A unit group in a character ring of an alternating group

Dedicated to Professor Kazuhiko Hirata on his 60th birthday

Kenichi YAMAUCHI (Received June 4, 1990)

1. Introduction

Throughout this paper, G denotes always a finite group, Z a ring of rational integers, Q a rational field and C a complex field. Let $\{x_1(a \text{ principal character}), \dots, x_h\}$ be the set of all irreducible C-characters of G. We denote this set by Irr(G). Let us set

$$R(G) = \{\sum_{i=1}^{h} a_i x_i | a_i \in Z\}$$

That is, R(G) is the set of generalized characters of G. It is well known that R(G) forms a commutative ring with an identity element x_1 . We call R(G) a character ring of G.

Let ζ be a primitive |G|-th root of unity and let $K = Q(\zeta)$ be the smallest subfield of C containing Q and ζ . We denote by A the ring of algebraic integers in K. In the paper of [9], we have proved the following theorem and corollary.

THEOREM 1.1. Any unit of finite order in $A \otimes_z R(G)$ has the form $\varepsilon \chi$ for some linear character χ of G and some unit ε in A.

COROLLARY 1.2. Any unit of finite order in R(G) has the form $\pm \chi$ for some linear character χ of G.

We denote by U(R(G)) a unit group of R(G). In section 2, we shall prove that U(R(G)) is finitely generated. Hence a factor group $U(R(G))/U_f(R(G))$ is a free abelian group of finite rank, where $U_f(R(G))$ is the group which consists of units of finite order in R(G)).

In this paper, we intend to compute the rank of $U(R(A_n))/U_f(R(A_n))$, where A_n is an alternating group on n symbols.

2. Preliminaries

We first show that U(R(G)) is finitely generated.

THEOREM 2.1. For a finite group G, U(R(G)) is finitely generated.

PROOF. Let ζ be a primitive |G|-th root of unity, and let $K = Q(\zeta)$ be the smallest subfield of C containing Q and ζ . Let us denote by A the ring of algebraic integers in K. Let $\mathfrak{C}_1, \dots, \mathfrak{C}_h$ be a full set of conjugacy classes in G and let $c_1 = 1, \dots, c_h$ be the representatives of $\mathfrak{C}_1, \dots, \mathfrak{C}_h$ respectively. Let u be an element of U(R(G)).

Then there exists $u' \in R(G)$ such that

 $uu' = \chi_1$ (a principal character).

Hence $u(c_i) \cdot u'(c_i) = 1$ $(i=1,\dots,h)$. If χ is an irreducible *C*-character of *G*, then $\chi(c_i) \in A$ $(i=1,\dots,h)$. Therefore $u(c_i) \in A$, $u'(c_i) \in A$ $(i=1,\dots,h)$. $\dots,h)$. That is, $u(c_i)$ and $u'(c_i)$ are units in A $(i=1,\dots,h)$. We denote by U(A) a unit group of *A*.

Now we define a mapping φ from U(R(G)) to a direct product of h copies of U(A);

$$\varphi: U(R(G)) \ni u \longrightarrow (u(c_1), \cdots, u(c_h)) \in U(A) \times \cdots \times U(A)$$
 (h copies)

Then it is clear that φ is a homomorphism and injective. Since A is the ring of algebraic integers in K, U(A) is finitely generated by Dirichlet's Theorem. Therefore $U(A) \times \cdots \times U(A)$ is an abelian group which is finitely generated. As U(R(G)) is isomorphic to a subgroup of $U(A) \times \cdots \times U(A)$, U(R(G)) is finitely generated. The theorem is proved.

Q. E. D.

There are three irreducible *C*-characters of A_3 (an alternating group on three symbols). We denote them by χ_1 , χ_2 , χ_3 . Each χ_i is a linear character and $\chi_i(x) \in Q(\sqrt{-3})$ for $x \in A_3$. Hence for any $\psi \in R(A_3)$, $\psi(x)$ $\in Q(\sqrt{-3})$ for $x \in A_3$. Since $U(Q(\sqrt{-3})) = \{\pm 1, \pm \rho, \pm \rho^2\}$ where $\rho = (-1+\sqrt{-3})/2$, by the proof of Teorem 2.1, we can see that any unit in $R(A_3)$ is of finite order. Therefore we have $U(R(A_3)) = U_f(R(A_3)) = \{\pm \chi_1, \pm \chi_2, \pm \chi_3\}$, by Corollary 1.2.

 A_4 has four irreducible *C*-characters χ_1 , χ_2 , χ_3 , χ_4 such that $\chi_1(1) = \chi_2(1) = \chi_3(1) = 1$ and $\chi_4(1) = 3$. For any $x \in A_4$, $\chi_i(x) \in Q(\sqrt{-3})$ (i=1, 2, 3, 4). Analogously we have $U(R(A_4)) = U_f(R(A_4)) = \{\pm \chi_1, \pm \chi_2, \pm \chi_3\}$.

For a natural number $n \ge 5$, A_n is a simple group. And so $A_n = D(A_n)$ (a commutator subgroup of A_n). Hence A_n has only one linear character χ_1 (i. e. a principal character). By Corollary 1.2, we have $U_f(R(A_n)) = \{\pm \chi_1\}$.

From now on, we may assume $n \ge 5$, when we consider about $U(R(A_n))$, and we use a notation " $U(R(A_n))/{\pm 1}$ " in place of " $U(R(A_n))/U_f(R(A_n))$ " for simplicity, by identifying ${\pm 1}$ with ${\pm \chi_1}$.

Now we state the irreducible C-characters of an alternating group A_n . The irreducible characters of the symmetric groups which are not self-associated, are also irreducible characters of the alternating groups.

Every self-associated character of the symmetric group S_n is the sum of two irreducible characters of the alternating group A_n . These two irreducible characters of A_n take exactly half the values of the character of S_n , except for the conjugacy class for which the value of the character of S_n is ± 1 . This conjugacy class splits into two for A_n , and it is for these conjugacy classes alone that the two irreducible characters of A_n differ, the characteristic values in the two conjugacy classes being interchanged for the second character.

Again we repeat these circumstances explicitly. (See p 222 of [1]) Let $[m_1, \dots, m_r]$, $m_1 + \dots + m_r = n$ be a self-associated frame. In the following way, we can assign to $[m_1, \dots, m_r]$ a conjugacy class of S_n with cycles of odd lengths $q_1 > q_2 \dots > q_k$, $q_1 + q_2 + \dots + q_k = n$; let q_1 be the length of the "hook" consisting of the first row and the first column; $q_1 = 2m_1 - 1$. If this hook is deleted, another self-associated frame remains, from which we determine q_2 in the same way; $q_2 = 2(m_2 - 1) - 1 = 2m_2 - 3$. We continue thus until there is nothing left.

Here we use the following notation; $(q_1, q_2, \dots, q_k) = a$ conjugacy class of S_n with cycles of lengths $q_1 > q_2 > \dots > q_k$, $q_1 + q_2 + \dots + q_k = n$.

Then the following two theorems, which play a fundamental role, are well known (See p 222-223 of [1]).

THEOREM 2.2. The character of a self-associated representation of S_n which corresponds to a self-associated frame $[m_1, \dots, m_r], m_1 + \dots + m_r = n$ is

$$(-1)^{\frac{1}{2}(n-k)} = (-1)^{\frac{1}{2}(p-1)}$$

in the conjugacy class (q_1, q_2, \dots, q_k) which is assigned to $[m_1, \dots, m_r]$ where $p = q_1 q_2 \dots q_k$; in all other conjugacy classes it is an even number.

THEOREM 2.3. (Frobenius's theorem) Let χ be a self-associated character of S_n which corresponds to a self-associated frame $[m_1, \dots, m_r]$, $m_1 + \dots + m_r = n$. Then we have

- (i) If we consider χ as a character of A_n , χ is the sum of two irreducible characters χ_1 , χ_2 of A_n ; $\chi = \chi_1 + \chi_2$
- (ii) If (q₁, q₂,...,q_k) is a conjugacy class which is assigned to [m₁,..., m_r], then (q₁, q₂,...,q_k) splits into two conjugacy classes C', C" of A_n. The values of χ₁ and χ₂ are

$$\frac{\lambda \pm \sqrt{p\lambda}}{2}$$

in the two classes \mathfrak{C}' , \mathfrak{C}'' , where $\lambda = (-1)^{\frac{1}{2}(n-k)} = (-1)^{\frac{1}{2}(p-1)}$ and $p = q_1 q_2 \cdots q_k$. The values of χ_1 and χ_2 are equal in all other conjugacy classes of A_n ; $\chi_1 = \chi_2 = \frac{1}{2}\chi$.

DEFINITION 2.4. For a natural number n, we define a nonnegative rational integer c(n) as follows;

c(n) = the number of self-associated frames $[m_1, \dots, m_r]$, $m_1 + \dots + m_r = n$ such that

- (i) p is not the square of a number. (i. e. $\sqrt{p} \notin Q$)
- (ii) $p \equiv 1 \pmod{4}$.

Where we assign to $[m_1, \dots, m_r]$ a conjugacy class (q_1, q_2, \dots, q_k) and $p = q_1 q_2 \cdots q_k$.

EXAMPLE. We compute c(15). There are three self-associated frames; [8, 1,...,1], [5, 4, 3, 2, 1], [4, 4, 4, 3]. We can assign to [8, 1,...,1], [5, 4, 3, 2, 1], [4, 4, 4, 3] conjugacy classes of S_{15} (15), (9, 5, 1), (7, 5, 3) respectively. And conjugacy classes (15), (9, 5, 1), (7, 5, 3) determine odd numbers 15, $9 \times 5 \times 1 = 45$, $7 \times 5 \times 3 = 105$ respectively. $15 \neq 1 \pmod{4}$, $45 \equiv 1 \pmod{4}$, $105 \equiv 1 \pmod{4}$. Therefore we have c(15) = 2.

In this paper our intention is to show that the rank of $U(R(A_n))/{\pm 1}$ is equal to c(n). (See Theorem 4.2.)

3. Construction of unit elements

In this section we construct a unit element of $R(A_n)$ which is not of finite order.

Let $[m_1, \dots, m_r]$, $m_1 + \dots + m_r = n$ be a self-associated frame and let (q_1, q_2, \dots, q_k) be a conjugacy class of S_n which is assigned to $[m_1, \dots, m_r]$. We set $p = q_1 q_2 \dots q_k$. In addition we assume that $p \equiv 1 \pmod{4}$ and p is not the square of a number. Hence $Q(\sqrt{p})$ is the real quadratic field. Here we state several lemmata in the above situation.

LEMMA 3.1. A conjugacy class (q_1, q_2, \dots, q_k) of S_n consists of $|S_n|/p$ elements.

PROOF. Since (q_1, q_2, \dots, q_k) is a conjugacy class with cycles of lengths $q_1 > q_2 > \dots > q_k$, $q_1 + q_2 + \dots + q_k = n$, then it consists of

$$\frac{n!}{q_1q_2\cdots q_k} = \frac{|S_n|}{p}$$

elements (See p 31 of [1]). The lemma is proved. Q. E. D.

LEMMA 3.2. We set $p = \checkmark^2 p_0$, $(p_0 : square-free)$. Then we have (i) $p_0 \equiv 1 \pmod{4}$

(ii) If $\frac{1}{2}(t+u\sqrt{p})$, $t, u \in \mathbb{Z}$ is an algebraic integer in $Q(\sqrt{p_0})$, then $t \equiv u$ (mod. 2)

(iii) If ε_0 is a fundamental unit of $Q(\sqrt{p_0})$, then the units of $Q(\sqrt{p_0})$ which take the form of $\frac{1}{2}(t+u\sqrt{p})$, $t, u \in \mathbb{Z}$, are given by $\pm E_0^n$ $(n=0, \pm 1, \pm 2, \cdots)$, where $E_0 = \varepsilon_0^e$ for some natural number e.

PROOF. It is clear that (i) and (ii) hold. For (iii), for example, see p 319 of [8]. Q. E. D.

LEMMA 3.3. There exists a unit of $Q(\sqrt{p})$ which takes the form of

$$\frac{1}{2}(a+b\sqrt{p})+1, a, b \in \mathbb{Z}, p \mid a \ (i. e. a \ divides \ by \ p)$$
$$b \neq 0$$

and of which the norm over Q is equal to 1.

PROOF. By Lemma 3.2, there exists a unit $\eta = \frac{1}{2}(t + u\sqrt{p})$, $t, u \in \mathbb{Z}$ such that $N\eta = 1$ where $N\eta$ denotes the norm of η over Q. Hence $t^2 - pu^2 = 4$. Thus $t^2 = pu^2 + 4$. If we set $a = pu^2$, b = tu, then we obtain

$$\eta^{2} = \frac{1}{4} (t^{2} + pu^{2} + 2tu\sqrt{p}) = \frac{1}{2} (a + b\sqrt{p}) + 1,$$

because a equation $t^2 = pu^2 + 4 = a + 4$ holds. Thus $\frac{1}{2}(a + b\sqrt{p}) + 1$ is the desired unit of $Q(\sqrt{p})$ and so the proof is complete. Q. E. D.

Now we construct a unit of $R(A_n)$ which is not of finite order.

Let $[m_1, \dots, m_r]$, $m_1 + \dots + m_r = n$ be a self-associated frame and let (q_1, q_2, \dots, q_k) be a conjugacy class of S_n which is assigned to $[m_1, \dots, m_r]$; $(q_1 = 2m_1 - 1, q_2 = 2m_2 - 3, \dots)$.

Let \mathfrak{C}' , \mathfrak{C}'' be the two conjugacy classes of A_n into which (q_1, q_2, \dots, q_k) splits. We set $p = q_1 q_2 \cdots q_k$. In addition, we assume that $p \equiv 1 \pmod{4}$ and p is not the square of a number. Let

 $\frac{1}{2}(a+b\sqrt{p})+1$, $a, b \in Z$ $(p \mid a, b \neq 0)$ be the unit of $Q(\sqrt{p})$ which is stated in Lemma 3.3. Then we have Theorem 3.4.

THEOREM 3.4. There exists a unit ψ of $R(A_n)$ such that

$$\psi(x) = 1$$
 for $x \in A_n$, $x \notin \mathbb{C}'$, \mathbb{C}'' .
 $\psi(c') = \frac{1}{2}(a + b\sqrt{p}) + 1$, $\psi(c'') = \frac{1}{2}(a - b\sqrt{p}) + 1$

where c', c'' are the representatives of \mathfrak{C}' , \mathfrak{C}'' respectively.

PROOF. First we note that a self-associated character θ of S_n which corresponds to $[m_1, \dots, m_r]$, is the sum of two irreducible characters φ_1 , φ_2 of A_n , when we consider θ as a character of A_n .

By Theorem 2.3, we assume that

$$\varphi_{1}(c') = \frac{1}{2}(1 + \sqrt{p}), \quad \varphi_{1}(c'') = \frac{1}{2}(1 - \sqrt{p})$$
$$\varphi_{2}(c') = \frac{1}{2}(1 - \sqrt{p}), \quad \varphi_{2}(c'') = \frac{1}{2}(1 + \sqrt{p})$$
$$\varphi_{1}(x) = \varphi_{2}(x) \in Z \quad for \ x \in A_{n}, \quad x \notin \mathfrak{C}', \ \mathfrak{C}''$$

Let χ_1 (a principal character),..., χ_s be all other irreducible characters of A_n . Then $\chi_i(c') = \chi_i(c'') \in \mathbb{Z}$ $(i=1,\dots,s)$. Here we show that the class function ψ which is stated in this theorem, is actually written as a linear combination of χ_i and φ_j $(i=1,\dots,s; j=1,2)$ with integral coefficients. Now we pay attention to the fact that $|\mathfrak{C}'| = |\mathfrak{C}''| = |A_n|/p$ (See Lemma 3.1) and that

$$(\psi - \chi_1)(x) = 0 \text{ for } x \in A_n, \ x \notin \mathbb{C}', \ \mathbb{C}''.$$
$$(\psi - \chi_1)(c') = \frac{1}{2}(a + b\sqrt{p}), \ (\psi - \chi_1)(c'') = \frac{1}{2}(a - b\sqrt{p})$$

We denote by (λ, μ) the inner product of two class functions λ, μ of A_n . That is,

$$(\lambda, \mu) = \frac{1}{|A_n|} \Sigma_{g \in A_n} \lambda(g) \overline{\mu(g)}.$$

Here we compute several inner products as follows

$$\begin{aligned} (\psi - \chi_{1}, \chi_{i}) &= \frac{1}{|A_{n}|} \{ |\mathfrak{C}'|(\psi - \chi_{1})(c')\overline{\chi_{i}(c')} + \\ & |\mathfrak{C}''|(\psi - \chi_{1})(c'')\overline{\chi_{i}(c'')} \} = \\ \frac{1}{p} (\frac{a + b\sqrt{p}}{2} + \frac{a - b\sqrt{p}}{2})\chi_{i}(c') &= \frac{a}{p}\chi_{i}(c') \in Z \end{aligned}$$

, because $\chi_i(c') = \chi_i(c'') \in \mathbb{Z}$ and *a* divides by *p*.

$$\begin{aligned} (\psi - \chi_1, \varphi_1) &= \frac{1}{|A_n|} \{ |\mathfrak{C}'| (\psi - \chi_1) (c') \overline{\varphi_1(c')} + \\ & |\mathfrak{C}''| (\psi - \chi_1) (c'') \overline{\varphi_1(c'')} \} \\ &= \frac{1}{p} (\frac{a + b\sqrt{p}}{2} \frac{1 + \sqrt{p}}{2} + \frac{a - b\sqrt{p}}{2} \frac{1 - \sqrt{p}}{2}) = \frac{1}{2p} (a + bp) \in \mathbb{Z}, \text{ because } a \end{cases} \end{aligned}$$

 $\equiv b \pmod{2}$, *p* is an odd number and *a* divides by *p*. Analogously we have

$$(\psi-\chi_1,\varphi_2)=\frac{1}{2p}(a-bp)\in Z.$$

Therefore we obtain

$$\psi = \chi_1 + \frac{a}{p} \sum_{i=1}^{s} \chi_i(c') \chi_i + \frac{a+bp}{2p} \varphi_1 + \frac{a-bp}{2p} \varphi_2 \in R(A_n)$$

Now we denote by ψ' the class function of A_n which satisfies

$$\psi'(x) = 1 \text{ for } x \in A_n, \ x \notin \mathfrak{C}', \ \mathfrak{C}''$$

 $\psi'(c') = \frac{1}{2}(a - b\sqrt{p}) + 1, \ \psi'(c'') = \frac{1}{2}(a + b\sqrt{p}) + 1$

Then we obtain by the same method,

$$\psi' = \chi_1 + \frac{a}{p} \sum_{i=1}^{s} \chi_i(c') \chi_i + \frac{a - bp}{2p} \varphi_1 + \frac{a + bp}{2p} \varphi_2 \in R(A_n)$$

By the proof of Lemma 3.3, we can see that $\eta^2 = \frac{1}{2}(a+b\sqrt{p})+1$, $N\eta = 1$, where η is a unit of $Q(\sqrt{p})$. Since $N(\eta^2) =$

$$(\frac{a+b\sqrt{p}}{2}+1)(\frac{a-b\sqrt{p}}{2}+1)=1,$$

we have $\psi \psi' = \chi_1$. Therefore ψ is a unit of $R(A_n)$ which is not of finite order. This completes the proof of Theorem 3.4. Q. E. D.

4. rank $U(R(A_n))/\{\pm 1\}$

Let $\Gamma_1, \dots, \Gamma_{c(n)}$ be the self-associated frames such that the conditions (i), (ii) in Definition 2.4. hold. (See Definition 2.4 about c(n)). To each Γ_i , a conjugacy class \mathfrak{C}_i of S_n is assigned and it splits into two conjugacy classes $\mathfrak{C}'_i, \mathfrak{C}''_i$ of A_n . Let c'_i, c''_i be the representatives of $\mathfrak{C}'_i, \mathfrak{C}''_i$ respectively. By Theorem 3.4, there is a unit ψ_i of $R(A_n)$ which is not

of finite order, with respect to $\Gamma_i(i=1,\dots,c(n))$, and we have

$$\psi_{i}(x) = 1 \text{ for } x \in A_{n}, \ x \notin \mathfrak{C}'_{i}, \mathfrak{C}''_{i}$$

$$\psi_{i}(c'_{i}) = \frac{1}{2}(a_{i} + b_{i}\sqrt{p_{i}}) + 1, \ \psi_{i}(c'') = \frac{1}{2}(a_{i} - b_{i}\sqrt{p_{i}}) + 1$$

$$\psi_{j}(c'_{i}) = \psi_{j}(c''_{i}) = 1 \quad (i \neq j)$$

where $\frac{1}{2}(a_i \pm b_i \sqrt{p_i}) + 1$ are units of $Q(\sqrt{p_i})$ as stated in the theorem.

We fix $\psi_1, \dots, \psi_{c(n)}$ and denote by $\langle \psi_1, \dots, \psi_{c(n)} \rangle$ an abelian subgroup of $U(R(A_n))$, which is generated by $\psi_1, \dots, \psi_{c(n)}$. Then we have Lemma 4.1.

LEMMA 4.1. rank $\langle \psi_1, \cdots, \psi_{c(n)} \rangle = c(n)$.

PROOF. We keep the above notations. Suppose that $\psi_1^{e_1} \cdots \psi_{c(n)}^{e_{c(n)}} = \chi_1(e_1, \cdots, e_{c(n)} \in \mathbb{Z})$. Then we have

$$1 = \chi_1(c_i') = (\psi_1^{e_1} \cdots \psi_{c(n)}^{e_{c(n)}})(c_i') = (\psi_i(c_i'))^{e_i} = (\frac{1}{2}(a_i + b_i\sqrt{p_i}) + 1)^{e_i}$$

Hence $e_i=0$ $(i=1,\dots,c(n))$. Therefore we obtain rank $\langle \psi_1,\dots,\psi_{c(n)}\rangle = c(n)$. The lemma is proved. Q. E. D.

Finally we can obtain the following main theorem.

THEOREM 4.2. rank $U(R(A_n)/\{\pm 1\}=c(n))$.

PROOF. We keep the above notations. Let ε_i be a fundamental unit in $Q(\sqrt{p_i})$. By the proof of Lemma 3.3, we can see that $\psi_i(c'_i) > 0$, $\psi_i(c''_i) > 0$ and $\psi_i(c''_i) = 1$. Hence we can assume that there exists a natural number h_i such that

$$\psi_i(\mathbf{c}'_i) = \varepsilon_i^{\mathbf{h}_i}, \quad \psi_i(\mathbf{c}''_i) = \varepsilon_i^{-\mathbf{h}_i} \qquad (i = 1, \dots, c(n)).$$

Here we pay attention to the fact that for an imaginary quadratic field *K*, a unit group U(K) is $\{\pm 1\}$, except for the case K=Q(i), $K=Q(\sqrt{-3})$. And in the case K=Q(i), $U(K)=\{\pm 1, \pm i\}$ and in the case $K=Q(\sqrt{-3})$, $U(K)=\{\pm 1, \pm \rho, \pm \rho^2\}$, $\rho=\frac{1}{2}(-1+\sqrt{-3})$.

For any $\mu \in U(R(A_n))$, $\mu(x) = \pm 1$ or $\mu(x)$ is a unit in an imaginary quadratic field for $x \in A_n$, $x \notin \mathfrak{C}'_i$, \mathfrak{C}''_i . $(i=1,\dots,c(n))$.

And $\mu(c'_i)$, $\mu(c''_i)$ are units in $Q(\sqrt{p_i})$ such that $\mu(c''_i)$ is a conjugate element of $\mu(c'_i)$ over Q. And so if $\mu(c'_i) = \pm \varepsilon_i^{k_i}$, then $\mu(c''_i) = \pm \varepsilon_i^{-k_i}$. By the above attention, we have $\mu^{12}(x) = 1$ for $x \in A_n$, $x \notin \mathfrak{C}'_i$, \mathfrak{C}''_i $(i=1,\cdots, c(n))$. Therefore we can see that $\mu^{12h_1\cdots h_c(n)} \in \langle \psi_1, \cdots, \psi_{c(n)} \rangle.$

Hence we have

rank $U(R(A_n))/{\pm 1}$ =rank $\langle \psi_1, \cdots, \psi_{c(n)} \rangle = c(n)$.

This completes the proof of Theorem 4.2.

Q. E. D.

Summarizing the results which we have obtained, we have

THEOREM 4.3. Let S_n and A_n be a symmetric group and an alternating group on n symbols respectively. Then we have

- (i) $U(R(S_n)) = U_f(R(S_n)) = \{\pm \chi_1, \pm \chi_2\}$ where χ_2 is an alternating character, that is, $\chi_2(\sigma) = 1$ if σ is an even permutation, $\chi_2(\sigma) = -1$ if σ is an odd permutation.
- (ii) A_3 and A_4 have three linear characters χ_1 , χ_2 , χ_3 and $U(R(A_3)) = U_f(R(A_3)) = \{\pm \chi_1, \pm \chi_2, \pm \chi_3\}.$ $U(R(A_4)) = U_f(R(A_4)) = \{\pm \chi_1, \pm \chi_2, \pm \chi_3\}.$

For a natural number $n \ge 5$, we have If c(n)=0, then $U(R(A_n))=U_f(R(A_n))=\{\pm \chi_1\}$. If $c(n) \ne 0$, then the units of $R(A_n)$ have the form

 $\pm \mu_1^{e_1} \cdots \mu_{c(n)}^{e_{c(n)}}$ ($e_i \in \mathbb{Z}, i=1, \cdots, c(n)$)

for some fixed c(n) units $\mu_1, \dots, \mu_{c(n)}$ of $R(A_n)$.

PROOF. It suffices to prove $U(R(S_n)) = \{\pm \chi_1, \pm \chi_2\}$. For any irreducible *C*-character χ of S_n , $\chi(x) \in Z$ for $x \in S_n$. Hence for any element ψ of $R(S_n)$, $\psi(x) \in Z$ for $x \in S_n$. Let μ be any unit of $R(S_n)$. Then we can see that $\mu(x) = \pm 1$ for $x \in S_n$, by the proof of Theorem 2.1. Therefore μ is a unit of finite order. Hence we have $\mu = \pm \chi_1$ or $\pm \chi_2$, by Corollary 1.2, because S_n has two linear characters χ_1 , χ_2 . Thus the proof is complete. Q. E. D.

References

- [1] BOERNER, H. "Representations of Groups with special consideration for the needs of modern physics" (Second revised edition) North-Holland, Amsterdam, 1970.
- [2] CURTIS, C. W. and REINER, I. "Representation theory of finite groups and associative algebras" Wiley-Interscience, New York, 1962.
- [3] CURTIS, C. W. and REINER, I. "Methods of Representation theory with applications to finite groups and orders" (vol. 1) Wiley-Interscience, New York, 1981.
- [4] FEIT, W. "Characters of Finite Groups" Benjamin, New York, 1967.
- [5] HATTORI, A. "Finite groups and their Representations" (in Japanese), Kyôritsu Press, Tokyo, 1967.

- [6] ISAACS, I. M. "Character Theory of Finite Groups" Academic Press, New York, 1976.
- [7] SERRE, J. P. "Linear representation of finite groups" Springer-Verlag, New York, 1977.
- [8] TAKAGI, T. "Elementary theory of numbers" (Second edition) (in Japanese) Kyôritsu Press, Tokyo, 1971.
- [9] YAMAUCHI, K. On the units in a character ring (preprint).

Department of Mathematics, Faculty of Education, Chiba University, Yayoicho 1-33, Chiba-city 260, Japan.