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\S 0. Introduction

Let \Sigma be a closed oriented surface of genus \geq 2 and p:Earrow\Sigma a ori-
ented S^{1_{-}}bundle over \Sigma . Then there exists the cohomology class e(E)\in
H^{2}(\Sigma, Z) which is known as the Euler class. We define the Eular number
eu (E) \in Z by the formula

eu (E)=\langle e(E), [\Sigma]\rangle .

Here [\Sigma]\in H_{2}(\Sigma, Z) denotes the fundamental class of \Sigma .
The S^{1_{-}}bundle E has a codimension-0ne foliation \mathscr{F} transverse to

each fiber of it if and only if it satisfies the inequality

|eu(E)|\leq|\chi(\Sigma)| ,

where \chi(\Sigma) denotes the Euler characteristic of \Sigma (see [Mil], [Wo]).
Recently E. Ghys found the influence of the qualitative properties of \mathscr{F}

on the Euler number eu(E) of E in his paper [Gh]. In order to see this,
we will explain the minimal set of \mathscr{F}, and the classification of it first.

Let M be a closed manifold and \mathscr{C} a codimension-0ne foliation of M.
A subset S of M is saturated if it is a union of leaves of \mathscr{C} . Non-empty,
closed, saturated subset \mathscr{M} of M is called minimal if it is minimal about
these properties. Since M is compact, there exists a minimal set \mathscr{M} of M.
Any minimal set \mathscr{M} is one of the following three types:

(1) a closed leaf,
(2) M (in this case, the foliation \mathscr{C} is called minimal),
(3) an exceptional minimal set (that is, for any point x\in \mathscr{M}, there

exists a compact arc T through x in M such that \mathscr{M}\cap T is a
Cantor set).

Now let E, \mathscr{F}_{-}.\Sigma be as above As is well known, if \mathscr{I}^{-} has a closed
leaf, then eu(E) =0 . And for any integer n with |n|\leq|\chi(\Sigma)| , there exists
a transversely projective foliated S^{1_{-}}bundle (E_{n}, \mathscr{I}_{n}^{-}) over \Sigma such that
eu(E_{n})=n . The result of E. Ghys ([Gh]) mentioned above is as fol-
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lows: if \mathscr{F} is of class C^{2} and it has an exceptional minimal set, then
|eu(E)|<|\chi(\Sigma)| .

Now we are interested in the following problem: whether the last in-
equality holds for transversely piecewise C^{2} or transversely C^{1+a}(0<\alpha<1)

foliations (see [Gh], [H-K] ). One of the reasons why this problem is
important is that it has something to do with a topological invariance of
Anosov foliations of the unit tangent bundle T_{1}\Sigma of \Sigma . In this paper, we
consider this problem in the category of transversely piecewise linear
foliations and get the following theorem:

THEOREM Let \Sigma , E, J^{} be as above. If J^{} is a transversely piec-
ewise linear foliation and has an exceptional minimal set, then we have

|eu(E)|<|\chi(\Sigma)| .

\S 1. Reduction of theorem.

Let \Sigma , E , \mathscr{F} be as in Section 0. E. Ghys proved the following the0-
rem in [Gh. Th.3] for C^{0} foliated S^{1}-bundle (E, \Sigma) .

THEOREM 1. 1. If | e(M)| =|\chi(\Sigma)| , then every leaf of \mathscr{F} is
homeomorphic to T^{2} or S^{1}\cross R or R^{2} .

On the other hand, for any connected manifold M, let \epsilon(M) denote
the number of the endset of M. That is

\epsilon(M)=\sup_{K\in X}\#\{U|_{andisnotre1ative1ycompactinM}^{UisaconnectedcompoentofM-K}\} ,

where \mathscr{K} denotes the family of all compact subsets of M . For example,
\epsilon(T^{2})=0 , \epsilon(S^{1}\cross R)=2 and \epsilon(R^{2})=1 . The following theorem is due to G.
Duminy (unpublished, but see [C-C 2] ).

THEOREM 1. 2. Let \mathscr{C} be a codimenison-One, C^{2} foliation of a closed
manifold M. If \mathscr{C} has an exceptional minimal set \mathscr{M}, then every semi
-proper leaf L in \mathscr{M} has an infinitely many ends, that, is, \epsilon(L)=\infty ,

Then, if \mathscr{F} is of class C^{2} and has an exceptional minimal set, then
Ghys inequality | eu(E)| <|\chi(\Sigma)| follows from Theorem 1. 1 and Theorem
1. 2 as above. But Theorem 1. 2 is so powerful result that it is stronger
than what we need to prove the Ghys inequality. Indeed, whether TheO-
rem 1. 2 holds for a piecewise linear (PL) foliation is an open problem.
So we consider the following problem which is sufficient to prove a Ghys
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inequality for PL foliation :

PROBLEM 1. 3. Let \mathscr{C} be a codimension-One foliation of a closed 3
-manifold. If every leaf of \mathscr{C} is homeomorphic to S^{1}\cross R or R^{2} , then is it
minimal .\rho

If \mathscr{C} is class C^{2} , then the answer to PROBLEM 1. 3 is a affirmative by
THEOREM 1. 2. But it is negative for C^{1} foliations. Indeed, let ( T^{2}. \mathscr{C}_{D})

be a Denjoy flow of class C^{1} (see [Her]) and \pi:T^{3}=T^{2}\cross S^{1}arrow T^{2} a nat-
ural projection. Then \pi^{*}\mathscr{C}_{D} is a C^{1} foliation by cylinders of T^{3} which
has an exceptional minimal set. The following theorem is one of the
main results of this paper which will be proved in Section 2:

THEOREM 1. 4. Let \mathscr{C} be a codimension-One, transversely oriented,
transversely PL foliation of a closed manifold M. If e^{f}.)ery leaf of \mathscr{C} is
homeomorphic to S^{1}\cross R or R^{2} . then it is a minimal foliation.

The definition of a transversely PL foliation is given is Section 3.

PROOF OF THEOREM IN SECTION 0: Theorem 1. 1 and 1. 4 implies the
theorem.

\S 2. Transversely piecewise linear foliations.

Let \mathscr{C} be a codimension-0ne, transversely oriented, transversely PL
foliation of a 3-dimensional closed manifold M and \mathscr{F} a one-dimensional
foliation of M transverse to \mathscr{C} . That is, there exists a finite family \{(U_{i} ,
\varphi_{i})\}_{i=1}^{n} which satisfies the following four conditions:

(1) \{ U_{i}\}_{i=1}^{n} is an open cover of M.
(2) \phi_{i} : U_{i}arrow(-1,1)^{2}\cross(a_{i}, b_{i}) is a homeomorphism such that

\mathscr{C}|_{U_{i}}=\phi_{i}^{*}\{(-1,1)^{2}\cross\{t\}\}_{t\in(a_{i},b_{i})} and \mathscr{T}|_{U_{i}}=\phi_{i}^{*}\{\{x\}\cross(a_{i}, b_{i})\}_{x\in(-1,1)}2 .

(3) If U_{i}\cap U_{j}\neq\emptyset(1\leq i, j\leq n) , then there exists a simple foliation chart
(U, \phi) such that U\supset\overline{U}_{i}\cup\overline{U}_{j} . Here, a foliation chart ( U, \psi) is simple if
it satisfies the condition (2) above.

(4) For every coordinate transformation \phi_{i}\circ\phi_{j}=(f_{ij}, \gamma_{ij}) , there exists an
element g\in PL_{+}(R) such that \gamma_{ij}=g on the domain of \gamma_{ij} . Here, PL_{+}(R)

denotes the group of all orientation preserving piecewise linear homeomor-
phisms of R whose non-differentiable point set has no accumulation point
in R.

From now on, let M, \mathscr{C} . \mathscr{T}. \{(U_{i}, \phi_{i})\}_{i=1}^{n} , \gamma_{ij} be as above and fix them.
For every \gamma_{ij} , its graph has at most finitely many non-differentiable
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points, which we denote by

(x_{1}^{ij}. y_{1}^{ij}) , \cdots , (x_{l_{ij}}^{ij}, y_{l_{ij}}^{ij}) .

We define a compact set K by

K=\overline{K}_{0} , K_{0}=(_{1} \bigcup_{\leq i,j\leq n} 1\leq/\leq l_{\iota},’ \phi_{i}^{-1}((-1,1)^{2}\cross\{y_{l}^{ij}\})\cup(_{1}\bigcup_{\leq ij\leq n} 1\leq i\leq/.’\phi_{j}^{-1}((-1,1)^{2}\cross\{x_{l}^{ij}\})) .

REMARK 2. 1. We note that \mathscr{C}|_{M-K} is a transversely affine foliation
of M-K. Here, a transversely affine foliation means that every trans-
verse trasition function \gamma_{ij} is a restriction of an affine homeomorphism of
R.

A holonomy associated to a loop in a leaf of \mathscr{C} can be written as a
composite of \gamma_{ij} . We have the following fundamental proposition due to
T. Kanayama ([Kan]) :

PROPOSITION 2. 2. For any connected \mathscr{F} saturated open set U, its
Dippolito completion ( \hat{U}, C)(C:\hat{U} -arrow M is the natural immersion induced
by the inclusion \iota : UL_{arrow M.)} has a nucleus-arm decomposition \hat{U}=N\cup A_{1}

\cup\cdots\cup A_{l} (for some integer l\geq 0 ) such that (A_{i}, l_{c}^{\backslash *}Z|A_{i})(i=1, \cdots, l) is a
trivially foliated I -product.

A leaf L of \mathscr{C} is semi-proper if, for any point x of M, there exists a
non-degenerate compact arc T which is contained in a leaf of \mathscr{T} such that
L\cap T=\{x\} . A semi-proper leaf L is stable on the proper side if there
exists a foliation preserving topological immersion f : (L\cross[0,1), \{L\cross

\{t\}\}_{t\in l0,1)}) -arrow(M, \mathscr{C}) such that f(x, O)=x , f|_{L\cross(0,1)} is an embedding and
f(L\cross(0,1))\cap L=\emptyset . The following two propositions are easily proved by
Remark 2. 1 and Proposition 2. 2.

PROPOSITION 2. 3. For any semi-proper leaf L\in \mathscr{C} . the holonomy
associated to any loop in L-K is trivial. Especially L is without holonomy
if it is homeomorphic to S^{2_{-}}Z, where Z is a totally disconnected closed set
of S^{2}-

PROPOSITION 2. 4. If a semi-proper leaf L\in \mathscr{C} is without holonomy
on the proper side, then L is stable on this side. Especially L is stable on
the proper side if is homemorphic to S^{2}-Z, where Z is a totally discon-
nected closed set of S^{2}-

The following proposition is important to think about the stucture of
a foliation by planes and cylinders:
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PROPOSITION 2. 5. Let U be a connected \mathscr{C}- saturated set of M and
(\hat{U}, \ell) a Dippolito completion of U. If l^{*}\mathscr{C} has no compact leaf and
every leaf of C^{*}\mathscr{C} has a finite number of ends, then we have

(1) The pair ( \hat{U},\hat{\iota}^{*}\mathscr{C}) is a trivially foliated I -product over a bound-
ary leaf.

(2) For every leaf L\in \mathscr{C}|_{U}, its closure c1_{M}(L) contains c1_{M}(C(\partial\hat{U})) .

PROOF: We take a boundary leaf \hat{L}\subset\partial\hat{U} and a compact 2 -dimen-
sional submanifold \hat{K} of \hat{L} with boundary which contains l^{-1}(K)\cap\hat{L} .
Let B be a non-compact connected component of \hat{L}-int_{L}\hat{K} . By exchang-
ing \hat{K} for a bigger one if necessary, we can assume that \partial\hat{B} is
homeomorphic to S^{1} and that \hat{B} is contained in some arm A_{i} of a nucleus
-arm decomposition of \hat{U} as in Proposition 2. 2. Now we take a base
point x_{0} in \partial\hat{B} and let T_{*} be a leaf of l^{*}\mathscr{T} through xo . If a leaf L\in 2^{*}\mathscr{C}

has non-empty intersection with int(T*), then it is a proper leaf without
holonomy. Indeed, if not, L or a leaf L’ near L contains infinitely many
copies of \hat{B} and \epsilon(L)=\infty or \epsilon(L’)=\infty , a contradiction. So L\dot{1}S stable
by Proposition 2. 4. Then we can construct a topological embedding h :
\hat{L}\cross T_{*}arrow\hat{U} such that h(\hat{L}\cross\partial T_{*})\subset\partial\hat{U} . h^{*}i^{*}\mathscr{C}=\{\hat{L}\cross\{t_{*}\}\}_{t_{*}\in T*} and
h^{*}\hat{\iota}^{*}\mathscr{T}=\{\{\hat{y}\}\cross T_{*}\}_{y\in L} . We can easily see that the image h(\hat{L}\cross T_{*}) is
open and closed. Since \hat{U} is connected, then h is a homeomorphism.
This completes the proof.

COROLLARY 2. 6. If \mathscr{C} has no compact leaf and every leaf in (
\mathscr{C} has

finite ends, then \mathscr{C} has a unique minimal set.

PROOF: Let \mathscr{M} be a minimal set of \mathscr{C} . If \mathscr{M}=M then \mathscr{C} has a
unique minimal set M. Since \mathscr{M} can not be a compact leaf, we may sup-
pose that \mathscr{M} is a exceptional minimal set. For any leaf L\in \mathscr{C}|_{M-\chi} , its
closure c1_{M}(L) contains \mathscr{M} by Proposition 2. 5. Then \mathscr{M} must be a
unique minimal set of (\mathscr{C}

\S 3. Foliations by cylinders and planes.

Let M, \mathscr{C} , \mathscr{T}, K, etc.... be as in Section 2. In this section, we assume
that every laef of \mathscr{C} is homeomorphic to S^{1}\cross R or R^{2} .

If \mathscr{C} is without holonomy, then there exists a Novikov transformation
\phi : \pi_{1}(M)arrow PL_{+}(R) (for definition, see [No], [H -H] ). In this case,
\phi(\pi_{1}(M)) is fixed point free, free abelian group and of rank \geq 2 . Here,

fixed point free means that any element f\neq id_{R} of \phi(\pi_{1}(M)) has no fixed
point. By taking a conjugation by a element of PL_{+}(R) if necessary, we
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can assume that \phi(\pi_{1}(M)) contains a translation by 1. Then it induces
a fixed point free, free abelian subgroup H\subset PL_{+}(S^{1}) of rank \geq 1 . Then
the natural action of H on S^{1} is minimal (see [Min]). Thus we have
the following theorem:

THEOREM 3. 1. If \mathscr{C} is without holonomy, then it is a minimal folia-
tion.

Now let L be a leaf of \mathscr{C} and X a topological space. Given a contin-
uous map c:Xarrow L, f:X\cross[a, b]arrow M is called a fence associated with c ,
if it satisfies the following four conditions:

(1) 0\in(a, b) .
(2) f(x, 0)=c(x) for any x\in X .
(3) For any t\in[a, b] , f(X\cross\{t\}) is contained in a leaf of \mathscr{C} .
(4) For any x\in X , f is a topological embedding from \{x\}\cross[a, b]

into a leaf of \mathscr{T}

As is well known, if X=[0,1]^{2} , then there always exists a fence f :
[o, _{1}]^{2}\cross[a, b]arrow L(a<0<b) associated with any continuous map c:[0, 1]^{2}
arrow L (see [Ni]).

THEOREM 3. 2. If \mathscr{C} is with holonomy, then it is also minimal folia-
tion.

Before the proof, we prepare the following two theorems. One is
about an invariant measure due to S. Goodman and J. Plante ([G-P]) and
the other about a holonomy of a semi-proper leaf in a codimension-0ne
foliation of a compact manifold with boundary essentially due to G.
Duminy, G. Hector, J. Cantwell and L. Conlon ([He 1], [He 2], [C-C 2] ).

THEOREM 3. 3. Let N be a paracompact manifold, \mathscr{F} a continuous
foliation of N of arbitrary codimension, S a compact \mathscr{F}- saturated set, and
L\subset S a non-proper leaf with trivial holonomy such that H_{C}^{1}(L, Z)\neq 0 is
finitely generated. Then there exists a nontrivial invariant measure in S.

THEOREM 3. 4. Let N be a compact manifold with corner \angle N and
\mathscr{F} a codimension-One foliation of N. Suppose that the boundary \partial N is a
union of the compact two manifolds \partial_{tan}N and \partial_{tr}N such that \partial_{tan}N\cap

\partial_{tr}N=\angle N and that \mathscr{F} is tangent to \partial_{tan}N and transverse to \partial_{tr}N. If \mathscr{F}

is a transversely C^{2} foliation, than every non-proper semi-proper leaf L\in
\mathscr{F}

, whose closure c1_{N}(L) has no intersection with \partial_{tan}N, has a non-trivial
holonomy.

PROOF OF THEOREM 3. 2: We prove this theorem by a contradiction.
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Indeed, we show that the hypothesis of an existence of an exceptional
minimal set \mathscr{M} leads to a contradiction.

By Proposition 2. 6, \mathscr{M} is a unique minimal set of \mathscr{C} . There exists a
cylindrical leaf with non-trivial affinely contracting holonomy in \mathscr{M} by
hypothesis, Remark 2. 1 and Proposition 2. 5. This implies that \mathscr{M} has no
nontrivial invariant measure. Then by Proposition 2. 3 and Theorem 3. 3,
every semi-proper leaf in \mathscr{M} is homeomorphic to R^{2}- For, if not, a leaf L
in \mathscr{M} satisfies the condition of Theorem 3. 3 and \mathscr{M} has a non-trivial invar-
iant measure, a contradiction. Using Proposition 2. 5, we see that any
leaf L in M-\mathscr{M} is homeomorphic to R^{2} . Thus, using Theorem 3. 3, we
can see that every cylindrical leaf in non-proper on its both sides, and is
contained in \mathscr{M}, and moreover it has a non-trivial affinely contracting
holonomy.

We take a neighborhood of K as follows. Clearly K intersects only
finite leaves which we denote by

L_{1},\cdots,L_{k} ,

and define the sets K_{i}(i=1,\cdots k) by K_{i}=K\cap L_{i} . If L_{i}\cong R^{2} . then we take a
topological embedding c_{i} : [0, 1]^{2}arrow L_{i} such that c_{i}((0,1)^{2})\supset K_{i} . And if L_{i}

\cong S^{1}\cross R , then we take a cotinuous map c_{i} : [0, 1]^{2}arrow L_{i} with c_{i}(s, 0)=c_{i}(s ,
1) for any s\in[0,1] such that c_{i}|_{(0,1)^{2}} is a topological embedding, c_{i}((0,1)\cross

[0,1])\supset K_{i} and the loop c_{i,0}(t)=c_{i}(0, t) is not null homotopic in L_{i} . If we
take a fence f_{i} : [0, 1]^{2}\cross[a_{i}, b_{i}]-arrow L_{i} associated with c_{i} so small, then
S(f_{i})=f_{i}([0,1]^{2}\cross[a_{i}, b_{i}])(i=1,\cdots,k) is disjoint to each other. We consider
the compact set S= \bigcup_{1\leq i\leq k}S(f_{i}) . Since cylindrical leaf has a non-trivial
affinely contracting holonomy, then all leaves in S is topologically
classified as follows:

(1) S^{1}\cross[0,1] .
(2) [0, 1]^{2} .
(3) [0, 1]\cross\{y\in R|y\geq 0\} .

Moreover there exists only finite numbers of leaves of type(l) and they
are contained in different cylindrical leaves of \mathscr{C} . Then for any leaf L\cong

R^{2} . the subset L-S is still connected and for any leaf L’\cong S^{1}\cross R , the sub-
set L’-S consists of at most two components, which are not relatively
compact in L’ This means that for any leaf L in \mathscr{M} the closure
c1_{M-1nt(s)}(L-S) coincides with c1_{M}(L)\cap(M=int(S)) . By exchanging the
fence f_{i} with small one if necessary, we can assume that \mathscr{M} intersects tran-
sversely with S at each intersecting point. Then (M- int (S), \mathscr{C}’=\mathscr{C}

|_{M-1nt(s)}) is a transversely affine foliation and has an exceptinal minimal set
\mathscr{M}’=\mathscr{M}- int(S) with \mathscr{M}^{r}(\{)\partial (M- int(S)). By Theorem 3. 4, any semi
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-proper leaf of \mathscr{M}’ has a non-trivial holonomy. Therefore any semi
-proper leaf of \mathscr{C} must have a non-trivial holonomy. But every semi
-proper leaf of (

\mathscr{C} is homeomorphic to R^{2} . which is a contradiction. This
completes the proof.
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