_{\lambda}||_{2}arrow 0 as y_{n}arrow 0 strongly. This completes the proof. \square

THEOREM 2. 2. Let \{a_{n}\}_{n=1}^{\infty} be an increasing sequence in \tilde{N}_{+} .
Assume that there is a \tau-compact operator a in \tilde{N} satisfying a_{n}\leq a for
all n\in N . Then there exists a unique element a_{\infty} in \tilde{N} such that a_{n}

converges to a_{\infty} in the measure topology.

PROOF. By [8; Lemma 2. 2], for each n\in N , there is a unique x_{n}\in

N such that 0\leq x_{n}\leq s(a) and a_{n}=a^{1/2}x_{n}a^{1/2} . The same lemma shows that
the sequence \{x_{n}\}_{n=1}^{\infty} is increasing. The x_{n} converges strongly to an ele-
ment x in N. We put a_{\infty}=a^{1/2}xa^{1/2} . Since x-x_{n} converges to 0 strongly,
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we conclude from the previous lemma that x_{n}a^{1/2} converges to xa^{1/2} in the
measure topology. This yields the result and completes the proof. \square

REMARK 2. 3. In the preceding theorem, we can not drop the condi-
tion that a is \tau-compact.

Let l^{2} be the usual sequence space. We denote an increasing sequence
\{a_{n}\}_{n=1}^{\infty} of bounded operators on l^{2} by matrices with respect to its canoni-

cal basis e_{n}=
(0,\cdots, 0, 1, 0,\cdots)n as follows;

a_{n}=\{\begin{array}{ll}E_{n} 00 0\end{array}\} , where E_{n} is the identity matrix of degree n . Then
\{a_{n}\}_{n=1}^{\infty} is dominated by the identity operator. However, it is impossible
that \{a_{n}\}_{n=1}^{\infty} forms a Cauchy sequence in the measure topology.

We assume that 0<p<\infty throughout the rest of this section. It is
well-known that non-commutative L^{p}-spaces L^{p}(N, \tau) associated with a
semifinite von Neumann algebra N and its trace \tau are included in the class
of \tau-compact operators (cf. [3; Remark 3. 3). From Theorem 2. 2 and [3;
Theorem 3. 6], we have the following result.

COROLLARY 2. 4. Let \{a_{n}\}_{n=1}^{\infty} be an increasing sequence in
L^{p}(N, \tau)_{+} . Assume that there is an element a in L^{p}(N, \tau) satisfying a_{n}

\leq a for all n\in N . Then there exists a unique element a_{\infty} in L^{p}(N, \tau)

such that ||a_{n}-a_{\infty}||_{p}arrow 0 .

Moreover, we can also obtain a corresponding result for non-
commutative L^{p}-spaces L^{p}(M) associated with an arbitrary von Neumann
algebra M. For any a in L^{p}(M) , it is known that \mu_{t}(a)=t^{-1/p}||a||_{p} for all
t>0 , where \mu_{t}(a) is the generalized s-number relative to the canonical
trace on the crossed product (cf. [3 : lemma 4. 8]). This implies that
L^{p}(M) is included in the class of \tau-compact operators.

COROLLARY 2. 5. Let \{a_{n}\}_{n=1}^{\infty} be an increasing sequence in
L^{p}(M)_{+} . Assume that there is an element a in L^{p}(M) satisfying a_{n}\leq a

for all n\in N . Then there exists a unique element a_{\infty} in L^{p}(M) such
that ||a_{n}-a_{\infty}||_{p}arrow 0 .

PROOF. From the assumption, we conclude by Theorem 2. 2 that a_{n}

converges to an element a_{\infty} in the measure topology. Since L^{p}(M) is
closed in the measure topology (cf. [4; Definition 1. 7]), a_{\infty} is included in
L^{p}(M) . Moreover, the norm topology of L^{p}(M) is exactly the induced
measure topology (cf. [4; Proposition 1. 17] or [12; ChapterII, Proposition
26]), we conclude that ||a_{n}-a_{\infty}||_{p}arrow 0 . \square
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3. Asymmetric decomposition and equivalence relation in L^{p}-spaces

Let M be an arbitrary von Neumann algebra. We introduce an equiv-
alence relation in L^{p}(M)_{+} as in the theory of C^{*} -algebra to study a func-
tional on L^{p}-spaces which satisfies the property as a trace. For a , b in
L^{p}(M)_{+} , we define a\sim b if there exists a sequence \{x_{n}\}_{n=1}^{\infty} in L^{2p}(M) such
that a=\Sigma_{n=1}^{\infty}x_{n}^{*}x_{n} , b=\Sigma_{n=1}^{\infty}x_{n}x_{n}^{*} in the sense of L^{p}-(quasi-)norm conver-
gence. Also, we define a\prec b if there exists an element c in L^{p}(M)_{+} such
that a\sim c\leq b . Then we have the countably asymmetric decomposition for
L^{p}(M) .

PROPOSITION 3. 1. Let 0<p<\infty . If \{x_{i}\}_{i=1}^{\infty} , \{y_{j}\}_{j=1}^{\infty} are sequences in
L^{2p}(M) such that \Sigma_{i=1}^{\infty}x_{i}^{*}x_{i}=\Sigma_{j=1}^{\infty}y_{j}y_{j}* . Thcn there exists a doublc

sequence\{z_{i,j}\}_{i,j=1}^{\infty}\Sigma_{i=1}^{\infty}z_{i,j}^{*}z_{i,j}

.
in L^{2p}(M) such that x_{i}x_{i}^{*}=\Sigma_{j=1}^{\infty}z_{i,j}z_{i^{*}j}, and yj^{*}y_{j}=

PROOF. Put a=\Sigma x_{i}^{*}x_{i}=\Sigma y_{j}y_{j}^{*} . As in the proof of [8; Lemma 2.
21], we can find a unique operator s_{i} in N satisfying the following condi-
tions; 0\leq s_{i}^{*}s_{i}\leq s(|x_{i}|)\leq s(a) , x_{i}=s_{i}a^{1/2} in \tilde{N} . If follows from the unique-
ness that s_{i} is fixed under the dual action and that s_{i}\in M . Similarly,
there exists an element t_{j} in M such that y_{j}^{*}=t_{j}^{*}a^{1/2} . Since \Sigma_{i=1}^{n}x_{i}^{*}x_{i}=

a^{1/2}( \sum_{i=1}^{n}s_{i}^{*}s_{i})a^{1/2} increases to a in the measure topology, we can conclude
by the uniqueness part of [8 ; Lemma 2. 2] that the sequence \{\sum_{i=1}^{n}s_{i}^{*}s_{i}\}_{n=1}^{\infty}

increases strongly to the range projection of a . Then the sequence
\{t_{j}^{*}a^{1/2}(\Sigma_{i=1}^{n}s_{i}^{*}s_{i})a^{1/2}t_{j}\}_{n=1}^{\infty} increases to t_{j}^{*}at_{j}=y_{j}^{*}y_{j} in L^{p} -norm topology.
Putting z_{i,j}=s_{i}a^{1/2}t_{j} , we complete the proof.

By deleting some of the x_{i} and corresponding z_{i,j} , we immediately
conclude the following corollay.

C OROLLARY 3. 2. Let 0<p<\infty . If \{x_{i}\}_{i=1}^{\infty} , \{y_{j}\}_{j=1}^{\infty} are sequences in
L^{2p}(M) such that \Sigma_{i=1}^{\infty}x_{i}^{*}x_{i}\leq\Sigma_{j=1}^{\infty}y_{j}y_{j}* . Then there exists a double
sequence \{z_{i,j}\}_{ij=1}^{\infty} in L^{2p}(M) such that x_{i}x_{i}^{*}=\Sigma_{j=1}^{\infty}z_{i,j}z_{i,j}^{*} and \Sigma_{i=1}^{\infty}z_{i.j}^{*}z_{i,j}\leq

y_{j}^{*}y_{j} .

THEOREM 3. 3. Let 0<p<\infty . The relation “
\sim

” becomes an
equivalence relation in L^{p}(M)_{+} . It is countably additive in the sense
that \Sigma_{i=1}^{\infty}a_{i}\sim\Sigma_{i=1}^{\infty}b_{i} when the sum exists and a_{i}\sim b_{i} in L^{p}(M)_{+} . The
relation “

\prec
” satisfifies the transitivity and the Riesz decomposition

property: if \Sigma_{i=1}^{\infty}a_{i}\prec\Sigma_{j=1}^{\infty}b_{j} then there exists a double sequence \{c_{i,j}\}_{i,j=1}^{\infty}

in L^{p}(M)_{+} such that a_{i}=\Sigma_{j=1}^{\infty}c_{i,j} and \Sigma_{i=1}^{\infty}c_{i,j}\prec b_{j} .

PROOF. To see that the relation “
\sim

” is an equivalence relation,
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it is enough to show the transitivity. For elements a , b and c in L^{p}(M)_{+} ,
suppose that a\sim b and b\sim c . From the above proposition there is a dou-
ble sequence \{z_{i,j}\}_{i,j=1}^{\infty} in L^{2p}(M) such that

a=\Sigma_{i=1}^{\infty}(\Sigma_{j=1}^{\infty}z_{i,j}z_{i,j}^{*}) and c=\Sigma_{j=1}^{\infty}(\Sigma_{i=1}^{\infty}z_{i,j}^{*}z_{i,j}) .

Suppose that K is any bijective map K:N\ni n– (i(n), j(n))\in N\cross N .
By the monotone order completeness, it is straightforward to see that the
sequence \{\sum_{n=1}^{N}z_{K(n)}z_{K(n)}^{*}\}_{N=1}^{\infty} converges to a in the L^{p}ZAnorm topology.
Moreover, the series \sum_{j=1}^{\infty}(\sum_{i=1}^{\infty}z_{i,j}z_{i,j}^{*}) also converges to a . Thus we
have a=\Sigma_{n=1}^{\infty}z_{K(n)}z_{K(n)}^{*} and c=\Sigma_{n=1}^{\infty}z_{K(n)}^{*}z_{K(n)} , hence the relation “

\sim

becomes an equivalence relation in L^{P}(M)_{+} .
To show the Riesz decomposition property, suppose that \sum_{i=1}^{\infty}a_{i}\sim c\leq

\sum_{j=1}^{\infty}b_{j} for some c in L^{p}(M) . Then there exists a sequence \{u_{n}\}_{n=1}^{\infty} in
L^{2p}(M) such that \Sigma_{i=1}^{\infty}a_{i}=\Sigma_{n=1}^{\infty}u_{n}^{*}u_{n} and \Sigma_{n=1}^{\infty}u_{n}u_{n}^{*}=c\leq\Sigma_{j=1}^{\infty}b_{j} . By the
fifirst equation, we can take a double sequence \{v_{i,n}\}_{i,n=1}^{\infty} in L^{2p}(M) such
that a_{i}=\Sigma_{n=1}^{\infty}v_{i,n}v_{i,n}^{*} and \Sigma_{i=1}^{\infty}v_{i,n}^{*}v_{i,n}=unUn . Then we have \Sigma_{i,n=1}^{\infty}v_{i,n}^{*}v_{i,n}\leq

\Sigma_{j=1}^{\infty}b_{j} , hence there is a triple sequence \{w_{i,j,n}\}_{i,j,n=1}\infty in L^{2p}(M) such that
v_{i,n}v_{i,n}^{*}=\Sigma_{j=1}^{\infty}w_{i,j,n}^{*}w_{i,j,n} and \Sigma_{i,n=1}^{\infty}w_{i,j,n}^{*}w_{i,j,n}\sim\Sigma_{i,n=1}^{\infty}w_{i,j,n}w_{i,j,n}^{*}\leq b_{j} . Put-
ting c_{i,j}=\Sigma_{n=1}^{\infty}w_{i,j,n}^{*}w_{i,j,n} , we have a_{i}=\Sigma_{j=1}^{\infty}c_{i,j} and \Sigma_{i=1}^{\infty}c_{i,j}\prec b_{j} . It is

easy\square

to establish the rest of the theorem, and the proof is omitted.

4. Finiteness of L^{p}-spaces
As an application of the preceding results, we study a certain finite-

ness of non-commutative L^{p} -spaces associated with an arbitrary von
Neumann algebra, and we shall see that the notion of finiteness of L^{p}

-

space for 1<p<\infty is coincides with that of von Neumann algebras. Let
M be an arbitrary (not necessarily semifinite) von Neumann algebra.
Once Theorem 3. 3 has been established, we can consider a quotient space
of L^{p}-space with respect to the relation “

\sim
” We denote by L_{sa}^{p} the set

of all self-adjoint elements in L^{p}(M) and denote by L_{0}^{p} the real linear
subspace of L_{sa}^{p} consisting of elements of the form a-b , where a , b\in

L^{p}(M)_{+} and a\sim b . Moreover, we denote by Q the quotient map Q:L_{sa}^{p}

arrow L_{sa}^{p}/L_{0}^{p} . As in the proof of [2: Theorem 2. 6], it is straightforward to
verify that the subspace L_{0}^{p} is closed in L_{sa}^{p} . Therefore, there is a canoni-
cal linear isometry between the dual of the quotient space Q(L_{sa}^{p}) and the
space (L_{0}^{p})^{\perp} consisting of elements f in (L_{sa}^{p})^{*} such that f(a)=0 for all a
in L_{0}^{p} . Note that f\in(L_{0}^{p})^{\perp} if and only if f(x^{*}x)=f(xx^{*}) for all x\in

L^{2p}(M) .
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LEMMA 4. 1. Let 1\leq p<\infty and \frac{1}{p}+\frac{1}{q}=1 . Suppose that f\in

(L_{0}^{p})^{\perp} . Let b be a unique element in L_{sa}^{q} corresponding to f such that f
=tr(b\cdot) . If b=b_{+}-b_{-} is the Jordan decomposition of b , then tr(b_{+}\cdot)

and tr (b-

\cdot ) arc elements of (L_{0}^{p})^{\perp} .

PROOF. Note that b satisfies tr(bx^{*}x)=tr(bxx^{*}) , x\in L^{2p}(M) .
Putting x=ua^{1/2} . we have tr(ba)=tr(u^{*}bua) for any unitary u\in M and
any a\in L_{+}^{p} . This implies that b is affiliated with the commutant M’ By

the uniqueness of the Jordan decomposition, it follows that b_{+} , b_{-} are also
affiliated with M’ Denote by e_{1} (resp. e_{2}) the support projection of b_{+}

(resp. b_{-}). Then we have b_{+}=be_{1} , b_{-}=-be_{2} , and e_{1} , e_{2} are orthogonal
projections in the center of M. Hence we have tr(b_{+}x^{*}x)=tr(be_{1}x^{*}x)=

tr(bx^{*}e_{1}x)=tr(be_{1}xx^{*}e_{1})=tr(b_{+}xx^{*}) and tr(b_{-}x^{*}x)=tr(b_{-}xx^{*}) . This
completes the proof. \square

THEOREM 4. 2. Let 1<p<\infty and \frac{1}{p}+\frac{1}{q}=1 . If a\in L^{p}(M)_{+} ,

then the following four constants are equal;
\alpha=\inf\{||a-c||_{p;}c\in L_{0}^{p}\} ,
\beta=\inf\{||b||_{p} ; b\succ a, b\in L_{+}^{p}\} ,
\gamma=\sup\{f(a) ; f\in(L_{sa}^{p})^{*} , ||f||=1 , f(x^{*}x)=f(xx^{*})\geq 0 , x\in

L^{2p}(M)\} , and
\delta=\sup { tr(h_{\varphi}^{1/q}a) : \varphi is a normal tracial state on M }.

PROOF. A similar argument as in the proof of [2; Theorem 2. 9]

shows that \alpha\geq\beta\geq\gamma . Suppose \alpha>0 to show that \alpha\leq\gamma . Since \alpha is the
quotient norm of a in Q(L_{sa}^{p}) , there is by Hahn-Banach’s theorem an ele-
ment \tilde{f} in Q(L_{sa}^{p})^{*} with ||\tilde{f}||=1 such that \tilde{f}(Q(a))=\alpha . Let b be a
unique element in L_{sa}^{q} corresponding to \overline{f}(Q(\cdot)) such that \tilde{f}(Q(\cdot))=

tr(b\cdot) . If b=b_{+}-b_{-} is the Jordan decomposition of b , then we have
tr(b_{+}\cdot)\in(L_{0}^{p})^{\perp} by Lemma 4. 1. Since ||b||_{q}^{q}=||b_{+}||_{q}^{q}+||b_{-}||_{q}^{q} , we have ||b_{+}||_{q}\leq 1

and tr(b_{+}a)\geq\alpha . It follows that ||b_{+}||_{q}=1 . Hence we have b_{-}=0 and b\geq 0 .
Put f=\overline{f}(Q(\cdot)) . Then we have f\in(L_{sa}^{p})^{*} , ||f||=1 , and f satisties that
f(x^{*}x)=f(xx^{*})\geq 0 for any x\in L^{2p}(M) . Thus \alpha\leq\gamma . To see that \gamma=\delta ,

suppose that f is an element in (L_{sa}^{p})^{*} satisfying f(x^{*}x)=f(xx^{*})\geq 0 for
any x\in L^{2p}(M) . Let b be a unique element in L_{+}^{q} corresponding to f such
that f=tr(b\cdot) . Then b is affiliated with M’ Taking a unique positive
element \varphi\in M_{*} such that b=h_{\varphi}^{1/q} , h_{\varphi} is affiliated with M’ It follows from
[5; Theoreme 2] or [12: ChapterlV, Proposition 4] that the Connes’ spa-

tial derivative \frac{d\varphi}{d\phi_{0}} is affiliated with M’ . where \phi_{0} is a faithful normal
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semifinite weight on M’ Due to [1,\cdot Theorem 9] or [12; Chapterlll, Cor-
ollary 27], we conclude that \varphi is a trace on M. Conversely, for each nor-
mal finite trace \varphi on M, the element h_{\varphi} is affiliated with M’ Hence the
element tr(h_{\varphi}^{1/q}\cdot ) in (L_{sa}^{p})^{*} satisfies that tr(h_{\varphi}^{1/q}x^{*}x)=tr(h_{\varphi}^{1/q}xx^{*})\geq 0 , x\in

L^{2p}(M) . Thus we get the desired isometric bijective correspondence
which implies that \gamma=\delta . This completes the proof. \square

DEFINITION 4. 3. A positive element a in L^{p}(M) is said to be
fifinite if for each a’\in L^{p}(M)_{+} such that a’\leq a and a’\sim a implies that a’=
a . We say that L^{p}(M) is fifinite if every element in L^{p}(M)_{+} is fifinite.

REMARK 4. 4. For the case of p=1 , the above definition is vacu-
ous. Let a , b be elements in L^{1}(M)_{+} . Suppose that a\sim b\leq a . Then we
have tr(a)=tr(b) . It follows that ||a-b||_{1}=tr(a-b)=0 , i . e . a=b .
Therefore, the space L^{1}(M) is always finite in the sense defined above for
an arbitrary von Neumann algebra.

It is easy to verify the following lemmas.

LEMMA 4. 5 (cf. [2; Lemma 3. 3]). L^{p}(M) is fifi nite if and only

if L^{p}(M)_{+}\cap L_{0}^{p}=\{0\} .

LEMMA 4. 6. Suppose that \{\varphi_{\lambda}\}_{\lambda\in\Lambda} is a family of positive normal
functionals on M. Then the following conditions are equivalent.
(1) The supremum of the support projections of \varphi_{\lambda} equals to 1.
(2) \{tr(h_{\varphi\lambda}\cdot),\cdot\lambda\in\Lambda\} is separating for M_{+} .
(3) \{tr(h_{\varphi\lambda}^{1/q}\cdot) ; \lambda\in\Lambda\} is separating for L^{p}(M)_{+} .

The following theorem shows that our notion of finiteness of non-
commutative L^{p} space for 1<p<\infty precisely agrees with that of von
Neumann algebras.

THEOREM 4. 7. Let 1<p<\infty . The L^{p}(M) is finite if and only

if M is a fifinite von Neumann algebra.

PROOF. Suppose that L^{p}(M) is finite. Let a be an element in
L^{p}(M)_{+} . If tr(h_{\varphi}^{1/q}a)=0 for any normal finite trace \varphi on M, then Q(a)=
0 by Theorem 4. 2, where Q denotes the quotient map. Since Q is faithful
on L^{p}(M)_{+} by Lemma 4. 5, we have a=0. Thus the set { tr(h_{\varphi}^{1/q}\cdot);\varphi is a

normal fifinite trace on M} is separating for L^{p}(M)_{+} . It follows from the
previous lemma that M has a sufficient family of normal finite traces.
Conversely, if M has a sufficient family \{\varphi_{\lambda}\}_{\lambda\in\Lambda} of normal tracial states,

then \{tr(h_{\varphi\lambda}^{1/q}\cdot);\lambda\in\Lambda\} is separating for L^{p}(M)_{+} by Lemma 4. 6. For a\in



Finiteness of von Neumann algebras and non-commutative L^{p} -spaces 305

L^{p}(M)_{+}\cap L_{0}^{p} , we have by Theorem 4. 2,

0=||Q(a)|| \geq\sup\{tr(h\varphi^{1/q}a) \lambda; \lambda\in\Lambda\}0 .

Thus a=0, hence the result follows from Lemma 4. 5. \square
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