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1. Introduction

Throughout this paper, G denotes always a finite group, Z a ring of
rational integers, Q a rational field and C a complex field. Let { x_{1} (a

principal character), \cdots,x_{h} } be the set of all irreducible C-characters of G .
We denote this set by Irr(G). Let us set

R(G)= \{\sum_{i=1}^{h}a_{i}x_{i}|a_{i}\in Z\}

That is, R(G) is the set of generalized characters of G. It is well
known that R(G) forms a commutative ring with an identity element x_{1} .
We call R(G) a character ring of G .

Let \zeta be a primitive |G|-th root of unity and let K=Q(\zeta) be the smal-
lest subfield of C containing Q and \zeta . We denote by A the ring of alge-
braic integers in K. In the paper of [9], we have proved the following
theorem and corollary.

THEOREM 1. 1. Any unit of fifinite order in A\otimes_{z}R(G) has the form
\epsilon\chi for some linear character \chi of G and some unit \epsilon in A .

COROLLARY 1. 2. Any unit of fifinite order in R(G) has the form \pm\chi

for some linear character \chi of G.

We denote by U(R(G)) a unit group of R(G) . In section 2, we shall
prove that U(R(G)) is finitely generated. Hence a factor group
U(R(G))/U_{f}(R(G)) is a free abelian group of finite rank, where
U_{f}(R(G)) is the group which consists of units of finite order in R(G)) .

In this paper, we intend to compute the rank of U(R(A_{n}))/

U_{f}(R(A_{n})) , where A_{n} is an alternating group on n symbols.

2. Preliminaries

We first show that U(R(G)) is finitely generated.

THEOREM 2. 1. For a fifinite group G, U(R(G)) is fifinitety generated.
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PROOF. Let \zeta be a primitive |G|-th root of unity, and let K=Q(\zeta)

be the smallest subfield of C containing Q and \zeta . Let us denote by A the
ring of algebraic integers in K. Let \mathfrak{C}_{1},\cdots,\mathfrak{C}_{h} be a full set of conjugacy
classes in G and let c_{1}=1,\cdots,c_{h} be the representatives of \mathfrak{C}_{1},\cdots,\mathfrak{C}_{h} respec-
tively. Let u be an element of U(R(G)) .

Then there exists u’\in R(G) such that

uu’=\chi_{1} (a principal character).

Hence u(c_{i})\cdot u’(c_{i})=1(i=1,\cdots,h) . If \chi is an irreducible C-character
of G , then \chi(c_{i})\in A(i=1,\cdots,h) . Therefore u(c_{i})\in A , u’(c_{i})\in A(i=1 ,
\ldots , h). That is, u(c_{i}) and u’(c_{i}) are units in A(i=1,\cdots,h) . We denote
by U(A) a unit group of A.

Now we define a mapping \varphi from U(R(G)) to a direct product of h

copies of U(A) :

\varphi:U(R(G))\ni u – (u(c_{1}),\cdots,u(c_{h}))\in U(A)\cross\cdots\cross U(A) ( h copies)

Then it is clear that \varphi is a homomorphism and injective. Since A is
the ring of algebraic integers in K, U(A) is finitely generated by Dirich-
let’s Theorem. Therefore U(A)\cross\cdots\cross U(A) is an abelian group which is
finitely generated. As U(R(G)) is isomorphic to a subgroup of U(A)\cross

\ldots\cross U(A) , U(R(G)) is finitely generated. The theorem is proved.
Q. E. D.

There are three irreducible C-character of A_{3} (an alternating group
on three symbols). We denote them by \chi_{1} , \chi_{2} , \chi_{3} . Each \chi_{i} is a linear
character and \chi_{i}(x)\in Q(\sqrt{-3}) for x\in A_{3} . Hence for any \phi\in R(A_{3}) , \phi(x)

\in Q(\sqrt{-3}) for x\in A_{3} . Since U( Q(\sqrt{-3}))=\{\pm 1, \pm\rho, \pm\rho^{2}\} where \rho=

(-1+\sqrt{-3})/2 , by the proof of Teorem 2. 1, we can see that any unit in
R(A_{3}) is of finite order. Therefore we have U(R(A_{3}))=U_{f}(R(A_{3}))=

\{\pm\chi_{1}, \pm\chi_{2}, \pm\chi_{3}\} , by Corollary 1.2.
A_{4} has four irreducible C-character \chi_{1} , \chi_{2} , \chi_{3} , \chi_{4} such that \chi_{1}(1)=

\chi_{2}(1)=\chi_{3}(1)=1 and \chi_{4}(1)=3 . For any x\in A_{4} , \chi_{i}(x)\in Q(\sqrt{-3}) (i=1,2,3,

4). Analogously we have U(R(A_{4}))=U_{f}(R(A_{4}))=\{\pm\chi_{1}, \pm\chi_{2}, \pm\chi_{3}\} .
For a natural number n\geqq 5 , A_{n} is a simple group. And so A_{n}=

D(A_{n}) (a commutator subgroup of A_{n}). Hence A_{n} has only one linear
character \chi_{1} ( i . e . a principal character). By Corollary 1. 2, we have
U_{f}(R(A_{n}))=\{\pm\chi_{1}\} .

From now on, we may assume n\geqq 5 , when we consider about
U(R(A_{n})) , and we use a notation e ’ U(R(A_{n}))/\{\pm 1\} ” in place of

c ’ U(R(A_{n}))/U_{f}(R(A_{n})) ” for simplicity, by identifying \{\pm 1\} with \{\pm\chi_{1}\} .
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Now we state the irreducible C-characters of an alternating group
A_{n} . The irreducible characters of the symmetric groups which are not
self-associated, are also irreducible characters of the alternating groups.

Every self-associated character of the symmetric group S_{n} is the sum
of two irreducible characters of the alternating group A_{n} . These two ir-
reducible characters of A_{n} take exactly half the values of the character of
S_{n} , except for the conjugacy class for which the value of the character of
S_{n} is \pm 1 . This conjugacy class splits into two for A_{n} , and it is for these
conjugacy classes alone that the two irreducible characters of A_{n} differ,
the characteristic values in the two conjugacy classes being interchanged
for the second character.

Again we repeat these circumstances explicitly. (See p222 of [1])
Let [m_{1},\cdots,m_{r}] , m_{1}+\cdots+m_{r}=n be a self-associated frame. In the follow-
ing way, we can assign to [m_{1},\cdots,m_{r}] a conjugacy class of S_{n} with cycles
of odd lengths q_{1}>q_{2}\cdots>q_{k} , q_{1}+q_{2}+\cdots+q_{k}=n : let q_{1} be the length of the
’ ’ hook ” consisting of the first row and the first column; q_{1}=2m_{1}-1 . If
this hook is deleted, another self-associated frame remains, from which
we determine q_{2} in the same way: q_{2}=2(m_{2}-1)-1=2m_{2}-3 . We continue
thus until there is nothing left.

Here we use the following notation:
(q_{1}, q_{2},\cdots,q_{k})=a conjugacy class of S_{n} with cycles of lengths q_{1}>q_{2}>\cdots>

q_{k} , q_{1}+q_{2}+\cdots+q_{k}=n .
Then the following two theorems, which play a fundamental role, are

well known (See p 222-223 of [1]).

THEOREM 2. 2. The character of a self-associated representation of
S_{n} which corresponds to a self-associated frame [m_{1},\cdots, m_{r}] , m_{1}+\cdots+m_{r}=

n is

(-1)^{\frac{1}{2}(n-k)}=(-1)^{\frac{1}{2}(p-1)}

in the conjugacy class (q_{1}, q_{2}, \cdots,q_{k}) which is assigned to [m_{1}, \cdots,m_{r}] where
p=q_{1}q_{2}\cdots q_{k} ; in all other conjugacy classes it is an even number.

THEOREM 2. 3. (Frobenius’s theorem) Let \chi be a self-associated
character of S_{n} which corresponds to a self-associated frame [m_{1}, \cdots,mr] ,

m_{1}+\cdots+m_{r}=n . Then we have
(i) If we consider \chi as a character of A_{n}, \chi is the sum of two ir-

reducible characters \chi_{1} , \chi_{2} of A_{n} : \chi=\chi_{1}+\chi_{2}

(ii) If (q_{1}, q_{2},\cdots,q_{k}) is a conjugacy class which is assigned to [m_{1},\cdots ,
m_{r}] , then (q_{1}, q_{2},\cdots,q_{k}) splits into two conjugacy classes \mathfrak{C}’ , \mathfrak{C}^{rr} of
A_{n} . The values of \chi_{1} and \chi_{2} are
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\frac{\lambda\pm\sqrt{p\lambda}}{2}

in the two classes \mathfrak{C}’ , \mathfrak{C}^{rr} . where \lambda=(-1)^{\frac{1}{2}(n-k)}=(-1)^{\frac{1}{2}(p-1)} and
p=q_{1}q_{2}\cdots q_{k} . The values of \chi_{1} and \chi_{2} are equal in all other con-

jugacy classes of A_{n} : \chi_{1}=\chi_{2}=\frac{1}{2}\chi .

DEFINITION 2. 4. For a natural number n, we define a nonnegative
rational integer c(n) as follows ,\cdot

c(n)=the number of self-associated frames [m_{1},\cdots,m_{r}] , m_{1}+\cdots+m_{r}=

n such that

(i) p is not the square of a number. (i. e. \sqrt{p}\not\in Q)

(ii) p\equiv 1 (mod. 4) .

Where we assign to [m_{1},\cdots,m_{r}] a conjugacy class (q_{1}, q_{2},\cdots,q_{k}) and
p=q_{1}q_{2}\cdots q_{k} .

EXAMPLE. We compute c(15) . There are three self-associated
frames: [8, 1,\cdots,1] , [5, 4, 3, 2, 1], [4, 4, 4, 3]. We can assign to [8, 1,\cdots,1] ,
[5, 4, 3, 2, 1], [4, 4, 4, 3] conjugacy classes of S_{15}(15) , (9, 5, 1), (7, 5, 3)

respectively. And conjugacy classes (15), (9, 5, 1), (7, 5, 3) determine
odd numbers 15, 9\cross 5\cross 1=45,7\cross 5\cross 3=105 respectively. 15\not\equiv 1 (mod. 4) ,
45\equiv 1(mod. 4) , 105\equiv 1(mod. 4) . Therefore we have c(15)=2 .

In this paper our intention is to show that the rank of U(R(A_{n}))/

\{\pm 1\} is equal to c(n) . (See Theorem 4. 2.)

3. Construction of unit elements

In this section we construct a unit element of R(A_{n}) which is not of
finite order.

Let [m_{1},\cdots,m_{r}] , m_{1}+\cdots+m_{r}=n be a self-associated frame and let
(q_{1}, q_{2},\cdots,q_{k}) be a conjugacy class of S_{n} which is assigned to [m_{1},\cdots,m_{r}] .
We set p=q_{1}q_{2}\cdots q_{k} . In addition we assume that p\equiv 1(mod. 4) and p is
not the square of a number. Hence Q(\sqrt{p}) is the real quadratic field.
Here we state several lemmata in the above situation.

LEMMA 3. 1. A conjugacy class (q_{1}, q_{2},\cdots,q_{k}) of S_{n} consists of |S_{n}|/p

elements.

PROOF. Since (q_{1}, q_{2},\cdots, q_{k}) is a conjugacy class with cycles of
lengths q_{1}>q_{2}>\cdots>q_{k} , q_{1}+q_{2}+\cdots q_{k}=n , then it consists of
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\underline{n!}\underline{|S_{n}|}=

q_{1}q_{2}\cdots q_{k} p

elements (See p31 of [1]). The lemma is proved. Q. E. D.

LEMMA 3. 2. We set p=\swarrow^{2}p
}, (p) : square-free). Then we have

(i) lx\equiv 1 (mod. 4)

(ii) If \frac{1}{2}(t+u\sqrt{p}) , t, u\in Z is an algebraic integer in Q(\sqrt{p_{0}}) , then t\equiv u

(mod. 2)

(iii) If \epsilon_{0} is a fundamental unit of Q(\sqrt{p_{0}}) , then the units of Q(\sqrt{p_{0}})

which take the form of \frac{1}{2}(t+u\sqrt{p}) , t, u\in Z, are given by \pm E^{n}

(n=0, \pm 1, \pm 2,\cdots ) , where E=\epsilon_{0}^{e} for some natural number e.

PROOF. It is clear that ( i) and ( ii) hold. For (iii), for example,
see p319 of [8]. Q. E. D.

LEMMA 3. 3. There exists a unit of Q(\sqrt{p}) which takes the form of

\frac{1}{2}(a+b\sqrt{p})+1 , a, b\in Z, p|a ( i. e . a divides by p )

b\neq 0

and of which the norm over Q is equal to 1.

PROOF. By Lemma 3. 2, there exists a unit \eta=\frac{1}{2}(t+u\sqrt{p}) , t , u\in Z

such that N\eta=1 where N\eta denotes the norm of \eta over Q . Hence t^{2}-

pu^{2}=4 . Thus t^{2}=pu^{2}+4 . If we set a=p\mathcal{U}^{2}- b=tu , then we obtain

\eta^{2}=\frac{1}{4}(t^{2}+pu^{2}+2tu\sqrt{p})=\frac{1}{2}(a+b\sqrt{p})+1 ,

because a equation t^{2}=pu^{2}+4=a+4 holds. Thus \frac{1}{2}(a+b\sqrt{p})+1 is the

desired unit of Q(\sqrt{p}) and so the proof is complete. Q. E. D.

Now we construct a unit of R(A_{n}) which is not of finite order.

Let [m_{1},\cdots,m_{r}] , m_{1}+\cdots+m_{r}=n be a self-associated frame and let (q_{1} ,
q_{2},\cdots,q_{k}) be a conjugacy class of S_{n} which is assigned to [m_{1},\cdots,m_{r}];(q_{1}=

2m_{1}-1 , q_{2}=2m_{2}-3,\cdots) .
Let \mathfrak{C}’ , \mathfrak{C}^{rr} be the two conjugacy classes of A_{n} into which (q_{1}, q_{2},\cdots,q_{k})

splits. We set p=q_{1}q_{2}\cdots q_{k} . In addition, we assume that p\equiv 1(mod. 4)

and p is not the square of a number. Let
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\frac{1}{2}(a+b\sqrt{p})+1 , a , b\in Z (p|a, b\neq 0) be the unit of Q(\sqrt{p}) which is
stated in Lemma 3. 3. Then we have Theorem 3. 4.

THEOREM 3. 4. There exists a unit \emptyset of R(A_{n}) such that
\phi(x)=1 for x\in A_{n}, x\not\in \mathfrak{C}’ , \mathfrak{C}^{rr}

\phi(c’)=\frac{1}{2}(a+b\sqrt{p})+1 , \phi(c’)=\frac{1}{2}(a-b\sqrt{p})+1

where c’ . c^{r} are the representatives of \mathfrak{C}’ , \mathfrak{C}’ respectively.

PROOF. First we note that a self-associated character \theta of S_{n} which
corresponds to [m_{1},\cdots,m_{r}] , is the sum of two irreducible characters \varphi_{1} , \varphi_{2}

of A_{n} , when we consider \theta as a character of A_{n} .
By Theorem 2. 3, we assume that

\varphi_{1}(c’)=\frac{1}{2}(1+\sqrt{p}) , \varphi_{1}(c^{rr})=\frac{1}{2}(1-\sqrt{p})

\varphi_{2}(c’)=\frac{1}{2}(1-\sqrt{p}) , \varphi_{2}(c’)=\frac{1}{2}(1+\sqrt{p})

\varphi_{1}(x)=\varphi_{2}(x)\in Z for x\in A_{n} , x\not\in \mathfrak{C}’ , \mathfrak{C}’

Let \chi_{1} (a principal character), \cdots , \chi_{s} be all other irreducible characters
of A_{n} . Then \chi_{i}(c’)=\chi_{i}(c’)\in Z(i=1,\cdots,s) . Here we show that the class
function \emptyset which is stated in this theorem, is actually written as a linear
combination of \chi_{i} and \varphi j (i=1,\cdots,s; j=1,2) with integral coefficients.
Now we pay attention to the fact that |\mathfrak{C}’|=|\mathfrak{C}’|=|A_{n}|/p (See Lemma 3. 1)
and that

(\phi-\chi_{1})(x)=0 for x\in A_{n} , x\not\in \mathfrak{C}’ , \mathfrak{C}^{rr}

( \phi-\chi_{1})(c’)=\frac{1}{2}(a+b\sqrt{p}) , ( \phi-\chi_{1})(c’)=\frac{1}{2}(a-b\sqrt{p})

We denote by (\lambda, \mu) the inner product of two class functions \lambda , \mu of
A_{n} . That is,

( \lambda, \mu)=\frac{1}{|A_{n}|}\Sigma_{g\in An}\lambda(g)\overline{\mu(g)}.

Here we compute several inner products as follows

( \phi-\chi_{1}, \chi_{i})=\frac{1}{|A_{n}|}\{|\mathfrak{C}’|(\phi-\chi_{1})(c’)\overline{\chi_{i}(c’)}+

|\mathfrak{C}^{rr}|(\phi-\chi_{1})(c’)\overline{\chi_{i}(c’)}\}=

\frac{1}{p}(\frac{a+b\sqrt{p}}{2}+\frac{a-b\sqrt{p}}{2})\chi_{i}(c’)=\frac{a}{p}\chi_{i}(c’)\in Z
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because \chi_{i}(c’)=\chi_{i}(c’)\in Z and a divides by p.

( \phi-\chi_{1}, \varphi_{1})=\frac{1}{|A_{n}|}\{|\mathfrak{C}’|(\phi-\chi_{1})(c’)\overline{\varphi_{1}(c’)}+

|\mathfrak{C}^{rr}|(\phi-\chi_{1})(c’)\overline{\varphi_{1}(c^{rr})}\}

= \frac{1}{p}(\frac{a+b\sqrt{p}}{2}\frac{1+\sqrt{p}}{2}+\frac{a-b\sqrt{p}}{2}\frac{1-\sqrt{p}}{2})=\frac{1}{2p}(a+bp)\in Z , because a

\equiv b(mod. 2) , p is an odd number and a divides by p. Analogously we
have

( \phi-\chi_{1}, \varphi_{2})=\frac{1}{2p}(a-bp)\in Z.

Therefore we obtain

\phi=\chi_{1}+\frac{a}{p}\sum_{i=1}^{s}\chi_{i}(c’)\chi_{i}+\frac{a+bp}{2p}\varphi_{1}+\frac{a-bp}{2p}\varphi_{2}\in R(A_{n})

Now we denote by \phi’ the class function of A_{n} which satisfies

\phi’(x)=1 for x\in A_{n}, x\not\in \mathfrak{C}’ , \mathfrak{C}’

\phi’(c’)=\frac{1}{2}(a-b\sqrt{p})+1 , \phi’(c’)=\frac{1}{2}(a+b\sqrt{p})+1 .

Then we obtain by the same method,

\phi’=\chi_{1}+\frac{a}{p}\sum_{i=1}^{s}\chi_{i}(c’)\chi_{i}+\frac{a-bp}{2p}\varphi_{1}+\frac{a+bp}{2p}\varphi_{2}\in R(A_{n})

By the proof of Lemma 3. 3, we can see that \eta^{2}=\frac{1}{2}(a+b\sqrt{p})+1 , N\eta=

1 , where \eta is a unit of Q(\sqrt{p}) . Since N(\eta^{2})=

( \frac{a+b\sqrt{p}}{2}+1)(\frac{a-b\sqrt{p}}{2}+1)=1 ,

we have \phi\phi’=\chi_{1} . Therefore \emptyset is a unit of R(A_{n}) which is not of finite
order. This completes the proof of Theorem 3. 4. Q. E. D.

4. rank U(R(A_{n}))/\{\pm 1\}

Let \Gamma_{1},\cdots,\Gamma_{c(n)} be the self-associated frames such that the conditions
(i ) , ( ii) in Definition 2. 4. hold. (See Definition 2. 4 about c(n) ). To
each \Gamma_{i} , a conjugacy class \mathfrak{C}_{i} of S_{n} is assigned and it splits into two con-
jugacy classes \mathfrak{C}_{i}’ , \mathfrak{C}_{i}’ of A_{n} . Let c_{i}, c_{i}’ be the representatives of \mathfrak{C}_{i}’, \mathfrak{C}_{i}’

respectively. By Theorem 3. 4, there is a unit \phi_{i} of R(A_{n}) which is not
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of finite order, with respect to \Gamma_{i}(i=1,\cdots,c(n)) , and we have
\psi_{i}(\chi)=1 for x\in A_{n}, x\not\in \mathfrak{C}_{i}’, \mathfrak{C}_{i}’

\psi_{i}(c_{i}^{r})=\frac{1}{2}(a_{i}+b_{i}\sqrt{p_{i}})+1 , \phi_{i}(c’)=\frac{1}{2}(a_{i}-b_{i}\sqrt{p_{i}})+1

\phi_{j}(c_{i}’)=\phi_{j}(_{C_{i}^{rr}})=1 (i\neq j)

where \frac{1}{2}(a_{i}\pm b_{i}\sqrt{p_{i}})+1 are units of Q(\sqrt{p_{i}}) as stated in the theorem.

We fix \psi_{1},\cdots,\phi_{c(n)} and denote by \langle\phi_{1},\cdots,\phi_{c(n)}\rangle an abelian subgroup of
U(R(A_{n})) , which is generated by \psi_{1},\cdots,\phi_{c(n)} . Then we have Lemma 4. 1.

LEMMA 4. 1. rank \langle\phi_{1},\cdots, \phi_{c(n)}\rangle=c(n) .

PROOF. We keep the above notations. Suppose that \phi_{1}^{e_{1}}\cdots\phi_{c(n)}^{e_{C(n)}}=

\chi_{1}(e_{1},\cdots,e_{c(n)}\in Z) . Then we have

1= \chi_{1}(c_{i}’)=(\phi_{1}^{e_{1}}\cdots\psi_{c(n)}^{e_{C1n)}})(c_{i}’)=(\phi_{i}(c_{i}’))^{e_{i}}=(\frac{1}{2}(a_{i}+b_{i}\sqrt{p_{i}})+1)^{e_{i}} .

Hence e_{i}=0(i=1,\cdots,c(n)) . Therefore we obtain rank \langle\phi_{1},\cdots,\phi_{c(n)}\rangle=

c(n) . The lemma is proved. Q. E. D.

Finally we can obtain the following main theorem.

THEOREM 4. 2. rank U(R(A_{n})/\{\pm 1\}=c(n) .

PROOF. We keep the above notations. Let \epsilon_{i} be a fundamental unit
in Q(\sqrt{p_{i}}) . By the proof of Lemma 3. 3, we can see that \phi_{i}(c_{i}’)\rangle 0 ,
\phi_{i}(c_{i}^{r})>0 and \phi_{i}(c_{i}^{r})\phi_{i}(c_{i}’)=1 . Hence we can assume that there exists a
natural mumber h_{i} such that

\phi_{i}(c_{i}’)=\epsilon_{i}^{h_{i}} , \phi_{i}(c_{i}^{rr})=\epsilon_{i}^{-h_{i}} (i=1,\cdots,c(n)) .
Here we pay attention to the fact that for an imaginary quadratic

field K, a unit group U(K) is \{\pm 1\} , except for the case K=Q(i) , K=
Q(\sqrt{-3}) . And in the case K=Q(i) , U(K)=\{\pm 1, \pm i\} and in the case
K=Q(\sqrt{-3}) , U(K)=\{\pm 1, \pm\rho, \pm\rho^{2}\} , \rho=\frac{1}{2}(-1+\sqrt{-3}) .

For any \mu\in U(R(A_{n})) , \mu(x)=\pm 1 or \mu(x) is a unit in an imaginary
quadratic field for x\in A_{n} , x\not\in \mathfrak{C}_{i}’ , \mathfrak{C}_{i}^{rr} . (i=1,\cdots,c(n)) .

And \mu(c_{i}’) , \mu(c_{i}’) are units in Q(\sqrt{p_{i}}) such that \mu(c_{i}’) is a conjugate
element of \mu(c_{i}’) over Q. And so if \mu(c_{i}’)=\pm\epsilon_{i}^{k_{i}} , then \mu(c_{i}^{rr})=\pm\epsilon_{i}^{-k_{i}} . By
the above attention, we have \mu^{12}(x)=1 for x\in A_{n} , x\not\in \mathfrak{C}_{i}’ , \mathfrak{C}_{i}’(i=1,\cdots ,
c(n)) . Therefore we can see that
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\mu^{12h_{1}\cdots hc(n)}\in\langle\phi_{1},\cdots,\phi_{c(n)}\rangle .

Hence we have

rank U(R(A_{n}))/\{\pm 1\}=rank\langle\phi_{1},\cdots,\phi_{c(n)}\rangle=c(n) .

This completes the proof of Theorem 4. 2. Q. E. D.

Summarizing the results which we have obtained, we have

THEOREM 4. 3. Let S_{n} and A_{n} be a symmetric group and an alternat-
ing group on n symbols respectively. Then we have
(i) U(R(S_{n}))=U_{f}(R(S_{n}))=\{\pm\chi_{1}, \pm\chi_{2}\}

where \chi_{2} is an alternating character, that is,
\chi_{2}(\sigma)=1 if \sigma is an even permutation,
\chi_{2}(\sigma)=-1 if \sigma is an odd permutation.

(ii) A3 and A_{4} have three linear characters \chi_{1} , \chi_{2} , \chi_{3} and
U(R(A_{3}))=U_{f}(R(A_{3}))=\{\pm\chi_{1}, \pm\chi_{2}, \pm\chi_{3}\} .
U(R(A_{4}))=U_{f}(R(A_{4}))=\{\pm\chi_{1}, \pm\chi_{2}, \pm\chi_{3}\} .

For a natural number n\geqq 5 , we have
If c(n)=0, then U(R(A_{n}))=U_{f}(R(A_{n}))=\{\pm\chi_{1}\} .
If c(n)\neq 0 , then the units of R(A_{n}) have the form

\pm\mu_{1}^{e_{1}}\cdots\mu_{c}^{e}\xi_{n)}^{tn)} (e_{i}\in Z, i=1,\cdots,c(n))

for some fifixed c(n) units \mu_{1},\cdots,\mu_{c(n)} of R(A_{n}) .

PROOF. It suffices to prove U(R(S_{n}))=\{\pm\chi_{1}, \pm\chi_{2}\} . For any ir-
reducible C-character \chi of S_{n} , \chi(x)\in Z for x\in S_{n} . Hence for any ele-
ment \emptyset of R(S_{n}) , \phi(x)\in Z for x\in S_{n} . Let \mu be any unit of R(S_{n}) . Then
we can see that \mu(x)=\pm 1 for x\in S_{n} , by the proof of Theorem 2. 1.
Therefore \mu is a unit of finite order. Hence we have \mu=\pm\chi_{1} or \pm\chi_{2} , by
Corollary 1. 2, because S_{n} has two linear characters \chi_{1} , \chi_{2} . Thus the
proof is complete. Q. E. D.
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