On bicommutators of modules over H -separable extension rings

Kozo Sugano
(Received February 23, 1990)

Abstract

Abatract Let a ring A be an H -separable extension of a subring B, and assume that A is left B-finitely generated projective. The aim of this paper is to show under this condition that for any left A-module M the bicommutator A^{*} of ${ }_{A} M$ is an H -separable extension of the bicommutator B^{*} of ${ }_{B} M$ such that $V_{A^{*}}\left(V_{A^{*}}\left(B^{*}\right)\right)=B^{*}$, and that A^{*} is left B^{*}-finitely generated projective (Theorem 1). We will also show that, under the additional condition that B is a left (or right) B-direct summand of $A,{ }_{A} M$ has the double centralizer property if and only if ${ }_{B} M$ does. Theorem 1 is a generalization of (4) Theorem 3.3 [7], but it is interesting for itself. This paper contains the correction to an error in [7]. In the proof of 3.3 [7] we put $\Lambda=\operatorname{End}(I), \Delta$ $=\operatorname{End}\left({ }_{A} I\right)$ and $\Gamma=\operatorname{End}\left({ }_{B} I\right)$, where I is a faithful minimal left ideal of A. We let $\Gamma(\supseteq \Delta)$ opperate on I to the right, and regarded all of A, B, Γ and Δ as subrings of Λ. This is an error. If we had let all of them opperate on I to the left then we were right. In Proposition 1 and Theorem 1 we will give the correct proof of Theorem 3.3 [7] in more general form.

Throughout this paper all rings will have the identities, and all modules over rings will be unitary. Let A be a ring. For any subset S of A, $V_{A}(S)$ will mean the centralizer of S in A, manely, $$
V_{A}(S)=\{a \varepsilon A: s a=a s \text { for any } s \varepsilon S\}
$$

For an $A-A$-module M we will write

$$
M^{A}=\{m \varepsilon M: a m=m a \text { for any } a \varepsilon A\}
$$

Therefore if ${ }_{A} M_{R}$ and ${ }_{A} N_{R}$ are $A-R$-modules for another ring $R, \operatorname{Hom}\left({ }_{A} M\right.$, ${ }_{A} N$) becomes an R - R-module, and we have $\left[\operatorname{Hom}\left({ }_{A} M,{ }_{A} N\right)\right]^{R}=\operatorname{Hom}\left({ }_{A} M M_{R}\right.$, ${ }_{A} N_{R}$). Let M be a left A-module and $\Delta=\operatorname{End}\left({ }_{A} M\right)$. We will let Δ operate to the left on M, and make M a left A - Δ-bimodule. We call $\operatorname{End}(\Delta M)$ the bicommutator of ${ }_{A} M$, and denote it by $\operatorname{Bic}\left({ }_{A} M\right)$. Put $A^{*}=\operatorname{Bic}\left({ }_{A} M\right)$. There exists a natural homomorphism ι of A to A^{*} such that $\iota(a)(m)=$ am, for $a \varepsilon A, m \varepsilon M$. If M is A-faithful, ι is an injection. In this case
we will identify A with $I m \iota$, and regard A as a subring of A^{*}.
Hereafter A will always be a ring with the identity 1 and B a subring of A containing 1 , and C and D will be the center of A and the centralizer of B in A, respectively. Note that for each left A-module $M B^{*}=$ $\operatorname{Bic}\left({ }_{B} M\right)$ is a subring of $A^{*}=\operatorname{Bic}\left({ }_{A} M\right)$, and the canonical map of B to B^{*} is the restriction of the one of A to A^{*} on $B . \quad A$ is an H -separable extension of B if and only if for any A - A-module M the map g_{M} of $D \otimes_{c} M^{A}$ to M^{B} defined by $g_{M}(d \otimes m)=d m$, for $d \varepsilon D, m \varepsilon M^{A}$, is an isomorphism. As for the fundamental property of H -separable extensions of rings see [2], [4] and [5].

Proposition 1. Let A be an H-separable extension of B and $M a$ left A-module. Put $A^{*}=\operatorname{Bic}\left({ }_{A} M\right)$ and $B^{*}=\operatorname{Bic}\left({ }_{B} M\right)$, and let C^{*} be the center of A^{*} and D^{*} the centralizer of B^{*} in A^{*}. Futhermore put $\bar{A}=$ $\iota(A)$ and $\bar{B}=\iota(B)$. Then we have $B^{*}=V_{A^{*}}\left(V_{A^{*}}\left(B^{*}\right)\right), V_{A^{*}}(\bar{A})=C^{*}$ and $D^{*}=V_{A^{*}}(\bar{B}) \cong D \otimes_{c} C^{*}$. If furthermore M is faithful as A-module, we have $V_{A}\left(V_{A}(B)\right)=A \cap B^{*}$, regarding A as a subring of A^{*}.

Proof. Put $\Lambda=\operatorname{End}(M), \Delta=\operatorname{End}\left({ }_{A} M\right)$ and $\Gamma=\operatorname{End}\left({ }_{B} M\right)$. We will regard M as a left Λ-module. Of course A, Δ and Γ are subrings of Λ, and we have $\Delta=\Lambda^{A}=V_{\Lambda}(A), \Gamma=\Lambda^{B}=V_{\Lambda}(B), A^{*}=V_{\Lambda}(\Delta)$ and $B^{*}=V_{\Lambda}(\Gamma)$. Since A is an H -separable extension of B, regarding A^{*} and Λ as $A-A$-modules, we have the following two isomorphisms

$$
\begin{gathered}
V_{A^{*}}(\bar{B})=A^{*^{B}} \cong D \otimes_{c} A^{* A}=D \otimes_{c} V_{A^{*}}(\bar{A}) \\
\Gamma=\Lambda^{B} \cong D \bigotimes_{c} \Lambda^{A}=D \bigotimes_{c} \Delta
\end{gathered}
$$

By the latter isomorphism we have $B^{*}=\operatorname{End}\left({ }_{\Gamma} M\right)=\operatorname{End}(D-\Delta M)=\left[\operatorname{End}\left({ }_{\Delta} M\right)\right]^{D}$ $=A^{* D}=V_{A^{*}}(\bar{D})$, where $\bar{D}=\iota(D)$. Then $V_{A^{*}}\left(V_{A^{*}}\left(B^{*}\right)\right)=V_{A^{*}}\left(V_{A^{*}}\left(V_{A^{*}}(\bar{D})\right)\right)=$ $V_{A^{*}}(\bar{D})=B^{*}$. On the other hand since $B^{*}=V_{\Lambda}\left(V_{\Lambda}(\bar{B})\right)$, we have $V_{\Lambda}\left(B^{*}\right)=$ $V_{\Lambda}\left(V_{\Lambda}\left(V_{\Lambda}(\bar{B})\right)\right)=V_{\Lambda}(\bar{B})$ and $\mathrm{V}_{A^{*}}\left(B^{*}\right)=A^{*} \cap V_{\Lambda}\left(B^{*}\right)=A^{*} \cap V_{\Lambda}(\bar{B})=$ $V_{A^{*}}(\bar{B})$. Furthermore we see that $C^{*}=V_{\Delta}(\Delta)=\operatorname{End}\left({ }_{A-\Delta} M\right)=[\operatorname{End}(\Delta M)]^{A}=$ $A^{* A}=V_{A^{*}}(\bar{A})$. Then, $V_{A^{*}}\left(B^{*}\right)=V_{A^{*}}(\bar{B})=D \otimes_{c} V_{A^{*}}(\bar{A})=D \otimes_{c} C^{*}$. The last assertion can be stated more generally. By Proposition 1.5 [4] wंe have $V_{A}(\bar{B}) \cong D \otimes_{c} \bar{C}$, where \bar{C} is the center of \bar{A}. Then $\mathrm{V}_{\bar{A}}\left(V_{\bar{A}}(\bar{B})\right)=V_{A}(\bar{D} \bar{C})$ $=V_{A}(\bar{D})=\bar{A} \cap V_{A^{*}}(\bar{D})=\bar{A} \cap B^{*}$.

Corollary 1. Let A be an H-separable extension of B. If there exists a faithful left A-module such that ${ }_{B} M$ has the double centralizer property, that is, $B \cong \operatorname{Bic}\left({ }_{B} M\right)$, then we have $B=V_{A}\left(V_{A}(B)\right)$.

Proof. Regarding A as a subring of A^{*}, we have $V_{A}\left(V_{A}(B)\right)=A \cap$ $B^{*}=A \cap B=B$ by the last part of Proposition 1.

Corollary 2. Let A be an H-separable extension of B, and assume that A is left (or right) B-finitetly generated projective. Then if there exists a left A-module M such that ${ }_{B} M$ has the double centralizer property, we have $B=V_{A}\left(V_{A}(B)\right)$.

Proof. Put $\mathfrak{a}=\operatorname{Ann}\left({ }_{A} M\right)$, the annihilator of ${ }_{A} M$. Then $\mathfrak{a} \cap B=\operatorname{Ann}$ $\left({ }_{B} M\right)=0$, since $B=\operatorname{Bic}\left({ }_{B} M\right)$. But our assumption implies $\mathfrak{a}=(\mathfrak{a} \cap B) A$ (or \mathfrak{a} $=A(\mathfrak{a} \cap B)$) (See Theorem 3.1 [5]). In either case we have $\mathfrak{a}=0$, which means that M is faithful as A-module. Now apply Corollary 1 .

The next lemma has been proved in [6] by the same author. Here we will state it without proof.

Lemma 1 (Proposition 1 [6]). In the case where $V_{A}\left(V_{A}(B)\right)=B$, the following conditions are equivalent;
(i) A is an H-separable extension of B and left B-finitely generated projective
(ii) A is a left $D \otimes_{c} A^{\circ}$-generator, and D is C-finitely generated projective.

Now we can obtain our main theorem, which includes Theorem 3.3 (4) [7].

Theorem 1. Let A be an H-separable extension of B. If A is left (resp. right) B-finitely generated projective, then for any left A-module $M, A^{*}=\operatorname{Bic}\left({ }_{A} M\right)$ is an H-separable extension of $B^{*}=\operatorname{Bic}\left({ }_{B} M\right)$ such that $B^{*}=V_{A^{*}}\left(V_{A^{*}}\left(B^{*}\right)\right.$), and A^{*} is left (resp. right) B^{*}-finitely generated projective. If B is a left (resp. right) B-direct summand of A, then B^{*} is a left (resp. right) B^{*}-direct summand of A^{*}.

Proof. Put $D^{*}=V_{A^{*}}\left(B^{*}\right)$. Then $D^{*} \cong D \otimes_{c} C^{*}$ by Proposition 1. Since D is C-finitely generated projective, D^{*} is C^{*}-finitely generated projective. Next, since $D \otimes_{c} A^{\circ} \cong \operatorname{End}\left({ }_{B} A\right)$, and A is left B-finitely generated projective, A is a left $D \otimes_{c} A^{\circ}$-generator. This means that $D \otimes_{c} A<\oplus$ $(A \oplus A \oplus \cdots \oplus A)$ as D - A-module. Then $D \otimes_{c} A^{*} \cong D \otimes_{c} A \otimes_{A} A^{*}<\oplus$ $(A \oplus A \oplus \cdots \oplus A) \otimes_{A} A^{*} \cong A^{*} \oplus A^{*} \oplus \cdots \oplus A^{*}$ as $D-A^{*}$-module, which means that A^{*} is a lft $D \otimes_{c} A^{* 0}$-generator, while $D \otimes_{c} A^{* 0} \cong D \otimes_{c} C^{*} \otimes_{C^{*}} A^{* 0} \cong$ $D^{*} \otimes_{C^{*}} A^{* \circ}$. Furthermore we have $V_{A^{*}}\left(V_{A^{*}}\left(B^{*}\right)\right)=B^{*}$ by Proposition 1. Now we can apply Lemma 1 to have that A^{*} is an H -separable extension of B^{*} and left B^{*}-finitely generated projective. Now assume that B is a left B-direct summand of A. Then the map $D \otimes_{c} A \longrightarrow A$, defined by $d \otimes a \longrightarrow d a$ for $d \varepsilon D$ and $a \varepsilon A$, sklits as $D-A$-map (See Proposition 3.2 [2]). Then the map $D \otimes_{c} A^{*} \longrightarrow A^{*}$, defined by the same way, splits
as $D-A^{*}$-map, which implies that $B^{*}=A^{* D}$ is a left B^{*}-direct summand of A^{*}. By the left and right symmetry we can prove the assertion in the case A is right $B-\mathrm{f} \cdot \mathrm{g} \cdot$ projective.

For any ring A and its subring B, if the map π of $A \otimes_{B} A$ to A such that $\pi(a \otimes b)=a b$, for $a, b \varepsilon A$, is an isomorphism, we will write simply $A \otimes_{B} A \cong A$. In this case we have $C=V_{A}(B)$, since $C \cong \operatorname{Hom}\left({ }_{A} A_{A},{ }_{A} A_{A}\right) \cong$ $\operatorname{Hom}\left({ }_{A} A \otimes_{B} A_{A},{ }_{A} A_{A}\right) \cong V_{A}(B)$.

Lemma 2. $A \otimes_{B} A \cong A$ if and only if A is an H-separable extension of B such that $C=D$.

Proof. Suppose that A is H -separable over B and $C=D$. Then we have an isomorphism η of $A \otimes_{B} A$ to $\operatorname{Hom}\left({ }_{c} D, c A\right)$ such that $\eta(x \otimes y)(d)=$ $x d y$ for $x, y \in A$ and $d \varepsilon D$. But $\operatorname{Hom}(c D, c A)=\operatorname{Hom}(c C, c A) \cong A$. The composition of η and the above isomorphism is equal to π. Thus we have $A \bigotimes_{B} A \cong A$. The converse is obvious.

Proposition 2. Let A be an H-separable extension of B such that A is left B-finitely generated projective and M a left A-module. Suppose that ${ }_{B} M$ has the double centralizer property, and let $A^{*}, B^{*}, C^{*}, D^{*}$, and \subset be as in Proposition 1. Then \subset is an injection, and regarding A as a subring of A^{*}, we have $B^{*}=B=V_{A}\left(V_{A}(B)\right), C^{*}=C$ and $D^{*}=D$. Furthermore, A^{*} is left A-finitely generated projective and $A^{*} \otimes_{A} A^{*} \cong A^{*}$.

Proof. For the same reason as Corollary 2 c is an injection, and we can identify A with $c(A)$ and B with B^{*}. Then since A^{*} is H -separable over B^{*} and A is separable over B^{*}, A^{*} is H -separable over A. But $C^{*}=\mathrm{V}_{A^{*}}(A)$ by Proposition 1. Hence we have $A^{*} \otimes_{A} A^{*} \cong A^{*}$ by Lemma 2. Next, we have $C \subset V_{A^{*}}(A)=C^{*}$ and $C^{*} \subset V_{A^{*}}\left(V_{A^{*}}\left(B^{*}\right)\right)=B^{*} \subset A$ by Proposition 1. That $C^{*} \subset A$ implies $C^{*} \subset C$, and we have $C^{*}=C$. Then $D^{*}=D C^{*}=D$ by Proposition 1. That $B=V_{A}\left(V_{A}(B)\right)$ is due to Corollary 2.

Theorem 2. Let A be an H-separable extension of B such that A is left B-finitely generated projective and M a left A-module. Assume furthermore that B is a left (or right) B-direct summand of A. Then, ${ }_{A} M$ has the double centralizer property if and only if ${ }_{B} M$ does.

Proof. Suppose $A=A^{*}$. Then by Proposition 1 we have $V_{A}\left(V_{A}(B)\right)$ $=B^{*} \cap A=B^{*} \cap A^{*}=B^{*}$, while we have $B=V_{A}\left(V_{A}(B)\right)$ by Proposition 1.2 [4]. Thus we have $B=B^{*}$. Conversely suppose that $B=B^{*}$. Then by proposition 2 we have $A \subset A^{*}$ and $A^{*} \otimes_{A} A^{*} \cong A^{*}$. On the other hand since B is a left (resp. right) B-direct summand of A, B^{*} is a left (resp. right)
over B^{*}, A is a left (resp. right) A-direct summand of A^{*} by Lemma 4.4 [2]. By this fact together with $A^{*} \otimes_{A} A^{*} \cong A^{*}$, we have $A=A^{*}$.

References

[1] K. Hirata and K. Sugano: On semisimple extensions and separable extensions over noncommutative rings, J. Math. Soc. Japan, 18 (1966), 360-373.
[2] K. Hirata: Separable extensions and centralizers of rings, Nagoya Math. J., 35 (1969), 31-45.
[3] B. Stenstrom : Rings of Quatients, Springer, 1975.
[4] K. SUGANO: Note on semisimple extensions and separable extensions, Osaka J. Math., 4 (1967), 265-270.
[5] K. Sugano: On projective H-separable extensions, Hokkaido Math. J., 5 (1975), 44 -54.
[6] K. Sugano: H-separable extensions of simple rings, Proc. 16th. Symposium on Ring Theory, 1983, Okayama.
[7] K. SUGANO: On H-separable extensions of primitive rings 11, to appear in Hokkaido Math. J.
[8] H. Tominaga: A note on H-separable extensions, Proc. Japan Acad., 50 (1974), 446 -447.

Department of Mathematics
Faculty of Science
Hokkaido university
Sapporo 060, Japan

