The moment problem on divisible abelian semigroups

Nobuhisa SAKAKIBARA (Received July 20, 1988)

1. Introduction

The moment problem is concerned with the integral representation of positive definite functions on semigroups. A recent detailed study of the moment problem is found in [2]. The purpose of this paper is to prove that every positive definite function on a divisible countable semigroup admits a unique integral representation.

Let S be an abelian semigroup with zero element 0. A semicharacter on S is a function $\rho: S \to \mathbf{R}$ such that $\rho(0)=1$, $\rho(s+t)=\rho(s)\rho(t)$ for all s, $t \in S$. The set S* of all semicharacters on S is called the *dual semigroup* of S. We equip S* with the topology of pointwise convergence. A function $\varphi: S \to \mathbf{R}$ is called *positive definite* if

$$\sum_{i,j=1}^{n} c_i c_j \varphi(s_i + s_j) \ge 0$$

for all $n \in \mathbb{N}$, $\{s_1, \dots, s_n\} \subset S$ and $\{c_1, \dots, c_n\} \subset \mathbb{R}$. A function $\psi : S \to \mathbb{R}$ is called *negative definite* if

$$\sum_{i,j=1}^n c_i c_j \psi(s_i + s_j) \leq 0$$

for all $n \in \mathbb{N}$, $\{s_1, \dots, s_n\} \subset S$ and $\{c_1, \dots, c_n\} \subset \mathbb{R}$ with $\sum_{i=1}^n c_i = 0$. Let $M_+(S^*)$ denote the set of all nonnegative Radon measures on S^* , and let $E_+(S^*)$ denote the set of $\mu \in M_+(S^*)$ such that

$$\int_{S^*} |\rho(s)| d\mu(\rho) < \infty \quad \text{for all } s \in S.$$

A function $f: S \rightarrow \mathbf{R}$ is called a *moment function* if there exists a measure $\mu \in E_+(S^*)$ such that

$$f(s) = \int_{S^*} \rho(s) d\mu(\rho) \text{ for } s \in S.$$

Every moment function is positive definite. It is known (see [4]) that every bounded positive definite function is a moment function whose representing measure is unique. But a positive definite function is not necessarily a moment function, and also a representing measure for a moment function is not necessarily unique. For instance, according to the classical Hamburger moment problem, every positive definite function on the additive semigroup of nonnegative integers N_0 is a moment function, but there exists a positive definite function whose representing measure is not unique.

An abelian semigroup S is called *perfect* if every positive definite function is a moment function whose representing measure is unique. For instance, the additive semigroup of nonnegative rational numbers Q_+ is perfect (see [2], Proposition 6.5.6). Prefect semigroups form a rather restrictive class, while they have some very nice properties:

(1) The direct sum of a countable family of perfect semigroups is perfect (see [2], Note VI).

(2) Any homomorphic image of a perfect semigroup is perfect (see [2], Theorem 6.5.5).

An abelian semigroup S is called 2-divisible if every $s \in S$ can be written s = t + t for some $t \in S$.

Berg [1] proved the following results.

THEOREM A. The abelian semigroup (D, +) of dyadic numbers (i. e. $D = \{k2^{-n} | k, n \in N_0\}$) is perfect.

THEOREM B. If a countable abelian semigroup S is 2-divisible, then S is perfect.

We say that an abelian semigroup S is *divisible* if every $s \in S$ can be written s = nt for some $n \ge 2$ and some $t \in S$. In § 2 of this paper, we shall generalize the above Berg's results to the wider class of divisible abelian semigroups. In § 3, we shall characterize the completely negative difinite functions on a divisible abelian semigroup by the notion of Schur monotonicity.

2. Main results

For each sequence $\vec{m} = \{m_n\}_{n \ge 1}$ of integers $m_n \ge 2$, we define the abelian semigroup

$$T(\vec{m}) = \left\{ \frac{k}{m_1 \cdots m_n} | k \in N_0, n \ge 1 \right\}.$$

As particular cases, we have $T(\vec{m}) = Q_+$ if $m_n = n+1$ for $n \ge 1$, and $T(\vec{m}) = D$ if $m_n = 2$ for $n \ge 1$. We shall prove that $(T(\vec{m}), +)$ is perfect for each \vec{m} .

First, we consider the case when m_n is odd for every $n \ge 1$. For $x \in \mathbf{R}$ the function $\rho_x: T(\vec{m}) \longrightarrow \mathbf{R}$ defined by $\rho_x(r) = e^{rx}$ is a semicharacter and so is $\rho_{-\infty}: = \mathbf{1}_{\{0\}}$, the indicator function of $\{0\}$. Since each m_n is odd, the function $x\left(\frac{k}{m_1\cdots m_n}\right): =(-1)^k$ is well defined and multiplicative on $T(\vec{m})$. Then $x\rho_x$ is also a semicharacter for $x \in \mathbf{R}$. Note that $x = \mathbf{1}_{2T(\vec{m})}$ $-\mathbf{1}_{T(\vec{m})\setminus 2T(\vec{m})}$. Conversely let $\rho \in T(\vec{m})^*$. Then $\rho(1) \in \mathbf{R}$ and $x = \log |\rho(1)| \in$ $\mathbf{R}(:=[-\infty,\infty))$. It is easy to see that, for $r = \frac{k}{m_1\cdots m_n} \in T(\vec{m})$, $\rho(r) =$ $\rho(1)^r$ if $\rho(1) \ge 0$ and $\rho(r) = (-1)^k (-\rho(1))^r$ if $\rho(1) < 0$. Hence $\rho = \rho_x$ if $\rho(1) \ge 0$ and $\rho = x\rho_x$ if $\rho(1) < 0$. Moreover the mapping $\rho \longmapsto \rho(1)$ is a topological semigroup isomorphism of $T(\vec{m})^*$ onto (\mathbf{R}, \cdot) . Thus we may identify $T(\vec{m})^*$ with \mathbf{R} and also with the disjoint union $\mathbf{R} \cup \mathbf{R}$.

THEOREM 2.1. Let $\vec{m} = \{m_n\}_{n \ge 1}$ be a sequence of odd numbers greater than 2. Then the semigroup $(T(\vec{m}), +)$ is perfect. Every positive definite function φ on $T(\vec{m})$ has a unique representation

$$\varphi(r) = a \mathbf{1}_{\{0\}}(r) + \int_{\mathbf{R}} e^{rx} d\mu(x) + \int_{\mathbf{R}} x(r) e^{rx} d\nu(x)$$

for all $r \in T(\vec{m})$, where $a \ge 0$ and μ , $\nu \in M_+(\mathbf{R})$ satisfy

$$\int_{\mathbf{R}} e^{rx} d\mu(x) < \infty, \ \int_{\mathbf{R}} e^{rx} d\nu(x) < \infty \ \text{for} \ r \in T(\vec{m}).$$

PROOF: Let $\ell_n = m_1 \cdots m_n$ for $n \ge 1$. Let φ be a positive definite function on $T(\vec{m})$. For each $n \ge 1$, $\left\{\varphi\left(\frac{k}{\ell_n}\right)\right\}_{k\ge 0}$ is a Hamburger moment sequence because $k \longmapsto \varphi\left(\frac{k}{\ell_n}\right)$ is positive definite on $(N_0, +)$. Therefore it follows (see [2], Theorem 6.2.2) that there exists a $\mu_n \in M_+(\mathbf{R})$ such that

$$\int_{\mathbf{R}} |x|^{k} d\mu_{n}(x) < \infty \quad \text{for } k \ge 0,$$
$$\varphi\left(\frac{k}{\ell_{n}}\right) = \int_{\mathbf{R}} x^{k} d\mu_{n}(x) \quad \text{for } k \ge 0$$

Define the mappings $f_n: \underline{\mathbf{R}} \longrightarrow [0, \infty)$ and $g_n: \underline{\mathbf{R}} \longrightarrow (-\infty, 0]$ by

$$f_n(x) = \exp\left(\frac{x}{\ell_n}\right), \ g_n(x) = -\exp\left(\frac{x}{\ell_n}\right) \text{ for } x \in \underline{R}$$

Then f_n and g_n are homeomorphisms, so there exist τ_n , $\sigma_n \in M_+(\underline{\mathbf{R}})$ such that $\tau_n \circ f_n^{-1} = \mu_n | [0, \infty)$ and $\sigma_n \circ g_n^{-1} = \mu_n | (-\infty, 0)$. Hence we have

$$\varphi\left(\frac{k}{\ell_n}\right) = \int_{\underline{R}} \exp\left(\frac{k}{\ell_n}x\right) d\tau_n(x) + \int_{\underline{R}} x\left(\frac{k}{\ell_n}\right) \exp\left(\frac{k}{\ell_n}x\right) d\sigma_n(x).$$

Since $\tau_n(\underline{\mathbf{R}}) + \sigma_n(\underline{\mathbf{R}}) = \varphi(0) < \infty$, $\{\tau_n\}_{n \ge 1}$ and $\{\sigma_n\}_{n \ge 1}$ are relatively compact in the vague topology on $M_+(\underline{\mathbf{R}})$ (see [2], Proposition 2.4.6). Since the vague topology on $M_+(\underline{\mathbf{R}})$ is metrizable (see [2], Proposition 2.4.10), there is an increasing sequence $n_1 < n_2 < \cdots$ such that τ_{n_i} and σ_{n_i} converge vaguely to $\tau, \sigma \in M_+(\underline{\mathbf{R}})$, respectively, with total masses uniformly bounded by $\varphi(0)$.

Let
$$r = \frac{k}{\ell_n} \in T(\vec{m})$$
 be fixed. For $i \ge 1$ such that $n_i \ge n$, we have
 $\varphi(r) = \varphi(km_{n+1} \cdots m_{n_i} / \ell_{n_i})$
 $= \int_{\underline{R}} e^{rx} d\tau_{n_i}(x) + \int_{\underline{R}} x(r) e^{rx} d\sigma_{n_i}(x).$

Using the fact that, for each nonnegative continuous function f, the integral $\int f d\mu$ is lower semicontinuous in μ with respect to the vague topology (see [2], p. 50), we have

$$\int_{\underline{R}} e^{2rx} d\tau(x) \leq \liminf_{i \to \infty} \int_{\underline{R}} e^{2rx} d\tau_{n_i}(x) \leq \varphi(2r),$$
$$\int_{\underline{R}} e^{2rx} d\sigma(x) \leq \liminf_{i \to \infty} \int_{\underline{R}} e^{2rx} d\sigma_{n_i}(x) \leq \varphi(2r).$$

Since $e^{rx} \leq (1+e^{2rx})/2$, e^{rx} is integrable with respect to τ and σ . Let $h(x) = 1+e^{2(r+1)x}$ for $x \in \mathbf{R}$. Since the sequence $\{h(x)\tau_{n_i}\}_{i\geq 1}$ converges vaguely to $h(x)\tau$, with total masses bounded uniformly by $\varphi(0)+\varphi(2(r+1))$ and since $e^{rx}/h(x) \in C_0(\mathbf{R})$, it follows (see [2], Proposition 2.4.4) that

$$\lim_{i \to \infty} \int_{\underline{R}} e^{rx} d\tau_{n_i}(x) = \lim_{i \to \infty} \int_{\underline{R}} \frac{e^{rx}}{h(x)} h(x) d\tau_{n_i}(x)$$
$$= \int_{\underline{R}} \frac{e^{rx}}{h(x)} h(x) d\tau(x)$$
$$= \int_{\underline{R}} e^{rx} d\tau(x).$$

Similarly

$$\lim_{i\to\infty}\int_{\underline{R}}e^{rx}d\sigma_{n_i}(x)=\int_{\underline{R}}e^{rx}d\sigma(x).$$

Since $r \in T(\vec{m})$ is arbitrary, we have

$$\varphi(r) = \int_{\underline{R}} e^{rx} d\tau(x) + \int_{\underline{R}} x(r) e^{rx} d\sigma(x) \quad \text{for all } r \in T(\vec{m}).$$

Defining $a = \tau(\{-\infty\}) + \sigma(\{-\infty\})$, $\mu = \tau|(-\infty, \infty)$ and $\nu = \sigma|(-\infty, \infty)$ we have

$$\varphi(r) = a \mathbf{I}_{\{0\}}(r) + \int_{\mathbf{R}} e^{rx} d\mu(x) + \int_{\mathbf{R}} x(r) e^{rx} d\nu(x),$$

which shows that φ is a moment function on $(T(\vec{m}), +)$.

Next we prove the uniqueness of the triple (a, μ, ν) . Since

 $\lim_{r\to 0}\varphi(2r)=\mu(\boldsymbol{R})+\nu(\boldsymbol{R})=\varphi(0)-a,$

a is uniquely determined by φ . Suppose that $\mu', \nu' \in M_+(\mathbf{R})$ satisfy

$$\varphi(r) = a \mathbf{1}_{\{0\}}(r) + \int_{\mathbf{R}} e^{rx} d\mu'(x) + \int_{\mathbf{R}} x(r) e^{rx} d\nu'(x)$$

for all $r \in T(\vec{m})$. Then, for $r \in 2T(\vec{m})$, we have

$$\int_{R} e^{rx} d(\mu + \nu)(x) = \int_{R} e^{rx} d(\mu' + \nu')(x).$$

Define the function Φ on the closed right half-plane $C_+ = \{z \in C | \text{Re}z \ge 0\}$ by

$$\Phi(z) = \int_{R} e^{zx} d(\mu + \nu - \mu' - \nu')(x),$$

which is well defined and continuous on C_+ and holomorphic in its interior. Since $2T(\vec{m})$ is dense in $[0, \infty)$, $\Phi(z)=0$ for Rez>0 by uniqueness theorem, so that $\Phi(e^{i\nu})=0$ for $y \in \mathbf{R}$ by continuity. By the injectivity of Fourier-Stieltjes transform (see [5], p. 17), we have $\mu + \nu - \mu' - \nu' = 0$. Since

$$\int_{\mathbf{R}} e^{rx} d(\mu - \nu)(x) = \int_{\mathbf{R}} e^{rx} d(\mu' - \nu')(x)$$

for $r \in T(\vec{m}) \setminus 2T(\vec{m})$, by the similar argument we have $\mu - \nu - \mu' + \nu' = 0$. Therefore $\mu = \mu'$ and $\nu = \nu'$. Thus the triple (a, μ, ν) is unique.

Secondly, we consider the case when $\{m_n | n \in N\} \cap 2N$ is nonvoid and finite. Assume that m_p is even and m_n is odd for all n > p, and let $\ell = m_1 \cdots m_p$. In this case, the function $x = \mathbf{1}_{2T(\vec{m})} - \mathbf{1}_{T(\vec{m}) \setminus 2T(\vec{m})}$ is given by $x \left(\frac{k}{m_1 \cdots m_n}\right) = (-1)^k$ where $n \ge p$, so that x is multiplicative. Then the functions $\rho_x(r) = e^{rx}(x \in \mathbf{R})$, $\rho_{-\infty} = \mathbf{1}_{\{0\}}$ and $x \rho_x(x \in \mathbf{R})$ are semicharacters. Conversely let $\rho \in T(\vec{m})^*$. Then it is easy to see that, for $r = \frac{k}{m_1 \cdots m_n}$ where $n \ge p$, $\rho(r) = \rho(1)^r$ if $\rho\left(\frac{1}{\ell}\right) \ge 0$ and $\rho(r) = (-1)^k (-\rho(1))^r$ if $\rho\left(\frac{1}{\ell}\right)$

N. Sakakibara

<0. Hence
$$\rho = \rho_x$$
 if $\rho\left(\frac{1}{\ell}\right) \ge 0$ and $\rho = x\rho_x$ if $\rho\left(\frac{1}{\ell}\right) < 0$, where $x = \log \rho(1) \in \mathbf{R}$. The mapping $\rho \longmapsto \rho\left(\frac{1}{\ell}\right)$ is a topological semigroup isomorphism of $T(\vec{m})^*$ onto (\mathbf{R}, \cdot) . Thus we may identify $T(\vec{m})^*$ with \mathbf{R} and also with the disjoint union $\mathbf{R} \cup \mathbf{R}$. Just as before, we can prove that

Finally, we consider the case when $\{m_n | n \in N\} \cap 2N$ is infinite. Note in this case that $T(\vec{m})$ is 2-divisible, so that it is perfect by Theorem *B*. Moreover, the set of semicharacters are $\{\rho_x\}_{x\in \underline{R}}$ and we identify $T(\vec{m})^*$ with \underline{R} . Hence, for every positive definite function φ on $T(\vec{m})$, we have a unique representation

$$\varphi(r) = a \mathbf{1}_{\{0\}}(r) + \int_{\mathbf{R}} e^{rx} d\mu(x)$$

Theorem 2.1 remains valid for this case.

for all $r \in T(\vec{m})$, where $a \ge 0$, and $\mu \in M_+(\mathbf{R})$ satisfies

$$\int_{\mathbf{R}} e^{rx} d\mu(x) < \infty \quad \text{for } r \in T(\vec{m}).$$

Consequently, we have the next theorem.

THEOREM 2.2. Let $\vec{m} = \{m_n\}_{n \ge 1}$ be a sequence of integers $m_n \ge 2$. Then the semigroup $(T(\vec{m}), +)$ is perfect.

Using this theorem and the properties (1) and (2) stated in §1, we have the following.

THEOREM 2.3. Every countable divisible abelian semigroup S is perfect.

PROOF: Suppose $S = \{0, s_1, s_2, \dots\}$. Since S is divisible, for every s_j there exist a sequence $\overline{m}^{(j)} = \{m_n^{(j)}\}_{n \ge 1}$ of integers $m_n^{(j)} \ge 2$ and a sequence $\{t_n^{(j)}\}_{n \ge 1}$ of elements in S such that

 $s_j = m_1^{(j)} t_1^{(j)}, t_n^{(j)} = m_{n+1}^{(j)} t_{n+1}^{(j)} \text{ for } n \ge 1.$

Note that for $r = k/m_1^{(j)} \cdots m_n^{(j)} \in T(\vec{m}^{(j)})$ the element $rs_j := kt_n^{(j)}$ is well defined. We define the mapping $\pi : \bigoplus_{j=1}^{\infty} T(\vec{m}^{(j)}) \longrightarrow S$ by

$$\pi(r_1, r_2, \cdots) = \sum_{j=1}^{\infty} r_j S_j.$$

Then π is a surjective homomorphism. Every $T(\vec{m}^{(j)})$ is perfect by Theorem 2.2, so that $\bigoplus_{i=1}^{\infty} T(\vec{m}^{(j)})$ is perfect by (1) in § 1. Hence S =

 $\pi(\bigoplus_{j=1}^{\infty} T(\vec{m}^{(j)}))$ is prefect by (2) in §1. This completes the proof.

We further give the next theorem concerning the integral representation of negative definite functions on $(T(\vec{m}), +)$. The proof can be done by modifying that in [2, proposition 6.5.13], for the integral representation of negative definite functions on $(Q_+, +)$.

THEOREM 2.4. Let $\vec{m} = \{m_n\}_{n \ge 1}$ be a sequence of integers $m_n \ge 2$. Let ψ be a negative definite function on $T(\vec{m})$.

(i) If $\{m_n | n \in N\} \cap 2N$ is finite, then ψ has a form

$$\psi(r) = a + br - cr^{2} + d\mathbf{I}_{\{0\}}(r) + \int_{\mathbf{R}\setminus\{0\}} (1 - e^{rx} - r(1 - e^{x})) d\mu(x) + \int_{\mathbf{R}} (1 - x(r)e^{rx}) d\nu(x),$$

where $a, b \in \mathbb{R}$, $c, d \ge 0$, $\mu \in M_+(\mathbb{R} \setminus \{0\})$ and $\nu \in M_+(\mathbb{R})$ satisfy

$$\int_{|x|>1} x^2 d\mu(x) < \infty,$$

$$\int_{|x|>1} e^{rx} d\mu(x) < \infty, \quad \int_{\mathbb{R}} e^{rx} d\nu(x) < \infty \quad \text{for } r \in T(\vec{m}).$$

The sextuple (a, b, c, d, μ, ν) is uniquely determined by ψ . (ii) If $\{m_n | n \in N\} \cap 2N$ is infinite, then ψ has a form

$$\psi(r) = a + br - cr^{2} + d\mathbf{I}_{\{0\}}(r) + \int_{\mathbf{R}\setminus\{0\}} (1 - e^{rx} - r(1 - e^{x})) d\mu(x),$$

where $a, b \in \mathbb{R}$, $c, d \ge 0$, $\mu \in M_+(\mathbb{R} \setminus \{0\})$ satisfies

$$\int_{|x| \le 1} x^2 d\mu(x) < \infty,$$

$$\int_{|x| > 1} e^{rx} d\mu(x) < \infty \quad for \ r \in T(\vec{m}).$$

The quintuple (a, b, c, d, μ) is uniquely determined by ψ .

3. Application to Schur monotonicity

In this section, applying Theorem 2.2, we characterize the completely negative definite functions on a divisible abelian semigroup in terms of Schur monotonicity.

Let A be a convex subset of some real linear space E. For two vectors $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n)$ in E^n whose components x_i and

N. Sakakibara

 y_i belong to A, we say x is *majorized* by y and write x < y if there exists an $n \times n$ doubly stochastic matrix $P = (p_{ij})$ such that

$$x_i = \sum_{j=1}^n p_{ij} y_j$$
 for $i=1, \cdots, n$.

Let S be an abelian semigroup. A function $\psi: S \longrightarrow \mathbf{R}$ is called *completely negative definite* if $\psi(\cdot + a)$ is negative definite for all $a \in S$. For each $n \in \mathbf{N}$, a function $\psi: S \longrightarrow \mathbf{R}$ is called *Schur increasing of order n* if, for every $\nu = (\nu_1, \dots, \nu_n)$ and $\mu = (\mu_1, \dots, \mu_n)$ in $\operatorname{Mol}^1_+(S)^n$ such that $\nu < \mu$, the inequality

$$\int \psi d(\nu_1 \ast \cdots \ast \nu_n) \leq \int \psi d(\mu_1 \ast \cdots \ast \mu_n)$$

holds, where $Mol^{1}_{+}(S)$ denotes the set of all Radon probability measures with finite support.

Note (see [2, Chapter 7]) that a function $\psi: S \longrightarrow \mathbb{R}$ is Schur increasing of order 2 if and only if ψ is negative definite, and that if ψ is Schur increasing of order $n \ge 3$, then ψ is completely negative difinite. Conversely, Berg [1] proved the following.

THEOREM C. Let S be a 2-divisible abelian semigroup. Then every negative definite function on S is Schur increasing of all orders.

The next theorem extends Theorem C to the case of a divisible abelian semigroup. Here we note that a negative definite function on a divisible abelian semigroup is not necessarily completely negative definite (for example, $\psi(k3^{-n}) = -(-1)^k$ on $\{k3^{-n}|k \in N_0, n \ge 1\}$).

THEOREM 3.1. Let S be a divisible abelian semigroup. Then every completely negative definite function on S is Schur increasing of all orders.

PROOF: Let ψ be a completely negative definite function on S. Let $\mu = (\mu_1, \dots, \mu_n)$ and $\nu = (\nu_1, \dots, \nu_n)$ in $\operatorname{Mol}_+^1(S)^n$ be given such that $\nu < \mu$. There exists a finite set $F \subset S$ on which all μ_i (and hence all ν_i) are concentrated. Suppose $F = \{s_1, \dots, s_d\}$. Since S is divisible, for every s_j there exists a sequence $\overline{m}^{(j)} = \{m_n^{(j)}\}_{n \ge 1}$ of integers $m_n^{(j)} \ge 2$ and a sequence $\{t_n^{(j)}\}_{n \ge 1}$ in S such that

$$s_j = m_1^{(j)} t_1^{(j)}, t_n^{(j)} = m_{n+1}^{(j)} t_{n+1}^{(j)} \text{ for } n \ge 1.$$

Let S_0 be a subsemigroup of S generated by $\{t_n^{(j)} | n \ge 1, j=1, 2, \dots, d\}$. Then $S_0 \supset F$. It is seen as in the proof of Theorem 2.3 that S_0 becomes a homomorphic image of $\bigoplus_{j=1}^{\infty} T(\vec{m}_j^{(j)})$. Hence S_0 is perfect by Theorem 2.2 and (1), (2) in § 1. Since every completely negative definite function on a perfect abelian semigroup is Schur increasing of all orders (see [2], Theorem 7.3.9), $\psi' = \psi | S_0$ is Schur increasing of all orders as a function on S_0 , and hence

$$\int \psi' d(\nu_1 \ast \cdots \ast \nu_n) \leq \int \psi' d(\mu_1 \ast \cdots \ast \mu_n).$$

Since $\mu_1 \ast \cdots \ast \mu_n$ and $\nu_1 \ast \cdots \ast \nu_n$ are concentrated on S_0 , we have

$$\int \psi d(\nu_1 \ast \cdots \ast \nu_n) \leq \int \psi d(\mu_1 \ast \cdots \ast \mu_n),$$

which shows that ψ is Schur increasing of order *n*.

REMARK. After completing the paper, the author has known that Bisgaard and Ressel [3] recently proved a more general result than Theorem 2.3 by a different method.

The author would like to express his hearty thanks to Professors T. Ando, F. Hiai and Y. Nakamura for their helpful suggestions and encouragement.

References

- [1] C. BERG, Fonctions définies négatives et majoration de Schur. Lecture Notes in Math. No. 1096, Springer-Verlag, Berlin-Heidelberg-New York, 1984, pp. 69-89.
- [2] C. BERG, J. P. R. CHRISTENSEN and P. RESSEL, Harmonic Analysis on Semigroups, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1984.
- [3] T. M. BISGAARD and P. RESSEL, Unique disintegration of arbitrary positive definite functions on *-divisible semigroups, Math. Z. 200 (1989), 511-525.
- [4] R. J. LINDAHL, and P. H. MASERICK, Positive-definite functions on involution semigroups, Duke Math. J. 38 (1971), 771-782.
- [5] W. RUDIN, Fourier Analysis on Groups, Interscience Publishers, New York, 1967.

Division of Applied Mathematics Research Institute of Applied Electricity Hokkaido University Sapporo 060, Japan