A unit group in a character ring of an alternating group

Dedicated to Professor Kazuhiko Hirata on his 60th birthday

Kenichi Yamauchi

(Received June 4, 1990)

1. Introduction

Throughout this paper, G denotes always a finite group, Z a ring of rational integers, Q a rational field and C a complex field. Let $\left\{x_{1}(\mathrm{a}\right.$ principal character), $\left.\cdots, x_{h}\right\}$ be the set of all irreducible C-characters of G. We denote this set by $\operatorname{Irr}(G)$. Let us set

$$
R(G)=\left\{\sum_{i=1}^{n} a_{i} x_{i} \mid a_{i} \in Z\right\}
$$

That is, $R(G)$ is the set of generalized characters of G. It is well known that $R(G)$ forms a commutative ring with an identity element x_{1}. We call $R(G)$ a character ring of G.

Let ζ be a primitive $|G|$-th root of unity and let $K=Q(\zeta)$ be the smallest subfield of C containing Q and ζ. We denote by A the ring of algebraic integers in K. In the paper of [9], we have proved the following theorem and corollary.

Theorem 1.1. Any unit of finite order in $A \otimes_{z} R(G)$ has the form $\varepsilon \chi$ for some linear character χ of G and some unit ε in A.

Corollary 1.2. Any unit of finite order in $R(G)$ has the form $\pm \chi$ for some linear character χ of G.

We denote by $U(R(G))$ a unit group of $R(G)$. In section 2 , we shall prove that $U(R(G))$ is finitely generated. Hence a factor group $U(R(G)) / U_{f}(R(G))$ is a free abelian group of finite rank, where $U_{f}(R(G))$ is the group which consists of units of finite order in $\left.R(G)\right)$.

In this paper, we intend to compute the rank of $U\left(R\left(A_{n}\right)\right) /$ $U_{f}\left(R\left(A_{n}\right)\right)$, where A_{n} is an alternating group on n symbols.

2. Preliminaries

We first show that $U(R(G))$ is finitely generated.
Theorem 2.1. For a finite group $G, U(R(G))$ is finitely generated.

PROOF. Let ζ be a primitive $|G|$-th root of unity, and let $K=Q(\zeta)$ be the smallest subfield of C containing Q and ζ. Let us denote by A the ring of algebraic integers in K. Let $\mathfrak{C}_{1}, \cdots, \mathfrak{C}_{n}$ be a full set of conjugacy classes in G and let $c_{1}=1, \cdots, c_{h}$ be the representatives of $\mathfrak{C}_{1}, \cdots, \mathfrak{C}_{h}$ respectively. Let u be an element of $U(R(G))$.

Then there exists $u^{\prime} \in R(G)$ such that

$$
u u^{\prime}=\chi_{1}(\text { a principal character }) .
$$

Hence $u\left(c_{i}\right) \cdot u^{\prime}\left(c_{i}\right)=1(i=1, \cdots, h)$. If χ is an irreducible C-character of G, then $\chi\left(c_{i}\right) \in A(i=1, \cdots, h)$. Therefore $u\left(c_{i}\right) \in A, u^{\prime}\left(c_{i}\right) \in A(i=1$, $\cdots, h)$. That is, $u\left(c_{i}\right)$ and $u^{\prime}\left(c_{i}\right)$ are units in $A(i=1, \cdots, h)$. We denote by $U(A)$ a unit group of A.

Now we define a mapping φ from $U(R(G))$ to a direct product of h copies of $U(A)$;
$\varphi: U(R(G)) \ni u \longrightarrow\left(u\left(c_{1}\right), \cdots, u\left(c_{h}\right)\right) \in U(A) \times \cdots \times U(A) \quad(h$ copies)
Then it is clear that φ is a homomorphism and injective. Since A is the ring of algebraic integers in $K, U(A)$ is finitely generated by Dirichlet's Theorem. Therefore $U(A) \times \cdots \times U(A)$ is an abelian group which is finitely generated. As $U(R(G))$ is isomorphic to a subgroup of $U(A) \times$ $\cdots \times U(A), U(R(G))$ is finitely generated. The theorem is proved.
Q. E. D.

There are three irreducible C-characters of A_{3} (an alternating group on three symbols). We denote them by $\chi_{1}, \chi_{2}, \chi_{3}$. Each χ_{i} is a linear character and $\chi_{i}(x) \in Q(\sqrt{-3})$ for $x \in A_{3}$. Hence for any $\psi \in R\left(A_{3}\right), \psi(x)$ $\in Q(\sqrt{-3})$ for $x \in A_{3}$. Since $U(Q(\sqrt{-3}))=\left\{ \pm 1, \pm \rho, \pm \rho^{2}\right\}$ where $\rho=$ $(-1+\sqrt{-3}) / 2$, by the proof of Teorem 2.1 , we can see that any unit in $R\left(A_{3}\right)$ is of finite order. Therefore we have $U\left(R\left(A_{3}\right)\right)=U_{f}\left(R\left(A_{3}\right)\right)=$ $\left\{ \pm \chi_{1}, \pm \chi_{2}, \pm \chi_{3}\right\}$, by Corollary 1.2.
A_{4} has four irreducible C-characters $\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}$ such that $\chi_{1}(1)=$ $\chi_{2}(1)=\chi_{3}(1)=1$ and $\chi_{4}(1)=3$. For any $x \in A_{4}, \chi_{i}(x) \in Q(\sqrt{-3}) \quad(i=1,2,3$, 4). Analogously we have $U\left(R\left(A_{4}\right)\right)=U_{f}\left(R\left(A_{4}\right)\right)=\left\{ \pm \chi_{1}, \pm \chi_{2}, \pm \chi_{3}\right\}$.

For a natural number $n \geqq 5, A_{n}$ is a simple group. And so $A_{n}=$ $D\left(A_{n}\right)$ (a commutator subgroup of A_{n}). Hence A_{n} has only one linear character χ_{1} (i. e. a principal character). By Corollary 1.2, we have $U_{f}\left(R\left(A_{n}\right)\right)=\left\{ \pm \chi_{1}\right\}$.

From now on, we may assume $n \geqq 5$, when we consider about $U\left(R\left(A_{n}\right)\right.$), and we use a notation " $U\left(R\left(A_{n}\right)\right) /\{ \pm 1\}$ " in place of " $U\left(R\left(A_{n}\right)\right) / U_{f}\left(R\left(A_{n}\right)\right)$ " for simplicity, by identifying $\{ \pm 1\}$ with $\left\{ \pm \chi_{1}\right\}$.

Now we state the irreducible C-characters of an alternating group A_{n}. The irreducible characters of the symmetric groups which are not self-associated, are also irreducible characters of the alternating groups.

Every self-associated character of the symmetric group S_{n} is the sum of two irreducible characters of the alternating group A_{n}. These two irreducible characters of A_{n} take exactly half the values of the character of S_{n}, except for the conjugacy class for which the value of the character of S_{n} is ± 1. This conjugacy class splits into two for A_{n}, and it is for these conjugacy classes alone that the two irreducible characters of A_{n} differ, the characteristic values in the two conjugacy classes being interchanged for the second character.

Again we repeat these circumstances explicitly. (See p 222 of [1]) Let [m_{1}, \cdots, m_{r}], $m_{1}+\cdots+m_{r}=n$ be a self-associated frame. In the following way, we can assign to $\left[m_{1}, \cdots, m_{r}\right.$] a conjugacy class of S_{n} with cycles of odd lengths $q_{1}>q_{2} \cdots>q_{k}, q_{1}+q_{2}+\cdots+q_{k}=n$; let q_{1} be the length of the "hook" consisting of the first row and the first column; $q_{1}=2 m_{1}-1$. If this hook is deleted, another self-associated frame remains, from which we determine q_{2} in the same way ; $q_{2}=2\left(m_{2}-1\right)-1=2 m_{2}-3$. We continue thus until there is nothing left.

Here we use the following notation;
($q_{1}, q_{2}, \cdots, q_{k}$) $=$ a conjugacy class of S_{n} with cycles of lengths $q_{1}>q_{2}>\cdots>$ $q_{k}, q_{1}+q_{2}+\cdots+q_{k}=\mathrm{n}$.

Then the following two theorems, which play a fundamental role, are well known (See p 222-223 of [1]).

THEOREM 2.2. The character of a self-associated representation of S_{n} which corresponds to a self-associated frame $\left[m_{1}, \cdots, m_{r}\right], m_{1}+\cdots+m_{r}=$ n is

$$
(-1)^{\frac{1}{2}(n-k)}=(-1)^{\frac{1}{2}(p-1)}
$$

in the conjugacy class ($q_{1}, q_{2}, \cdots, q_{k}$) which is assigned to $\left[m_{1}, \cdots, m_{r}\right]$ where $p=q_{1} q_{2} \cdots q_{k}$; in all other conjugacy classes it is an even number.

Theorem 2.3. (Frobenius's theorem) Let χ be a self-associated character of S_{n} which corresponds to a self-associated frame $\left[m_{1}, \cdots, m_{r}\right.$], $m_{1}+\cdots+m_{r}=n$. Then we have
(i) If we consider χ as a character of A_{n}, χ is the sum of two irreducible characters χ_{1}, χ_{2} of $A_{n} ; \chi=\chi_{1}+\chi_{2}$
(ii) If ($q_{1}, q_{2}, \cdots, q_{k}$) is a conjugacy class which is assigned to $\left[m_{1}, \cdots\right.$, m_{r}], then $\left(q_{1}, q_{2}, \cdots, q_{k}\right)$ splits into two conjugacy classes \mathfrak{C}^{\prime}, $\mathfrak{E}^{\prime \prime}$ of A_{n}. The values of χ_{1} and χ_{2} are
$\frac{\lambda \pm \sqrt{p \lambda}}{2}$
in the two classes \mathfrak{C}^{\prime}, $\mathfrak{C}^{\prime \prime}$, where $\lambda=(-1)^{\frac{1}{2}(n-k)}=(-1)^{\frac{1}{2}(p-1)}$ and $p=q_{1} q_{2} \cdots q_{k}$. The values of χ_{1} and χ_{2} are equal in all other conjugacy classes of $A_{n} ; \chi_{1}=\chi_{2}=\frac{1}{2} \chi$.

DEFINITION 2.4. For a natural number n, we define a nonnegative rational integer $c(n)$ as follows;
$c(n)=$ the number of self-associated frames $\left[m_{1}, \cdots, m_{r}\right], m_{1}+\cdots+m_{r}=$ n such that
(i) p is not the square of a number. (i.e. $\sqrt{p} \notin Q$)
(ii) $p \equiv 1 \quad(\bmod .4)$.

Where we assign to $\left[m_{1}, \cdots, m_{r}\right]$ a conjugacy class ($q_{1}, q_{2}, \cdots, q_{k}$) and $p=q_{1} q_{2} \cdots q_{k}$.

EXAMPLE. We compute $c(15)$. There are three self-associated frames ; $[8,1, \cdots, 1],[5,4,3,2,1],[4,4,4,3]$. We can assign to $[8,1, \cdots, 1]$, $[5,4,3,2,1],[4,4,4,3]$ conjugacy classes of $S_{15}(15),(9,5,1),(7,5,3)$ respectively. And conjugacy classes (15), ($9,5,1$), ($7,5,3$) determine odd numbers $15,9 \times 5 \times 1=45,7 \times 5 \times 3=105$ respectively. $15 \neq 1$ (mod. 4), $45 \equiv 1(\bmod .4), 105 \equiv 1(\bmod .4)$. Therefore we have $c(15)=2$.

In this paper our intention is to show that the rank of $U\left(R\left(A_{n}\right)\right) /$ $\{ \pm 1\}$ is equal to $c(n)$. (See Theorem 4.2.)

3. Construction of unit elements

In this section we construct a unit element of $R\left(A_{n}\right)$ which is not of finite order.

Let $\left[m_{1}, \cdots, m_{r}\right], m_{1}+\cdots+m_{r}=n$ be a self-associated frame and let ($q_{1}, q_{2}, \cdots, q_{k}$) be a conjugacy class of S_{n} which is assigned to [m_{1}, \cdots, m_{r}]. We set $p=q_{1} q_{2} \cdots q_{k}$. In addition we assume that $p \equiv 1$ (mod.4) and p is not the square of a number. Hence $Q(\sqrt{p})$ is the real quadratic field. Here we state several lemmata in the above situation.

Lemma 3.1. A conjugacy class $\left(q_{1}, q_{2}, \cdots, q_{k}\right)$ of S_{n} consists of $\left|S_{n}\right| / p$ elements.

Proof. Since $\left(q_{1}, q_{2}, \cdots, q_{k}\right)$ is a conjugacy class with cycles of lengths $q_{1}>q_{2}>\cdots>q_{k}, q_{1}+q_{2}+\cdots q_{k}=n$, then it consists of

$$
\frac{n!}{q_{1} q_{2} \cdots q_{k}}=\frac{\left|S_{n}\right|}{p}
$$

elements (See p 31 of [1]). The lemma is proved.
Q. E. D.

LEMMA 3.2. We set $p=\iota^{2} p_{0},\left(p_{0}\right.$: square-free). Then we have (i) $p_{0} \equiv 1$ (mod.4)
(ii) If $\frac{1}{2}(t+u \sqrt{p}), t, u \in Z$ is an algebraic integer in $Q\left(\sqrt{p_{0}}\right)$, then $t \equiv u$ (mod. 2)
(iii) If ε_{0} is a fundamental unit of $Q\left(\sqrt{p_{0}}\right)$, then the units of $Q\left(\sqrt{p_{0}}\right)$ which take the form of $\frac{1}{2}(t+u \sqrt{p}), t, u \in Z$, are given by $\pm E_{0}^{n}$ ($n=0, \pm 1, \pm 2, \cdots$), where $E_{0}=\varepsilon_{0}^{e}$ for some natural number e.

Proof. It is clear that (i) and (ii) hold. For (iii), for example, see p 319 of [8].
Q. E. D.

LEmmA 3.3. There exists a unit of $Q(\sqrt{p})$ which takes the form of

$$
\left.\frac{1}{2}(a+b \sqrt{p})+1, a, b \in Z, \quad p \mid a \text { (i.e. a divides by } p\right)
$$

and of which the norm over Q is equal to 1.
Proof. By Lemma 3.2, there exists a unit $\eta=\frac{1}{2}(t+u \sqrt{p}), t, u \in Z$ such that $N \eta=1$ where $N \eta$ denotes the norm of η over Q. Hence $t^{2}-$ $p u^{2}=4$. Thus $t^{2}=p u^{2}+4$. If we set $a=p u^{2}, b=t u$, then we obtain

$$
\eta^{2}=\frac{1}{4}\left(t^{2}+p u^{2}+2 t u \sqrt{p}\right)=\frac{1}{2}(a+b \sqrt{p})+1,
$$

because a equation $t^{2}=p u^{2}+4=a+4$ holds. Thus $\frac{1}{2}(a+b \sqrt{p})+1$ is the desired unit of $Q(\sqrt{p})$ and so the proof is complete.
Q. E. D.

Now we construct a unit of $R\left(A_{n}\right)$ which is not of finite order.
Let $\left[m_{1}, \cdots, m_{r}\right], m_{1}+\cdots+m_{r}=n$ be a self-associated frame and let (q_{1}, q_{2}, \cdots, q_{k}) be a conjugacy class of S_{n} which is assigned to $\left[m_{1}, \cdots, m_{r}\right]$; ($q_{1}=$ $\left.2 m_{1}-1, q_{2}=2 m_{2}-3, \cdots\right)$.

Let $\mathfrak{C}^{\prime}, \mathfrak{C}^{\prime \prime}$ be the two conjugacy classes of A_{n} into which ($q_{1}, q_{2}, \cdots, q_{k}$) splits. We set $p=q_{1} q_{2} \cdots q_{k}$. In addition, we assume that $p \equiv 1(\bmod .4)$ and p is not the square of a number. Let
$\frac{1}{2}(a+b \sqrt{p})+1, a, b \in Z \quad(p \mid a, b \neq 0)$ be the unit of $Q(\sqrt{p})$ which is stated in Lemma 3.3. Then we have Theorem 3.4.

TheOrem 3.4. There exists a unit ψ of $R\left(A_{n}\right)$ such that

$$
\begin{aligned}
& \psi(x)=1 \quad \text { for } x \in A_{n}, \quad x \notin \mathfrak{C}^{\prime}, \mathfrak{C}^{\prime \prime} \\
& \psi\left(c^{\prime}\right)=\frac{1}{2}(a+b \sqrt{p})+1, \quad \psi\left(c^{\prime \prime}\right)=\frac{1}{2}(a-b \sqrt{p})+1
\end{aligned}
$$

where $c^{\prime}, c^{\prime \prime}$ are the representatives of $\mathfrak{c}^{\prime \prime}, \mathfrak{c}^{\prime \prime}$ respectively.
Proof. First we note that a self-associated character θ of S_{n} which corresponds to [m_{1}, \cdots, m_{r}], is the sum of two irreducible characters φ_{1}, φ_{2} of A_{n}, when we consider θ as a character of A_{n}.

By Theorem 2.3, we assume that

$$
\begin{aligned}
& \varphi_{1}\left(c^{\prime}\right)=\frac{1}{2}(1+\sqrt{p}), \quad \varphi_{1}\left(c^{\prime \prime}\right)=\frac{1}{2}(1-\sqrt{p}) \\
& \varphi_{2}\left(c^{\prime}\right)=\frac{1}{2}(1-\sqrt{p}), \quad \varphi_{2}\left(c^{\prime \prime}\right)=\frac{1}{2}(1+\sqrt{p}) \\
& \varphi_{1}(x)=\varphi_{2}(x) \in Z \quad \text { for } x \in A_{n}, \quad x \notin \mathfrak{C}^{\prime}, \mathfrak{C}^{\prime \prime}
\end{aligned}
$$

Let χ_{1} (a principal character), \cdots, χ_{s} be all other irreducible characters of A_{n}. Then $\chi_{i}\left(c^{\prime}\right)=\chi_{i}\left(c^{\prime \prime}\right) \in Z \quad(i=1, \cdots, s)$. Here we show that the class function ψ which is stated in this theorem, is actually written as a linear combination of χ_{i} and $\varphi_{j}(i=1, \cdots, s ; j=1,2)$ with integral coefficients. Now we pay attention to the fact that $\left|\mathfrak{C}^{\prime}\right|=\left|\mathfrak{C}^{\prime \prime}\right|=\left|A_{n}\right| / p$ (See Lemma 3.1) and that

$$
\begin{aligned}
& \left(\psi-\chi_{1}\right)(x)=0 \text { for } x \in A_{n}, x \notin \mathbb{C}^{\prime}, \mathfrak{C}^{\prime \prime} . \\
& \quad\left(\psi-\chi_{1}\right)\left(c^{\prime}\right)=\frac{1}{2}(a+b \sqrt{p}),\left(\psi-\chi_{1}\right)\left(c^{\prime \prime}\right)=\frac{1}{2}(a-b \sqrt{p})
\end{aligned}
$$

We denote by (λ, μ) the inner product of two class functions λ, μ of A_{n}. That is,

$$
(\lambda, \mu)=\frac{1}{\left|A_{n}\right|} \Sigma_{g \in A_{n}} \lambda(g) \overline{\mu(g)}
$$

Here we compute several inner products as follows

$$
\begin{aligned}
& \left(\psi-\chi_{1}, \chi_{i}\right)=\frac{1}{\left|A_{n}\right|}\left\{\left|\mathfrak{C}^{\prime}\right|\left(\psi-\chi_{1}\right)\left(c^{\prime}\right) \overline{\chi_{i}\left(c^{\prime}\right)}+\right. \\
& \frac{\left.\left|\mathfrak{C}^{\prime \prime}\right|\left(\psi-\chi_{1}\right)\left(c^{\prime \prime}\right) \overline{\chi_{i}\left(c^{\prime \prime}\right)}\right\}=}{2}\left(\frac{a+b \sqrt{p}}{2}+\frac{a-b \sqrt{p}}{2}\right) \chi_{i}\left(c^{\prime}\right)=\frac{a}{p} \chi_{i}\left(c^{\prime}\right) \in Z
\end{aligned}
$$

, because $\chi_{i}\left(c^{\prime}\right)=\chi_{i}\left(c^{\prime \prime}\right) \in Z$ and a divides by p.

$$
\begin{aligned}
& \left(\psi-\chi_{1}, \varphi_{1}\right)=\frac{1}{\left|A_{n}\right|}\left\{\left|\mho^{\prime}\right|\left(\psi-\chi_{1}\right)\left(c^{\prime}\right) \overline{\varphi_{1}\left(c^{\prime}\right)}+\right. \\
& \quad\left|\wp^{\prime \prime}\right|\left(\psi-\chi_{1}\right)\left(c^{\prime \prime}\right) \overline{\left.\varphi_{1}\left(c^{\prime \prime}\right)\right\}} \\
& =\frac{1}{p}\left(\frac{a+b \sqrt{p}}{2} \frac{1+\sqrt{p}}{2}+\frac{a-b \sqrt{p}}{2} \frac{1-\sqrt{p}}{2}\right)=\frac{1}{2 p}(a+b p) \in Z, \text { because } a
\end{aligned}
$$

$\equiv b$ (mod. 2), p is an odd number and a divides by p. Analogously we have

$$
\left(\psi-\chi_{1}, \varphi_{2}\right)=\frac{1}{2 p}(a-b p) \in Z .
$$

Therefore we obtain

$$
\psi=\chi_{1}+\frac{a}{p} \sum_{i=1}^{s} \chi_{i}\left(c^{\prime}\right) \chi_{i}+\frac{a+b p}{2 p} \varphi_{1}+\frac{a-b p}{2 p} \varphi_{2} \in R\left(A_{n}\right)
$$

Now we denote by ψ^{\prime} the class function of A_{n} which satisfies

$$
\begin{aligned}
& \psi^{\prime}(x)=1 \text { for } x \in A_{n}, \quad x \notin \mathfrak{C}^{\prime}, \mathfrak{c}^{\prime \prime} \\
& \psi^{\prime}\left(c^{\prime}\right)=\frac{1}{2}(a-b \sqrt{p})+1, \quad \psi^{\prime}\left(c^{\prime \prime}\right)=\frac{1}{2}(a+b \sqrt{p})+1 .
\end{aligned}
$$

Then we obtain by the same method,

$$
\psi^{\prime}=\chi_{1}+\frac{a}{p} \sum_{i=1}^{s} \chi_{i}\left(c^{\prime}\right) \chi_{i}+\frac{a-b p}{2 p} \varphi_{1}+\frac{a+b p}{2 p} \varphi_{2} \in R\left(A_{n}\right)
$$

By the proof of Lemma 3.3, we can see that $\eta^{2}=\frac{1}{2}(a+b \sqrt{p})+1, N \eta=$ 1 , where η is a unit of $Q(\sqrt{p})$. Since $N\left(\eta^{2}\right)=$

$$
\left(\frac{a+b \sqrt{p}}{2}+1\right)\left(\frac{a-b \sqrt{p}}{2}+1\right)=1
$$

we have $\psi \psi^{\prime}=\chi_{1}$. Therefore ψ is a unit of $R\left(A_{n}\right)$ which is not of finite order. This completes the proof of Theorem 3.4.
Q. E. D.

4. \quad rank $\boldsymbol{U}\left(\boldsymbol{R}\left(\boldsymbol{A}_{n}\right)\right) /\{ \pm 1\}$

Let $\Gamma_{1}, \cdots, \Gamma_{c(n)}$ be the self-associated frames such that the conditions (i), (ii) in Definition 2.4. hold. (See Definition 2.4 about $c(n)$). To each Γ_{i}, a conjugacy class \mathfrak{C}_{i} of S_{n} is assigned and it splits into two conjugacy classes $\mathfrak{C}_{i}^{\prime}, \mathfrak{C}_{i}^{\prime \prime}$ of A_{n}. Let $c_{i}^{\prime}, c_{i}^{\prime \prime}$ be the representatives of $\mathfrak{C}_{i}^{\prime}$, $\mathfrak{C}_{i}^{\prime \prime}$ respectively. By Theorem 3.4, there is a unit ψ_{i} of $R\left(A_{n}\right)$ which is not
of finite order, with respect to $\Gamma_{i}(i=1, \cdots, c(n))$, and we have

$$
\begin{aligned}
& \psi_{i}(x)=1 \text { for } x \in A_{n,}, x \notin \mathfrak{C}_{i}^{\prime}, \mathfrak{E}_{i}^{\prime \prime \prime} \\
& \psi_{i}\left(c_{i}^{\prime}\right)=\frac{1}{2}\left(a_{i}+b_{i} \sqrt{p_{i}}\right)+1, \psi_{i}\left(c^{\prime \prime}\right)=\frac{1}{2}\left(a_{i}-b_{i} \sqrt{p_{i}}\right)+1 \\
& \psi_{j}\left(c_{i}^{\prime}\right)=\psi_{j}\left(c_{i}^{\prime \prime}\right)=1 \quad(i \neq j)
\end{aligned}
$$

where $\frac{1}{2}\left(a_{i} \pm b_{i} \sqrt{p_{i}}\right)+1$ are units of $Q\left(\sqrt{p_{i}}\right)$ as stated in the theorem.
We fix $\psi_{1}, \cdots, \psi_{c(n)}$ and denote by $\left\langle\psi_{1}, \cdots, \psi_{c(n)}\right\rangle$ an abelian subgroup of $U\left(R\left(A_{n}\right)\right)$, which is generated by $\psi_{1}, \cdots, \psi_{c(n)}$. Then we have Lemma 4.1.

Lemma 4.1. $\quad \operatorname{rank}\left\langle\psi_{1}, \cdots, \psi_{c(n)}\right\rangle=c(n)$.
Proof. We keep the above notations. Suppose that $\psi_{1}^{e_{1} \ldots \psi_{c(n)}^{e}(n)}=$ $\chi_{1}\left(e_{1}, \cdots, e_{c(n)} \in Z\right)$. Then we have

Hence $e_{i}=0(i=1, \cdots, c(n))$. Therefore we obtain rank $\left\langle\psi_{1}, \cdots, \psi_{c(n)}\right\rangle=$ $c(n)$. The lemma is proved.
Q.E.D.

Finally we can obtain the following main theorem.
THEOREM 4.2. $\quad \operatorname{rank} U\left(R\left(A_{n}\right) /\{ \pm 1\}=c(n)\right.$.
Proof. We keep the above notations. Let ε_{i} be a fundamental unit in $Q\left(\sqrt{p_{i}}\right)$. By the proof of Lemma 3.3, we can see that $\psi_{i}\left(c_{i}^{\prime}\right)>0$, $\psi_{i}\left(c_{i}^{\prime \prime}\right)>0$ and $\psi_{i}\left(c_{i}^{\prime}\right) \psi_{i}\left(c_{i}^{\prime \prime}\right)=1$. Hence we can assume that there exists a natural mumber h_{i} such that

$$
\psi_{i}\left(\mathrm{c}_{i}^{\prime}\right)=\varepsilon_{i}^{h_{i}}, \quad \psi_{i}\left(c_{i}^{\prime \prime}\right)=\varepsilon_{i}^{-h_{i}} \quad(i=1, \cdots, c(n))
$$

Here we pay attention to the fact that for an imaginary quadratic field K, a unit group $U(K)$ is $\{ \pm 1\}$, except for the case $K=Q(i), K=$ $Q(\sqrt{-3})$. And in the case $K=Q(i), U(K)=\{ \pm 1, \pm i\}$ and in the case $K=Q(\sqrt{-3}), U(K)=\left\{ \pm 1, \pm \rho, \pm \rho^{2}\right\}, \rho=\frac{1}{2}(-1+\sqrt{-3})$.

For any $\mu \in U\left(R\left(A_{n}\right)\right), \mu(x)= \pm 1$ or $\mu(x)$ is a unit in an imaginary quadratic field for $x \in A_{n}, \mathrm{x} \notin \mathfrak{C}_{i}^{\prime}, \mathfrak{C}_{i}^{\prime \prime \prime} . \quad(i=1, \cdots, c(n))$.

And $\mu\left(c_{i}^{\prime}\right), \mu\left(c_{i}^{\prime \prime}\right)$ are units in $Q\left(\sqrt{p_{i}}\right)$ such that $\mu\left(c_{i}^{\prime \prime}\right)$ is a conjugate element of $\mu\left(\mathrm{c}_{i}^{\prime}\right)$ over Q. And so if $\mu\left(c_{i}^{\prime}\right)= \pm \varepsilon_{i}^{k_{i}}$, then $\mu\left(c_{i}^{\prime \prime}\right)= \pm \varepsilon_{i}^{-k_{i}}$. By the above attention, we have $\mu^{12}(x)=1$ for $x \in A_{n}, x \notin \mathfrak{C}_{i}^{\prime}, \mathfrak{C}_{i}^{\prime \prime}(i=1, \cdots$, $c(n)$). Therefore we can see that

$$
\mu^{12 h_{1} \cdots h_{c(n)}} \in\left\langle\psi_{1}, \cdots, \psi_{c(n)}\right\rangle .
$$

Hence we have

$$
\operatorname{rank} U\left(R\left(A_{n}\right)\right) /\{ \pm 1\}=\operatorname{rank}\left\langle\psi_{1}, \cdots, \psi_{c(n)}\right\rangle=c(n) .
$$

This completes the proof of Theorem 4.2. Q.E.D.
Summarizing the results which we have obtained, we have
Theorem 4.3. Let S_{n} and A_{n} be a symmetric group and an alternating group on n symbols respectively. Then we have
(i) $U\left(R\left(S_{n}\right)\right)=U_{f}\left(R\left(S_{n}\right)\right)=\left\{ \pm \chi_{1}, \pm \chi_{2}\right\}$
where χ_{2} is an alternating character, that is,
$\chi_{2}(\sigma)=1$ if σ is an even permutation, $\chi_{2}(\sigma)=-1$ if σ is an odd permutation.
(ii) A_{3} and A_{4} have three linear characters $\chi_{1}, \chi_{2}, \chi_{3}$ and

$$
U\left(R\left(A_{3}\right)\right)=U_{f}\left(R\left(A_{3}\right)\right)=\left\{ \pm \chi_{1}, \pm \chi_{2}, \pm \chi_{3}\right\} .
$$

$$
U\left(R\left(A_{4}\right)\right)=U_{f}\left(R\left(A_{4}\right)\right)=\left\{ \pm \chi_{1}, \pm \chi_{2}, \pm \chi_{3}\right\} .
$$

For a natural number $n \geqq 5$, we have
If $c(n)=0$, then $U\left(R\left(A_{n}\right)\right)=U_{f}\left(R\left(A_{n}\right)\right)=\left\{ \pm \chi_{1}\right\}$.
If $c(n) \neq 0$, then the units of $R\left(A_{n}\right)$ have the form

$$
\pm \mu_{1}^{e_{1} \cdots \mu_{c(n)}^{e_{c}(n)}} \quad\left(e_{i} \in Z, \quad i=1, \cdots, c(n)\right)
$$

for some fixed $c(n)$ units $\mu_{1}, \cdots, \mu_{c(n)}$ of $R\left(A_{n}\right)$.
Proof. It suffices to prove $U\left(R\left(S_{n}\right)\right)=\left\{ \pm \chi_{1}, \pm \chi_{2}\right\}$. For any irreducible C-character χ of $S_{n}, \chi(x) \in Z$ for $x \in S_{n}$. Hence for any element ψ of $R\left(S_{n}\right), \psi(x) \in Z$ for $x \in S_{n}$. Let μ be any unit of $R\left(S_{n}\right)$. Then we can see that $\mu(x)= \pm 1$ for $x \in S_{n}$, by the proof of Theorem 2.1. Therefore μ is a unit of finite order. Hence we have $\mu= \pm \chi_{1}$ or $\pm \chi_{2}$, by Corollary 1.2, because S_{n} has two linear characters χ_{1}, χ_{2}. Thus the proof is complete.
Q. E. D.

References

[1] BOERNER, H. "Representations of Groups with special consideration for the needs of modern physics" (Second revised edition) North-Holland, Amsterdam, 1970.
[2] CURTIS, C. W. and REINER, I. "Representation theory of finite groups and associative algebras" Wiley-Interscience, New York, 1962.
[3] CURTIS, C. W. and REINER, I. "Methods of Representation theory with applications to finite groups and orders" (vol. 1) Wiley-Interscience, New York, 1981.
[4] FEIT, W. "Characters of Finite Groups" Benjamin, New York, 1967.
[5] HATtORI, A. "Finite groups and their Representations" (in Japanese), Kyôritsu Press, Tokyo, 1967.
[6] IsAACS, I. M. "Character Theory of Finite Groups" Academic Press, New York, 1976.
[7] Serre, J. P. "Linear representation of finite groups" Springer-Verlag, New York, 1977.
[8] TAKAGI, T. "Elementary theory of numbers" (Second edition) (in Japanese) Kyôritsu Press, Tokyo, 1971.
[9] Yamauchi, K. On the units in a character ring (preprint).
Department of Mathematics, Faculty of Education, Chiba University, Yayoicho 1-33, Chiba-city 260, Japan.

