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The moment problem on divisible abelian semigroups
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1. Introduction

The moment problem is concerned with the integral representation of
positive definite functions on semigroups. A recent detailed study of the
moment problem is found in [2]. The purpose of this paper is to prove
that every positive definite function on a divisible countable semigroup
admits a unique integral representation.

Let S be an abelian semigroup with zero element 0. A semicharacter
on S is a function \rho:Sarrow R such that \rho(0)=1 , \rho(s+t)=\rho(s)\rho(t) for all s ,
t\in S . The set S^{*} of all semicharacters on S is called the dual semigroup
of S . We equip S^{*} with the topology of pointwise convergence. A func-
tion \varphi:Sarrow R is called positive defifinite if

\sum_{i,j=1}^{n}c_{i}c_{j}\varphi(s_{i}+s_{j})\geqq 0

for all n\in N , \{s_{1}, \cdots, s_{n}\}\subset S and \{c_{1^{ }},\cdots, c_{n}\}\subset R . A function \psi : S– R is
called negative defifinite if

\sum_{i,j=1}^{n}c_{i}c_{j}\psi(s_{i}+s_{j})\leqq 0

for all n\in N , \{s_{1}, \cdots, s_{n}\}\subset S and \{c_{1}, \cdots, c_{n}\}\subset R with \sum_{i=1}^{n}c_{i}=0 . Let M_{+}(S^{*})

denote the set of all nonnegative Radon measures on S^{*} . and let E_{+}(S^{*})

denote the set of \mu\in M_{+}(S^{*}) such that

\int_{S^{*}}|\rho(s)|d\mu(\rho)<\infty for all s\in S .

A function f:Sarrow R is called a moment function if there exists a measure
\mu\in E_{+}(S^{*}) such that

f(s)= \int_{S^{*}}\rho(s)d\mu(\rho) for s\in S .

Every moment function is positive definite. It is known (see [4]) that
every bounded positive definite function is a moment function whose re-
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presenting measure is unique. But a positive definite function is not neces-
sarily a moment function, and also a representing measure for a moment
function is not necessarily unique. For instance, according to the classi-
cal Hamburger moment problem, every positive definite function on the
additive semigroup of nonnegative integers N_{0} is a moment function, but
there exists a positive definite function whose representing measure is not
unique.

An abelian semigroup S is called perfect if every positive definite func-
tion is a moment function whose representing measure is unique. For
instance, the additive semigroup of nonnegative rational numbers Q_{+} is
perfect (see [2], Proposition 6. 5. 6). Prefect semigroups form a rather
restrictive class, while they have some very nice properties:

(1) The direct sum of a countable family of perfect semigroups is
perfect (see [2], Note VI).

(2) Any homomorphic image of a perfect semigroup is perfect (see

[2], Theorem 6. 5. 5).
An abelian semigroup S is called 2-divisible if every s\in S can be writ-

ten s=t+t for some t\in S .
Berg [1] proved the following results.

THEOREM A. The abelian semigroup (D, +) of dyadic numbers (i. e.
D=\{k2^{-n}|k, n\in N_{0}\}) is perfect.

THEOREM B. If a countable abelian semigroup S is 2-divisible, then
S is pe7fect.

We say that an abelian semigroup S is divisible if every s\in S can be
written s=nt for some n\geqq 2 and some t\in S . In \S 2 of this paper, we
shall generalize the above Berg’s results to the wider class of divisible
abelian semigroups. In \S 3, we shall characterize the completely negative
difinite functions on a divisible abelian semigroup by the notion of Schur
monotonicity.

2. Main results

For each sequence \vec{m}=\{m_{n}\}_{n\geqq 1} of integers m_{n}\geqq 2 , we define the
abelian semigroup

T( \vec{m})=\{\frac{k}{m_{1}\cdots m_{n}}|k\in N_{0} , n\geqq 1\} .

As particular cases, we have T(\vec{m})=Q_{+} if m_{n}=n+1 for n\geqq 1 , and T(\vec{m})

=D if m_{n}=2 for n\geqq 1 . We shall prove that ( T(\vec{m}), +) is perfect for
each \vec{m} .
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First, we consider the case when m_{n} is odd for every n\geqq 1 . For x\in

R the function \rho_{\chi} : T(\vec{m})arrow R defined by \rho_{\chi}(r)=e^{rx} is a semicharacter
and so is \rho_{-\infty} :=1_{\{0\}} , the indicator function of {0}. Since each m_{n} is odd,

the function x( \frac{k}{m_{1}\cdots m_{n}}) :=(-1)^{k} is well defined and multiplicative on
T(\vec{m}) . Then x\rho_{\chi} is also a semicharacter for x\in R . Note that x=12T(\vec{m})

-1\tau(\vec{m})\backslash 2T(\vec{m}) . Conversely let \rho\in T(\vec{m})^{*} . Then \rho(1)\in R and x=\log|\rho(1)|\in

\underline{R}(:=[-\infty, \infty)) . It is easy to see that, for r= \frac{k}{m_{1}\cdots m_{n}}\in T(\vec{m}) , \rho(r)=

\rho(1)^{r} if \rho(1)\geqq 0 and \rho(r)=(-1)^{k}(-\rho(1))^{r} if \rho(1)<0 . Hence \rho=\rho_{x} if
\rho(1)\geqq 0 and \rho=x\rho_{x} if \rho(1)<0 . Moreover the mapping \rho-arrow\rho(1) is a
topological semigroup isomorphism of T(\vec{m})^{*} onto (\underline{R}, \cdot) . Thus we may
identify T(\vec{m})^{*} with \underline{R} and also with the disjoint union \underline{R}\cup R .

THEOREM 2. 1. Let \vec{m}=\{m_{n}\}_{n\geqq 1} be a sequence of odd numbers
greater than 2. Then the semigroup ( T(\vec{m}), +) is perfect. Every positive
defifinite function \varphi on T(\vec{m}) has a unique representation

\varphi(r)=a1_{\{0\}}(r)+\int_{R}e^{rx}d\mu(x)+\int_{R}x(r)e^{rx}d\nu(x)

for all r\in T(\vec{m}) , where a\geqq 0 and \mu , \nu\in M_{+}(R) satisfy

\int_{R}e^{rx}d\mu(x)<\infty , \int_{R}e^{rx}d\nu(x)<\infty for r\in T(\vec{m}) .

PROOF: Let l_{n}=m_{1}\cdots m_{n} for n\geqq 1 . Let \varphi be a positive definite
function on T(\vec{m}) . For each n\geqq 1 , \{\varphi(\frac{k}{ln})\}_{k\geq 0} is a Hamburger moment

sequence because k- arrow\varphi(\frac{k}{\swarrow n}) is positive definite on (N_{0}, +) . Therefore
it follows (see [2], Theorem 6. 2. 2) that there exists a \mu_{n}\in M_{+}(R) such
that

\int_{R}|x|^{k}d\mu_{n}(x)<\infty for k\geqq 0 ,

\varphi(\frac{k}{l_{n}})=\int_{R}x^{k}d\mu_{n}(x) for k\geqq 0 .

Define the mappings f_{n} : \underline{R}arrow[0, \infty) and g_{n} : \underline{R}arrow(-\infty, 0] by

f_{n}(x)= \exp(\frac{x}{ln}) , g_{n}(x)=- \exp(\frac{x}{l_{n}}) for x\in\underline{R} .

Then f_{n} and g_{n} are homeomorphisms, so there exist \tau_{n} , \sigma_{n}\in M_{+}(\underline{R}) such
that \tau_{n}\circ f_{n}^{-1}=\mu_{n}|[0, \infty) and \sigma_{n}\circ g_{\overline{n}}^{1}=\mu_{n}|(-\infty, 0) . Hence we have
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\varphi(\frac{k}{l_{n}})=\underline{\int_{R}}\exp(\frac{k}{l_{n}}x)d\tau_{n}(x)+\int_{-}Rx(\frac{k}{l_{n}})\exp(\frac{k}{\swarrow n}x)d\sigma_{n}(x) .

Since \tau_{n}(\underline{R})+\sigma_{n}(\underline{R})=\varphi(0)<\infty , \{\tau_{n}\}_{n\geqq 1} and \{\sigma_{n}\}_{n\geqq 1} are relatively compact
in the vague topology on M_{+}(\underline{R}) (see [2], Proposition 2. 4. 6). Since the
vague topology on M_{+}(\underline{R}) is metrizable ( see [2], Proposition 2. 4. 10),

there is an increasing sequence n_{1}<n_{2}<\cdots such that \tau_{n_{i}} and \sigma_{n_{i}} converge
vaguely to \tau , \sigma\in M_{+}(\underline{R}) , respectively, with total masses uniformly bounded
by \varphi(0) .

Let r= \frac{k}{l_{n}}\in T(\vec{m}) be fixed. For i\geqq 1 such that n_{i}\geqq n , we have

\varphi(r)=\varphi(km_{n+1}\cdots m_{n_{i}}/l_{n_{i}})

= \int_{-}Re^{rx}d\tau_{n_{i}}(x)+\int_{-}Rx(r)e^{rx}d\sigma_{n_{i}}(x) .

Using the fact that, for each nonnegative continuous function f, the inte-

gral \int fd\mu is lower semicontinuous in \mu with respect to the vague topology

(see [2], p. 50), we have

\int_{-}Re^{2rx}d\tau(x)\leqq\lim_{iarrow\infty}\inf\int_{-}Re^{2rx}d\tau_{n_{i}}(x)\leqq\varphi(2r) ,

\int_{-}Re^{2rx}d\sigma(x)\leqq\lim_{iarrow\infty}\inf\int_{-}Re^{2rx}d\sigma_{n_{i}}(x)\leqq\varphi(2r) .

Since e^{rx}\leqq(1+e^{2rx})/2 , e^{rx} is integrable with respect to \tau and \sigma . Let h(x)
=1+e^{2(r+1)x} for x\in\underline{R} . Since the sequence \{h(x)\tau_{n_{i}}\}_{i\geqq 1} converges vaguely
to h(x)\tau , with total masses bounded uniformly by \varphi(0)+\varphi(2(r+1)) and
since e^{rx}/h(x)\in C_{0}(\underline{R}) , it follows (see [2], Proposition 2. 4. 4) that

\lim_{iarrow\infty}\int_{-}Re^{rx}d\tau_{n_{i}}(x)=\lim_{iarrow\infty}\underline{\int_{R}}\frac{e^{rx}}{h(x)}h(x)d\tau_{n_{i}}(x)

= \underline{\int_{R}}\frac{e^{rx}}{h(x)}h(x)d\tau(x)

= \int_{-}Re^{rx}d\tau(x) .

Similarly
\lim_{iarrow\infty}\int_{-}Re^{rx}d\sigma_{n_{i}}(x)=\int_{-}Re^{rx}d\sigma(x) .

Since r\in T(\vec{m}) is arbitrary, we have

\varphi(r)=\int_{-}Re^{rx}d\tau(x)+\int_{-}Rx(r)e^{rx}d\sigma(x) for all r\in T(\vec{m}) .
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Defining a=\tau(\{-\infty\})+\sigma(\{-\infty\}) , \mu=\tau|(-\infty, \infty) and \nu=\sigma|(-\infty, \infty) we
have

\varphi(r)=a1_{\{0\}}(r)+\int_{R}e^{rx}d\mu(x)+\int_{R}x(r)e^{rx}d\nu(x) ,

which shows that \varphi is a moment function on ( T(\vec{m}), +) .
Next we prove the uniqueness of the triple (a, \mu, \nu) . Since

\lim_{rarrow 0}\varphi(2r)=\mu(R)+\nu(R)=\varphi(0)-a ,

a is uniquely determined by \varphi . Suppose that \mu’ , \nu’\in M_{+}(R) satisfy

\varphi(r)=a1_{\{0\}}(r)+\int_{R}e^{rx}d’\mu(x)+\int_{R}x(r)e^{rx}d\nu’(x)

for all r\in T(\vec{m}) . Then, for r\in 2T(\vec{m}) , we have

\int_{R}e^{rx}d(\mu+_{1/})(x)=\int_{R}e^{rx}d(\mu’+\nu’)(x) .

Define the function \Phi on the closed right half-plane C_{+}=\{z\in C|{\rm Re} z\geqq 0\} by

\Phi(z)=\int_{R}e^{zx}d(\mu+\nu-\mu’-\nu’)(x) ,

which is well defined and continuous on C_{+} and holomorphic in its inte-
rior. Since 2 T(\vec{m}) is dense in [0, \infty) , \Phi(z)=0 for {\rm Re} z>0 by uniqueness
theorem, so that \Phi(e^{iy})=0 for y\in R by continuity. By the injectivity of
Fourier-Stieltjes transform (see [5], p. 17), we have \mu+\nu-\mu’-\nu’=0 .
Since

\int_{R}e^{rx}d(\mu-\nu)(x)=\int_{R}e^{rx}d(\mu’-\nu’)(x)

for r\in T(\vec{m})\backslash 2T(\vec{m}) , by the similar argument we have \mu-\nu-\mu’+\nu’=0 .
Therefore \mu=\mu’ and \nu=\nu’r Thus the triple (a, \mu, \nu) is unique. \square

Secondly, we consider the case when \{m_{n}|n\in N\}\cap 2N is nonvoid and
finite. Assume that m_{p} is even and m_{n} is odd for all n>p , and let \swarrow=

m_{1}\cdots m_{p} . In this case, the function x=1_{2T(\vec{m})}-1_{T(\vec{m})\backslash 2T(\vec{m})} is given by \chi

( \frac{k}{m_{1}\cdots m_{n}})=(-1)^{k} where n\geqq p , so that \chi is multiplicative. Then the
functions \rho_{x}(r)=e^{rx}(x\in R) , \rho_{-\infty}=1_{\{0\}} and x\rho_{x}(x\in R) are semicharacters.
Conversely let \rho\in T(\vec{m})^{*} . Then it is easy to see that, for r= \frac{k}{m_{1}\cdots m_{n}}

where n\geqq p , \rho(r)=\rho(1)^{r} if \rho(\frac{1}{\swarrow})\geqq 0 and \rho(r)=(-1)^{k}(-\rho(1))^{r} if \rho(\underline{1},)
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<0 . Hence \rho=\rho_{x} if \rho(\frac{1}{l})\geqq 0 and \rho=x\rho_{x} if \rho(\frac{1}{l})<0 , where x=\log

\rho(1)\in\underline{R} . The mapping \rho-arrow\rho(\frac{1}{l}) is a topological semigroup isomor-

phism of T(\vec{m})^{*} onto (R^{ }, \cdot ) . Thus we may identify T(\vec{m})^{*} with R and
also with the disjoint union \underline{R}\cup R . Just as before, we can prove that
Theorem 2. 1 remains valid for this case.

Finally, we consider the case when \{m_{n}|n\in N\}\cap 2N is infinite. Note
in this case that T(\vec{m}) is 2-divisible, so that it is perfect by Theorem B.
Moreover, the set of semicharacters are \{\rho_{x}\}_{x\in\underline{R}} and we identify T(\vec{m})^{*}

with \underline{R}. Hence, for every positive definite function \varphi on T(\vec{m}) , we have
a unique representation

\varphi(r)=a1_{\{0\}}(r)+\int_{R}e^{rx}d\mu(x)

for all r\in T(\vec{m}) , where a\geqq 0 , and \mu\in M_{+}(R) satisfies

\int_{R}e^{rx}d\mu(x)<\infty for r\in T(\vec{m}) .

Consequently, we have the next theorem.

THEOREM 2. 2. Let \vec{m}=\{m_{n}\}_{n\geq 1} be a sequence of integers m_{n}\geqq 2 .
Then the semigroup ( T(\vec{m}), +) is perfect.

Using this theorem and the properties (1) and (2) stated in \S 1, we
have the following.

THEOREM 2. 3. Every countable divisible abelian semigroup S is perfect.

PROOF: Suppose S=\{0, s_{1}, s_{2^{ }},\cdots\} . Since S is divisible, for every s_{j}

there exist a sequence \vec{m}^{(j)}=\{m_{n}^{(j)}\}_{n\geq 1} of integers m_{n}^{(j)}\geqq 2 and a sequence
\{t_{n}^{(j)}\}_{n\geq 1} of elements in S such that

s_{j}=m1^{j\rangle}t_{1}^{(j)} , t_{n}^{(j)}=m_{n+1}^{(j)}t_{n+1}^{(j)} for n\geqq 1 .

Note that for r=k/mi^{j)}\cdots m_{n}^{(j)}\in T(\vec{m}^{(j)}) the element rs_{j} :=kt_{n}^{(j)} is well

defined. We define the mapping \pi:\bigoplus_{j=1}^{\infty}T(\vec{m}^{(j)})arrow S by

\pi(r_{1}, r_{2^{ }},\cdots).=\sum_{j=1}^{\infty}r_{j}s_{j} .

Then \pi is a surjective homomorphism. Every T(\vec{m}^{(j)}) is perfect by TheO-

rem 2. 2, so that \bigoplus_{j=1}^{\infty}T(\vec{m}^{(j)}) is perfect by (1) in \S 1. Hence S=
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\pi(\bigoplus_{j=1}^{\infty}T(\vec{m}^{(j)})) is prefect by (2) in \S 1. This completes the proof. \square

We further give the next theorem concerning the integral representa-
tion of negative definite functions on ( T(\vec{m}), +) . The proof can be done
by modifying that in [2, proposition 6. 5. 13], for the integral representa-
tion of negative definite functions on ( Q_{+}, +) .

THEOREM 2. 4. Let \vec{m}=\{m_{n}\}_{n\geq 1} be a sequence of integers m_{n}\geqq 2 .
Let \psi be a negative definite function on T(\vec{m}) .

(i) If \{m_{n}|n\in N\}\cap 2N is fifinite, then \psi has a form
\psi(r)=a+br-cr^{2}+d1_{\{0\}}(r)

+ \int_{R\backslash \{0\}}(1-e^{rx}-r(1-e^{x}))d\mu(x)

+ \int_{R}(1-x(r)e^{rx})d\nu(x) ,

where a, b\in R, c, d\geqq 0 , \mu\in M_{+}(R\backslash \{0\}) and \nu\in M_{+}(R) satisfy

\int_{0<|x|\leqq 1}x^{2}d\mu(x)<\infty ,

\int_{|\chi|>1}e^{rx}d\mu(x)<\infty , \int_{R}e^{rx}d\nu(x)<\infty for r\in T(\vec{m}) .

The sextuple (a, b, c, d, \mu, \nu) is uniquely determined by \psi.
(ii) If \{m_{n}|n\in N\}\cap 2N is infifinite, then \psi has a form

\psi(r)=a+br-cr^{2}+d1_{\{0\}}(r)

+ \int_{R\backslash \{0\}}(1-e^{rx}-r(1-e^{x}))d\mu(x) ,

where a, b\in R, c, d\geqq 0 , \mu\in M_{+}(R\backslash \{0\}) satisfifies
\int_{0<|x|\leqq 1}x^{2}d\mu(x)<\infty ,

\int_{|x|>1}e^{rx}d\mu(x)<\infty for r\in T(\vec{m}) .

The quintuple (a, b, c, d, \mu) is uniquely determined by \psi.

3. Application to Schur monotonicity

In this section, applying Theorem 2. 2, we characterize the completely
negative definite functions on a divisible abelian semigroup in terms of
Schur monotonicity.

Let A be a convex subset of some real linear space E. For two
vectors x=(x_{1}, \cdots, x_{n}) and y=(y_{1}, \cdots, y_{n}) in E^{n} whose components x_{i} and
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y_{i} belong to A, we say x is majorized by y and write x\prec y if there exists
an n\cross n doubly stochastic matrix P=(p_{ij}) such that

x_{i}= \sum_{j=1}^{n}p_{ij}y_{j} for i=1 , \cdots , n .

Let S be an abelian semigroup. A function \psi:Sarrow R is called com-
pletely negative defifinite if \psi(\cdot+a) is negative definite for all a\in S . For
each n\in N , a function \psi:Sarrow R is called Schur increasing of order n

if, for every \nu=(\nu_{1^{ }},\cdots, \nu_{n}) and \mu=(\mu_{1}, \cdots, \mu_{n}) in Mo1_{+}^{1}(S)^{n} such that \iota_{J}\prec\mu ,

the inequality

\int\psi d(\nu_{1}*\cdots*\nu_{n})\leqq\int\psi d(\mu_{1}*\cdots*\mu_{n})

holds, where Mo1_{+}^{1}(S) denotes the set of all Radon probability measures
with finite support.

Note (see [2, Chapter 7]) that a function \psi:Sarrow R is Schur increas-
ing of order 2 if and only if \psi is negative definite, and that if \psi is Schur
increasing of order n\geqq 3 , then \psi is completely negative difinite. Con-
versely, Berg [1] proved the following.

THEOREM C. Let S be a 2-divisible abelian semigroup. Then every
negative defifinite function on S is Schur increasing of all orders.

The next theorem extends Theorem C to the case of a divisible
abelian semigroup. Here we note that a negative definite function on a
divisible abelian semigroup is not necessarily completely negative definite
(for example, \psi(k3^{-n})=-(-1)^{k} on \{k3^{-n}|k\in N_{0} , n\geqq 1\} ).

THEOREM 3. 1. Let S be a divisible abelian semigroup. Then every
completely negative defifinite function on S is Schur increasing of all orders.

PROOF: Let \psi be a completely negative definite function on S . Let
\mu=(\mu_{1}, \cdots, \mu_{n}) and \nu=(\nu_{1}, \cdots, \nu_{n}) in Mo1_{+}^{1}(S)^{n} be given such that \nu\prec\mu .
There exists a finite set F\subset S on which all \mu_{i} (and hence all \nu_{i} ) are com-
centrated. Suppose F=\{s_{1^{ }},\cdots, s_{d}\} . Since S is divisible, for every s_{j} there
exists a sequence \vec{m}^{(j)}=\{m_{n}^{(j)}\}_{n\geq 1} of integers m_{n}^{(j)}\geqq 2 and a sequence
\{t_{n}^{(j)}\}_{n\geq 1} in S such that

s_{j}=m\{^{j)}t_{1}^{(j)} , t_{n}^{(j)}=m_{n+1}^{(j)}t_{n+1}^{(j)} for n\geqq 1 .

Let S_{0} be a subsemigroup of S generated by \{t_{n}^{(j)}|n\geqq 1, j=1,2, \cdots, d\} .
Then S_{0}\supset F . It is seen as in the proof of Theorem 2. 3 that S_{0} becomes a

homomorphic image of \bigoplus_{j=1}^{\infty}T(\vec{m}_{1}^{(\overline{j})}) . Hence S_{0} is perfect by Theorem 2. 2
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and (1), (2) in \S 1. Since every completely negative definite function on
a perfect abelian semigroup is Schur increasing of all orders (see [2], The-
orem 7. 3. 9), \psi’=\psi|S_{0} is Schur increasing of all orders as a function on
S_{0} , and hence

\int\psi’d(\nu_{1}*\cdots*\nu_{n})\leqq\int\psi’d(\mu_{1}*\cdots*\mu_{n}) .

Since \mu_{1}*\cdots*\mu_{n} and \nu_{1}*\cdots*\nu_{n} are concentrated on S_{0} , we have

\int\psi d(\nu_{1}*\cdots*\nu_{n})\leqq\int\psi d(\mu_{1}*\cdots*\mu_{n}) ,

which shows that \psi is Schur increasing of order n . \square

REMARK. After completing the paper, the author has known that
Bisgaard and Ressel [3] recently proved a more general result than TheO-
rem 2. 3 by a different method.

The author would like to express his hearty thanks to Professors T.
Ando, F. Hiai and Y. Nakamura for their helpful suggestions and encour-
agement.
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